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Abstract
The HOM problem, which asks whether the image of a regular tree language under
a given tree homomorphism is again regular, is known to be decidable [Godoy &
Giménez: The HOMproblem is decidable. JACM 60(4), 2013]. However, the problem
remains open for regular weighted tree languages. It is demonstrated that the main
notion used in the unweighted setting, the tree automaton with equality and inequality
constraints , can straightforwardly be generalized to the weighted setting and can
represent the image of any regular weighted tree language under any nondeleting
and nonerasing tree homomorphism. Several closure properties as well as decision
problems are also investigated for the weighted tree languages generated by weighted
tree automata with constraints.

Keywords Weighted tree automaton Subtree equality constraint Tree
homomorphism HOM problem Weighted tree grammar Subtree inequality
constraint Closure properties
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1 Introduction

Numerous extensions of nondeterministic finite-state string automata have been pro-
posed in the past few decades. On the one hand, the qualitative evaluation of inputs
was extended to a quantitative evaluation in the weighted automata of [26]. This devel-
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opment led to the fruitful study of recognizable formal power series [25], which are
well-suited for representing factors such as costs, consumption of resources, or time
and probabilities related to the processed input. The main algebraic structure for the
weight calculations are semirings [16, 17], which offer a nice compromise between
generality and efficiency of computation (due to their distributivity). On the other
hand, finite-state automata have been generalized to other input structures such as
infinite words [24] and trees [4]. Finite-state tree automata were introduced indepen-
dently in [7, 27, 28], and they and the tree languages they generate, called regular
tree languages, have been intensively studied since their inception [4]. They are suc-
cessfully utilized in various applications in many diverse areas like natural language
processing [18], picture generation [8], and compiler construction [31]. Indeed sev-
eral applications require the combination of the two mentioned generalizations, and
a broad range of weighted tree automaton (WTA) models has been studied (see [13,
Chapter 9] for an overview).

It is well-known that finite-state tree automata cannot ensure that two subtrees (of
potentially arbitrary size) are always equal in an accepted tree [14]. An extension
proposed in [22] aims to remedy this problem and introduces a tree automaton model
that explicitly can require certain subtrees to be equal or different. Suchmodels are very
useful when investigating (tree) transformation models (see [13] for an overview) that
can copy subtrees (thus resulting in equal subtrees in the output), and they are the main
tool used in the seminal paper [15] that proved that theHOMproblem is decidable. The
HOM problem was a long-standing open problem in the theory of tree languages and
recently solved in [15]. It asks whether the image of an (effectively presented) regular
tree language under a given tree homomorphism is again regular. This is not necessarily
the case as tree homomorphisms can create copies of subtrees. Indeed removing this
ability from the tree homomorphism, obtaining a linear tree homomorphism, yields
that the mentioned image is always regular [14]. In the solution to the HOM problem
provided in [15] the image is first represented by a tree automaton with constraints,
and then it is investigated whether this tree automaton actually generates a regular tree
language.

The HOM problem is also interesting in the weighted setting as it once again
provides an answer whether a given homomorphic image of a regular weighted tree
language can be represented efficiently. While preservation of regularity has been
investigated [3, 10–12] also in the weighted setting, the decidability of the HOM
problem remains wide open. With the goal of investigating this problem, we introduce
weighted tree grammars with constraints (WTGc for short) in this contribution. We
demonstrate that those WTGc can again represent all (nondeleting and nonerasing)
homomorphic images of the regular weighted tree languages. Thus, in principle, it
only remains to provide a decision procedure for determining whether a given WTGc
generates a regular weighted tree language. We approach this task by providing some
common closure properties following essentially the steps also taken in [15]. For
zero-sum free semirings we can also show that decidability of support emptiness and
finiteness are directly inherited from the unweighted case [15].

123

2 Theory of Computing Systems (2024) 68:1–28



The present work is a revised and extended version of [20] presented at the 26th Int.
Conf. Developments in Language Theory (DLT 2022). We provide additional proof
details and examples, aswell as a newpumping lemma for the class of (nondeleting and
nonerasing) homomorphic images of regular weighted tree languages. We utilize this
pumping lemma to show that for any zero-sum free semiring, the class of homomorphic
images of regularweighted tree languages is properly contained in the class ofweighted
tree languages generated by all positive WTGc, which are WTGc that utilize only
equality constraints.

2 Preliminaries

We denote the set of nonnegative integers by , and we let k i 1 i k
for every k . For all sets T and Z let T Z be the set of all mappings Z T ,
and correspondingly we sometimes write z instead of z for every T Z . The
inverse image 1 S of for a subset S T is 1 S z Z z S , and
we write 1 t instead of 1 t for every t T . The range of is

ran z z Z

Let R T Z be a relation. We denote its inverse relation z t t z R
by R 1. The identity relation on T is idT t t t T , or simply ‘id’ if the set T
is clear from the context. Finally, the cardinality of Z is denoted by Z .

A ranked alphabet rk is a pair consisting of a finite set and a map rk
that assigns a rank to each symbol of . If there is no risk of confusion, we denote a
ranked alphabet rk by .We write k to indicate that rk k. Moreover, for
every k we let k rk 1 k . Let X xi i 1 be a countable set of (formal)
variables. For each k we let Xk xi i k . Given a ranked alphabet and a
set Z , the set T Z of " trees indexed by Z is the smallest set such that Z T Z
and t1 tk T Z for every k , k , and t1 tk T Z . We
abbreviate T simply to T , and any subset L T is called a tree language.

Let be a ranked alphabet, Z a set, and t T Z . The set pos t of positions
of t is inductively defined by pos z for all z Z and by

pos t1 tk
i k

i pos ti

for all k , k , and t1 tk T Z . The size t of t is defined as t
pos t , and its height ht t is ht t max pos t . For pos t and t
T Z , the label t of t at , the subtree t of t at , and the substitution t t
of t into t at are defined by z z z and z t t for all z Z and
for t t1 tk by t , t i ti , t t , t i ti , t t t ,
and

t t i t1 ti 1 ti t ti 1 tk
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for all k , k , t1 tk T Z , i k , and pos ti . For all S
Z , we let posS t pos t t S and var t x X posx t .
For a single Z we abbreviate pos t simply by pos t .

The yield mapping yield T Z Z is recursively defined by

yield z z and yield t1 tk yield t1 yield tk

for every z Z , k , k , and trees t1 tk T Z . A tree t T Z
is called context if posz t 1 for every z Z . We write C Z for the set of
such contexts and C Xk c C Xk yield c x1 xk . Finally, for
every t T Z , finite V Z , and T Z V , the substitution applied to t is
written as t and defined by for every V , z z for every z Z V ,
and

t1 tk t1 tk

for all k , k , and t1 tk T Z . We also write the substitution
T Z V as 1 1 n n if V 1 n . Finally, we abbreviate it
further to just 1 n if V Xn .

A commutative semiring [16, 17] is a tuple 0 1 such that 0 and
1 are commutative monoids, distributes over , and 0 s 0 for all s .

Examples include (i) the Boolean semiring 0 1 0 1 , (ii) the semir-
ing 0 1 , (iii) the tropical semiring min 0 , and
(iv) the arctic semiring max 0 . Given two semirings

0 1 and

a semiring homomorphism is a mapping h such that h 0 , h 1 , and
h s1 s2 h s1 h s2 as well as h s1 s2 h s1 h s2 for all s1 s2 .
When there is no risk of confusion, we refer to a semiring 0 1 simply by its
carrier set . A semiring is a ring if there exists 1 such that 1 1 0. Let

be a ranked alphabet. Any mapping A T is called a weighted tree language
over , and its support is supp A t T At 0 .

Let and be ranked alphabets and h T X a map such that h T Xk

for all k and k . We extend h to h T T by (i) h h T X0 T
for all 0 and (ii) h t1 tk h h t1 h tk for all k , k ,
and t1 tk T . The mapping h is called the tree homomorphism induced by h .
For complexity arguments, we define the size h of h as h pos h . The
tree homomorphism h is nonerasing if h X for all k and k , and it is
nondeleting if var h Xk for all k and k . For simplicity, we denote
both h and its induced tree homomorphism by h.

Let h T T be a nonerasing and nondeleting homomorphism. Then h is input
finitary; i.e., the set h 1 u is finite for every u T because t u for each t
h 1 u . Additionally, let A T be aweighted tree language.We define theweighted
tree language h A T for every u T by h A u t h 1 u At .
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3 Weighted Tree Grammars with Constraints

Let us start with the formal definition of our weighted tree grammars. They are a
weightedvariant of the tree automatawith equality and inequality constraints originally
introduced in [1, 5]. Compared to [1, 5] our model is slightly more expressive as we
allow arbitrary constraints, whereas constraints were restricted to subtrees occurring
in the productions in [1, 5]. This more restricted version will be called classic in
the following. An overview of further developments for these automata can be found
in [29].We essentially use the version recently utilized to solve the HOMproblem [15,
Definition 4.1]. For the rest of this section, let 0 1 be a commutative semiring.

Definition 1 (see [15, Definition 4.1]) A weighted tree grammar with constraints
(WTGc) is a tuple G Q F P wt such that

– Q is a finite set of nonterminals and F Q assigns final weights,
– is a ranked alphabet of input symbols,
– P is a finite set of productions of the form q E I , where T Q Q,
q Q, and E I are finite sets, and

– wt P assigns a weight to each production.

In the following, let G Q F P wt be a WTGc. The components of a
production p q E I P are the left-hand side , the target nonterminal q , the
set E of equality constraints, and the set I of inequality constraints. Correspondingly,

the production p is also written
E I

q or even
E I

wt p q if we want to indicate its
weight. Additionally, we simply list an equality constraint E as and an

inequality constraint I as . A production
E I

q P is normalized
if q1 qk for some k , k , and q1 qk Q. It is positive
if I ; i.e., it has no inequality constraints, and it is unconstrained if E I ; i.e.,

the production has no constraints at all. Instead of q we also write just q.
The production is classic if posQ for all constraints E I .
In other words, in a classic production the constraints can only refer to nonterminal-
labeled subtrees of the left-hand side. TheWTGc G is a weighted tree automaton with
constraints (WTAc) if all productions p P are normalized, and it is a weighted
tree grammar (WTG) [14] if all productions p P are unconstrained. If G is both a
WTAc as well as a WTG, then it is a weighted tree automaton (WTA) [14]. All these
devices have Boolean final weights if F 0 1 Q , they are positive if every p P
is positive, and they are classic if every production p P is classic. Finally, if we
utilize the Boolean semiring , then we reobtain the unweighted versions and omit
the ‘W’ in the abbreviations and the mapping ‘wt’ from the tuple.

The semantics for our WTGc G is a slightly non-standard derivation semantics
when compared to [15, Definitions 4.3 & 4.4]. Let and t T .
If pos t and t t , we say that t satisfies , otherwise t dissatis-
fies . Let now C be a finite set of constraints. We write t C

if t satisfies all C , and t C if t dissatisfies all C . Universally
dissatisfying C is generally stronger than simply not satisfying C .
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Definition 2 A sentential form (for G) is simply a tree of T Q . Given an input

tree t T , sentential forms T Q , a production p
E I

q P , and a
position pos , we write p

G t if , q , and the constraints

E and I are fulfilled on t ; i.e., t E and t I . A sequence

d p1 1 pn n P

is a derivation of G for t if there exist 1 n T Q such that

t p1 1
G t 1

p2 2
G t

pn n
G t n

It is left-most if additionally 1 2 n , where is the lexicographic order
on in which prefixes are larger, so is the largest element.

Note that the sentential forms 1 n are uniquely determined if they exist, and
for any derivation d for t there exists a unique permutation of d that is a left-most
derivation for t . The derivation d is complete if n Q, and in that case it is also
called a derivation to n . The set of all complete left-most derivations for t to q Q
is denoted by Dq

G t . The WTGc G is unambiguous if q supp F Dq
G t 1 for

every t T .

Let p
E I

q P be a production. Since there exist unique k posQ ,
context c C Xk , and q1 qk Q such that c q1 qk , we also simply
write

c q1 qk
E I

q

instead of p. Using this notation, we can present a recursion for the set Dq
G t of

complete left-most derivations for t T to q Q.

Dq
G t d1 dk p k p c q1 qk

E I
q P t E t I

t1 tk T t c t1 tk i k di Dqi
G ti

Specifically, let d p1 1 pn n be a complete derivation for some
tree t T . For a given position 1 n , we let k and 1 i1
ik n be the indices such that i1 ik i n i i ; i.e., the indices
of the derivation steps applied to positions below with i being the suffix of i

following the prefix for all i i1 ik . The derivation for t incorporated
in d is the derivation pi1 i1

pik ik
. Conversely, for every we

abbreviate the derivation p1 1 pn n by simply d.

Definition 3 The weight of a derivation d p1 1 pn n is defined to be

wtG d
n

i 1

wt pi
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The weighted tree language generated by G, written simply G T , is defined for
every t T by

Gt

q Q d Dq
G t

Fq wtG d

TwoWTGcare equivalent if they generate the sameweighted tree language. Finally,
a weighted tree language is

– regular if it is generated by some WTG,
– positive constraint-regular if it is generated by some positive WTGc,
– classic constraint-regular if it is generated by some classic WTGc, and
– constraint-regular if it is generated by some WTGc.

Since the weights of productions are multiplied, we can assume without loss of
generality that wt p 0 for all p P .

Example 1 Consider the WTGc G Q F P wt over the arctic semiring
with nonterminals Q q q , 0 1 2 , Fq , Fq 0, and
P and ‘wt’ given by the productions p1 0 q, p2 q 1 q, and p3

q q
11 2

1 q . Clearly, G is positive and classic, but not a WTAc. The tree t
has the unique left-most derivation

d p1 111 p2 11 p1 21 p2 2 p3

to the nonterminal q , which is illustrated in Fig. 1. Overall, we have

supp G i 1 i i

and Gt pos t for every t supp G , where i t abbreviates t
containing i" times the unary symbol atop t .

Next, we introduce another semantics, called initial algebra semantics, which is
based on the presented recursive presentation of derivations and oftenmore convenient
in proofs.

Fig. 1 Illustration of the derivation mentioned in Example 1
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Definition 4 For every nonterminal q Q we recursively define the map wtqG
T

such that for every t T by

wtqG t

p c q1 qk
E I

q P
t1 tk T
t c t1 tk
t E t I

wt p

k

i 1

wtqiG ti (1)

It is a routine matter to verify that wtqG t d Dq
G t wtG d for every q Q

and t T . This utilizes the presented recursive decomposition of complete deriva-
tions as well as distributivity of the semiring .

As for WTG and WTA [13], also every (positive) WTGc can be turned into an
equivalent (positive)WTAc at the expense of additional nonterminals by decomposing
the left-hand sides.

Lemma 1 (cf. [15, Lemma 4.8]) WTGc and WTAc are equally expressive. This also
applies to positive WTGc.

Proof Let G Q F P wt be a WTGc with a non-normalized production

p 1 k
E I

q P

let U Q and let UT Q be an injective map such that q q for all q Q.
We define the WTGc G Q F P wt such that Q Q 1 k ,
Fq Fq for all q Q and Fq 0 for all q Q Q, and

P P p 1 k

E I
q i i i k i Q

and for every p P

wt p

wt p if p P p

wt p if p 1 k

E I
q

1 otherwise.

To prove that G is equivalent to G we observe that for every left-most derivation

d p1 1 pn n

of G, there exists a corresponding derivation d of G , which is obtained by replacing
each derivation step pa a with pa p by the sequence

i i ai i k i Q 1 k

E I
q a
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of derivation steps of G (yielding also a unique corresponding left-most derivation).
This replacement preserves the weight of the derivation. Vice versa any left-most

derivation ofG that utilizes the production 1 k

E I
q P at needs to

previously utilize the productions i i P at i for all i k with i Q since
these are the only productions that generate the nonterminal i . Thus, we established
a weight-preserving bijection between the left-most derivations of G and G , so it is
obvious that G G. Repeated application of the normalization yields an equivalent
WTAc. Assuming a fixed ranked alphabet , every step of the normalization adds
at most max rk new productions and states that can be computed in constant
time. In total

c q1 qk
E I

q P
pos c 1 steps will be executed, so the overall

construction runs in linear time and returns an output WTAc whose size is linear in
the size of the input WTGc. Finally, we note that the constructed WTAc is positive if
the original WTGc is positive.

As we will see in the next example, the construction used in the proof of Lemma 1
does not preserve the classic property.

Example 2 Consider the classic and positive WTGc G of Example 1 and its non-

normalized production p q q
11 2

1 q . Applying the construction in the

proof of Lemma 1 we replace p by the productions q q
11 2

1 q, which is not
classic, and q 0 q , where q is some new nonterminal. The WTGc obtained
this way is already a positive WTAc.

Another routine normalization turns the final weights into Boolean final weights
following the approach of [2, Lemma 6.1.1]. This is achieved by adding special copies
of all nonterminals that terminate the derivation and pre-apply the final weight.

Lemma 2 WTGc and WTGc with Boolean final weights are equally expressive. This
also applies to positive WTGc, classic WTGc, and classic positive WTGc as well as
the same WTAc.

Proof Let G Q F P wt be a WTGc. Let f CQ be bijective with C
Q . We construct the WTGc G Q C F P P wt wt such

that p
E I

fq belongs to P and wt p wt p Fq for every p
E I

q P .
No other productions belong to P . Finally, Fq 0 for all q Q and Fc 1 for
all c C . The proof of equivalence is straightforward showing for every t T and
q Q that

wtqG t wtqG t and wt f q
G t wtqG t Fq

The construction trivially preserves the properties normalized, positive, and classic.

Let d Dq
G t be a derivation for some q Q and t T . Since we often argue

with the help of such derivations d , it is a nuisance that we might have wtG d 0.
This anomaly can occur even if wt p 0 for all p P due to the presence of zero-
divisors, which are elements s s 0 such that s s 0. However, we can
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fortunately avoid such anomalies altogether utilizing a construction of [19], which has
been lifted to tree automata in [9].

Lemma 3 For every WTGc G there exists a WTGc G Q F P wt that is

equivalent and wtG d 0 for all q Q , t T , and d Dq
G t . This also

applies to positive WTGc, classic WTGc, and classic positive WTGc as well as the
same WTAc. The construction also preserves Boolean final weights.

Proof Let G Q F P wt . Obviously, 1 0 is a commutative monoid
with zero. Let s1 sn be an enumeration of the finite set wt P 1 . We
consider the monoid homomorphism h n , which is given by

h m1 mn

n

i 1

smi
i

for every m1 mn . According to Dickson’s lemma [6] the set min h 1 0
is finite, where the partial order is the standard pointwise order on n . Hence there
is u such that min h 1 0 0 u n U .We define the operation U 2

U by i min i i u for every U and i n . Moreover, for
every i n we let 1si U be the vector such that 1si i 1 and 1si a 0 for
all a n i . Let V U h 1 0 . We construct the equivalent WTGc G such that
Q Q V , F q Fq for all q Q , and P and wt are given as follows.
For every production

p c q1 qk
E I

q P

and all 1 k V such that 1wt p
k
i 1 i V the production

c q1 1 qk k
E I

q

belongs to P and its weight is wt p wt p. No further productions are in P . The
construction trivially preserves the properties positive, classic, and normalized. For

correctness, let q q Q , t T , and d Dq
G t . We suitably (for

the purpose of zero-divisors) track the weight of the derivation in and h 0 by
definition. Consequently, wtG d 0 as required. We note that possibly wtG d
h .

For zero-sum free semirings [16, 17] we obtain that the support supp G of an
WTGc can be generated by a TGc. A semiring is zero-sum free if s 0 s for
every s s such that s s 0. Clearly, rings are never zero-sum free, but the
mentioned semirings , , , and are all zero-sum free.

Corollary 1 (of Lemmas 2 and 3) If is zero-sum free, then supp G is (positive,
classic) constraint-regular for every (respectively, positive, classic) WTGc G.

Proof We apply Lemma 2 to obtain an equivalent WTGc with Boolean final weights
and then Lemma 3 to obtain the WTGc G Q F P wt with Boolean final
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weights. Asmentionedwe can assume that wt p 0 for all p P . Let q supp F

and t T with Dq
G t . Since wtG d 0 for every derivation d Dq

G t
and s s 0 for all s s 0 due to zero-sum freeness, we obtain t supp G .
Thus, the existence of a complete derivation for t to an accepting nonterminal (i.e.,
one with final weight 1) characterizes whether we have t supp G . Consequently,
the TGc Q supp F P generates the tree language supp G , which is thus
constraint-regular. The properties positive and classic are preserved in all the construc-
tions.

4 Closure Properties

Next we investigate several closure properties of the constraint-regular weighted tree
languages. We start with the (point-wise) sum, which is given by A A t At At
for every t T and A A T . Given WTGc G and G generating A and A we
can trivially use a disjoint union construction to obtain a WTGc generating A A .
We omit the details.

Proposition 1 The (positive, classical) constraint-regular weighted tree languages
(over a fixed ranked alphabet) are closed under sums.

The corresponding (point-wise) product is the Hadamard product, which is given
by A A t At At for every t T and A A T . With the help of a
standard product construction we show that the (positive) constraint-regular weighted
tree languages are also closed underHadamard product. As preparationwe introduce
a special normal form. A WTAc G Q F P wt is constraint-determined if
E E and I I for all productions

q1 qk
E I

q P and q1 qk
E I

q P

In other words, two productions cannot differ only in the sets of constraints. It is
straightforward to turn any (positive) WTAc into an equivalent constraint-determined
(positive) WTAc by introducing additional nonterminals (e.g. annotate the constraints
to the nonterminal on the right-hand side).

Theorem 1 The (positive) constraint-regular weighted tree languages (over a fixed
ranked alphabet) are closed under Hadamard products.

Proof Let A A T be constraint-regular.Without loss of generality (see Lemma1)
we can assume constraint-determined WTAc

G Q F P wt and G Q F P wt

that generate A and A , respectively. We construct the direct product WTAc

G G Q Q F P wt
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such that F q q Fq Fq for every q Q and q Q and for every production

p q1 qk
E I

q P and production p q1 qk
E I

q P the
production

p q1 q1 qk qk
E E I I

q q

belongs to P and its weight is wt p wt p wt p . No other productions belong to P .
It is straightforward to see that the property positive is preserved. The correctness proof
that G G A A is a straightforward induction proving

wt q q
G G t wtqG t wtqG t

for all t T using the initial algebra semantics. The WTAc G and G are required
to be constraint-determined, so that we can uniquely identify the basic productions
p P and p P that construct a newly formed production p P .

We can obtain a constraint-determined WTAc at the expense of a polynomial
increase in the number of productions (assuming that the ranked alphabet of input
symbols is fixed). Let r max rk be the maximal rank of an input symbol and
c P be the number of productions of the given WTAc G Q F P wt .
First, we modify the target nonterminal q of each production q E I P
to additionally include the identifier , which yields the production q E I .
This effectively yields the new nonterminal set Q P , which has size Q c. Then
the copies of the production q1 qk q E I form the set

q1 1 qk k q E I 1 k P

Clearly, this turns each production into at most cr productions since k r , so the
overall number of productions after all replacements is at most cr 1. The product
construction itself is then quadratic.

We note that the previous construction also works for classic WTAc.

Example 3 Let G q F P wt and G z F P wt be WTAc
over and 0 1 2 , Fq Fz 0, and the productions

0 q q 2 q q q
1 2

0 q P

0 z z
11 12

1 z z z 1 z P

We observe that

supp G t T pos t t 1 t 2

supp G t T pos t if t 1 then t 11 t 12
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andGt 2 pos t aswell asGt pos t pos t for every tree t supp G
and tree t supp G . We obtain the WTAc G G q z F P wt
with F q z 0 and the following productions.

0 q z q z
11 12

3 q z q z q z
1 2

1 q z

Hence we obtain the equality G G t 3 pos t pos t Gt Gt for every
tree t supp G supp G .

Next, we use an extended version of the classical power set construction to obtain
an unambiguous WTAc that keeps track of the reachable nonterminals, but preserves
only the homomorphic image of its weight. The unweighted part of the construction
mimics a power-set construction and the handling of constraints roughly follows [15,
Definition 3.1].

Theorem 2 Let h bea semiringhomomorphism into afinite semiring .For every
(classic) WTAc G Q F P wt over there exists an unambiguous (classic)
WTAc G Q F P wt such that for every tree t T and Q

wtG t
1 if q h wtqG t for all q Q

0 otherwise.

Moreover, Gt h Gt for every t T .

Proof For every , let

C E q1 qk
E I

q P I q1 qk
E I

q P

be the constraints that occur in productions of G whose left-hand side contains . We
let F q Q h Fq q for every Q . For all k , k , nontermi-

nals 1 k Q , and constraints E C we let p 1 k E I

P , where I C E and for every q Q

q

p q1 qk
E I

q P
E E I I

h wt p
1
q1

k
qk (2)

No additional productions belong to P . Finally, we set wt p 1 for all p P . In
general, the WTAc G is certainly not deterministic due to the choice of constraints,
but G is unambiguous since the resulting 2 C rules for each left-hand side have
mutually exclusive constraint sets. In fact, for each t T there is exactly one left-most
complete derivation of G for t , and it derives to Q such that q h wtqG t
for every q Q. The weight of that derivation is 1. These statements are proven
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inductively. The final statement Gt h Gt for every t T is an easy consequence
of the previous statements. IfG is classic, then also the constructedWTAcG is classic.

Example 4 Recall theWTAcG andG fromExample 3.Consider theWTAcgenerating
their disjoint union, as well as the semiring homomorphism h given by ha 1
for all a and h 0. The sets C and C of utilized constraints
are C 11 12 and C 1 2 , and we write Q simply as subsets
of Q. We obtain the unambiguous WTAc G with the following sensible (i.e., having
satisfiable constraints) productions for all Q Q q z , which all have weight 1.

q z

Q
11 12

Q q Q
11 12

Q

Q Q
1 2

Q Q Q Q
1 2

Q Q z

Each t T has exactly one left-most complete derivation in G ; it derives to Q ,
where (i) q Q iff t supp G and (ii) z Q iff t supp G . It is F 0
and FQ 1 for all non-empty Q q z .

Corollary 2 (of Theorem 2) Let be finite. For every (classic) WTAc over there
exists an equivalent unambiguous (classic) WTAc.

Corollary 3 (of Theorem 2) Let be zero-sum free. For every (classic) WTAc G
over there exists an unambiguous (classic) TAc generating supp G .

Proof Utilizing Lemma 2 we can first construct an equivalent WTAc with Boolean
final weights. If is zero-sum free, then there exists a semiring homomorphism h
by [30]. By Lemma 3we can assume that each derivation ofG has non-zeroweight and
sums of non-zero elements remain non-zero by zero-sum freeness. Thuswe can simply
replace the factor h wt p by 1 in (2). The such obtained TAc generates supp G .

Corollary 4 (of Theorem 2) Let be zero-sum free. For every (classic) WTAc G over
there exists an unambiguous (classic) TAc generating T supp G .

Proof Let G Z Z0 P be the unambiguous TAc given by Corollary 3.
Since G is also complete in the sense that every input tree has a derivation, the
desired unambiguous TAc G is simply G Z Z Z0 P .

Let A A T . It is often useful (see [15, Definition 4.11]) to restrict A to the
support of A but without changing the weights of those trees inside the support.
Formally, we define A supp A

T for every t T by A supp A t At if t
supp A and A supp A t 0 otherwise. Utilizing unambiguous WTAc and the
Hadamard product, we can show that A supp A is constraint-regular if A and A are
constraint-regular and the semiring is zero-sum free.

Theorem 3 Let be zero-sum free. For all (classic) WTAc G and G there exists a
(classic) WTAc H such that H G supp G .
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Proof By Corollary 1 the support supp G is constraint-regular. Hence we can obtain
an unambiguousWTAc G for supp G using Corollary 3. Without loss of generality
we assume that both G and G are constraint-determined; we note that the normaliza-
tion preserves unambiguousWTAc. Finallywe constructG G , which by Theorem 1
generates exactly G supp G as required.

In the following, we establish a special property for classic WTGc. To this end, we
first need another notion. Let G Q F P wt be a WTGc. A nonterminal
Q is a sink nonterminal (in G) if F 0 and

1
E I

s q P q

In other words, for every sink nonterminal the production
belongs to P withweight 1 for every symbol .Additionally, no other productions
have the sink nonterminal as target nonterminal. Given a set E of
equality constraints, we let E E E 1 id be the smallest equivalence relation
containing E (where the superscript denotes the transitive closure), and E be

the equivalence class of . Additionally, for every c q1 qk
E I

q P we let

c E i j k k E c xi c x j

be a representation of the equality constraints on the indices k .

Definition 5 A classic WTGc G Q F P wt is eq" restricted if there exists a

sink nonterminal Q such that for every production p c q1 qk
E I

q P
and index i k there exists a nonterminal q Q such that

1. q j j i c E q and
2. there exists exactly one index j i c E , also called governing index for i in p,

such that q j q .

The mapping gp k k assigns to each index i k its governing index for i in p.

In other words, in an eq" restricted WTGc one subtree is generated normally by
the WTGc and all the subtrees that are required to be equal by means of the equality
constraints are generated by the sink nonterminal , which can generate any tree with
weight 1. In this manner, the restrictions on subtree and weight generation induced
by the WTGc are exhibited completely on a single subtree and the “copies” are only
provided by the equality constraint, but not further restricted by the WTGc. We will
continue to use for the suitable sink nonterminal of an eq" restricted WTGc.

Finally, we show that the weighted tree languages generated by eq" restricted pos-
itive WTGc are closed under relabelings. A relabeling is a tree homomorphism of
the form T X such that for every k and k there exists k

with x1 xk . In other words, a relabeling deterministically replaces sym-
bols respecting their rank. We often specify a relabeling just as a mapping
such that k for every k and k .
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Theorem 4 The weighted tree languages generated by eq-restricted positive WTGc
are closed under relabelings.

Proof LetWTGcG Q F P wt be an eq" restricted positiveWTGcwith sink
nonterminal . Without loss of generality, suppose that X , and let
be a relabeling. We first extend to a mapping X X , in which we treat
the elements of X as nullary symbols, for every and x X by and

x x . Let G Q F P wt be the eq" restricted positive WTGc such that

P c q1 qk
E

q c q1 qk
E

q P q

and for every production p c q1 qk
E

q P with q we let

wt p

p c q1 qk
E

q P
c 1 c

wt p (3)

Finally, wt 1 for all . Since the relabeling replaces
symbols by symbols, the size ofG is linear in the size ofG. For theweight functionwt ,
we must compute the sum (3), which can be achieved by accumulating the weight
during the construction of the new productions, so the overall time complexity remains
linear. For correctness we prove the following equality for every u T and q Q
by induction on u

wtqG u t 1 u wtqG t if q

1 otherwise.
(4)

The second case is immediate since there is a single derivation, namely the one utilizing
only nonterminal , foru to and itsweight is 1. In the remaining casewehaveq .
Then

wtqG u

1

p c q1 qk
E

q P
u1 uk T
u c u1 uk

u E

wt p

k

i 1

wtqiG ui

IH

p c q1 qk
E

q P
u1 uk T
u c u1 uk

u E

wt p
i k
qi

ti 1 ui

wtqiG ti
i k
qi

1
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Recall that gp k k assigns to each index its governing index. For better readabil-
ity, we write just g . Note that due to the special form of substitution we automatically
fulfill u E and can thus drop it.

3

p c q1 qk
E

q P
i ran g ui T ti 1 ui

u c ug 1 ug k

p c q1 qk
E

q P
c 1 c

wt p
i ran g

wtqiG ti

We note that gp gp for all used productions p, so we just write g. Additionally, for
every qi with i k ran g we have qi and thus wtqiG tg i 1 because there
is exactly one such derivation with weight 1.

p c q1 qk
E

q P
i ran g ti T

u c tg 1 tg k

wt p

k

i 1

wtqiG tg i

t 1 u p c q1 qk
E

q P
t1 tk T
t c t1 tk

t E

wt p

k

i 1

wtqiG ti
1

t 1 u

wtqG t

We complete the proof for every u T as follows.

Gu
q Q

Fq wtqG u
4

q Q

Fq
t 1 u

wtqG t
t 1 u q Q

Fq wtqG t

t 1 u

Gt

5 Towards the HOM Problem

The strategy of [15] for deciding the HOM problem first represents the homomorphic
image L h L of the regular tree language L with the help of an WTGc G . For
deciding whether L is regular, a tree automaton G simulating the behavior of G up
to a certain bounded height is constructed. If the automata G and G are equivalent,
i.e., G G , then L is regular. In the remaining case, pumping arguments are used
to prove that it is impossible to find any TA for L . Overall, this reduces the HOM
problem to an equivalence problem.

Towards solving the HOM problem in the weighted case we now proceed simi-
larly. First, we show that WTGc can encode each (well-defined) homomorphic image
of a regular weighted tree language. This ability motivated their definition in the
unweighted case [15, Proposition 4.6], and it also applies in the weighted case with
minor restrictions that just enforce that all obtained sums are finite.
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Theorem 5 Let G Q F P wt be a WTA and h T T be a nondeleting and
nonerasing tree homomorphism. There exists an eq" restricted positive WTGc G with
G h G .

Proof We recall that we also use h for the mapping h T X inducing the tree
homomorphism h. We construct a WTGc G for h G in two stages. First, let

G Q P F P wt

such that for every p q1 qk q P and h u u1 un ,

p p u1 un q1 qk
E

q P

with E i k posxi u
2, in which the substitution p u1 un q1 qk

replaces for every i k only the left-most occurrence of xi in p u1 un
by qi and all other occurrences by . Moreover wt p wt p. Additionally, we let

p P

with weight wt p 1 for every k and k k P . No other productions

are in P . Finally, we let Fq Fq for all q Q and F 0. Obviously, G is
eq" restricted and positive.

In order to better describe the behaviour of G , let us introduce the follow-
ing notation. Given a tree t t1 tk T and a complete left-most
derivation d p1 1 pm m of G for t , let d1 dk be the derivations
for t1 tk , respectively that are incorporated in d and h u1 un . Then
we define the tree h t d T P inductively by

h t d pm u1 un h t1 d1 h tk dk

Using this notation, let us now prove that for each q Q we have

s T P Dq
G s h t d t T d Dq

G t (5)

and, in turn, every such Dq
G s is a singleton set with wtG d wtG d for the

unique d Dq
G h t d .

We start with the inclusion from right to left. To this end, let t T be a tree
and d p1 1 pm m be a complete left-most derivation of G for t to some
nonterminal q Q. Let t t1 tk be the input tree with h u1 un ,
let pm q1 qk q be the production utilized last in d, and let di be the
complete left-most derivation for ti to qi incorporated in d for every i k . For
every i k , we utilize the induction hypothesis to conclude that Dqi

G h ti di is a
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singleton set, so let di Dqi
G h ti di be the unique element, for which we addition-

ally have wtG di wtG di . Moreover, for every i k there is a derivation di
for h ti di with weight 1 that exclusively utilizes the nonterminal . We define

s pm u1 un h t1 d1 h tk dk

For every i k , let i be the left-most position labeled by xi in h . We consider the
derivations 1d1 kdk , and for every other occurrence of xi in h we consider
the derivation di . Let d be the derivation assembled from the considered subderiva-

tions followed by pm , where pm pm u1 un q1 qk
E

q with
the constraints E k

i 1 posxi h 2. Clearly, the production pm is the only applica-
ble one since the only other productionwhose left-hand side is labeled by pm at the
root reaches q. Reordering the derivation d to be left-most, we obtain the desired
complete left-most derivation d for s, for which we also have wtG d wtG d .
This proves that d is the required single element of Dq

G s Dq
G h t d .

On the other hand, consider s T P such that there exists a complete left-most
derivation d p1 1 pm m for s to q; i.e. d Dq

G s . The final
rule pm that is applied must be of the form

pm p u1 un q1 qk
E

q

with u1 un q1 qk h q1 qk for some symbol k and
production p q1 qk q . For every i k , we denote by i the unique
position amongposxi h that is labeled byqi in h q1 qk (recall that every other
position related to i via E will be labeled by ). By the induction hypothesis applied
to s i , for which the complete left-most derivation di for s i to qi incorporated in d
exists, there exists a tree ti T and a complete left-most derivation di ofG for ti to qi
such that s i h ti di and wtG di wtG di . For the tree t t1 tk we
obtain that s h t d for the complete left-most derivation d Dq

G t given by

d 1d1 kdk p

for which we also have wtG d wtG d , which completes this proof.
So far, Q and P are larger than Q and P only by a constant (assuming a fixed

alphabet ) caused by the additional sink nonterminal and its productions, but the
alphabet size increases by the summand P . Computing a single production only
takes linear time in the size of h (assuming constant-time access to the tree in the range
of h), so G is constructed in linear time in G h .

We nowdelete the annotationwith the help of the relabeling P given for
every and p P by p following the construction in Theorem 4.

G u

s 1 u

Gs

s 1 u q Q

Fq wtqG s

q Q s 1 u
d Dq

G
s

Fq wtG d
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5

q Q s 1 u
t T d Dq

G t
s h t d

Fq wtG d
q Q

t h 1 u

Fq wtqG t
t h 1 u

Gt h G u

for every u T . The overall time complexity is thus still in O G h . The
construction of Theorem 4 is applicable because is clearly a sink nonterminal in G
and G is an eq" restricted positive WTGc.

Let us illustrate the construction on a simple example.

Example 5 Consider the WTA G q q F P wt over the semiring of
nonnegative integers with 0 1 1 1 , Fq 0, Fq 1, and the set
of productions and their weights given by

p1 1 q p2 q 2 q p3 q 1 q and p4 q 1 q

Then supp G t t T and Gt 2 pos t for every t supp G .
Consider the ranked alphabet 0 1 2 and the tree homomorphism h
induced by h , h h x1 , and h x1 x1 . Consequently,

supp h G n 1 n n

and h G t
n
k 0

n
k 2k 3n for every t n 1 n supp h G . A

WTGc for h G is constructed as follows. First, we let

G q q P F P wt

with Fq 1, Fq F 0 and the productions and their weights are given by

p1 1 q p2 q 2 q p3 q 1 q p4 q
11 2

1 q

and 1 for all P . Next we remove the second component
of the symbols of P and add the weights of all productions that yield the same
production once the second components are removed. In our example, this applies to
the production q q, which is the result of the two productions p2 q 2 q
and p3 q 1 q , so its weight is 2 1 3. Overall, we obtain the WTGc G
q q F P wt with the following productions for all :

1 q q 3 q q
11 2

1 q 1

Trees generated by a WTGc must satisfy certain equality constraints on their sub-
trees. Therefore, if we naively swap subtrees of generated trees, then we might violate
such an equality constraint and obtain a tree that is no longer generated by the WTGc.
Luckily, the particular kind ofWTGc constructed in Theorem 5, namely eq" restricted
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positive WTGc, allows us to refine the subtree substitution such that it takes into
consideration the equality constraints in force. The following definition is the natural
adaptation of [15, Definition 5.1] for (Boolean) tree automata with constraints.

Definition 6 Let G Q F P wt be an eq" restricted positive WTGc with sink
nonterminal . Moreover, let q q Q, t t T , and d Dq

G t as well as d

Dq
G t such that q q and d d p uses p c q1 qk

E
q P as

its final production. For every i k let i posxi c and di be the unique left-most
derivation for ti t posxi c incorporated in d. Finally, for every tree u T let du
be the unique left-most derivation for u to . For every pos t , for which the
derivation for t incorporated in d yields q , we recursively define the derivation
substitution d d of d into d at and the resulting tree t t d as follows. If ,
then d d d and t t d t . Otherwise j for some j k and we have

d d d1 dk p and t t d c t1 tk

where for each i k we have

– if i j (i.e., i is a prefix of ), then di i di d and ti ti t
di ,

– if qi and i j E (i.e., it is a position that is equality restricted to j ),

then di i du and ti u with u t j t
d j , and

– otherwise di i di and ti ti (i.e., derivation and tree remain unchanged).

It is straightforward to verify that d d is a complete left-most derivation of G
for t t d to q.

Example 6 We consider the WTGc G q F P wt with input ranked
alphabet a 0 g 2 f 2 , final weights Fq 1 and F 0 as well as produc-
tions

pa a 1 q pg g q
1 2

1 q and p f f q f q
1 22

1 q

besides the sink nonterminal productions p 1 for all .
As before, for every u T we let du DG u be the unique derivation of G for u
to , which utilizes only the nonterminal . According to Definition 6 we choose the
states q q and the trees t and t and derivations d and d as given in Fig. 2 and
below.

d pa 11 pa 12 pg 1 pa 21 pa 221 pa 222 pg 22 p f

d pa 1 pa 2 pg
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Fig. 2 Input trees t and t from Example 6

We select that position 11 and observe that that the derivation for t 11 is pa ,
which yields q q . We compute d d as follows

d d 11 1 d1 d 1 21 pa 22du p f

1 1d 2dg a a pg pa 21 22du p f

pa 111 pa 112 pg 11 12dg a a pg 1 pa 21 22du p f

where d1 pa 1 pa 2 pg and u g g a a g a a . We note that
11 is explicitly equality constrained to position 12 in d via the constraint 1 2
at position 1 and implicitly equality constrained to positions 221 and 222 via the
constraint 1 22 at the root . Thus, we obtain d d 11 by substituting d into d
at position 11 as well as substituting dt into d at positions 12, 221, and 222. The
obtained tree t t d is displayed in Fig. 3.

As our example illustrates, the tree t t d is obtained from t by (i) identifying
the set of all positions of t that are explicitly or implicitly equality constrained to
by the productions in the derivation d and (ii) substituting t into t at every such
position. If pos t is parallel to all positions constrained to , like position 21 in
Example 6, then t t t . Note that t 21 is equal to the replaced subtree t 11,
but we only replace constrained subtrees and not all equal subtrees.

Fig. 3 Obtained pumped tree t t d
11 from Example 6
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This substitution allows us to prove a pumping lemma for eq" restricted positive
WTGc, which can generate all (nondeleting and nonerasing) homomorphic images
of regular weighted tree languages by Theorem 5. To this end, we need some final

notions. Let G Q F P wt be a WTGc. Moreover, let p
E I

q P be
a production. We define the height ht p of p by ht p ht (i.e., the height of its
left-hand side). Moreover, we let

ht P max ht p p P and ht G Q 1 ht P

Lemma 4 Let G Q F P wt be an eq" restricted positive WTGc with sink
nonterminal . There exists n s.t. for every tree t0 T , nonterminal q
Q , and derivation d Dq

G t0 such that ht t0 n and wtG d 0 there
are infinitely many trees t1 t2 and derivations d1 d2 such that di Dq

G ti
and wtG di 0 for all i .

Proof Without loss of generality, suppose that for every c q1 qk
E

q P
with q and k 0 there exists i k such that qi . This can easily be
achieved by introducing a copy of nonterminal and replacing one instance of
by in offending productions. Similarly, we can assume without loss of generality
that the construction in the proof of Lemma 3 has been applied to G. If this is the case,
then we can select n ht G . Let t0 T be such that ht t0 n. Let Q Q ,
d Dq

G t0 be a derivation with wtG d 0, and select a position pos t0 of
maximal length such that d incorporates a derivation for t0 to some q Q . Then

ht t0 ht P ht G ht P Q ht P

which yields that at least Q proper prefixes of exist such that d incorporates a
derivation for t0 to some q Q . Hence there exist prefixes of such that
d incorporates a derivation d for t t0 to q Q as well as a derivation for t0
to the same nonterminal q , and, without loss of generality, is a proper prefix of .
Then d d is a derivation of G for t1 t t d to q with ht t1 ht t0 . Since
we achieve the same state q, the annotation of the proof of Lemma 3 guarantees
that wtG d1 0. Iterating this substitution yields the desired trees t1 t2 and
derivations d1 d2 .

A WTGc generating a (nondeleting and nonerasing) homomorphic image of a
regular weighted tree language, if constructed as described in Theorem 5, will never
have overlapping constraints since constraints always point to leaves of the left-hand
sides of productions as required by classic WTGc. It is intuitive that this limitation to
the operating range of constraints leads to an actual restriction in the expressive power
of WTGc, but we will only prove it for eq-restricted positive WTGc.

Proposition 2 Let be a zero-sum free semiring. The class of positive constraint-
regular weighted tree languages is strictly more expressive than the class of weighted
tree languages generated by eq" restricted positive WTGc.
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Proof Let us consider the positive WTGc G q q F P wt with input
ranked alphabet f 2 f 2 g 2 a 0 , final weights Fq 1 and Fq 0, and
the following productions, of which each has weight 1.

a 1 q g q q 1 q f q q
12 21

1 q f q q
12 21

1 q

The first two productions are only used on leaves and on subtrees of the form g a a .
Every other position (i.e., neither leaf nor position with two leaves as children) is
labeled either f or f and additionally every derivation enforces the constraint 12 21,
so the subtrees t 12 and t 21 of the input tree t need to be equal for a complete
derivation of G to exist.

For the sake of a contradiction, suppose that there exists an eq" restricted positive
WTGc G Q F P wt that is equivalent to G. We recursively define the
trees tn T and tn T for every n with n 1 by

t0 a t1 g t0 t0 tn 1 f tn tn
t0 a t1 g t0 t0 tn 1 f tn tn

Clearly, tn and tn are both complete binary trees of height n. Naturally, the leaves are
labeled a, and the penultimate level in both trees is always labeled g. In tn the remaining
levels are universally labeled f , whereas in tn the left-most spine on those levels is
labeled f . We illustrate an example tree tn in Fig. 4. Obviously G tn 1 as well
as G tn 1 for every n with n 1. Furthermore we note that the derivations
of G only enforce equality constraints on positions of the form 12 or 21, but
since pos f tn 1 , the positions, in which the labels in tn and tn differ, are not

affected by any equality constraint. This can be used to verify that G tn 1 for
each n 1.

In the following, let n 3 ht G 2. Since G is equivalent to G, we need to
haveG tn 1 aswell, which requires a complete derivation ofG for tn to some final
nonterminal q0 Q . Let d Dq0

G tn be such a derivation. Moreover, let d d p

Fig. 4 A snippet of the tree tn and the productions used by G
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for some production p c q1 qk
E

q0 P . Since the input tree tn contains
positions

1i 11 1
i times

0 i n pos tn

there must exist j such that c 1 j x1; i.e., position 1 j is labeled x1 in c.
Obviously, j ht G , so the height of the subtree t tn 1 j , which is still a
complete binary tree, is at least 2 ht G 2.We can thus apply Lemma 4 to the tree t
in such a way that it modifies its second direct subtree (starting from 1 j pos tn , we
descend to 1 j2; from there,we either find a subderivation to somenonterminal different
from , or all subtrees below 1 j2 are copies of subtrees below 1 j1, and in that case,
we apply the pumping to an equality constrained subtree below 1 j1, which then also
modifies the corresponding subtree below 1 j2). Let u be the such obtained pumped
tree, which according to zero-sum freeness and Lemma 4 is also in the support of G ;
i.e., u supp G . Let d be the derivation constructed in Lemma 4 corresponding to u.
Wehave u 1 j 1 f , so the position 1 j 1 is labeled f . SinceG andG are equivalent,
there must be a derivation of G for u as well, which enforces the equality constraint
u 1 j 112 u 1 j 121. By construction we have tn 1 j 112 u 1 j 112. Since the positions
1 j 112 and 1 j 121 have no common suffix, this equality can only be guaranteed byG
if 1 j 112 and 1 j 121 are themselves (explicitly or implicitly) equality constrained
in d . The potentially several constraints that achieve this must of course be located at
prefixes of 1 j 112 and 1 j 121, and since the production used in d at the root is still p
and stretches all the way to 1 j , this can only be achieved if d enforces 1 j 11 1 j 12
via p at the root as well as 1 2 at 1 j 11 or at 1 j 12. However, this is a contradiction
as u 1 j 11 f f u 1 j 12 , so we cannot have an explicit or implicit equality

constraint between 1 j 112 and 1 j 121, so u 1 j 121 tn 1 j 121, but contradicts that G
has a complete derivation for u.

Although for zero-sum free semirings, the support of a regular weighted tree lan-
guage is again regular, in general, the converse is not true, so we cannot apply the
decision procedure of [15] to the support of a homomorphic image in order to decide
its regularity. Instead, we hope to extend the unweighted argument in a way that tracks
the weights sufficiently close. For this, we prepare two decidability results, which rely
mostly on the corresponding results in the unweighted case. To this end, we need to
relate our WTGc constructed in Theorem 5 to the classic TGc used in [15]. At this
point we mention that their classic TGc additionally require that equality constrained
positions have the same nonterminal label. Compared to our eq-restriction this change
is entirely immaterial in the unweighted case.

Theorem 6 Let be a zero-sum free semiring. Moreover, let G Q F P wt
be aWTA and h T T be a nondeleting and nonerasing tree homomorphism. Finally,
let G h G . Emptiness and finiteness of supp G are decidable.

Proof We apply the construction in the proof of Lemma 3 to the eq" restricted pos-
itive WTGc G Q F P wt constructed according to Theorem 5. Thus
we ensure that all derivations have non-zero weight. Due to zero-sum freeness,
we can simply drop the weights and obtain an eq" restricted positive TGc G
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Q F P generating supp G . Emptiness and finiteness are decidable for the
tree language supp G generated by G according to [15, Corollaries 5.11 & 5.20].

Conclusion

The purpose of this contribution is to lay out the groundwork for investigating and
eventually ideally deciding the weighted HOM problem. For this, we have introduced
the model of eq-restricted WTGh and showed that they are well-suited to efficiently
represent homomorphic images of regularweighted tree languages (Theorem5). Apart
from classical closure properties, we have proved a pumping lemma for these devices
(Lemma 4).

Recently, significant progress has been made on the topic of the weighted HOM
problem. Most notably, the -weighted version of this problem was proved to be
decidable [21]. There, theHOMproblem is reduced to a specific property of theWTGh
constructed in our Theorem 5 for the homomorphic image, and this specific property is
shown to be decidable. The proof of the latter part is based on our pumping Lemma 4.
Additionally [23] shows that if the input of the HOM problem satisfies particular
conditions (intuitively, the tree homomorphism must satisfy a condition generalizing
injectivity and the input WTA must satisfy an ambiguity restriction), then the WTGh
for the homomorphic image constructed in Theorem 5 is unambiguous. In that case,
the (thus restricted) weighted HOM problem over any zero-sum free semiring can be
reduced to the unweighted HOM problem [15] and is therefore decidable. Our current
efforts are centered around the weighted HOMproblem over fields, for which we hope
to prove decidability with the same strategy that was used in [21] for -weights and
a pumping lemma similar to Lemma 4 for zero-sum free semirings.
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