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Abstract
A d-dimensional configuration c : Zd −→ A is a coloring of the d-dimensional infi-
nite grid by elements of a finite alphabet A ⊆ Z. The configuration c has an annihilator
if a non-trivial linear combination of finitely many translations of c is the zero config-
uration. Writing c as a d-variate formal power series, the annihilator is conveniently
expressed as a d-variate Laurent polynomial f whose formal product with c is the zero
power series. More generally, if the formal product is a strongly periodic configura-
tion, we call the polynomial f a periodizer of c. A common annihilator (periodizer) of
a set of configurations is called an annihilator (periodizer, respectively) of the set. In
particular, we consider annihilators and periodizers of d-dimensional subshifts, that
is, sets of configurations defined by disallowing some local patterns. We show that a
(d −1)-dimensional linear subspace S ⊆ R

d is expansive for a subshift if the subshift
has a periodizer whose support contains exactly one element of S. As a subshift is
known to be finite if all (d − 1)-dimensional subspaces are expansive, we obtain a
simple necessary condition on the periodizers that guarantees finiteness of a subshift
or, equivalently, strong periodicity of a configuration. We provide examples in terms
of tilings of Zd by translations of a single tile.

Keywords Symbolic dynamics · Annihilator · Periodicity · Expansivity ·
Golomb-Welch conjecture · Periodic tiling problem

1 Introduction

A configuration in this paper is a coloring of the d-dimensional grid Zd using finitely
many colors. Our colors are integers. A configuration c has an annihilator if the zero
configuration can be obtained as a non-trivial linear combination of suitable transla-
tions of c. In other terms, annihilation means that a linear cellular automaton maps the
configuration c to the zero configuration. This mapping, in the terminology of digital
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signal processing, is filtering by a d-dimensional discrete-time finite-extend impulse
response (FIR) filter. Writing c as a d-variate formal power series, the annihilator is
conveniently expressed as a d-variate Laurent polynomial f whose formal product
with c is the zero power series.

Configurations that have annihilators come up in several contexts. Every low-
complexity configuration has an annihilator, where low-complexity means that the
number of patterns in the configuration of some finite fixed shape D ⊆ Z

d is at most
the size |D| of the shape [1]. Low-complexity configurations are the object of interest
in the unsolved Nivat’s conjecture [2], and also in the recently solved periodic tiling
problem [3] where tilings of Zd by translates of a single tile are low-complexity con-
figurations [1]. Also so-called perfect colorings of grid graphs have annihilators [4].

Configurations with annihilators have global rigidity, although they are not neces-
sarily periodic. In the two-dimensional case, periodicity in all directions is known to
be enforced if the annihilator has no line polynomial factors, that is, an annihilating
polynomial does not have a non-monomial factor whose monomials are on a single
line [4–6]. In this paper we present a similar condition that works in all dimensions
d. More generally, we provide a condition on the annihilator that enforces expansiv-
ity: this is a directional determinism property studied in multidimensional symbolic
dynamics. Expansivity in all directions is known to imply strong periodicity [7].

The article is organized as follows. In Section 2 we present necessary terminology,
our notations and some results we need from literature. In Section 3 we discuss a
particular application: tilings ofZd by translated copies of a single tile. Throughout the
article,wedemonstrate ourmethodswith examples that come from this setup. Section 4
contains the new contributions. We prove a condition on annihilators that guarantees
expansivity, and consequently obtain a condition that implies strong periodicity of
configurations. We provide several examples, including a discussion on the relation to
the Golomb-Welch conjecture. We finish with some concluding remarks in Section 5.

2 Preliminaries

We start by defining the necessary terminology and concepts. This part is included for
the convenience of the reader although it greatly repeats what is written, for example,
in [6].

2.1 Configurations and Periodicity

A d-dimensional configuration over a finite alphabet A is an assignment

c : Zd −→ A

of symbols of A on the infinite grid Z
d . For any configuration c ∈ AZ

d
and any cell

u ∈ Z
d , we denote by cu the letter c(u) that c has in the cell u.

For a vector t ∈ Z
d , the translation τ t shifts a configuration c so that the cell t is

moved to the cell 0, that is, τ t(c)u = cu+t for all u ∈ Z
d . We say that c is periodic if
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τ t(c) = c for some non-zero t ∈ Z
d . In this case t is a vector of periodicity and c is also

called t-periodic. If there are d linearly independent vectors of periodicity (viewed
as elements of the vector space Rd ) then c is called strongly periodic. We denote by
ei = (0, . . . , 0, 1, 0 . . . , 0) the basic i’th unit coordinate vector, for i = 1, . . . , d. A
strongly periodic c ∈ AZ

d
has automatically, for some k > 0, vectors of periodicity

ke1, ke2, . . . , ked in the d coordinate directions.

2.2 Patterns and Pattern Complexity

Let D ⊆ Z
d be a finite set of cells, a shape. A D-pattern is an assignment p ∈ AD of

symbols in the shape D. A (finite) pattern is a D-pattern for some shape D. We call
D the domain of the pattern. Notation A∗ is used for the set of all finite patterns over
the alphabet A (where the dimension d is assumed to be known).

We say that a finite pattern p of shape D appears in a configuration c if for some
t ∈ Z

d we have τ t(c) �D= p. We also say that c contains the pattern p in the position
t. For a fixed D, the set of D-patterns that appear in a configuration c is denoted by
LD(c). We denote by L(c) the set of all finite patterns that appear in c, i.e., the union
of LD(c) over all finite D ⊆ Z

d .
The pattern complexity of a configuration c with respect to a shape D is the number

of different D-patterns that c contains. A sufficiently low pattern complexity forces
global regularities in a configuration. A relevant threshold happens when the pattern
complexity is at most |D|, the number of cells in shape D. Hence we say that c has
low complexity with respect to shape D if

|LD(c)| ≤ |D|.

We call c a low complexity configuration if it has low complexity with respect to some
finite shape D.

2.3 Subshifts

Let p ∈ AD be a finite pattern of a shape D. The set [p] = {c ∈ AZ
d | c �D= p} of

configurations that have p in the domain D is called the cylinder determined by p. The
collection of cylinders [p] is a base of a compact topology on AZ

d
, the prodiscrete

topology. See, for example, the first few pages of [8] for details. The topology is
equivalently defined by a metric on AZ

d
where two configurations are close to each

other if they agree with each other on a large region around the cell 0. Cylinders are
clopen in the topology: they are both open and closed.

A subset X of AZ
d
is called a subshift if it is closed in the topology and closed under

translations. Note that – somewhat nonstandardly – we allow X to be the empty set.
By a compactness argument one has that every configuration c that is not in X contains
a finite pattern p that prevents it from being in X : no configuration that contains p is
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in X . We can then as well define subshifts using forbidden patterns: given a set P of
finite patterns we define

XP = {c ∈ AZ
d | L(c) ∩ P = ∅},

the set of configurations that do not contain any of the patterns in P . The set XP is a
subshift, and every subshift is XP for some P . If X = XP for some finite P then X is
a subshift of finite type (SFT).

For a subshift X ⊆ AZ
d
(or actually for any set X of configurations) we define its

language L(X) ⊆ A∗ to be the set of all finite patterns that appear in some element of
X , that is, the union of sets L(c) over all c ∈ X . For a fixed shape D, we analogously
define LD(X) = L(X) ∩ AD , the union of all LD(c) over c ∈ X . We say that X has
low complexity with respect to shape D if |LD(X)| ≤ |D|. For example, if we fix
shape D and a small set P ⊆ AD of at most |D| allowed patterns of shape D, then
X = XAD\P = {c ∈ AZ

d | LD(c) ⊆ P} is a low complexity SFT since LD(X) ⊆ P
and |P| ≤ |D|.

The orbit of a configuration c is the set O(c) = {τ t(c) | t ∈ Z
2 } of all its

translates, and the orbit closure O(c) of c is the topological closure of its orbit. The
orbit closure is a subshift, and in fact it is the intersection of all subshifts that contain
c. In terms of finite patterns, c′ ∈ O(c) if and only if L(c′) ⊆ L(c). Of course, the
orbit closure of a low complexity configuration is a low complexity subshift.

2.4 Annihilators and Periodizers

To use commutative algebra we assume that A ⊆ Z, i.e., the symbols in the config-
urations are integers. We also maintain the assumption that A is finite. We express
a d-dimensional configuration c ∈ AZ

d
as a formal power series over d variables

x1, . . . xd where the monomials address cells in a natural manner xu11 · · · xudd ←→
(u1, . . . , ud) ∈ Z

d , and the coefficients of the monomials in the power series
are the symbols at the corresponding cells. Using the convenient vector notation
x = (x1, . . . xd) we write xu = xu11 · · · xudd for the monomial that represents cell
u = (u1, . . . ud) ∈ Z

d . Note that all our power series and polynomials are Laurent
as we allow negative as well as positive powers of variables. Now the configuration
c ∈ AZ

d
can be coded as the formal power series

c(x) =
∑

u∈Zd

cuxu.

The power series c(x) is integral (the coefficients are integers) and because A ⊆ Z

is finite, it is finitary (there are only finitely many different coefficients). Henceforth
we treat configurations as integral, finitary power series. By default, for any Laurent
power series or polynomial f we denote by fu the coefficient of xu.

Note that the power series are indeed formal: the role of the variables is only
to provide the position information on the grid. We may sum up two power series,
or multiply a power series with a polynomial, but we never plug in any values in
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the variables. Multiplying a power series c(x) by a monomial xt simply adds t to
the exponents of all monomials, thus producing the power series of the translated
configuration τ t(c). Hence the configuration c(x) is t-periodic if and only if xtc(x) =
c(x), that is, if and only if (xt−1)c(x) = 0, the zero power series. Thus we can express
the periodicity of a configuration in terms of its annihilation under the multiplication
with a difference binomial xt − 1. Very naturally then we introduce the annihilator
ideal

Ann(c) = {f ∈ C[x±1] | fc = 0}
containing all the polynomials that annihilate c. Here we use the notation C[x±1] for
the set of Laurent polynomials with complex coefficients. Note that Ann(c) is indeed
an ideal of the Laurent polynomial ring C[x±1].

Let us denote the support of a Laurent polynomial f ∈ C[x±1] by

Supp(f) = {u ∈ Z
d | fu �= 0}.

Remark 1 If a configuration c has an annihilator f with complex coefficients then it
also has an annihilator f ′ with integer coefficients that satisfies Supp(f ′) = Supp(f).

To see why the remark is true, note that the annihilation condition f c = 0 can
be viewed as a homogeneous system of linear equations for the coefficients of the
annihilating polynomial f . The coefficients of the variables in the equations come
from the configuration c and are hence integers. It is easy to see that for any (complex
valued) solution of a homogeneous linear system with integer coefficients there is also
an integer valued solution with the property that each variable that had a non-zero
value in the original complex solution also has a non-zero value in the new integral
solution. The integral solution provides the coefficients of an integral annihilator f ′
that satisfies Supp(f ′) = Supp(f).

We find it sometimes convenient to work with the periodizer ideal

Per(c) = {f ∈ C[x±1] | fc is strongly periodic }

that contains thoseLaurent polynomialswhose productwith configuration c is strongly
periodic. Clearly also Per(c) is an ideal of the Laurent polynomial ringC[x±1], and we
have Ann(c) ⊆ Per(c). Moreover, if Per(c) contains non-zero polynomials, so does
Ann(c). Indeed, if f ∈ Per(c) then f c is annihilated by xt − 1 for any period t of the
strongly periodic f c, and thus f (x)(xt − 1) is an annihilator of c.

Our first observation relates the lowcomplexity assumption to annihilators.Namely,
it is easy to see using elementary linear algebra that any low complexity configuration
has at least some non-trivial annihilators:

Lemma 1 ([1]) Let c be a low complexity configuration. Then Ann(c) contains a
non-zero polynomial. More precisely, if c has low complexity with respect to a shape
D ⊆ Z

d then there is a non-zero f ∈ Per(c) with −Supp(f) ⊆ D.
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The minus sign in front of the support of f in the statement of the lemma comes
from the manner the convolutions in the product f c are computed: For all u ∈ Z

d

( f c)u =
∑

v∈Supp(f)
fvcu−v,

so that the pattern of shape −Supp(f) in c at position u determines the new value
( f c)u at position u. We see the analogous minus sign also in other statements in the
rest of the article.

One of the main results of [1] states that if a configuration c is annihilated by
a non-zero polynomial (e.g., due to low complexity) then it is automatically anni-
hilated by a product of difference binomials. This result is fundamental to our
approach.

Theorem 1 ([1, 5]) Let c be a configuration and f ∈ Ann(c). For every u ∈ Supp(f)
there exist pairwise linearly independent t1, . . . , tm ∈ Z

d such that each ti is parallel
to ui − u for some ui ∈ Supp(f) \ {u}, and

(xt1 − 1) · · · (xtm − 1) ∈ Ann(c).

In [1] the statement of Theorem 1 is given without reference to elements of Supp(f)
but the given proof provides for an arbitrary u in Supp(f) the vectors ui ∈ Supp(f)
as in the statement above. In Theorem 12 of [5] the result is stated in this stronger
form. In the present paper the directions ui − u of ti between positions in the support
of the annihilating polynomial f play a central role. Note also that by Remark 1 the
annihilating polynomial f does not need to be integral: there always exists one with
the same support and with integer coefficients.

For a subshift X ⊆ AZ
d
, we denote by Ann(X) the set of Laurent polynomials that

annihilate all elements of X , and we call Ann(X) the annihilator ideal of X . Similarly,
Per(X) is the intersection of sets Per(c) over c ∈ X . All results stated above for Ann(c)
and Per(c) for a single configuration c work just as well for Ann(X) and Per(X) for a
subshift X , with similar proofs. In particular, we have the following subshift variant
of Theorem 1.

Theorem 1’ Let X be a subshift and f ∈ Ann(X). For every u ∈ Supp(f) there exist
pairwise linearly independent t1, . . . , tm ∈ Z

d such that each ti is parallel to ui − u
for some ui ∈ Supp(f) \ {u}, and

(xt1 − 1) · · · (xtm − 1) ∈ Ann(X).

3 Tilings by Translations of a Single Tile

As a specific setup and a convenient source of examples throughout the article we
consider tilings of Zd using translated copies of a single finite shape D ⊆ Z

d . In this
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context we call D a tile. A tiling by D is expressed as a binary configuration where
symbols 1 identify the positionswhere copies of D are placed to fully coverZd without
overlaps. More precisely, c ∈ {0, 1}Zd

is a tiling by D if and only if c(x) fD(x) = 1(x)
where

fD(x) =
∑

u∈D
xu

is the characteristic polynomial of D, and

1(x) =
∑

u∈Zd

xu

is the uniform configuration of 1’s. The polynomial fD is thus a periodizer of every
tiling by D.

Let TD ⊆ {0, 1}Zd
be the set of tilings by D. Clearly TD is a low-complexity

subshift of finite type: the elements of TD are exactly the binary configurations whose
(−D)-patterns have precisely one occurrence of symbol 1, and there exist |−D| such
patterns in total.

Example 1 In illustrations we draw tiles in two and three dimensions as unions of unit
squares and cubes. For example, Fig. 1(a) shows the tile D = {(0, 0, 0), (1, 0, 0),
(0, 1, 0), (0, 0, 1)}. This tile admits tilings of Z3 that are not strongly periodic. One
may, for example, start with any tiling a ∈ {0, 1}Z2

of Z2 by the 2 × 2 square
tile S = {(0, 0), (0, 1), (1, 0), (1, 1)}. Then c ∈ {0, 1}Z3

defined by c(x1, x2, x3) =
a(x1 + x3, x2 + x3) is a (1, 1,−1)-periodic tiling of Z3 by D, whose slice (x1, x2) �→
c(x1, x2, 0) on Z × Z × {0} is equal to a. If a is not strongly periodic then c is not
strongly periodic either. See Fig. 1(b) and (c).

Example 2 For a dimension d and radius r ∈ Z+, let us denote

Bd
r = {(n1, . . . , nd) ∈ Z

d |
d∑

i=1

|ni | ≤ r}

for the d-dimensional radius-r sphere under the Lee metric (also known as the Man-
hattan metric). See Fig. 2 for illustrations of B3

2 and B2
3 .

If d ≤ 2 or if r = 1 then there are strongly periodic tilings by tile Bd
r [9]: these are

perfect codes under the Lee metric. In [9] it was conjectured that for other values of d
and r the tile Bd

r does not tile Zd . There are two natural variants of the conjecture: the
strong Golomb-Welch conjecture states that no tiling exists, while the weak Golomb-
Welch conjecture postulates that no strongly periodic tiling exists. The conjectures
are still open for dimensions d ≥ 6. It is known that the conjecture is true in every
dimension for sufficiently large radiuses, and so the case of radius r = 2 seems most
challenging. See [10] for more details.

It was recently proved in [3] that for some dimension d, there exists a tile D ⊆ Z
d

such that TD is an aperiodic SFT, i.e., such that there exists a tiling but no strongly
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Fig. 1 (a) The tile D = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} of Example 1, (b) a tiling of Z2 by 2 × 2
squares that is not strongly periodic since one row of tiles is shifted by one, (c) the corresponding layer of
a tiling of Z3 by D. A tiling of Z3 is obtained by repeating the layer (1, 1, −1)-periodically

periodic tiling exists. This provided a negative answer to the Periodic tiling prob-
lem [11]. In contrast, any two-dimensional tile D ⊆ Z

2 that tiles Z2 also tiles Z2

periodically [12, 13].

Fig. 2 The radius-2 Lee sphere B3
2 in dimension d = 3 (on the left), and the radius-3 Lee sphere B2

3 in
dimension d = 2 (on the right)

123



984 Theory of Computing Systems (2023) 67:976–994

Interestingly, if |D| is a prime number then every tiling by D is strongly peri-
odic [14]. This fact has also a simple proof using our algebraic approach, see Example
2 in [1]. In [14] it was also shown that TD = T−D for all tiles D, i.e., rotating each
tile in place turns a tiling by D into a tiling by −D. Thus both fD(x) and f−D(x) are
periodizers of valid tilings by D.

4 Expansivity and Determinism

We need some basic concepts of discrete geometry of Zd ⊆ R
d . We use the notation

〈u, v〉 for the inner product of vectors u, v ∈ R
d . For a non-zero vector u ∈ R

d we
denote

Hu = {x ∈ Z
d | 〈x,u〉 < 0}

for the open discrete half space in the direction u. See Fig. 3 for a two-dimensional
illustration.

A subshift X is deterministic in the direction of u if for all c, c′ ∈ X

c �Hu= c′ �Hu �⇒ c = c′,

that is, if the contents of a configuration in the discrete half space Hu uniquely deter-
mines the contents in the rest of the cells. Note that it is enough to verify that the
value c0 on the boundary of the half space is uniquely determined by c �Hu — the rest
follows by the fact that X is topologically closed and translation invariant.

The following observation is immediate and well known. It states that if a subshift
has as an annihilator (or even as a periodizer) a polynomial f whose negative sup-
port −Supp(f) contains a unique position v maximally in the direction of a vector
u (meaning that the inner product 〈v,u〉 has maximal value) then X is deterministic
in the direction of u. In the terminology of [15], the set −Supp(f) is generating for
the subshift, as knowing all but one symbol of a pattern of shape −Supp(f) in L(X)

Fig. 3 The open discrete half space Hu in dimension d = 2
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uniquely identifies also the unknown symbol of the pattern. In Theorem 3 we gener-
alize this lemma to the case where −Supp(f) contains a position with a unique (but
not necessarily maximal) inner product with u.

Lemma 2 Let X be a d-dimensional subshift and let f ∈ Per(X) be such that 0 ∈
Supp(f). Let u ∈ R

d be a non-zero vector such that −Supp(f) \ {0} ⊆ Hu. Then X is
deterministic in the direction of u.

Proof Let c, c′ ∈ X be such that c �Hu= c′ �Hu . By replacing the polynomial f (x)
by f (x)(xt − 1) where t ∈ −Hu is a common period of f (x)c(x) and f (x)c′(x), we
may assume that f (x) ∈ Ann(c) and f (x) ∈ Ann(c′). From

0 = ( f c)0 − ( f c′)0 =
∑

x∈Supp(f)
fxc−x −

∑

x∈Supp(f)
fxc

′−x = f0c0 − f0c
′
0

we obtain by dividing with f0 �= 0 that c0 = c′
0. ��

If a subshift X is deterministic in directions u and−u then the (d−1)-dimensional
subspace S = 〈u〉⊥ = {v ∈ R

d | 〈u, v〉 = 0} is called an expansive space for X .
Otherwise it is non-expansive. Using the compactness of X one easily sees that the
content of a configuration c ∈ X within bounded distance from the expansive space
S uniquely identifies c: There exists δ > 0 such that for all c, c′ ∈ X ,

c �B= c′ �B �⇒ c = c′,

where B = ∪s∈S Bδ(s) and Bδ(s) = {v ∈ Z
d | 〈v − s, v − s〉 < δ2} is the ball

of radius δ around s under the usual Euclidean metric. See [7] for results concerning
expansive spaces of multidimensional subshifts. In particular, the following classical
result from [7] is central to us, stating that if all (d − 1)-dimensional subspaces are
expansive for a d-dimensional subshift X , then X contains only strongly periodic
configurations. This result is our link from deterministic directions to periodicity.

Theorem 2 ([7]) A subshift that is deterministic in every direction is finite, and hence
only contains strongly periodic configurations.

Example 3 Consider a tiling c ∈ {0, 1}Z3
of Z

3 by translations of the tile D =
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} from Example 1, illustrated in Fig. 1(a). Sup-
pose that c is t-periodic for t = k(1, 1, 1) for some k ∈ Z+. Let us prove that
c is strongly periodic. Polynomials fD(x) = 1 + x1 + x2 + x3 and f−D(x) =
1 + x−1

1 + x−1
2 + x−1

3 , as well as xt − 1 and x−t − 1 are periodizers of c, and
hence they are also in Per(X) for the orbit closure X = O(c) of c. Lemma 2 with the
periodizers (in fact, annihilators) xt − 1 and x−t − 1 shows that X is deterministic in
every direction u that is not perpendicular to t. Consider then any non-zero u ⊥ t,
meaning that u = (a, b, c) with a + b + c = 0. If a = 0 then u = (0, b,−b) for
b �= 0. Either (0, 1, 0) (if b > 0) or (0, 0, 1) (if b < 0) is the unique v ∈ D with the
largest inner product with u. Thus the periodizer x−v fD(x) of X shows, by Lemma 2,
that X is deterministic in the direction u. Cases b = 0 and c = 0 are similar. Finally,
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if a, b and c are all non-zero then one of them, say a, has different sign than the other
two. Thus v = (1, 0, 0) is the unique element of D with the maximal or the minimal
inner product with u. Hence x−v fD(x) or x−v f−D(x) confirms, by Lemma 2, that X
is deterministic in the direction u. We have shown that X is deterministic in every
direction. By Theorem 2 all elements of X , including c, are strongly periodic.

4.1 A Sufficient Condition for Expansivity

Now we are ready to develop our main tool for establishing expansive spaces of
a subshift with annihilators, and consequently strong periodicity of configurations.
We start by noting how the special annihilator (xt1 − 1) · · · (xtm − 1) provided by
Theorem 1’ gives that 〈u〉⊥ is expansive for X if u is such that 〈u, ti 〉 �= 0 for all
i ∈ {1, . . . ,m}.
Lemma 3 Let X be a d-dimensional subshift and (xt1 − 1) · · · (xtm − 1) ∈ Ann(X).
For every (d−1)-dimensional linear subspace S ⊆ R

d , if ti /∈ S for all i ∈ {1, . . . ,m}
then S is an expansive space for X.

Proof This is an immediate corollary of Lemma 2. Let u ∈ R
d be such that S = 〈u〉⊥.

Noting that xt − 1 = −xt(x−t − 1), we may replace any ti by −ti in the annihilator
f (x) = (xt1 − 1) · · · (xtm − 1).
By the assumption, for all i we have that 〈u, ti 〉 �= 0. If 〈u, ti 〉 < 0 we replace ti

by −ti in the annihilator f . So we may assume that 〈u, ti 〉 > 0 for all i ∈ {1, . . . ,m}.
But now the annihilator f satisfies 0 ∈ Supp(f) and −Supp(f) \ {0} ⊆ Hu, so that by
Lemma 2 the subshift X is deterministic in the direction of u. Since S = 〈−u〉⊥ we
also have determinism in the direction of −u. ��

The following theorem states a sufficient condition for expansivity in terms of
annihilating (or peridizing) polynomials. It generalizes Lemma 2.

Theorem 3 Let X be a d-dimensional subshift and let S be a proper linear subspace
of Rd . If f ∈ Per(X) is such that

Supp(f) ∩ S = {0} (1)

then there exist pairwise linearly independent t1, . . . , tm ∈ Z
d such that ti /∈ S

for all i ∈ {1, . . . ,m} and (xt1 − 1) · · · (xtm − 1) ∈ Ann(X). In particular, if S is
(d − 1)-dimensional then S is expansive for X.

Proof Let us first prove that there exists g ∈ Ann(X) that satisfies Supp(g)∩S = {0},
i.e., the same (1) that the periodizer f satisfies. Set Y = { f c | c ∈ X} is a subshift
that only contains strongly periodic configurations. Such a subshift is finite. (This
is proved in [16] for two-dimensional subshifts of finite type, but the proof directly
generalizes to subshifts in any dimension d.) As the dimension of S is at most d − 1,
some unit coordinate vector e is not in S. Because Y is a finite set of strongly periodic
configurations, its elements have a common period in the direction of e. Multiples
of the period are also periods, so that there are arbitrarily large integers k such that
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(xke−1) f (x) ∈ Ann(X). Because e /∈ S, for all large enough k the support of xke f (x)
has an empty intersection with S. Consequently, some g(x) = (xke − 1) f (x) satisfies
Supp(g) ∩ S = {0} and g ∈ Ann(X).

Applying Theorem 1’ with the annihilator g and u = 0 gives the desired special
annihilator (xt1 − 1) · · · (xtm − 1), as ui − u /∈ S for ui ∈ Supp(g) \ {u}. The last
claim now directly follows from Lemma 3. ��

Theorems 2 and 3 directly give the following tool for forced strong periodicity.

Corollary 1 Let X be a d-dimensional subshift such that for every non-zero u ∈ R
d

there exists f ∈ Per(X) and v ∈ Supp(f) such that 〈v,u〉 �= 〈v′,u〉 for all v′ ∈
Supp(f)\{v}. Then X is finite and thus only contains strongly periodic configurations.

Proof For every (d − 1)-dimensional subspace S we take u ∈ R
d such that S = 〈u〉⊥.

Letting f and v be as in the statement of the corollary, we have that x−v f (x) is a
periodizer of X that satisfies (1). By Theorem 3 the subspace S is expansive for X .
Since S was arbitrary, the claim now follows from Theorem 2. ��

We can also obtain the following corollary for lower dimensional subspaces.

Corollary 2 Let X be a d-dimensional subshift, and let k ≤ d − 2. Suppose that for
every k-dimensional linear subspace S ⊆ R

d there exists f ∈ Per(X) such that
Supp(f)∩S = {0}. Then there exist (k+1)-dimensional linear subspaces S1, . . . , Sn,
finitely many, such that every (d−1)-dimensional non-expansive space contains some
Si as its subspace.

Proof We use mathematical induction on k. The base case k = 0 is easy: The
assumption that for S = {0} there exists f ∈ Per(X) such that Supp(f) ∩ S = {0}
means that X has a non-zero annihilator. By Theorem 1’ there is a special annihilator
(xt1 −1) · · · (xtm −1). By Lemma 3, a (d−1)-dimensional space that does not contain
any of the vectors ti is expansive for X , so the spaces Si = 〈ti 〉 for i ∈ {1, . . . ,m}
satisfy the claim.

Consider then k ≥ 1 and suppose the claim is true with k − 1 in place of k.
The assumption is that for every k-dimensional linear subspace S ⊆ R

d there exists
f ∈ Per(X) such that Supp(f) ∩ S = {0}. Then the analogous assumption with k − 1
in place of k holds, so that by the inductive hypothesis there exist k-dimensional linear
subspaces S1, . . . , Sn such that every non-expansive space contains some Si . By the
assumption, for every Si there exists fi ∈ Per(X) such that Supp(fi) ∩ Si = {0}.
This means, by Theorem 3, that for every i ∈ {1, . . . ,m} the subshift X has a special

annihilator (xt
(i)
1 − 1) · · · (xt(i)mi − 1) such that t(i)j /∈ Si for all j ∈ {1, . . . ,mi }. Again,

by Lemma 3, a (d − 1)-dimensional space that for some i does not contain any
of the vectors t(i)j for j ∈ {1, . . . ,mi } is expansive for X . We conclude that every
non-expansive (d −1)-dimensional subspace S contains for some i ∈ {1, . . . n} the k-
dimensional subspace Si , and for some j ∈ {1, . . . ,mi } the vector t(i)j . Consequently,

S contains the (k + 1)-dimensional subspace generated by Si and t
(i)
j /∈ Si . There are

finitely many choices of i and j . ��
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In particular, if a d-dimensional subshift X has the property that for every (d − 2)-
dimensional subspace S of Rd there exists f ∈ Per(X) that satisfies (1), then all but
finitely many (d − 1)-dimensional spaces are expansive for X .

4.2 Fibers

The existence of f ∈ Per(X) that satisfies the condition (1) can often be conveniently
deduced in terms of linear combinations of “slices” of periodizers parallel to S. Let
S ⊆ R

d be a fixed linear subspace. We call a Laurent polynomial f an S-fiber if
Supp(f) ⊆ S. Since products and sums of S-fibers are S-fibers, all S-fibers form a
subring of the Laurent polynomial ring.

By the restriction of a Laurent polynomial f in a subspace S we mean the S-fiber

∑

u∈Supp(f)∩S
fuxu,

and we denote it by f � S. Thus the restriction is the sum of those monomials of f that
lie in S. We are actually interested in S-fibers of f in all “slices” parallel to S: for any
u ∈ Z

d , restrict f in the translated subspace u+ S and translate the restriction by −u
to make it an S-fiber. The same fiber is obtained as well by restricting the translated
polynomial x−u f (x) in the space S. We call these the S-fibers of f and denote their
collection

FS( f ) = {(x−u f (x)) � S | u ∈ Z
d}.

In the examples below we informally may call f � (u + S) an S-fiber of f although,
more precisely, it is a monomial multiple of an S-fiber of f .

The S-fibers of a Laurent polynomial ideal I is the set

I � S = { f � S | f ∈ I }

of the restrictions of all f ∈ I in S. As for all f ∈ I also x−u f (x) is in I , we have
that the S-fibers of an ideal I are precisely the S-fibers of its elements:

I � S =
⋃

f ∈I
FS( f ).

Note that the S-fibers of a product f g of two polynomials are linear combinations of
S-fibers of f (and also linear combinations of S-fibers of g). This easily implies that
I � S is an ideal of the ring of S-fibers.

The condition (1) that Supp(f) ∩ S = {0} for some element f of an ideal I is
simply stating that I � S contains the monomial 1, i.e., it is the complete S-fiber ring.
In practice then, verifying this condition for the periodizer ideal Per(X) of a subshift
amounts to expressing the monomial 1 – or any other non-zero monomial – as a linear
combination of S-fibers of various f ∈ Per(X).
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Example 4 Let d = 3 and D = {1, . . . , n1}×{1, . . . , n2}×{1, . . . , n3}\{(n1, n2, n3)}
be a tile for some n1, n2, n3 ≥ 2. The tile is a rectangular parallelepiped of size
n1 × n2 × n3 with the missing corner (n1, n2, n3). See Fig. 4(a) for an illustration
in the case n1 = n2 = n3 = 2. Let us prove that every tiling c ∈ {0, 1}Z3

of Z3 by
translations of D is strongly periodic. We prove this by showing that for every two-
dimensional linear subspace S = 〈u〉⊥ the S-fibers of the periodizer fD generate a
non-zero monomial. Then there is also a periodizer f that satisfies Supp(f)∩S = {0},
and we can conclude strong periodicity using Corollary 1 for X = O(c).

Let u = (a, b, c), and consider the following case analysis based on a, b and c:

• If a �= 0, b �= 0 and c �= 0, then one of the corners (1, 1, 1), (n1, 1, 1), (1, n2, 1)
or (1, 1, n3) of D has a unique inner product with u, and thus provides a monomial
S-fiber of fD .

• If a �= 0 and b �= 0, but c = 0, then f (x) = 1+ x3 + x23 + · · · + xn33 is one of the

fibers of fD . But there is also a fiber g(x) = 1+ x3+ x23 +· · ·+ xn3−1
3 + p(x) f (x)

given by the slice through themissing corner of D, where p(x) is some polynomial
capturing the positions of full columns on the same plane as the missing corner.
See Fig. 4(b) for an illustration of this case. Fibers f and g generate a non-zero
monomial (1+ p(x)) f (x) − g(x) = xn33 . The cases when a = 0 or b = 0 instead
of c = 0 are symmetric.

• Finally, consider the case a �= 0 but b = 0 and c = 0. In this case fD has
fibers f (x) = ∑n2

i=1

∑n3
j=1 x

i
2x

j
3 and f (x) − xn22 xn33 whose difference is a non-

zero monomial. The fibers are obtained from slices not containing the missing
corner, and containing the missing corner of D, respectively. See Fig. 4(c) for
an illustration of this case. Cases where b �= 0 or c �= 0 instead of a �= 0 are
symmetric.

Example 5 Let D = Bd
2 be the radius-2 Lee sphere in dimension d ≥ 2, defined in

Example 2. Let us prove that the subspace S = 〈(1, 1, . . . , 1)〉⊥ is expansive for the
subshift X = TD of valid tilings of Zd by D. Note that the direction u = (1, 1, . . . , 1)
of determinism is perpendicular to a (d −1)-dimensional discrete facet of D, and thus
it is intuitively “maximally non-deterministic” among all directions. We show that a
monomial is generated by two S-fibers of fD corresponding to positions of D having
inner products 0 and 1 with u = (1, 1, . . . , 1). The first fiber, capturing the monomials
xv for v ∈ D with 〈v,u〉 = 0 is

f (x) = 1 +
∑

1≤i, j≤d

i �= j

xi x
−1
j .

The second fiber, corresponding to positions v ∈ D with 〈v,u〉 = 1 is (a monomial
multiple of)

g(x) =
∑

1≤i≤d

xi .
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Fig. 4 (a) The 2× 2× 2 cube missing a corner, studied in Example 4, (b) two fibers parallel to an edge that
together generate a monomial, (c) two fibers parallel to a face that generate a monomial
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Because
(x−1

1 + x−1
2 + . . . x−1

d )g(x) = f (x) + (d − 1),

we have that the non-zero monomial d − 1 is an S-fiber of Per(X).

Remark 2 It remains for future research to determinewhether in the case of Lee spheres
D = Bd

2 the S-fibers of fD generate a non-zero monomial for all (d −1)-dimensional
subspaces S. If this is the case then D = Bd

2 can only admit strongly periodic tilings,
thus proving that the weak and the strong Golomb-Welch conjectures are equivalent
for radius-2 Lee spheres.

Note that ourmethods show that certain subshifts can only contain strongly periodic
configurations. This does not imply that there necessarily are any elements in the
subshifts – the subshift may just as well be empty. For example, it is known that the
Lee sphere D = Bd

2 considered in Example 5 does not tile Zd in the cases d ≤ 5, so
that in these cases Example 5 concerns the empty subshift!

Example 6 Let us continue with the radius-2 Lee sphere D = B3
2 in dimension d = 3,

illustrated in Fig. 2. Let us prove that for every plane S = 〈u〉⊥ the S-fibers of
fD generate a non-zero monomial. This implies that valid tilings of Z3 by D are
strongly periodic. However, as pointed out above, there are no valid tilings by D so this
implication is uninteresting. But the result more broadly implies that all configurations
c that are periodized by fD , not only the tilings by D, are strongly periodic.

Let u = (a, b, c). By the symmetries of D we may assume that a ≥ b ≥ c ≥ 0.
Consider the following case analysis based on a, b and c:

• If a > b ≥ c ≥ 0 then v = (2, 0, 0) is the unique element of D such that
〈v,u〉 = 2a, so that xv = x21 provides a monomial S-fiber.

• If a = b > c > 0 we take the two S-fibers of fD corresponding to positions of D
having inner products 2a and a+cwith u. The first fiber, capturing the monomials
xv for v ∈ D with 〈v,u〉 = 2a is (a monomial multiple) of

f (x) = x21 + x1x2 + x22 ,

while the second fiber, corresponding to positions v ∈ D with 〈v,u〉 = a + c is (a
monomial multiple of)

g(x) = x1x3 + x2x3.

Their linear combination f (x) − x1x
−1
3 g(x) = x22 is a monomial.

• If a = b > c = 0 then we need three fibers, corresponding to inner product values
2a, a and 0. The fibers are (monomial multiples of)

f (x) = x21 + x1x2 + x22 ,
g(x) = x1 + x2 + x1x3 + x2x3 + x1x

−1
3 + x2x

−1
3 ,

h(x) = x23 + x3 + 1 + x−1
3 + x−2

3 + x1x
−1
2 + x−1

1 x2.
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See Fig. 5. As a linear combination of these we obtain the fiber

p(x) = x−2
1 (1 + x3 + x23 ) f (x) − x−2

1 x2x3g(x) = 1 + x3 + x23 ,

and then further

h(x) − (1 + x−2
3 )p(x) − x−1

1 x−1
2 f (x) = −2,

a non-zero monomial.

• The case a = b = c > 0 was demonstrated in Example 5.

Let us finish with some remarks concerning the two-dimensional case d = 2. In
this case our tool to infer strong periodicity of a configuration is essentially proved
in [5, 6] using the structure of the annihilator and periodizer ideals. Non-monomial
S-fibers for one-dimensional linear subspaces S ⊆ R

2 are called line polynomials
as they have at least two monomials and all monomials are along the same line. For
any two-dimensional configuration c the periodizer ideal Per(c) is known to be a
principal ideal 〈φ1φ2 · · ·φm〉 generated by a product of line polynomials φi [5, 6]. If
c has a periodizer f that has no line polynomial factors in any direction then from
f ∈ 〈φ1φ2 · · · φm〉 we conclude that m = 0 so that Per(c) = 〈1〉, implying that
c is strongly periodic. In [4] it was noted that this fact can also be proved without
referring to the structure of Per(c) simply by noting that f and the special annihilator
g(x) = (xt1 − 1) · · · (xtm − 1) guaranteed by Theorem 1 do not have any common
factors as f has no line polynomial factors while all irreducible factors of g are line
polynomials. It follows that there are non-zero linear combinations of f and g where
either one of the two variables has been eliminated. (These are given by the resultants
of f and g with respect to variables x1 and x2, respectively.) Thus there are non-zero
annihilators without variables x1 or x2, which implies periodicity of c in horizontal
and vertical directions, i.e., its strong periodicity..

The present paper provides a third proof of this fact that a periodizer without line
polynomial factors implies strong periodicity of a two-dimensional configuration.
The present proof has the advantage that it scales to higher dimensions. One should
note, however, that in higher dimensions the statement cannot be given in terms of
(d − 1)-dimensional S-fibers not having common factors, but rather in terms of S-
fibers generating monomial 1, i.e., generating the full ring. As line polynomials are

Fig. 5 Three planes that slice fibers f , g and h in the case a = b > c = 0 of Example 6
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essentially one-variate Laurent polynomials, the two conditions are equivalent in the
two-dimensional case: a collection of one-variate Laurent polynomials generate 1 if
and only if the polynomials have no non-trivial common factors. But this is no longer
true for polynomials with two or more variables. (Think of x − 1 and y − 1: they have
no common factors but as they have a common zero x = 1, y = 1, there is no way to
express 1 as their linear combination.)

5 Conclusion

We have discussed a method to infer strong periodicity of a multidimensional configu-
ration from its annihilators or periodizers. Themethodgeneralizes the two-dimensional
technique used in [4–6] to arbitrary dimensions d > 2. The newmethod is in fact based
on a more general condition on the annihilators or periodizers that implies expansiv-
ity of a multidimensional subshift in a given direction. We then use the well known
fact that expansivity in all directions implies strong periodicity of the elements of the
subshift.

We demonstrated our technique with several examples in the setup of tilings of Zd

by translated copies of a single tile. The famous Golomb-Welch -conjecture can be
stated in this context, andweprovided examples related to this conjecture. It remains an
interesting topic for future research to see if our method could provide the equivalence
of the weak and strong variants of the conjecture, by showing that all tilings by Lee
spheres of radius d ≥ 2 must be strongly periodic. In all the cases that we looked at, it
was the case that the fibers extracted from the Lee sphere generated the monomial 1.
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