Theory of Computing Systems (2023) 67:956-975
https://doi.org/10.1007/s00224-023-10124-0

®

Check for
updates

Visit-Bounded Stack Automata

Jozef Jirasek! - lan McQuillan’

Accepted: 8 May 2023 / Published online: 23 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

An automaton is k-visit-bounded if during any computation its work tape head visits
each tape cell at most k times. In this paper we consider stack automata which are
k-visit-bounded for some integer k. This restriction resets the visits when popping
(unlike similarly defined Turing machine restrictions) which we show allows the model
to accept a proper superset of context-free languages and also a proper superset of
languages of visit-bounded Turing machines. We study two variants of visit-bounded
stack automata: one where only instructions that move the stack head downwards
increase the number of visits of the destination cell, and another where any transition
increases the number of visits. We prove that the two types of automata recognize
the same languages. We then show that all languages recognized by visit-bounded
stack automata are effectively semilinear, and hence are letter-equivalent to regular
languages, which can be used to show other properties.

Keywords Stack automata - Visit-bounded automata - Semilinear languages

1 Introduction

When introducing a machine model or a grammar system, one of the most useful
properties is that of semilinearity. The idea of a language being semilinear is defined
formally in Section 2, but equivalently, a language is semilinear if and only if it has the
same Parikh image as some regular language [1]. In particular, when this property is
effective for a machine model M, there is a procedure to construct a letter-equivalent
finite automaton from any such machine. It is well-known due to Parikh that the
context-free languages have this property [2]. When this property is effective along

B Jozef Jirdsek
jirasek.jozef@usask.ca

Tan McQuillan
mcquillan@cs.usask.ca

Department of Computer Science, University of Saskatchewan, Saskatoon SK S7N 5A9,
Saskatchewan, Canada

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-023-10124-0&domain=pdf

Theory of Computing Systems (2023) 67:956-975 957

with effective closure under homomorphism, inverse homomorphism, and intersection
with regular languages (the full trio properties), it immediately implies several useful
properties.

1. Tt provides a procedure to decide emptiness, finiteness, and membership [3].

2. The class can be augmented by reversal-bounded counters and the resulting class
is still semilinear [4] — more generally, the smallest full trio (or even full AFL)
containing the languages accepted by M that is also closed under intersection
with one-way nondeterministic reversal-bounded multicounter machines [3] is
also semilinear. The resulting family has the positive decidable properties of (1).

3. All bounded languages accepted by M are so-called bounded semilinear lan-
guages [5], and they can all be accepted by a deterministic machine model, one-way
deterministic reversal-bounded multicounter machines [5], where we can decide
containment and equivalence of two machines.

4. Properties related to counting functions and slenderness (having at most k strings
of each length) can be decided [6].

It is also one of the key properties of a class of grammars being mildly context-
sensitive [7], which was developed to encompass the properties that are important for
computational linguistics.

Stack automata are a generalization of pushdown automata with the ability to push
and pop at the top of the stack, and an added ability to read the contents of the stack in a
two-way read-only fashion [8]. They are quite powerful however and can accept non-
semilinear languages [9, 10]. Checking stack automata are stack automata that cannot
pop, and cannot push after reading from the stack. Here, we consider a restriction
on stack automata. Given a subset E of the stack instructions (push, pop, stay, move
left, or right), a machine is k-visitg-bounded if, during any computation, its stack
head visits each tape cell while performing an instruction of E at most k times; and
it is visitg-bounded if it is k-visitg-bounded for some k. We omit E if it contains all
instructions.

Importantly in this definition, when a cell is popped from the stack, the count towards
this bound disappears with it, and any new symbols pushed start with a count of zero
again. This makes the definition in some ways more general than had we defined Turing
machines with a visit-bounded worktape. This type of model was studied by Greibach
[11], who studied one-way input with a single Turing machine work tape which it can
edit (precisely, Greibach defines the machines to be preloaded with a string from a
language family such as the regular languages — but as we are restricting our study
to regular languages, this preloading does not affect the capacity). Greibach showed
that the languages accepted by finite-visit Turing machines are a semilinear subset of
the checking stack languages.

Here we show that a stack language is visit-bounded if and only if it is visitg-
bounded where E only contains an instruction to move left. We then show that the
family of languages accepted by visit-bounded stack automata only contain semilinear

LA preliminary version of this paper appeared in the Proceedings of the 26th International Conference
on Developments in Language Theory (DLT 2022), Lecture Notes in Computer Science 13257, 189-200,
2022. This version is substantially extended from the previous version to include the complete proof of
Theorem 2, and full details of all algorithms used in the proof of Theorem 4, which are central to the work.

@ Springer

958 Theory of Computing Systems (2023) 67:956-975

languages, in contrast to stack automata generally. Furthermore, they form a language
family properly between the context-free and stack languages. Lastly, we show that the
class of languages of Turing machines with a finite-visit (or finite-crossing) restriction
(and a one-way input tape) is properly contained in the class of languages of finite-visit
stack automata (as the former does not contain all context-free languages), demon-
strating the power of our model while still preserving semilinearity. This makes the
family useful towards showing that other language families are semilinear.

2 Preliminaries

We refer to [1, 12] for an introduction to automata and formal language theory. An
alphabet X is a finite set of symbols. A string over X is a finite sequence of symbols
from 3. The set of all strings over %, including the empty string A, is denoted by X*.
A language is a subset of X*.

Let w be a string over ¥ = {ay, as, ..., a,}. The length of w, denoted by |w], is
the number of characters in w, with |A| = 0. For a € X, the number of occurrences
of the character a in the string w is denoted by |w|,. The Parikh image of a string w,
denoted W (w), is the vector (|wl,, , [wlg, , ..., [wl,,). We note that two strings have
the same Parikh image if one is a permutation of the other. For a language L C X%,
let V(L) = {¥(w) | w € L}. Two languages L; and L, are letter-equivalent if
W(L1) = W(L>). Equivalently, every string in L is a permutation of some string in
L,, and vice versa.

A subset Q of N™ (m-tuples) is a linear set if there exist vg, v, ..., v, € N" such
that Q = {vg +ijv1 + --- +i,v, | i1,...,ir € N}. We call vy the constant and
U1, ..., v, the periods. A finite union of linear sets is a semilinear set. A language
L C X* is semilinear if W(L) is a semilinear set. It is known that a language L is
semilinear if and only if there exists a regular language L’ with W (L) = W(L') [1].
For a family of languages accepted by a class of machines M, we say that the family
is effectively semilinear if there is an algorithm to determine the constant and the
periods for each linear set (or equivalently the letter-equivalent finite automaton). The
following is a classical result in automata theory.

Theorem 1 (Parikh’s Theorem [2]) Let L be a context-free language. Then V(L) is a
semilinear set.

Let NFA be the class of nondeterministic finite automata and NPDA be the class of
nondeterministic pushdown automata. Given a class of machines M, let L(M) be the
family of languages accepted by M.

2.1 Stack Automata

A nondeterministic one-way stack automaton M is a 6-tuple (Q, X, T, 8, qo, F),
where:

e (is the finite set of states,
e X and I' are the input and work tape alphabets,

@ Springer

Theory of Computing Systems (2023) 67:956-975 959

Let I = {S, L, R, push(x), pop | x € I'} be the instruction set, then:
8 C O x (XU} x (T"U{}) x Q x [is the transition relation,
qo € Q is the initial state, and

F C Q is the set of final states.

The special symbol > denotes the left end of the work tape, which is identified with
the bottom of the stack.

We define the contents of the stack slightly differently (but equivalently) from
previous definitions in order to better capture the restrictions on number of visits. The
work tape shall be represented as a series of pairs (x, i), denoting individual tape cells,
where x € I U {&} is the symbol written in this cell, and i € N is the number of times
the automaton has visited this cell. Note that the transition function of the automaton
only has access to the symbols written on the tape, and the automaton can not inspect
the visit counters of the cells.

A configuration of the automaton M is a triple (¢, w, y), where:

e g € Q is the current state,

e w € X* is the input that is still to be read,

e y e ({p} x N)(I" x N)* J (I" x N)* is the current content of the work tape. The
special symbol J denotes the position of the tape head, which is scanning the cell
immediately preceding this symbol.

Now let E C {S, L, R, push, pop} be a set of expensive instructions. These are
the instructions that are counted as visits to a tape cell. The automaton performs
all instructions on the work tape as usual for stack automata. When an expensive
instruction is performed, the number of visits of the tape cell under the head after the
instruction is completed is increased by one.

We define the move relation - between configurations of M using a set of expensive
instructions E as follows: For ¢ € {S, L, R, push, pop}, let the cost of t be c(¢1) = 1
ift e E,andc(t) =0if¢ ¢ E. Then:

e (p,aw,a(x,i) d B (g, w,a(x,i +c(S)) 4 B)
if (p,a,x,q,S) €6,

o (paw,a(x,i)(y, j) d B)F (g, w,alx,i+c@)) 4y,))B)
if (p,a,x,q,L) €6,

o (pyaw,a(x,i) d(y, HB) (g, w,a(x,i)(y, j+c(R)dB)
if (p,a,x,q,R) €6,

e (p,aw,a(x,i)) F (g, w,alx,i)(y, c(push)))
if (p, a, x, q, push(y)) € §, and

o (p,aw,a(x,i)(y, j) 4) F (g, w,a(x,i+c(pop)) 4)
if (p,a,y,q,pop) € §;

where p,g € Q,a € UL}, w e X5, x e TU{}, yeTl,i,j e Na e
{A}U (> x N)(T" x N)*), B8 € (I' x N)*, and the work tape string on both sides of the
relation is well-formed (in particular, x = & if and only if @ = A). Let * denote the
reflexive and transitive closure of .

@ Springer

960 Theory of Computing Systems (2023) 67:956-975

A computation of a stack automaton M on a string w € X* is a sequence of
configurationsco ¢ F - - - - ¢, where co = (qo, w, (>, 0)), and ¢,, = (gn, X, Vi)
If g, € F, this computation is accepting. The automaton M accepts a string w if there
exists an accepting computation of M on w. The language accepted by M, denoted by
L(M), is the set of all strings from X* that M accepts.

Let SA be the class of all stack automata. A stack automaton is called a non-erasing
stack automaton if it uses no pop instructions. A non-erasing stack automaton is called
a checking stack automaton if it cannot push more symbols on the stack after the head
enters the stack using an L instruction. The class of non-erasing stack automata is
denoted by NESA, and the class of checking stack automata by CSA.

For an integer k and a set of expensive instructions E, we say that a computation
of a stack automaton M is k-visit g-bounded, if the number of visits of every cell in
every configuration in this computation is less than or equal to k. We say that M is k-
visit g-bounded if for every string w € L(M) the automaton M has a k-visitg-bounded
accepting computation on w. Finally, M is visitg-bounded if there is a finite k € N
such that M is k-visitg-bounded. Let VISIT g (k) be the class of k-visitg-bounded stack
automata, and VISIT g of all visitg-bounded stack automata. If we leave off the subscript
E, itis assumed that E = {S, L, R, push, pop}, this means that every instruction is
considered expensive. It is immediate that L(SA) = L(VISITy).

Note the important distinguishing feature of the stack automaton model which sets
it apart from visit-bounded Turing machine models previously considered in literature:
whenever a tape cell is popped from the top of the stack, the number of visits of that
cell is reset. Whenever a new cell is pushed to the top of the stack, this new cell
begins with a visit count of 0 (or 1, if push is an expensive instruction). This allows
a visit-bounded stack automaton to perform some computations that an analogous
visit-bounded Turing machine could not.

3 Visit-Bounded Automata

As we have seen in definitions in Section 2, the notion of a visit-bounded stack automa-
ton is dependent on the choice of the set of expensive instructions £ which increase
the visit counters of tape cells. To begin, we consider two expensive instruction sets:
E1 = {1}, and E» = {S,L, R, push, pop}. In the first case, only L instructions
increase the visit counters. In the second case, all instructions increase the visit coun-
ters.

Example 1 Let M = ({qo0}, {a}, {}, {(g0, a, >, g0, S)}, q0, {q0}) be a stack automaton.
This simple automaton scans its input consisting of a number of symbols a, while the
work tape head rests on the bottom of the stack marker.

Observe that M is visity)-bounded, as it never performs an L instruction, and thus
the number of visits of the only used tape cell never increases above 0. On the other
hand, M is not visit-bounded, as the S instructions in the only computation of M on
string a® increase the visit counter of the tape cell to k.

@ Springer

Theory of Computing Systems (2023) 67:956-975 961

Every visit-bounded automaton is also visiti,}-bounded. Indeed, the number of
visits to a cell can not increase if we only consider a limited subset of expensive
instructions. Perhaps surprisingly, as we will show in Theorem 2, the converse is also
true if we only consider languages accepted by the automaton. For any visit,}-bounded
automaton A, we can construct a visit-bounded automaton B with L(B) = L(A).
Therefore, limiting the usage of any instruction other than L does not reduce the
descriptive power of the automaton model.

Theorem2 Let A = (Q, X, T, 8, qo, F) be avisit{,)-bounded stack automaton. Then
there exists a visit-bounded stack automaton B such that L(B) = L(A). Hence,
LVISIT) = LVISITy).

Proof Let A be visityr,)-bounded, i.e., A visits every tape cell using the L instruction
at most k times. We prove the theorem by describing a construction of the automaton
B. The basic idea of the construction is that B emulates a computation of A, but every
symbol on the work tape of A shall be represented by multiple copies of the same
symbol on the work tape of B. Instructions of A operating on a specific tape cell will
be distributed among the copies of this cell by B in such a way that every copy is only
visited a fixed number of times. By careful counting we show that any computation of
A can be emulated by B in such a way that the number of visits to every cell of B on
any instruction can be bounded as a function of k. This means that there is a constant
£ which depends on k such that B is ¢-visit-bounded, i.e., B is visit-bounded. The
detailed construction of B follows.

To represent a configuration of A, the machine B will use several copies of every
symbol on A’s work tape. The last (right-most) copy will be denoted by a special
symbol x, to allow B to distinguish between several consecutive instances of the same
symbol on the stack. This includes the left end marker -, whose copies will be denoted
by a new symbol ». In a majority of cases, to represent a configuration of A where
the head is scanning a work tape symbol x, the head of B will be scanning the last
(barred) copy of this symbol. Thus a stack string >xyy « z of A can be represented in
B by the string > »» Bxxyyyyyy < zzZ. The number of copies of each symbol will
be nondeterministically chosen such that there are enough copies for all the operations
of B to be performed correctly, see details below.

Next, for every instruction of A we describe a sequence of operations by which B
will emulate this instruction. For every sequence we carefully list all work tape cells
that B visits using any instruction. The goal is to show that the number of visits to
every cell of B can be bounded by a fixed function of k, the visit bound for A.

To initialize the computation, B pushes a nondeterministically chosen number of
symbols » on the stack, followed by a single symbol ». This adds one visit to each
of the newly created cells at the beginning of the computation.

To simulate a push(x) instruction of A, the machine B pushes a nondeterminis-
tically chosen number of symbols x on the stack, followed by a single symbol x. This
adds one visit to each of the newly created cells.

To simulate an L instruction of A, the machine B moves its head left until it reaches
the next barred symbol. This adds a visit to cells of the tape of B corresponding to two

@ Springer

962 Theory of Computing Systems (2023) 67:956-975

different cells of A. Call the cell of A the head was scanning before the transition the fop
cell, and the cell the head is scanning after the transition the bottom cell. The sequence
of transitions of B adds one visit to each cell with a non-barred symbol corresponding
to the top cell, and one visit to the cell with the barred symbol corresponding to the
bottom cell.

How many times can such a sequence of transitions visit any one cell of B? Recall
that A is k-visit{z,)-bounded, therefore an L transition can only visit the bottom cell at
most k times. And since the bottom cell can not be removed from the stack before the
top cell is, this also means that an L transition can only originate in the top cell at most
k times. Therefore, over the entire computation, the number of visits of any single cell
of B can only increase by at most k during all of these sequences combined.

To simulate an R instruction of A, the machine B moves its head right until it
reaches the next symbol marked with a bar. Call the cell that the head of A was scanning
before this instruction was executed the botfom cell, and the cell that it is scanning
after performing this instruction the fop cell. The sequence of transitions of B adds
one visit to every cell that corresponds to the top cell in A.

How many of these sequences can be performed targeting the same top cell? Since
the head of a stack automaton can only move one cell at a time, this R instruction had
to be preceded by an L instruction moving the head from the top cell to the bottom
cell earlier in the computation. Moreover, every R instruction from the bottom cell to
the top cell can be uniquely paired with a preceding L instruction from the top cell
to the bottom cell. Since the bottom cell can not be removed from the stack before
the top cell is, the number of R instructions ending in the top cell is bounded by the
number of L instructions ending in the bottom cell, which is in turn bounded by k as
A is k-visit{r)-bounded. Therefore any cell of A can only be the destination of an R
instruction at most k times, and the resulting sequences of instructions in B can only
add at most k visits to the corresponding cells of B over the entire computation.

To simulate a pop instruction of A, denote the cell being popped as the rop cell,
and the cell the head of A scans after the transition (the new top of the stack) as the
bottom cell. The machine B first removes all symbols corresponding to the top cell
from its stack, then removes the two right-most symbols corresponding to the bottom
cell (one barred and one not), and finally adds a new symbol with a bar corresponding
to the bottom cell to the stack. For example, if B starts with a stack > » BxxxXyyy
J, after this sequence the stack will be > » Bxxx <. If there are not enough symbols
corresponding to the bottom cell on the stack of B, due to the computation not adding
enough of them during the sequence that simulated pushing the bottom cell on the
stack, then B immediately halts and rejects.

Why do we need to modify the content of the stack of B corresponding to the
bottom cell? Observe that the sequence of pop instructions of B visits each symbol
corresponding to the top cell once, but it also visits the cell containing the barred symbol
corresponding to the bottom cell. If B only removed the symbols corresponding to
the top cell, the cell with the barred symbol would get visited during every pop
instruction of A ending in the same bottom cell. A sequence of repeated push and

@ Springer

Theory of Computing Systems (2023) 67:956-975 963

pop instructions could therefore add an unbounded number of visits to this cell, since
neither of these instructions counts as a visit in A. Adding the extra instructions to
remove two symbols and add a new one causes any symbol corresponding to the
bottom cell to be visited at most two times by this sequence of instructions before it
is removed from the stack.

Simulating S instructions of A will be done in two different ways, depending on
whether the cell on which this instruction is performed is currently on top of the
stack or not. Additionally, B will always simulate an entire contiguous sequence of S
instructions of A at the same time. Therefore, assume that the instructions immediately
preceding and following this sequence are one of L, R, push, or pop. (Except for the
cases when this sequence is at the very beginning or end of the computation.)

To simulate a sequence of S instructions which operate on the cell on top of
the stack of A, the machine B shall remove one symbol corresponding to this cell
with each S instruction executed; i.e., S instructions of A shall be replaced by pop
instructions in B. At the end of this sequence B shall push a new barred symbol to
preserve the proper form of the stack word. As during the simulation of the pop
instruction, if there are not enough symbols corresponding to the cell of A on the stack
of B, the machine halts and rejects. Since cells visited by this sequence are removed
from the stack, any cell of B is visited at most once by this sequence of operations.

To simulate a sequence of S instructions which operate on a cell below the top
of the stack of A, the machine B replaces each S instruction with an L instruction.
This means that to simulate a sequence of n S instructions of A, B visits the top n
copies of the affected cell on its stack. At the end of simulating this sequence, B moves
its head right back to the barred symbol representing the current cell to continue its
computation. Once again, if there are not enough copies available and B hits the barred
symbol representing the next cell, B halts and rejects.

During each sequence of consecutive S instructions of A, the machine B visits
every cell corresponding to the affected cell of A at most two times. We ask how many
times does A access the same cell of its stack in this way. Recall that we simulate
the full contiguous sequence of S instructions of A in one run. Therefore, before this
sequence starts, A has to enter the affected cell, and after the sequence ends, it leaves
this cell. To execute another such sequence targeting the same cell, A has to return to
the cell using another instruction.

We can classify the sequences of S instructions of A according to which instruc-
tion immediately precedes this sequence. Sequences which follow a push or pop
instruction operate on the top of the stack, and thus are dealt with in the section above
instead. Since A is k-visit-bounded, there are at most k L instructions ending in this
cell, and therefore at most k distinct segments of S instructions following an L instruc-
tion. Similarly to the argument in the section simulating an R instruction above, the
number of R instructions that visit a specific cell of A is bounded by the number of
L instructions visiting the cell immediately below it, which in turn is bounded by k.
Thus there can be at most k£ sequences of S instructions following an R instruction that
operate on this cell.

@ Springer

964 Theory of Computing Systems (2023) 67:956-975

The number of visits of every cell of B visited by the simulations of every instruction
of A is summarized in Table 1. From this summary we can see that every cell of B is
visited at most 7k 4 6 times by any instruction of B. Therefore B is visit-bounded as
required. O

As a consequence of Theorem 2, the classes of languages accepted by visityr,)-
bounded and visit-bounded automata are identical. We can also observe the following
result for context-free languages:

Corollary 1 L(NPDA) C L(VISIT).

Proof A pushdown automaton can be seen as a stack automaton which never uses the
L and R instructions. This automaton is trivially visit(r,;-bounded, and by Theorem 2
its language can be accepted by some visit-bounded stack automaton. Strictness can
be seen using the language {a"b"c" | n > 0}, which is not context-free, but it can be
accepted by a 3-visit-bounded stack automaton. O

We conclude this section with a comparison to Turing machines. Consider nonde-
terministic Turing machines with a one-way read-only input and a single work tape.
If there is a bound on the number of changes of direction on the work tape (finite-
reversal), we denote these machines by TMFR; if there is a bound on the number of

Table 1 Number of visits of each cell of B during the simulation of A

Maximum number of
operations affecting

Number of visits
per operation

Operation simulated Cells affected

one cell
Initialization Copies of the » symbol 1 1
push All copies of the pushed cell 1 1
pop All copies of the popped cell 1 1
Three topmost copies of the 1 2 before removing the
cell below the popped cell affected cell of B
L All copies of the top cell 1
The topmost copy of the 1
bottom cell
R All copies of the top cell 1 k
n consecutive S Top n symbols of the stack of 1 1
instructions on top B
of the stack
n consecutive S Top n symbols corresponding 2 k
instructions to the affected cell
following an L
instruction
n consecutive S Top n symbols corresponding 2 k

instructions
following an R
instruction

to the affected cell

@ Springer

Theory of Computing Systems (2023) 67:956-975 965

times the boundary of each pair of adjacent cells is crossed (finite-crossing), we denote
these machines by TMFC; and if there is a bound on the number of visits to each cell
(finite-visit), we denoted these by TMFV. Greibach studies these machines in [11],
where the work tape is preloaded with regular languages (or other families which
we do not consider here), and the work tape is confined to the preloaded space. This
preloading however does not impact the languages accepted, as shown in the proof of
the following.

Proposition 3 £(TMFR) C L(TMFC) = L(TMFV) C L(VISIT).

Proof First we will argue that preloading these Turing machines with regular lan-
guages does not affect the languages accepted. Indeed, preloading can be simulated
by nondeterministically guessing and writing the preloaded string before the start of
the computation. In the other direction, a new dummy symbol B can be introduced,
and the machine can be preloaded with B*. The machine then guesses some starting
position and simulates using B as the blank symbol. It only accepts if it is preloaded
with a string that is longer than the number of cells visited and it guesses a valid starting
position where the head never runs out of available tape cells in either direction.
Greibach shows that L(TMFR) € L(TMFC) = L(TMFV) in Theorems 2.15 and
3.12 of [11]. To show that L(TMFV) € L(VISIT), we use Lemma 4.21, where Greibach
shows that every language in L(TMFV) can be accepted by a Turing machine preset
with aregular language where the machine does not ever change the work tape contents,
and every accepting computation is k-visit-bounded. Such a machine can be simulated
by a visit-bounded stack automaton by first guessing the work tape contents, and then
replicating the computation. The inclusion is strict following Greibach’s proof of
Theorem 4.26, as the context-free Dyck language cannot be accepted by a TMFV. O

4 Semilinearity

The main result of this section is to prove that the language accepted by any visit-
bounded stack automaton is semilinear. To prove this, we give a procedure that, given
a visit-bounded stack automaton M, constructs a pushdown automaton P, such that
L(P) and L(M) are letter-equivalent. Specifically, we show that the automaton P
can accept some permutation of any string in L(M), and vice versa. It is known that
languages of pushdown automata are semilinear, and that semilinearity is preserved
under letter-equivalence, hence this proves the main result.

Theorem4 Let M = (Q, 2,1, 6, qo, F) be a visit-bounded stack automaton. Then
the language accepted by M is effectively semilinear.

Proof Let M be k-visit-bounded for an integer k. Further, assume that the automaton
ends its computation with an empty stack. If it does not, this can be achieved by
deleting the entire content of the stack before accepting, which adds at most one visit
to every tape cell.

@ Springer

966 Theory of Computing Systems (2023) 67:956-975

The central concept used for the proof is the visit history of a tape cell. Using the
analogy of a physical work tape with paper cells, every time the automaton makes a
move, it records the transition it has just used (a 5-tuple (p, a, x, g, t)) on both the cell
it left and the cell it entered. If the transition used an S instruction, those two refer to the
same cell. In this way, since every cell is visited at most k times before it is destroyed,
the visit history of every cell contains at most 2k entries: k for transitions which were
used to enter the cell, and another & for transitions which were used to leave. We shall
refer to the i-th entering transition as f#ip[i] and the i-th leaving transition as tyu[i].
Also note that throughout the computation of the machine every transition used is
recorded exactly twice: once in the cell it begins in, and once in the cell it ends in. This
connection links the visit histories of all cells into a linked list-like structure which
records the entire computation of M. Since every transition record contains the input
symbol being read (if any), following these links allows us to reconstruct the string
that is being read in the computation.

Our goal is to construct a pushdown automaton P, which emulates the push and
pop instructions in some computation of M, while nondeterministically guessing the
entire history of every cell pushed on the stack. As long as P can ensure the integrity
of links between every pair of adjacent cells, the entire linked list can be followed to
reconstruct a computation of M, including the L, R, and S instructions. Then if P also
reads all input symbols corresponding to every f;, transition in all histories, it accepts
a permutation of the string accepted by M in this computation.

An important fact affecting the construction of P is that cells on the work tape of M
can be erased and replaced by another cell. Therefore, not all of the transitions in the
history of one cell always correspond to transitions in the history of one adjacent cell.
Some transitions could connect to a cell that had been in that place but was previously
erased, and some transitions might connect to a cell that will be in that place in the
future, after the currently adjacent cell is erased. Therefore, the representation of every
cell in P will additionally carry a completed transition counter, an index ctc in the
range 1 < ctc < k, which indicates how many transitions in the history of the current
cell have already been matched with corresponding transitions in the histories of adja-
cent cells. Outgoing transitions from one cell are matched with incoming transitions
in adjacent cells in the same order as the machine M executes these transitions, with
the czc acting as an index to the transition being currently processed. This ensures that
every outgoing transition in the history of the the current cell has been matched to one
and exactly one incoming transition in the history of some adjacent cell.

When the pop transition which removes the current cell from the stack is encoun-
tered, and this transition can be linked to an incoming pop transition in the cell directly
below the current cell, processing of the current cell is finished. The machine P pops
the record representing the current cell from its stack, and the algorithm can con-
tinue working on the cell below. There, the ctc of the bottom cell indicates where the
algorithm should resume matching further transitions from that cell.

We can now describe the construction of the pushdown automaton P in detail. O

Definition 1 A (2k + 2)-tuple (x, ctc, tin[1], - . ., tinlk], tout[1], - - ., tout[k]) is called
a history card, where:

e x € (I' U {p}) is the stack symbol written on the tape cell,

@ Springer

Theory of Computing Systems (2023) 67:956-975 967

e ctc, with 1 < ctc < k, is the completed transition counter,
o tin[i] € (§ U {@}), for 1 <i <k, are the transitions ending in this cell, and
o toutlj] € (8 U{P}), for 1 < j < k, are the transitions originating in this cell.

Not all possible history cards can appear in some computation of M. We impose
several consistency constraints on the history cards that P can use, to ensure that the
information on each card is filled in properly and does not contradict itself.

Definition 2 A history card is internally consistent, if all the following hold:

o finli] #0 <= ftonli] # @ forall 1 <i < k. If there is an incoming transition,
there has to be a corresponding outgoing transition.

o Iftin[i] = ¥, thenalso i, [i + 1] = @. Similarly if 75y [i] = @, then also oy [i + 1] =
¢. This holds forall I <i < k. Transitions are always stored in a contiguous block
of indices starting from the beginning of the card.

e The transition fjy[1] performs the push(x) instruction, where x is the symbol
stored on this card. The last non-empty 7oy [i] performs the pop instruction. No
other #;, transitions are push and no other 7., transitions are pop instructions.
The history of a cell begins when it is pushed and ends when it is popped from the
stack. Each of these events can only happen once in the lifetime of the cell.

e The exception to the three above rules is a card with x = . This card represents
the bottom of the stack of M, and here the computation of M begins and ends.
Therefore #;,[1] = @, there is exactly one i such that #;,[i] # ¥ and #5y[i] = ¥, no
tin 1S @ push or R instruction, and no fyy is a pop or L instruction.

e The work tape symbol read in every 7, transition is the symbol x on this card.

Denote by H the set of all internally consistent history cards. Note that |H| <
(IT| + Dk(|8] + 1), The set H shall be the working alphabet of the pushdown
automaton P. An example of history cards and links between them corresponding to
a computation of M is shown in Fig. 1. The links are not explicitly stored but will be
implied.

Now we describe an algorithm used by P to simulate a computation of M. This
algorithm employs two subprocedures. The first one advances the completed transition
counter on a card step by step, verifying that the transitions on the card can link together
to form a continuous computation, until either a push or a pop transition, or the end
of the computation is reached. The facts that need to be verified are that S instructions
on this card link to each other, and that every outgoing L instruction is followed by an
incoming R instruction.

The second procedure takes two history cards as input and attempts to link together
transitions between them. An outgoing push instruction on the bottom card has to
link to the first incoming instruction on the top card. Every outgoing R instruction on
the bottom card has to link to an incoming R instruction on the top card, and every
outgoing L instruction on the top card has to link to an incoming L instruction on the
bottom card. Finally, the last transition of the top card, performing a pop instruction,
has to link to an incoming pop transition on the bottom card.

The complete description of both procedures can be found in the Appendix. The
important fact is that since there are only finitely many different history cards, the

@ Springer

968 Theory of Computing Systems (2023) 67:956-975

push(y) S R
foor

push(z) S S
z
S S pop |

/ Y pop ||V pop

push(z) | pop,

@ | =

push
T
push

A
o1t

P I =

> t Vs /
push(x) s~T &rl

v pop

Fig. 1 Histories of tape cells after executing the following sequence of instructions:
push(x), push(y), S, L, L, S, R, R, pop, push(z), S, S, pop, pop. Only the instructions used in
the transitions are shown, states and symbols read are omitted. Transitions f;, are written in the top row of
a card, and foyt in the bottom row. Arrows show links between history cards formed by pairs of identical
transitions

pushdown automaton itself does not have to perform either of these procedures. The
results for all possible inputs can be encoded into its transition function.

A detailed description of the algorithm performed by P is in Algorithm 1.

If the computation of P succeeds, all transitions in all the history cards used can be
linked together to form one possible contiguous computation of M. Further, P reads
every symbol that is read by every instruction in this computation, just not necessarily
in the same order as M. This means that the string read by P is a permutation of the
string that is read by the corresponding computation of M. Therefore, the language of
P is letter-equivalent to the language of M. Finally, since the languages of pushdown
automata are semilinear, and semilinearity is preserved under letter-equivalence, this
means that the language of M is semilinear as well.

5 Other Expensive Instruction Sets
So far we have considered automata models with expensive instruction sets £ = {L}

and £ = {S, L, R, push, pop}. We can ask whether models with other expensive
instruction sets also describe the same class of languages.

@ Springer

Theory of Computing Systems (2023) 67:956-975 969

Algorithm 1 The algorithm performed by the pushdown automaton P emulating a
computation of a visit-bounded stack automaton.

1: Nondeterministically choose a history card containing the symbol .
2: Push this card on the stack.
3: Read all input symbols that are read in any incoming transition on this card.
4: while There is a history card on the stack do
5: Advance the ctc of the card on top of the stack,
verifying the consistency of instruction links,
until either a push or a pop instruction,
or the end of the computation is encountered.!

6: if The transition encountered performs a push instruction then
7 Nondeterministically choose a new history card

containing the symbol being pushed.
8: Verify that the chosen card can be matched

to the card currently on top of the stack.2
: if The cards can be matched together then
10: Move the ctc of the card on top of the stack
to the incoming pop instruction corresponding
to the removal of the cell represented by the new card.

11: Push the newly chosen card on top of the stack,
initializing its ctc to 1.
12: Read all input symbols that are read
in any incoming transition on the new card.
13: else
14: Halt the computation and reject.
15: end if
16: else if The transition encountered performs the pop instruction then
17: Erase the top card from the stack.
18: else if The end of the computation of M is encountered then
19: Halt the computation and accept.
20: else if A transition on the card can not be linked properly then
21: Halt the computation and reject.
22: endif

23: end while

I See Algorithm 2.
2 See Algorithm 3.

It is possible to show that visit(gz)-bounded automata accept the same class of lan-
guages as visit(r,}-bounded automata. The proof uses similar ideas as in the construction
in the proof of Theorem 2, though we do not include it here. Adding the S instruction
to a set of expensive instructions does not change the class of languages accepted, as
every S instruction can be replaced by a pair of R and L instructions, or push and
pop instructions when operating on top of the stack. Therefore it is always possi-
ble to construct an equivalent automaton which never uses the S instruction. Hence,
if we consider any expensive instruction set £ containing either L or R, any visit-
bounded automaton is also visitz bounded for such E. Therefore all models with such
an expensive instruction set accept the same class of languages.

Making expensive instructions exactly the push instructions has no effect on the
languages accepted (i.e. this model accepts all stack languages), as any cell can only

@ Springer

970 Theory of Computing Systems (2023) 67:956-975

be pushed on the stack once. We only include the push instruction as a possible
expensive instruction for completeness.

Finally, we shall see that a model with £ = {pop} also accepts all stack automaton
languages. Using a procedure similar to the one in the construction of automaton B
in Theorem 2 we can clone symbols on the stack and replace every pop transition by
a sequence pop — pop — push, such that every cell is visited at most twice by pop
instructions.

These results can be summarized in a hierarchy depicted in Fig. 2. Recall that NESA
denotes the class of non-erasing stack automata, and CSA the class of checking stack
automata.

Theorem 5 The hierarchy shown in Fig.2 is correct.

Proof The fact that L(TMFR) C L(TMFC) = L(TMFV) C L(VISIT) is shown in
Proposition 3. That L(TMFV) C L£(CSA) isshownin [11]. That L(CSA) C L(NESA) C
L(SA) is well known [10]. That L(NPDA) C L(VISIT) is shown in Corollary 1. That
LVISIT) = L(VISIT(y)) is from Theorem 2, and the equality with L(VISIT(g}) is
discussed above. The equality of £(SA) with L(VISIT(pop)) and L(VISIT gusny) is also
mentioned above. Further, £(CSA) contains languages not accepted by L(VISIT) by
Theorem 4, since L(CSA) contains non-semilinear languages [10]. By transitivity this
proves that the inclusion of L£(VISIT) in £(SA) is proper. Finally, it is known that
L(NESA) does not contain all context-free languages [11]. O

Hence, all the families above that are semilinear are contained in £(VISIT), making
it the most powerful such family.

6 Conclusions and Future Directions

We have introduced a new restriction of stack automata — k-visit-bounded automata
— which are only allowed to visit each cell of the stack tape at most k times. In contrast
to similar restrictions previously considered, e.g. [11], popping a cell from the stack
resets its visit count to zero. More generally, we also study k-visitg-bounded automata,
where the limit on number of visits only applies to certain instructions performed by
the automaton. Depending on the set E, we show a hierarchy of language clases

L(NPDA) L(VISIT)
L(VISIT (1)

L(VISIT (5)

L(SA)
L(TMRB) LVISIT (gopy)
LVISIT (puan))

Fig. 2 Inclusion relationships between various language families described in this paper. Families in each
box are equal. Proper inclusions are shown with an arrow. Families with no lines connecting them are
incomparable

@ Springer

Theory of Computing Systems (2023) 67:956-975 971

depicted in Fig. 2. In particular, restricting only the use of the “move left” instruction
L allows the machines to recognize the same class of languages as restricting every
possible instruction. We call the resulting family of languages L(VISIT). The class
L(VISIT) properly contains all context-free languages, but also properly contains lan-
guages accepted by finite-visit Turing machines. Moreover, the family only contains
effectively semilinear languages. An algorithm is provided that takes a visit-bounded
stack automaton as input, and constructs a letter-equivalent pushdown automaton.

Several interesting questions remain unanswered. What classes of languages result
from applying the visit-bounded restriction to nonerasing, or checking stack automata
(see for example [10, 13])? These families will be a subset of languages of visit-
bounded stack automata, since the models are more restrictive; and a proper subset
of L(NESA), resp. L(CSA), since these models without restrictions can accept non-
semilinear languages. Can these classes be compared to any other well-known
language classes? Does an analogy of Theorem 2, that the class of visit;,-bounded
languages coincides with visit-bounded languages, also hold for NESA, resp. CSA
models?

As we have proven that visit-bounded stack automata languages are effectively
semilinear, for every such automaton we can construct a regular language that is letter-
equivalent. Directly following the steps of the construction in the proof of Theorem 4 to
build a pushdown automaton, and then a construction from [2] to obtain the necessary
constant and periods, yields a fairly trivial upper bound on the state complexity of
this regular language. Can a tighter upper bound, or some nontrivial lower bound, be
obtained? Semilinearity also implies that various decision problems for visit-bounded
stack automata are decidable, including emptiness, finiteness, or membership, see [3].
Can anything be said about the computational complexity of these problems?

The construction in the proof of Theorem 2, which builds a visit-bounded stack
automaton accepting the same language as a given visitz,)-bounded stack automaton,
results in a machine which potentially uses significantly more stack space than the
original machine. In particular, every S and pop instruction of the original machine
“consumes” one extra cell from the tape of the output machine. Is it possible to perform
this construction with only some fixed blowup in the amount of stack space required?
Space complexity of stack automata has been recently studied by a team including the
authors of this paper in [14]. Additionally, the k-visit-bounded limitation implies that
the time complexity (number of instructions needed for a computation) is at most k
times the space complexity (maximum size of the stack during the computation). This
fact could be used to obtain new results about complexity aspects of visit-bounded
modifications of various models, including Turing machines.

Acknowledgements Supported, in part, by a grant from Natural Sciences and Engineering Research Coun-
cil of Canada 2022-05092 (Ian McQuillan).

Declarations

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

@ Springer

972 Theory of Computing Systems (2023) 67:956-975

Appendix A: Detailed Algorithm Listings

This section contains the description of two algorithms: one to advance the current
transition counter of a history card and verify that all encountered transitions can be
properly linked, and the other to match two history cards together. Since there are
only finitely many possible history cards, the pushdown automaton P from the proof
of Theorem 4 does not need to actually perform these procedures, but their result for
every possible input card can be encoded in its transition function.

Algorithm 2 Advancing the completed transition counter of a history card to the next
push or pop transition, or to the end of the computation. At the same time, it is verified
that every transition in this card can be properly linked to some other transition.
Require: An internally consistent history card.

Ensure: The ctc of the card is advanced to the next push or pop transition.

Ensure: If the transitions on this card can not be properly linked to some other card, the input is rejected.
1: repeat

2: if fout[ctc] performs the S instruction then

3 if tin[ctc + 1] = toutlctc] then

4: ctc:=ctc+1

S: else Halt computation and reject input.

6 end if

7 else if 7oy [ctc] performs the L instruction then
8 if #in[ctc + 1] performs the R instruction then
9: ctc:=ctc+1

10: else Halt computation and reject input.

11: end if

12: else if fout[ctc] performs the R instruction then
Moving right before a new cell has been pushed on top.
13: Halt computation and reject input.
14: else if foyut[ctc] performs a push or pop instruction then
A new cell has been pushed, or the current cell popped.
15: break main loop
16: else if toy[ctc] = ¥ and x = > then
End of computation.
17: break main loop
18: endif
19: until finished

@ Springer

Theory of Computing Systems (2023) 67:956-975 973

Algorithm 3 Matching two history cards. Returns true if the transitions on the cards
can be matched together, false if not.

Require: Two internally consistent history cards, labeled B (bottom) and 7' (top).
Require: The czc of the bottom card points to an outgoing push instruction which pushes the cell repre-

sented by the top card.

Ensure: The czc of the bottom card is advanced to the incoming pop instruction corresponding to the

1:
2:

21:
22:
23:
24:
25:
26:
27:
28:
29:

31:
32:

popping of the top card.

i=1

j = B.ctc

The variables i and j track the transition in T and B respectively that is currently being matched. The
first instruction to match must be a push instruction pushing the top card on the stack:

. if B.tout[j] performs the push(7 .x) instruction,

and T.tjn[1] = B.tout[j] then
goto match_top

: else return false
. end if

: label match_top:

Match the next transition from the top card.
if T.tout[i] performs the S instruction then
if T.tin[i + 1] = T.tou[i] then
i=i+1
goto match_top
else return false
end if
else if 7' .7oy¢[i] performs the L instruction then
if B.tin[j + 1] = T .tout[i] then
ji=j+1
goto match_bottom
else return false
end if
else if 7 .tout[i] performs the R or push instruction then
Whether these transitions can be linked will be checked once the next card is pushed on the stack.
For now we only need to know if the computation can return to the top card.
if T.tjn[i + 1] performs the L or pop instruction then
i=i+1
goto match_top
else return false
end if
else if 7'.7oy¢[i] performs the pop instruction then
if B.tin[j + 1] = T .tout[i] then
B.ctc:=j+1
return true
else return false
end if
end if

@ Springer

974 Theory of Computing Systems (2023) 67:956-975

33: label match_bottom:
Match the next transition from the bottom card.
34: if B.tout[j] performs the S instruction then

35: if B.tin[j + 1] = B.tout[j] then

36: j=j+1

37: goto match_bottom

38: else return false

39: end if

40: elseif B.tout[/j] performs the L instruction then
41: if B.tjh[j + 1] performs the R instruction then

The fact that the computation can continue from the outgoing transition to the incoming tran-
sition has already been verified when the bottom card was pushed on the stack.
42: ji=j+1

43: goto match_bottom

44: else return false

45: end if

46: elseif B.fout[/j] performs the R instruction then
47: if T.tin[i + 1] = B.tout[j] then

48: i=i+1

49: goto match_top

50: else return false

51: end if

52: elseif B.tout[j] performs the push or pop instruction,
or B.tout[j] = ¥ then
Trying to push, pop, or end computation from the bottom card while the top card is still on the
stack.
53: return false
54: endif

References

1. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, Reading, Ma (1978)
2. Parikh, R.: On context-free languages. J. ACM 13(4), 570-581 (1966)
3. Ibarra, O., McQuillan, I.: Semilinearity of families of languages. International. J. Found. Comput. Sci.
31(8), 1179-1198 (2020)
4. Harju, T, Ibarra, O., Karhumiki, J., Salomaa, A.: Some decision problems concerning semilinearity
and commutation. J. Comput. Syst. Sci. 65(2), 278-294 (2002)
5. Ibarra, O.H., McQuillan, I.: On families of full trios containing counter machine languages. Theor.
Comput. Sci. 799, 71-93 (2019)
6. Ibarra, O.H., McQuillan, I., Ravikumar, B.: On counting functions and slenderness of languages. Theor.
Comput. Sci. 777, 356-378 (2019)
7. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to provide reasonable
structural descriptions?, pp. 206-250. Cambridge University Press (1985)
8. Ginsburg, S., Greibach, S., Harrison, M.: Stack automata and compiling. J. ACM 14(1), 172-201
(1967)
9. Ginsburg, S., Greibach, S., Harrison, M.: One-way stack automata. J. ACM 14(2), 389-418 (1967)
10. Greibach, S.: Checking automata and one-way stack languages. J. Comput. Syst. Sci. 3(2), 196-217
(1969)
11. Greibach, S.A.: One way finite visit automata. Theor. Comput. Sci. 6, 175-221 (1978)
12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley, Reading, MA (1979)
13. Harrison, M.A., Schkolnick, M.: A grammatical characterization of one-way nondeterministic stack
languages. J. ACM 18(2), 148-172 (1971)

@ Springer

Theory of Computing Systems (2023) 67:956-975 975

14. Ibarra, O., Jirdsek, J., McQuillan, I., Prigioniero, L.: Space complexity of stack automata models. Int.
J. Found. Comput. Sci. 32(06), 801-823 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

	Visit-Bounded Stack Automata
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Stack Automata

	3 Visit-Bounded Automata
	4 Semilinearity
	5 Other Expensive Instruction Sets
	6 Conclusions and Future Directions
	Acknowledgements
	Appendix A: Detailed Algorithm Listings
	References

