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Abstract
We provide a unifying, black-box tool for establishing existence of approximate equi-
libria in weighted congestion games and, at the same time, bounding their Price of
Stability. Our framework can handle resources with general costs—including, in par-
ticular, decreasing ones—and is formulated in terms of a set of parameters which are
determined via elementary analytic properties of the cost functions. We demonstrate
the power of our tool by applying it to recover the recent result of Caragiannis and
Fanelli [ICALP’19] for polynomial congestion games; improve upon the bounds for
fair cost sharing games by Chen and Roughgarden [Theory Comput. Syst., 2009];
and derive new bounds for nondecreasing concave costs. An interesting feature of our
framework is that it can be readily applied to mixtures of different families of cost
functions; for example, we provide bounds for games whose resources are conical
combinations of polynomial and concave costs. In the core of our analysis lies the use
of a unifying approximate potential function which is simple and general enough to
be applicable to arbitrary congestion games, but at the same time powerful enough to
produce state-of-the-art bounds across a range of different cost functions.
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1 Introduction

Atomic congestion games are one of the most well-studied topics in algorithmic game
theory [2, 3]. In their most general form, players have weights and compete over a
common set of resources; the cost of each resource is a function of the total weight
of the players that end up using it. As a result, they can model a wide range of
interesting applications including, e.g., network routing [4] and load balancing [5],
but also even cost-sharing games (via the use of decreasing cost functions) like fair
network design [6].

An important special case is that of unweighted congestion games, where the costs
depend only on the number of players that use each edge. In a seminal paper, Rosen-
thal [7] proved that unweighted congestion games always have (pure Nash) equilibria.
A key tool in his derivation was the novel use of a potential function, which is able
to capture the different players’ deviations in a very elegant and concise way. Then,
the desired equilibrium is derived as the minimizer of that function (over all feasible
outcomes of the game).

This technique can also be viewed as an equilibrium refinement, and has been a
very influential idea in game theory [8]. It allows us not only to establish the exis-
tence of equilibria, but in many cases, this special potential-minimizer equilibrium
has additional desired properties.

Of particular importance to us in this paper, is that it has been the de factomethod for
provingPrice of Stability (PoS) bounds in congestion games (see, e.g., [3, Ch. 18, 19]).
The PoS notion [9, 10] captures the minimum approximation ratio of the social cost,
among all equilibria, to the socially optimum outcome of the game (that might not be
an equilibrium). In other words, the PoS is the best-case counterpart of the notorious
Price of Anarchy (PoA) notion introduced by Koutsoupias and Papadimitriou [11, 12]

Unfortunately, though, it is a well-known fact that general weighted congestion
games do not always have equilibria and thus, do not admit a potential function.

To alleviate this, a line of work has focused on designing approximate potential
functions (see, e.g., [13–17]): the minimizer of such functions is guaranteed to be
an approximate equilibrium (as opposed to an exact one that is given by Rosen-
thal’s potential in the unweighted case), while at the same time it can achieve a good
approximation ratio to the optimal social cost (providing, thus, an upper bound for
the approximate-equilibrium extension of the PoS notion). However, most of those
prior works use different approximate potentials, designed specially for the particular
cost-function model that each one studies.

Our goal in this paper is to provide a simple, high-level framework whose interface
is agnostic to the underlying potential function technicalities and which can readily
be instantiated for all resource costs at hand to derive meaningful bounds.
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1.1 RelatedWork

Following the seminal work of [7], a long line of results has been devoted to the
(non)existence of equilibria in weighted congestion games. [18–20] demonstrated
that equilibria might not exist even in very simple classes of games, including network
congestion games with quadratic cost functions and games where player weights are
either 1 or 2. On the other hand, [20–22] showed that equilibria do exist in games with
affine or exponential cost functions; [23, 24] proved the same for singleton games
(where players can only occupy single resources). Dunkel and Schulz [25] were able
to extend the nonexistence instance of Fotakis et al. [20] to a hardness gadget, in order
to show that, deciding whether a congestion game with step cost functions has an
equilibrium, is a (strongly) NP-complete problem.

Regarding the existence of approximate equilibria in general weighted congestion
games, [26] showed that games with n players always have n-approximate equilibria,
and this guarantee is tight (up to logarithmic factors); they also proved that the corre-
sponding decision problem, i.e., of the existence of Θ̃(n)-approximate equilibria, is
NP-complete.

A lot of work has been focused on the important special case of polynomial conges-
tions games, parameterized by the maximum degree d of the cost functions. Although,
due to [20] we already know that exact equilibria do not in general exist in such games,
Caragiannis et al. [27] were the first to show that α-approximate equilibria do exist for
α = d!; this factor was later improved to α = d+1 [14, 16] and α = d [17]. As a mat-
ter of fact, Caragiannis and Fanelli [17] provide an even more comprehensive result
that, for any choice of a parameter δ ∈ [0, 1], simultaneously establishes the existence
of (d+δ)-approximate equilibria and gives an upper bound of d+1

δ+1 on their PoS. They
achieve this by designing an appropriate approximate potential function, tailored to
polynomial costs. On the nonexistence front, [14] first gave instances of very simple,
two-player polynomial congestion games that do not have α-approximate equilibria,

for α ≈ 1.153. This was recently improved to α = Ω
( √

d
log d

)
by Christodoulou et

al. [26], who also established NP-hardness of the corresponding existence decision
problem.

The work of Hansknecht et al. [14] is very relevant for our approach in this paper,
since they also propose a “generic” approximate potential function that can, in prin-
ciple, be applied to general cost functions. They instantiate it for polynomial costs to
derive their aforementioned existence of (d + 1)-approximate equilibria. Addition-
ally, they also state a result about the existence of 3

2 -approximate equilibria in games
with nondecreasing concave costs; however, this proof in their paper is not complete.
Furthermore, [14] focuses just on the existence of approximate equilibria, and thus it
does not provide any PoS bounds.

Another well-studied class of congestion games is that of fair cost sharing, where
each resource has a constant initial cost which is split equally among the players that
use it. Thus, such games have decreasing cost functions. Finding the PoS for the
special, undirected network version of such games is a notorious open problem in
the field (see, e.g., [9, 28–31]). Very relevant for us is the work of Chen and Rough-
garden [13] who showed that general weighted fair cost sharing games always have
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α-approximate equilibria whose PoS is at most O
(
logW

α

)
, for any choice of param-

eter α = Ω(logwmax), where wmax is the maximum weight of any player and W
the maximum possible load in any resource. They achieve this by designing a special
approximate potential function, tailored to the specific form of the cost functions.

1.2 Our Results and Techniques

We propose a new approximate potential function (see (9)) for weighted congestion
games with general cost functions. In particular, our potential can be instantiated
beyond the standard model of polynomial cost functions and the common assumption
of non-decreasing monotonicity. However, this potential is only used in the analysis
part of our paper: we hide away its specific form by hard-coding it within the proof
of a unifying tool (Theorem 2). Then, this tool can be used in a black-box way to
readily derive both existence of approximate equilibria, and bounds on their PoS. This
proof makes also use of a general, high-level lemma that can capture the essence
of the potential method as a technique for deriving existence and PoS bounds for
approximate equilibria (Lemma 1); we believe this might be of independent interest,
since in future work it could be used for alternative potential functions, beyond our
choice of (9) in this paper.

Our framework effectively works in two steps. Given a congestion game, first one
has to determine how good its cost functions are with respect to two simple, analytic
properties (Definition 2). Then, the resulting “goodness” parameters can be plugged
straight into our master theorem (Theorem 2) to deduce the existence of an (α, β)-
equilibrium; that is, an α-approximate (pure Nash) equilibrium whose social cost is
at most a factor of β away from the optimum.

We demonstrate the power of our tool by applying it to recover and improve prior
bounds on the existence of (α, β)-equilibria for well-studied classes of congestion
games, as well as to derive novel results. The simplicity and the algebraic nature
of our tool allows us to produce fine-grained bounds in the form of a parametric
trade-off curve that describes the relation between theα andβ parameters of the (α, β)-
equilibrium; in other words, all our results give a continuum of existence bounds. Our
bounds are summarized in Table 1.

More specifically, first (Theorem 5) we rederive the recent bounds of [17] for poly-
nomial congestion games, in a more “clean”, high-level way. Then (Theorem 10),
we improve the α, β parameters on the (α, β)-equilibrium existence results of [13]
for fair cost-sharing games (a more detailed comparison can be seen in Fig. 1). Fur-
thermore, we derive new results for (nondecreasing) concave costs: we show that
(λ, λ

λ−1 )-equilibria always exist, for all λ ∈ [ 32 , 2] (Theorem 7). The special corner

case of a ( 32 , 3)-equilibrium is compatible, thus, with the 3
2 -approximate equilibrium

existence stated in [14].
Another interesting characteristic of our tool is its modularity: it can readily com-

bine different cost functions to give bounds for more complex congestion games
(see Definition 3). For example, we prove that games with cost functions that are
conical combinations of d-degree polynomials and concave costs, always have(
λ, 1 + d+1

λ

)
-equilibria, where λ ranges in [d, d + 1] (Theorem 11).
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Fig. 1 Fair cost sharing games. Top: guarantee on the existence of α-approximate equilibria, as a function of
wmax, given by Theorem 10 (setting λ = 1). Bottom: trade-off curve for the existence of (α, β)-equilibria,
given by Theorem 10; here we choose wmax = 3, W = 50. For comparison, the previously best bounds
[13, Theorem 5.1 and Lemma 5.3] are plotted in red, while our results are in blue. The fact that the blue
line of the right plot starts earlier is a direct consequence of our results providing a strictly better (smaller)
absolute existence guarantee α (see top plot)

Finally, an added advantageof our black-boxmethod is that it also results in arguably
simpler and more streamlined proofs for the existence and PoS bounds.

Before concluding the overview of our results, we want to elaborate a bit more on
the comparison to the potential approach of Hansknecht et al. [14]. Although [14] does
not deal with PoS bounds, as far as existence of approximate equilibria is concerned,
their paper is rather similar in principle to ours. They propose a general potential
function which is based on a discrete interpretation of the cost function’s integral,
which corresponds to the first component of our potential in (9). We take a different
approach by using directly the actual integral, and also adding an extra term that
corresponds to a weighted average of the costs of the players’ weights. In that way, we
avoid a lot of the intricate technicalities that are involved with the discrete arguments
(e.g., orderings of the weights) in [14], making the application of our potential (via
our high-level tool of Theorem 2) more “tractable” for a wider range of cost functions.
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2 Model and Notation

We use R+ to denote the set of nonnegative real numbers.
In a (weighted) congestion game G there are finite, nonempty sets of players N

and resources E . Let n = |N |. Each player i ∈ N has a weight wi ∈ R+ and a
strategy set Si ⊆ 2E . We use wmin = mini∈N wi and wmax = maxi∈N wi for the
minimum and maximum player weights, respectively, and for a subset of players
I ⊆ N , we usewI = ∑

i∈I wi to denote the sum of their weights. For the special case
of wmin = wmax = 1, that is, if all weights are 1, we say that G is unweighted.

Associated with each resource e ∈ E is a cost function ce : R+ −→ R+. In
general, we will make no extra assumptions on the cost functions. However, important
special cases, that we will also study as applications of the main tool of our paper,
include polynomial congestion games of degree d, for d ≥ 1 integer, and fair cost
sharing games. In the former, the cost functions are polynomials with nonnegative
coefficients and degree at most d; in the latter, cost functions are (decreasing) of the
form ce(x) = ae

x where ae is a positive real.
A (pure) strategy profile (or outcome) is a choice of strategies s = (s1, s2, ..., sn) ∈

S = S1 × · · · × Sn . We use the standard game-theoretic notation s−i = (s1, . . . , si−1,

si+1, . . . sn), S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn . In that way, for example, we
can denote s = (si , s−i ). Given a profile s ∈ S, we define the load xe(s) of resource e
as the total weight of players that use resource e at outcome s, i.e., xe(s) = wNe(s) =∑

i∈N :e∈si wi , where Ne(s) is the set of players using e. We will useW = ∑
i∈N wi to

denote the maximum possible load of any resource. The cost of player i is defined by
Ci (s) = ∑

e∈si ce(xe(s)). The social cost of a strategy profile s is the weighted sum
of the players’ costs

C(s) =
∑
i∈N

wi · Ci (s) =
∑
e∈E

xe(s) · ce(xe(s)).

We use OPT(G) = mins∈S C(s) to denote the optimum social cost over all outcomes.
An outcome s is an α-approximate (pure Nash) equilibrium, for α ≥ 1, if

Ci (s) ≤ α · Ci (s
′
i , s−i ) for all i ∈ N , s′

i ∈ Si (1)

That is, no player can unilaterally deviate from s and improve her cost by more than
a factor of α. Notice that for the special case of α = 1 we get the definition of the
standard, exact pure Nash equilibrium. We denote the set of all α-equilibria of G by
NEα(G) Then, the α-approximate Price of Stability (α-PoS) of G is the social cost of
the best-case Nash equilibrium over the optimum social cost:

PoSα(G) = min
s∈NEα(G)

C(s)

OPT(G)
. (2)

For α = 1 we get the standard definition of the Price of Stability (PoS) for exact
equilibria [9].
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We combine the notions of an approximate equilibrium with approximating the
optimum social cost in the following definition:

Definition 1 ((α, β)-equilibrium) Fix a congestion game G. A strategy profile s is an
(α, β)-equilibrium if it is an α-approximate equilibrium of G (see (1)) and its social
cost is at most β times the optimal cost of G, i.e., C(s) ≤ β · OPT(G).

Notice that if a game has an (α, β)-equilibrium then, due to (2), its α-PoS is at most
β.

2.1 Equivalent Cost Functions

It is not difficult to see that, in anyweighted congestion game, the cost functions of each
resource are actually evaluated on finitely many points: although our model assumes
ce to be defined over the entire R+, its values outside the domain {xe(s) | s ∈ S } are
irrelevant. In particular, this domain is included within the set of different sums of
weights

W =
{∑

i∈N
yi · wi

∣∣∣∣∣ yi ∈ {0, 1}, i ∈ N

}
.

This means that one only needs to define costs on at most |W| ≤ 2n different values:
any two games whose costs coincide onW are equivalent.

However, it is still convenient to treat our costs as functions overR+. First, because
this allows for simple and succinct representations. But of particular importance to
us, is also the fact that our main tool (Theorem 2) can be applied to all integrable cost
functions (so that Definition 2 can be utilized). From the above discussion, it should
be obvious that any congestion game has (infinitely) many equivalent representations,
that is, different extensions from W to R+. Such an extension can always be done in
a way that ce is an integrable function (sinceW is finite).

It is interesting to point out here that different representations can potentially give
different existence and PoS bounds via our tool. Although we do not deal with this fea-
ture for most of the paper, it is important for our fair cost sharing results (Section 4.3);
since function x �→ 1/x is not integrable over the interval [0, wmin) (and as a matter
of fact, not even defined on x = 0) we have the freedom, according to the discussion
above, to redefine it in any way we want on [0, wmin), so that it is a well-defined,
integrable function over R+.

3 TheMain Tool

In this sectionwe present our framework for establishing existence of (α, β)-equilibria
inweighted congestion gameswith general cost functions.Webeginwith the following
lemma, that tries to distil and abstract the potential method technique in congestion
games. Specialized or restricted forms of it have essentially been used, even if not
explicitly stated, in multiple works in the past (see, e.g., [13, 14, 17]). It can be seen as
a more fine-grained version of [16, Lemma 4.1], although some extra care is needed
to adapt it to the more abstract setting of our paper and utilize its full power.
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Lemma 1 (Potential Method) Fix a congestion game. Assume that, for each resource
e, there exist positive reals α1,e, α2,e, β1,e, β2,e, and a function φe : 2N −→ R such
that φe(∅) = 0 and

α1,e ≤ φe(I ∪ {i}) − φe(I )

wi · ce(wI + wi )
≤ α2,e for all i ∈ N , I ⊆ N \ {i}; (3)

β1,e ≤ φe(I )

wI · ce(wI )
≤ β2,e for all ∅ �= I ⊆ N . (4)

Then the game has an (α, β)-equilibrium with

α = max
e∈E

α2,e

α1,e
and β = maxe∈E β2,e/α1,e

mine∈E β1,e/α1,e
.

Proof Define function Φ(s) = ∑
e∈E 1

α1,e
φe(Ne(s)) over all feasible outcomes. We

will show that Φ can serve as a desired approximate potential function for our game;
that is, for any profiles s, s′ and any player i , it satisfies:

Φ(s) ≤ Φ(s′
i , s−i ) �⇒ Ci (s) ≤ α · Ci (s

′
i , s−i ) (5)

Φ(s) ≤ Φ(s′) �⇒ C(s) ≤ β · C(s′). (6)

This would be enough to establish our lemma: any (global) minimizer of Φ is an
α-approximate equilibrium, due to (5), and at the same time, due to (6), its social
cost is within a factor of β from the social cost of any other profile (and, thus, from
the optimal one). Notice also, that such a minimizer always exists, since the set S of
feasible outcomes is finite.

For (5) first, denote for simplicity Ne = Ne(s), xe = xe(s) and N ′
e = Ne(s′

i , s−i ),
x ′
e = xe(s′

i , s−i ) for all facilities e. Then, we have

Φ(s′
i , s−i ) − Φ(s) =

∑
e∈E

1

α1,e

[
φe(N

′
e) − φe(Ne)

]

=
∑

e∈s′i\si

1

α1,e
[φe(Ne ∪ {i}) − φe(Ne)]

+
∑

e∈si\s′i

1

α1,e
[φe(Ne \ {i}) − φe(Ne)]

≤
∑

e∈s′i\si

α2,e

α1,e
wi ce(xe + wi ) −

∑

e∈si\s′i
wi ce(xe)

≤ wi

⎡
⎣α

∑

e∈s′i\si
ce(xe + wi ) −

∑

e∈si\s′i
ce(xe)

⎤
⎦
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≤ wi

⎡
⎣α

⎛
⎝ ∑

e∈s′i\si
ce(xe + wi ) +

∑

e∈s′i∩si
ce(xe)

⎞
⎠

−
⎛
⎝ ∑

e∈si\s′i
ce(xe) +

∑

e∈s′i∩si
ce(xe)

⎞
⎠
⎤
⎦

= wi
[
αCi (s

′
i , s−i ) − Ci (s)

]
.

The first inequality holds due to (3); the second due to the definition of α; and the
third one because α ≥ 1. The fact that the cost functions are nonnegative is a critical
component in all of them as well. The chain of inequalities above demonstrate that,
if Φ(s′

i , s−i ) − Φ(s) is nonnegative then αCi (s′
i , s−i ) − Ci (s) is nonnegative, thus

proving (5).
For (6) next, denote Ne = Ne(s), xe = xe(s) and N ′

e = Ne(s′), x ′
e = xe(s′). Then,

we have:

Φ(s′) − Φ(s) =
∑
e∈E

1

α1,e
φe(N

′
e) −

∑
e∈E

1

α1,e
φe(Ne)

≤
∑
e∈E

β2,e

α1,e
x ′
ece(x

′
e) −

∑
e∈E

β1,e

α1,e
xece(xe)

≤ max
e∈E

β2,e

α1,e
·
∑
e∈E

x ′
ece(x

′
e) − min

e∈E
β1,e

α1,e
·
∑
e∈E

xece(xe)

= max
e∈E

β2,e

α1,e
· C(s′) − min

e∈E
β1,e

α1,e
· C(s)

= min
e∈E (β1,e/α1,e) · [βC(s′) − C(s)

]
,

where for the first inequality we deployed (4). The chain of inequalities above demon-
strate that if Φ(s′) − Φ(s) is nonnegative then βC(s′) −C(s) is nonnegative as well,
this establishing (6).

We continue with defining a critical notion that will act as the medium to utilize
our main black-box tool in Theorem 2. It involves a set of parameters, that determine
how “well” a given cost function behaves with respect to two specific, simple analytic
properties (namely (7) and (8)). These properties can be interpreted as bounds on the
average of the cost function over continuous intervals.

Definition 2 (Good Cost Functions) Fix a congestion game G. A function c : R+ −→
R+ will be called (α1, α2, β1, β2)-good (with respect to G), for α1, α2, β1, β2 > 0,
if there exists a nonnegative constant ξ such that, for all x ∈ {0} ∪ [wmin,W ], w ∈
[wmin, wmax]:

α1 · c(x + w) − ξ · c(w) ≤ 1

w

∫ x+w

x
c(t) dt ≤ α2 · c(x + w) − ξ · c(w) (7)
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and for all x ∈ [wmin,W ]:

β1 · c(x) − ξ · cmin(x) ≤ 1

x

∫ x

0
c(t) dt ≤ β2 · c(x) − ξ · cmax(x), (8)

where cmin(x) = miny∈[wmin,x] c(y), cmax(x) = maxy∈[wmin,x] c(y).

Definition 3 (Good Games) A congestion game will be called {(α1, j , α2, j , β1, j ,

β2, j )} j∈J -good if any cost function is a conical combination of such good functions.
Formally, for any e ∈ E there exists a nonempty Je ⊆ J and nonnegative constants
{λe, j } j∈Je , such that

ce(t) =
∑
j∈Je

λe, j c j (t)

where, for all j ∈ J , c j is a (α1, j , α2, j , β1, j , β2, j )-good function (see Definition 2).

Remark 1 Notice that an important special case of Definition 3 is when J = E ,
Je = {e}, and λe,e = 1, meaning that the actual cost functions of the game are good
themselves. As a matter of fact, it is not hard to see that any good game G can be
transformed to a strategically equivalent one G′ that has that property. First, replace
each resource e ofGwith a gadget of “parallel” resources {(e, j) | j ∈ Je}, each having
a cost function of c(e, j)(t) = λe, j c j (t); this results in a strategically equivalent game
G′ with resources E ′ = {(e, j) | e ∈ E, j ∈ Je}. Next, just observe that Definition 2 is
invariant under nonnegative scalar multiplication: since functions c j satisfy conditions
(7) and (8), so do functions λe, j ·c j that are exactly the cost functions of the new game
G′.

Remark 2 (Increasing Good Functions) If a cost function is nondecreasing, then (8)
can be replaced by the (stronger, sufficient) condition:

β1c(x) ≤ 1

x

∫ x

0
c(t) dt ≤ (β2 − ξ)c(x), (8′)

since 0 ≤ c(y) ≤ c(x) for any y ∈ [wmin, x].
Now we are ready to state our main tool. This is essentially the interface of our

entire framework: under the hood it uses a specific potential function form (see (9)), but
its statement involves only the goodness parameters of the cost functions, as defined
above. In that way, one can readily derive meaningful bounds about the existence of
(α, β)-equilibria in a black-box way, just by studying the simple analytic properties
given in (2) and the plugging the parameters in the theorem below:

Theorem 2 Any
{
(α1, j , α2, j , β1, j , β2, j )

}
j∈J -good congestion game has an (α, β)-

equilibrium with

α = max
j∈J

α2, j

α1, j
and β = max j∈J β2, j/α1, j

min j∈J β1, j/α1, j
.
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Proof First notice that, by Remark 1, it is without loss to assume that J = E and that
any cost function ce, e ∈ E , is (α1,e, α2,e, β1,e, β2,e)-good. Denote by ξe (a choice of)
the parameter ξ for which resource e satisfies Definition 2.

We will then show that functions

φe(I ) =
∫ wI

0
ce(t) dt + ξe

∑
i∈I

wi ce(wi ) (9)

satisfy the conditions of Lemma 1,
Fix some resource e ∈ E , a player i and a subset I ⊆ N \ {i} of remaining players.

For simplicity, from now on we drop the e subscripts and also denote w = wi and
x = wI . Then,

φ(I ∪ {i}) − φ(I ) =
∫ x+w

0
ce(t) dt −

∫ x

0
ce(t) dt

+ ξe

⎛
⎝∑

j∈I
w j ce(w j ) −

∑
j∈I∪{i}

w j ce(w j )

⎞
⎠

=
∫ x+w

x
c(t) dt + ξwc(w).

So, by deploying (7), it is not difficult to see that

α1c(x + w) ≤ 1

w
[φ(I ∪ {i}) − φ(I )] ≤ α2c(x + w),

and thus condition (3) of Lemma 1 is indeed satisfied.
Next, observe that since w j ∈ [wmin, wmax] for all j ∈ I , and x = ∑

j∈I w j , we
have the bounds

cmin(x) ≤ min
j∈I c(w j ) ≤ 1

x

∑
j∈I

w j c(w j ) ≤ max
j∈I c(w j ) ≤ cmax(x), (10)

where the first and the last inequalities hold due to the fact that {w j | j ∈ I } ⊆
[wmin, x].

Assuming I �= ∅, we have that x ∈ [wmin,W ] and so we can use (10) and (8) to
bound 1

x φ(I ) from below and above by:

β1c(x) ≤ 1

x
φ(I ) = 1

x

∫ x

0
c(t) dt + ξ

1

x

∑
j∈I

w j c(w j ) ≤ β2c(x).

Thus, condition (4) of Lemma 1 is also satisfied. ��
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4 Applications

In this sectionwepresent several applications of our black-boxTheorem2, that demon-
strate both its power and simplicity. In accordance to the nature of that tool, they
all share a common structure: first, we prove lemmas describing the right goodness
parameters (according to Definition 2) for each special cost function of interest (see
Lemma 3, 4, 6, and 8); then, we plug them in Theorem 2 to derive our bounds (see
Theorem 5, 7, and 10).

4.1 Polynomial Costs

We start with polynomial cost functions, arguably the most studied setting in con-
gestion games. We recover the result from Caragiannis and Fanelli [17] that, for
polynomials of degree at most d with nonnegative coefficients, there exist (d + δ)-
approximate equilibria with social cost at most d+1

d+δ
times the optimum, for any

δ ∈ [0, 1]. This is the currently best known guarantee of (α, β)-equilibria for poly-
nomial cost functions. Let us begin by analysing the goodness parameters of each
monomial.

Lemma 3 Any monomial of degree d ≥ 1 is
(
μ, 1, 1

d+1 , μ
)
-good, for any μ ∈

[ 1
d+1 ,

1
d ].

Proof Fix a degree d ≥ 1. We will show that the function c(x) = xd satisfies condi-
tions (7) and (8) with

α1 = ξ + 1

d + 1
, α2 = 1, β1 = 1

d + 1
, β2 = ξ + 1

d + 1
,

for all ξ ∈ [0, 1
d(d+1) ]. Then, performing the change of variables μ = ξ + 1

d+1

establishes our lemma, since μ ∈ [0 + 1
d+1 ,

1
d(d+1) + 1

d+1 ] = [ 1
d+1 ,

1
d ].

To prove the bounds in α1, α2, we are interested in the quantity

a(w, x) = 1

w

∫ x+w

x
c(t)dt + ξc(w) = 1

(d + 1)w

(
(x + w)d+1 − xd+1

)
+ ξwd .

By applying the binomial expansion rules, and collecting similar terms, we can
further write

a(w, x) = 1

(d + 1)w

⎛
⎝wd+1 +

d∑
j=1

(
d + 1

j

)
x jwd+1− j + xd+1 − xd+1

⎞
⎠ + ξwd+1

= 1

d + 1

⎛
⎝wd +

d∑
j=1

(
d + 1

j

)
x jwd− j

⎞
⎠ + ξwd
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=
(

1

d + 1
+ ξ

)
wd +

d∑
j=1

1

d + 1

(
d + 1

j

)
x jwd− j

=
(

ξ + 1

d + 1

)
wd +

d∑
j=1

1

d − j + 1

(
d

j

)
x jwd− j , (11)

where in the last step we simply use the fact that, for 1 ≤ j ≤ d, 1
d+1

(d+1
j

) =
1

d− j+1

(d
j

)
.Wewould like to get upper and lower bounds on a(w, x) involving c(x+w),

which can be written as

c(x + w) = (x + w)d = wd +
d∑
j=1

(
d

j

)
x jwd− j . (12)

By comparing the coefficients of (11) and (12), we get that (7) is satisfied with

α1 =min

{
ξ + 1

d + 1
, min
j=1,...,d

{
1

d − j + 1

}}
=min

{
ξ + 1

d + 1
,
1

d

}
=ξ + 1

d + 1

α2 = max

{
ξ + 1

d + 1
, max
j=1,...,d

{
1

d − j + 1

}}
= max

{
ξ + 1

d + 1
, 1

}
= 1,

where to compute the maxima and minima we used the fact that ξ + 1
d+1 ≤ 1

d(d+1) +
1

d+1 = 1
d ≤ 1, due to the assumptions that ξ ≤ 1

d(d+1) and d ≥ 1.

For the bounds inβ1, β2, since xd is nondecreasingwe can use the simpler condition
(8′). Then, we only have to observe that

1

x

∫ x

0
c(t)dt = 1

d + 1
xd = 1

d + 1
c(x)

and

1

x

∫ x

0
c(t)dt + ξc(x) = 1

d + 1
xd + ξ xd =

(
ξ + 1

d + 1

)
c(x).

For the special case of constant cost functions, i.e., 0-degree monomials, it is not
difficult to get the following:

Lemma 4 Any constant function is (1, 1, 1, 1)-good.

Proof Follows directly from Definition 2 by taking ξ = 0: for any constant function
c(x) = c we have

c(x + w) = c(x) = 1

w

∫ x+w

x
c(t)dt = 1

x

∫ x

0
c(t)dt = c.
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Theorem 5 Any weighted polynomial congestion game of degree d ≥ 1 has an
(λ, d+1

λ
)-equilibrium, for any λ ∈ [d, d + 1].

Proof Fix amaximumdegree d ≥ 1 and a parameterλ ∈ [d, d+1]. UtilizingLemma 3
with μ = 1

k+1 and Lemma 4, we can see that monomials of degree k = 0, . . . , d − 1

are ( 1
k+1 , 1,

1
k+1 ,

1
k+1 )-good; and utilizing Lemma 3 with μ = 1

λ
we get that the

monomial of degree d is ( 1
λ
, 1, 1

d+1 ,
1
λ
)-good.

Since any polynomial of degree (at most) d is a conical combination of monomials
of degree k = 0, 1, . . . , d, in light of Definition 3, we can deduce that our game is{
(α1,k, α2,k, β1,k, β2,k)

}
k=0,...,d -good, with

α1,k =
{

1
λ
, k = d,
1

k+1 , k < d; α2,k =1; β1,k =
{

1
d+1 , k = d,
1

k+1 , k < d; β2,k =
{

1
λ
, k =d,
1

k+1 , k< d.

Thus, by Theorem 2 we conclude that our game has an (α, β)-equilibrium with

α = max
0≤k≤d

α2,k

α1,k
= max {1, 2, . . . , d, λ} = λ,

and

β =
max
0≤k≤d

β2,k
α1,k

min
0≤k≤d

β1,k
α1,k

= 1

min
{
1, . . . , 1, 1/(d+1)

1/λ

} = max

{
1,

d + 1

λ

}
= d + 1

λ
.

��
The parameterλ quantifies the trade-off curve between the approximation guarantee

on the existence of α-approximate equilibria and their PoS. At one extreme case
λ = d + 1, we get that α = d + 1 and β = 1; in other words, there always exist
(d+1)-approximate equilibria with an optimal PoS of 1 (as a matter of fact, from [16]
we alreadyknow that every social optimum is itself a (d+1)-approximate equilibrium).
At the other extreme case λ = d, we get that

α = d, β = d + 1

d
= 1 + 1

d
;

in other words, there always exist d-approximate equilibria with PoS at most 1 + 1
d .

4.2 Concave Costs

We now look at nondecreasing concave cost functions. The best known result in this
setting is due toHansknecht et al. [14], who state that 3/2-approximate equilibria exist.
However, the proof in their paper is not complete. Moreover, the PoS of the existing
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approximate equilibria is not discussed. In this section, not only we provide a simpler
proof of this result, but we also extend it for a range of λ-approximate equilibria with
λ ∈ [3/2, 2], and for a guarantee on the PoS.

Lemma 6 Any nondecreasing concave function is (μ,μ + 1
2 ,

1
2 , μ + 1

2 )-good, for all
μ ∈ [ 12 , 1].
Proof Fix a nondecreasing concave function c : R+ −→ R+ and a parameter 0 ≤
ξ ≤ 1

2 . First note that, since c is nonnegative and concave, it must be subadditive. That
is, for all x, z ≥ 0:

c(x) + c(z) ≥ c(x + z) (13)

Furthermore, from the Hermite-Hadamard inequality (see, e.g., [32]) and the fact that
c is nondecreasing, for any 0 ≤ a < b:

f (a) + f (b)

2
≤ 1

b − a

∫ b

a
f (t) dt ≤ f (b). (14)

Applying first (14) for a = x and b = x + w we get that

c(x) + c(x + w)

2
≤ 1

w

∫ x+w

x
c(t) dt ≤ c(x + w),

so

1

w

∫ x+w

x
c(t) dt + ξ · c(w) ≤ c(x + w) + ξc(w) ≤ (1 + ξ)c(x + z)

and

1

w

∫ x+w

x
c(t) dt + ξ · c(w) ≥ c(x) + c(x + w)

2
+ ξc(w)

≥ 1

2
c(x + w) + ξ [c(x) + c(w)], since ξ ≤ 1

2
,

≥
(
1

2
+ ξ

)
c(x + w), due to (13).

Thus, condition (7) is satisfied with α1 = 1
2 + ξ , α2 = 1 + ξ .

Next, applying (14) for a = 0 and b = x we get that

1

2
c(x) ≤ c(0) + c(x)

2
≤ 1

x

∫ x

0
c(t) dt ≤ c(x) = (1 + ξ)c(x) − ξc(x),

thus condition (8′) is satisfied with β1 = 1
2 , β2 = 1 + ξ .

Summarizing, we have shown (see Definition 2) that any concave cost function is
(ξ + 1

2 , ξ + 1, 1
2 , ξ + 1)-good, for any ξ ∈ [0, 1

2 ]. Performing the change of variables
μ = ξ + 1

2 concludes our proof.
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Theorem 7 Anyweighted congestion gamewith nondecreasing concave cost functions
has a (λ, λ

λ−1 )-equilibrium, for any λ ∈ [ 32 , 2].
Proof Fix a parameter λ ∈ [ 32 , 2] and let μ = 1

2(λ−1) . Then, μ ∈ [ 12 , 1] and thus, due

to Lemma 6, we can deduce that our game is (μ,μ + 1
2 ,

1
2 , μ + 1

2 )-good (according
to Definition 2). Deploying Theorem 2 we can establish the existence of an a (α, β)-
equilibrium with

α = μ + 1
2

μ
= 1 + 1

2μ
= 1 + (λ − 1) = λ

and

β = (μ + 1
2 )/μ

1
2/μ

= 2μ + 1 = 1

λ − 1
+ 1 = λ

λ − 1
.

4.3 Fair Cost Sharing

In this section, we focus on the fair cost sharing model in which ce(x) = ae
x , where

ae is a positive, resource-dependent value. We assume that wmin = 1; this is without
loss, since we can just rescale the player weights. This setting was studied by Chen
and Roughgarden [13]. Here we improve on their results (see Fig. 1), with a simpler
proof.

We must notice that the function x �→ ae/x is not integrable in an interval starting
at 0, and hence we cannot immediately apply our Definition 2. However, based on our
discussion in Section 2.1 we can modify the game in order to overcome this. First, we
assume for our analysis that ae = 1 since any other choice of ae can be seen as a trivial
conical combination of the function 1/x (see Definition 3). Next, we change the cost
function ce(x) to be constant and equal to λ in the interval [0, 1), for some λ ≥ 1.

Lemma 8 Fix a weighted congestion game with wmin = 1. For any λ ≥ 1, the cost
function

c(x) =
{
1/x, x ≥ 1,

λ, 0 ≤ x < 1

is (α1, α2, β1, β2)-good with

α1 = 1, α2 = max

((
1 + 1

wmax

)
ln(1 + wmax), ln(wmax) + λ

)
,

β1 = λ, β2 = lnW + λ.

Proof We will choose ξ = 0 in the Definition 2 of good cost functions. Thus, we
need to find nonnegative quantities α1, α2, β1, β2 such that, for x ∈ {0} ∪ [1,W ],
w ∈ [1, wmax],

α1 · c(x + w) ≤ 1

w

∫ x+w

x
c(t)dt ≤ α2 · c(x + w),
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and for all x ∈ [1,W ],

β1 · c(x) ≤ 1

x

∫ x

0
c(t)dt ≤ β2 · c(x).

For the bounds in α1, α2, we are interested in upper and lower bounds on the ratio

R(w, x) =
1
w

∫ x+w

x c(t)dt

c(x + w)
.

When x ≥ 1, this becomes

R(w, x) =
1
w

(ln(x + w) − ln(x))
1

x+w

=
(
1 + x

w

)
ln

(
1 + w

x

)
;

on the other hand, when x = 0, this becomes

R(w, 0) =
1
w

(ln(w) + λ)

1
w

= ln(w) + λ.

Thus, we get

R(w, x) =
{(

1 + x
w

)
ln

(
1 + w

x

)
, x ≥ 1;

lnw + λ, x = 0.

In the following technical Lemma 9, we show that the upper branch of R(w, x) is
increasing in w and decreasing in x ; hence, it is maximized at w → wmax, x → 1,

for a value of R(wmax, 1) =
(
1 + 1

wmax

)
ln(1 + wmax); and minimized at w → 1,

x → W , for a value of R(1,W ) ≥ R(1,∞) = 1. On the other hand, the lower
branch is maximized at w → wmax, for a value of R(wmax, 0) = ln(wmax) + λ; and
minimized at w → 1, for a value of R(1, 0) = λ ≥ 1. This gives the desired bounds
on α1 and α2.

Lemma 9 For w, x ∈ [1,∞), the function

R(w, x) =
(
1 + x

w

)
ln

(
1 + w

x

)

is increasing in w and decreasing in x.

Proof Let us apply the change of variables 1
z ≡ 1 + x

w
, so that we can write

R(w, x) =
(
1 + x

w

)
ln

(
1 + w

x

)
≡

ln
(

1
1−z

)

z
.
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Since w, x ∈ [1,∞), it follows that 1/z ∈ (1,∞) and thus z ∈ (0, 1). Notice now

that ln
(

1
1−z

)
is convex for z ∈ (0, 1), since its first derivative,

d

dz
ln

(
1

1 − z

)
= − d

dz
ln (1 − z) = 1

1 − z

is increasing in z. Since in addition ln
(

1
1−z

)∣∣∣
z=0

= 0, we conclude that ln
(

1
1−z

)
/z

is increasing in z. Since z = w
w+x is increasing in w and decreasing in x , the result

follows.

Next, we look at the bounds in β1, β2. Since x ∈ [1,W ] we have that ∫ x
0 c(t)dt =

ln x + λ. Moreover, it is immediate to observe that

λ · c(x) = λ · 1
x

≤ 1

x
(ln x + λ) ≤ 1

x
(lnW + λ) = (lnW + λ) · c(x).

Theorem 10 Fix a fair cost sharing game with unit minimum weight (wmin = 1), and
letwmax,W be the maximumweight and the maximum total load. Then, for any λ ≥ 1,
our game has an (α, β)-equilibrium where

α = max

((
1 + 1

wmax

)
ln(1 + wmax), ln(wmax) + λ

)
, β = 1 + lnW

λ
.

Proof Combining Theorem 2 with Lemma 8 we conclude that, for λ ≥ 1, our game
has an (α, β)-equilibrium with

α = α2

α1
= max

((
1 + 1

wmax

)
ln(1 + wmax), ln(wmax) + λ

)
,

β = β2/α1

β1/α1
= lnW + λ

λ
= 1 + lnW

λ
.

��
The parameterλ quantifies the trade-off curve between the approximation guarantee

on equilibria and their price of stability. At one extreme case λ = 1, we get that

α = max

((
1 + 1

wmax

)
ln(1 + wmax), ln(wmax) + 1

)
= Θ(lnwmax),

β = 1 + lnW ;

in other words, there exist Θ(lnwmax)-approximate equilibria with price of stability
Θ(lnW ). At the other extreme case λ = Θ(lnW ), we get that

α = max

((
1 + 1

wmax

)
ln(1 + wmax), ln(wmax) + Θ(lnW )

)
= Θ(lnW ),
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β = 1 + lnW

Θ(lnW )
= Θ(1);

in other words, there exist Θ(lnW )-approximate equilibria with constant price of
stability Θ(1). The complete trade-off curve can be seen in Fig. 1 (bottom). We can
also compare our results with the best known upper bounds. In [13, Lemma 5.3], it
was shown that α-approximate equilibria exist for α ≥ log2[e(1 + wmax)]; and in

[13, Theorem 5.1], it was shown that
(
f , 1 + 2 log2(1+W )

f

)
-equilibria exist for any

f ≥ 2 log2[e(1 + wmax)]. As Fig. 1 shows, we improve on both results.

4.4 Mixtures of Cost Functions

A big advantage of our approach is that we can study the existence of (α, β)-equilibria
for games that merge cost functions of two or more different types. For example, in
this section we look at congestion games that have both concave costs and polynomial
costs (as well as any conical combination). Interestingly, we show that this results in
only a small increase in the PoS guarantee of Theorem 5, while the existence guarantee
stays the same. For the following theorem we consider polynomials of degree at least
2, since affine functions are themselves concave and would be already captured by
Theorem 7.

Theorem 11 Any weighted congestion game with cost functions that are conical
combinations of concave and polynomial costs of maximum degree d ≥ 2 has an
(λ, 1 + d+1

λ
)-equilibrium, for any λ ∈ [d, d + 1].

Proof Fix a maximum degree d ≥ 2 for the polynomial costs and a parameter λ ∈
[d, d + 1]. By defining μ = d+1

2λ we have that 1
2 ≤ μ ≤ 1

2

(
1 + 1

d

) ≤ 1, and so by
applying Lemma 6 we can derive that any concave cost is (μ,μ+ 1

2 ,
1
2 , μ+ 1

2 )-good.
Next, by Lemma 3 and 4 we can derive that all monomials of degree k = 0, . . . , d −1
are ( 1

k+1 , 1,
1

k+1 ,
1

k+1 )-good and the monomial of degree d is ( 1
λ
, 1, 1

d+1 ,
1
λ
)-good.

Deploying our black-box tool Theorem 2 (and shortcutting some calculations that
we have already performed in the proof of Theorem 5) we can guarantee the existence
of an (α, β)-equilibrium with

α = max

{
1 + 1

2μ
, λ

}
= max

{
1 + λ

d + 1
, λ

}
= λ,

since 2 ≤ d ≤ λ ≤ d + 1, and

β =
max

{
μ+1/2

μ
, 1

}

min
{
1/2
μ

, λ
d+1

} = 1 + 1
2μ

min
{

1
2μ, λ

d+1

} = 1 + 2μ = 1 + d + 1

λ
,

where for the third equality we used that, from the definition of μ, 1
2μ = λ

d+1 . ��
Acknowledgements We thank Martin Gairing for interesting discussions.
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