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Abstract
A classic result of Paul, Pippenger, Szemerédi and Trotter states that DTIME(n) �

NTIME(n). The natural question then arises: could the inclusion DTIME(t (n)) ⊆
NTIME(n) hold for some superlinear time-constructible function t (n)? If such a
function t (n) does exist, then there also exist effective nondeterministic guessing
strategies to speed up deterministic computations. In this work, we prove limitations
on the effectiveness of nondeterministic guessing to speed up deterministic computa-
tions by showing that the existence of effective nondeterministic guessing strategies
would have unlikely consequences. In particular, we show that if a subpolynomial
amount of nondeterministic guessing could be used to speed up deterministic com-
putation by a polynomial factor, then P � NTIME(n). Furthermore, even achieving
a logarithmic speedup at the cost of making every step nondeterministic would show
that SAT ∈ NTIME(n) under appropriate encodings. Of possibly independent inter-
est, under such encodings we also show that SAT can be decided in O(n log n)

steps on a nondeterministic multitape Turing machine, improving on the well-known
O(n(log n)c) bound for some constant but undetermined exponent c ≥ 1.
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1 Dedication for Alan L. Selman

This paper is dedicated to the memory of Alan L. Selman. The second author was
a student in Professor Alan Selman’s graduate course titled Introduction to the The-
ory of Computation at University at Buffalo during Fall 2013. Of the many fond
memories of Professor Selman’s instruction, his careful treatment of computational
concepts and their technical details especially stood out. During the course, Pro-
fessor Selman’s discussion of one particular topic is most clearly remembered and
directly relates to this work, namely the topic of Linear Speedup Theorems for
both deterministic and nondeterministic Turing machines (which can be found in
Section 5.1 of [1]). This discussion from Professor Selman is particularly relevant
and motivating to this paper because the following investigates when additional
nondeterminism could lead to improved efficiency, and the proof of the Linear
Speedup Theorem for nondeterministic Turing machines (Theorem 5.3 of [1]) pro-
vides an example where the use of additional nondeterminism leads to a slightly faster
simulation.

2 Introduction

How powerful is nondeterminism? To make progress investigating this general philo-
sophical question we have to consider a more focused technical question: when is it
possible to replace some portion of a deterministic computation by nondeterministic
guessing to reduce the total computation time?

The Linear Speedup Theorem tells us that computations can be sped up by any
constant factor by using larger tape alphabets [2, Theorem 2]. Conversely, the tight
form of the Deterministic Time Hierarchy Theorem shows that it is not generally
possible to achieve a speedup of more than a constant factor [3]. These classic results
leave open the possibility that a computation could be further sped up by increasing
some other resource such as nondeterminism.

Along with the example from Section 1, there are some cases where additional
nondeterminism is known to speed up computation. SAT is an example of a language
for which, unless P = NP, we can speed up a deterministic decision procedure
superpolynomially by instead guessing an assignment and verifying that the guess
satisfies every clause. Another example is deciding if an item occurs in a list. With a
random access model of computation, search can be sped up exponentially by guess-
ing the position of the item in the input list and verifying this guess. However, to
the best of our knowledge, no general speed-up result has been proven for languages
in P.

3 Main Contributions

We express our results in terms of complexity classes defined by joint bounds on
time and nondeterminism. Let NTIGU(t (n), w(n)) denote the class consisting of
languages which can be decided by multitape nondeterministic Turing machines
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operating with time bound O(t(n)) and using at most w(n) nondeterministic bits, for
n-bit inputs. (We follow prior usage with this definition [4].)

An effective guessing hypothesis is a statement of the form: it is possible to speed
up a computation by using more nondeterminism. We present two main results con-
ditional on two different effective guessing hypotheses, one somewhat stronger than
the other.

Our first result is that if even a small polynomial speedup can be achieved by
introducing a polylogarithmic amount of nondeterminism, then we could decide all
of P using nondeterministic linear time.

Theorem 1 If there is some constant c > 1 such that

DTIME(nc) ⊆ NTIGU(n, polylog(n)),

then P � NTIME(n).

Our second result greatly weakens the effective guessing hypothesis while still
yielding a surprising conclusion. In particular, the premise is weakened from polyno-
mial to logarithmic speedup and from polylogarithmic to linear size witnesses. Being
able to speed up computation by a logarithmic factor, even at the cost of making
essentially every step nondeterministic, would imply a breakthrough nondeterminis-
tic algorithm for SAT on multitape Turing machines. This kind of effective guessing
would allow us to overcome a barrier to progress that has stood for more than four
decades.

Theorem 2 If DTIME(n log n) ⊆ NTIME(n), then SAT ∈ NTIME(n).

Along the way to proving Theorem 2 we also derive an improved upper bound for
SAT.

Theorem 3 SAT ∈ NTIGU(n log n,O(n/log n)).

This improves a well-known upper bound SAT ∈ NTIME(n(log n)c) for some
constant c ≥ 1 that is not explicitly stated in the literature, obtained either by a direct
argument [5] or by using a random-access machine to perform the obvious guess-
and-check algorithm in linear time, and using a standard simulation of RAMs by
Turing machines [6]. Theorem 3 allows us to take c = 1.

4 Relationship to Prior Work

Some speedups are known to be impossible. This is the case for nondeterministic
computations, which cannot be sped up polynomially by using a moderate amount
of advice. In particular, Fortnow, Santhanam, and Trevisan showed that NP �⊆
NTIME(nc)/(log n)1/2c for all c [7], and this result was extended by Fortnow and
Santhanam to polynomial speedup and advice [4].

550 Theory of Computing Systems  (2023) 67:548–568



Our work fits into the long tradition of conditional separations and containments
of complexity classes. Previous work typically exploits classes that make nonuniform
use of circuits. This includes Impagliazzo and Wigderson’s result that if E requires
circuits of exponential size for infinitely many input sizes, then BPP = P [8], Fort-
now and Santhanam’s strengthening of the nondeterministic time hierarchy theorem
in the presence of advice [4], and the unconditional separation of Williams of ACC
circuits of polynomial size and NEXP which was achieved by proving two condi-
tional containments and then combining them to yield a contradiction [9]. In contrast,
we focus here on subclasses of classical nondeterministic time classes which are
defined by bounding the amount of nondeterminism. Our Theorem 1 is also a signif-
icant extension of a result sketched by Bloch, Buss, and Goldsmith, weakening the
effective guessing hypothesis used in their work from logarithmic to polylogarithmic
nondeterminism [10].

Our work further relates to questions raised by the classical result that
DTIME(n) � NTIME(n) of Paul et al. [11]. This was obtained by assuming that
DTIME(n) and NTIME(n) coincide, and then trading off an increase in alternations
to obtain a speedup which contradicts a hierarchy theorem. Beginning with this
strict containment, it is then natural to consider whether DTIME(t (n)) ⊆ NTIME(n)

for any superlinear time-constructible function t (n). Our Theorem 2 demonstrates
that a positive answer to this question for even a mildly superlinear function such
as t (n) = n log n would lead to a breakthrough for SAT. Furthermore, from a
form of the nondeterministic time hierarchy theorem [12, Corollary 2.3], the strict
complexity class containment DTIME(n log n) � NTIME(n log n) would straight-
forwardly follow. Although Paul et al. [11] showed that the strict containment
DTIME(t (n)) � NTIME(t (n)) holds for t (n) = n, and Santhanam extended this to
any t (n) = o(n lg∗ n) [13, Theorem 2.5], such a result is not known for functions
t (n) that grow at least as fast as n lg∗ n. (The iterated logarithm lg∗ x is the minimal
height of a tower of 2s representing a number at least as large as x.) Note that we do
not use the alternation-trading technique from [11] in our work.

5 Overview of Paper: Intuitions Behind Our Arguments

In Section 6, we first define time-witness classes as a technically convenient method
of dealing with computations that limit the amount of nondeterminism. These classes
have similarities with advice classes, and essentially treat the guess as part of the
input. Our use of the existential projection allows for straightforward accounting of
the nondeterministic bits when composing simulations.

In Section 7, we prove Theorem 1. This requires some machinery to precisely
relate the speedup in each simulation step to the increase in witness size. Our
arguments in this section rely on subpolynomial functions being closed under
composition, and a Strong Speedup Lemma (Lemma 11) for exact witness size
bounds.

In Section 8, we prove Theorem 2. The key is the Weak Speedup Lemma
(Lemma 15) which allows witness size bounds up to arbitrary constant factors. This
lemma allows us to transfer an effective guessing hypothesis from deterministic to
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nondeterministic computations. We provide an upper bound on the number of dis-
tinct variables that can be contained in an n-bit SAT instance when using a reasonable
encoding. This leads to a more precise upper bound for the time taken to decide SAT
on a nondeterministic Turing machine (Theorem 3). We will also need to make more
precise the classical time upper bounds for sorting on a deterministic Turing machine.

Theorem 1 relies on the Strong Speedup Lemma (Lemma 11) and Theorem 2 relies
on the Weak Speedup Lemma (Lemma 15). These lemmas are closely related but use
incomparable hypotheses so require separate proofs. Both speedup lemmas use the
same intuition: if we assume some form of effective guessing hypothesis, then we can
apply that hypothesis to speed up the deterministic verification step of a guess-and-
check computation. Our proofs make this intuition precise by using the time-witness
class definitions to ensure that the increase in witness size is appropriately bounded.

In Section 9, we discuss some final thoughts and outline directions for further
work.

6 Preliminaries

With N we mean the set {0, 1, 2, . . . }. We assume a fixed alphabet � = {0, 1}
throughout. We also use the notation lg x = log2x throughout. For x, y ∈ �∗, the
expression 〈x, y〉 simply denotes the bits of x followed by those of y, also known
as concatenation. This guarantees associativity: 〈x, 〈y, z〉〉 = 〈〈x, y〉, z〉. For a word
x ∈ �∗, we denote by |x| the number of symbols in x, which may be 0 if x is
the empty word. Hence |〈x, y〉| = |x| + |y|. In a slight abuse of notation, when
f : N → N is a function we will often write f (n) to emphasize this fact, rather than
just f , and when c is a constant, we will sometimes use c to denote the constant func-
tion c(n) = c. With SAT we mean the Boolean Satisfiability problem for Boolean
formulas in conjunctive normal form (CNF).

Our exposition is based on the concept of existential projection. We will use exis-
tential projections to define classes of languages with combined time and witness
size bounds. This approach simplifies the bookkeeping required to track witness sizes
in composed simulations, yet these classes are closely related to more familiar com-
plexity classes. We first define the notion and then discuss some consequences and
an example.

Definition 4 Given a language L ∈ �∗ and a function w : N → N, the existential
projection of L by w is the language

L[w(n)] = {x | x ∈ �∗, ∃y ∈ �w(|x|) 〈x, y〉 ∈ L}.

Further, for functions f (n) and g(n) let L[f (n), g(n)] = (L[f (n)])[g(n)] as a
convenient notation for composition of existential projections.

The witness size function w represents some portion of each word in the language
which is set aside to record choices made by a nondeterministic computation. The
existential projection then removes this portion of each word.
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We now make precise how Definition 4 affects witness size changes in composi-
tion of existential projections.

Lemma 5 For any language L ∈ �∗, the identity

L[f (n), g(n)] = L[g(n) + f (n + g(n))]
holds for all functions f, g : N → N.

Proof Suppose x ∈ L[f (n), g(n)] = (L[f (n)])[g(n)]. Then there is some y ∈ �∗
such that 〈x, y〉 ∈ L[f (n)] and |y| = g(|x|). Further, there is some z ∈ �∗ such
that 〈x, 〈y, z〉〉 = 〈〈x, y〉, z〉 ∈ L such that |z| = f (|〈x, y〉|) = f (|x| + |y|) =
f (|x| + g(|x|)). Hence |〈y, z〉| = |y| + |z| = g(|x|) + f (|x| + g(|x|)) and so
x ∈ L[g(n) + f (n + g(n))].

For the converse, suppose x ∈ L[g(n) + f (n + g(n))]. Hence there is some
α ∈ �∗ such that 〈x, α〉 ∈ L and |α| = g(|x|) + f (|x| + g(|x|)). Let y be the prefix
of α consisting of the first g(|x|) symbols, and z be the remaining f (|x| + g(|x|))
symbols. Then 〈x, y〉 ∈ L[f (n)] and hence x ∈ (L[f (n)])[g(n)] = L[f (n), g(n)].
This completes our proof.

Example 1 From Lemma 5 it follows that L[n, n] = L[3n]. This is most easily
illustrated via a figure, showing how a word in L changes as we project out the
witness.

We now define time-witness classes in terms of existential projections.

Definition 6 TIWI(t (n), w(n)) = {L[w(n)] | L ∈ DTIME(t (n))}.

Note 1 Our definition of TIWI has similarities with the classical definition of advice
classes [14]. In the advice setting, the witness values are uniquely determined by a
possibly uncomputable oracle function. In contrast the witness values are not deter-
mined with our notion of existential projection, and we therefore avoid undecidable
languages in our TIWI classes.

We need to be careful to account for the total nondeterminism when compos-
ing two or more nondeterministic simulations; such compositions are crucial for the
proofs of our results. We have chosen to define time-witness classes via the exis-
tential projection because this notation assists in explicitly keeping track of witness
size scaling in compositions. Existential projections also allow us to control the
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overhead of encoding. Such detailed bookkeeping becomes necessary when the
number of compositions in an argument is allowed to grow with the instance size.

For a function w : N → N, let

TIWI(t (n), O(w(n))) =
⋃

c>0

TIWI(t (n), cw(n)).

As usual, polylog(n) denotes the class of functions
⋃

c>0

{f (n) : N → N | f (n) = O((lg n)c)}.

As a notational convenience, if φ(n) is a logical expression in which the variable n

occurs free and there are no other free variables, then we say that φ(n) holds eventu-
ally if there exists some n0 ∈ N such that φ(n) is a true sentence for all n ∈ N such
that n ≥ n0.

The following lemma will simplify several proofs. This result allows us to ignore
minor differences in the witness size functions when comparing two time-witness
classes, and instead to focus on how they behave asymptotically.

Lemma 7 Suppose t : N → N is a function such that t (n) = �(n). If v(n) ≤ w(n)

eventually, then TIWI(t (n), v(n)) ⊆ TIWI(t (n), w(n)).

Proof Suppose K ∈ TIWI(t (n), v(n)). Hence there is some L ∈ DTIME(t (n)) such
that K = L[v(n)]. Let L′ = {〈〈x, y〉, z〉 | 〈x, y〉 ∈ L, |z| + |y| = w(|x|)}. Note that
L′ does not include any word 〈〈x, y〉, z〉 for which v(|x|) > w(|x|). Since v(n) ≤
w(n) eventually, the language L′ does include such words for all sufficiently large
|x|, and therefore K and L′[w(n)] only differ in at most finitely many words up to
some threshold size n0, and will be the same for all inputs of size n0 and greater. Now
we can decide L′ by using a decider for L while ignoring any additional part of the
input. The overhead of setting up the decider for L is linear, and because t (n) = �(n)

we have that L′ ∈ DTIME(t (n)). Hence L′[w(n)] ∈ TIWI(t (n), w(n)).
Now we can further augment the decider for L′[w(n)] with a brute force simula-

tion which deterministically checks all possible witnesses for an input x ∈ K if |x|
is below the threshold size n0 where v(n) ≤ w(n) for all n ≥ n0. This introduces a
large constant factor into the simulation, but this is taken care of by the time bound
being O(t(n)). Therefore K ∈ TIWI(t (n), w(n)).

For functions w, t : N → N, we say that w(n) is computable in t (n) time if there
is a deterministic Turing machine that when given x ∈ �∗, in at most t (|x|) steps
writes a word on its output tape with precisely w(|x|) symbols. For simplicity, we
assume that all witness size functions in the following are computable within the pro-
vided time bounds. By first computing the witness size function for the given input,
a Turing machine can determine where a word finishes and the witness bits begin,
thereby avoiding overhead for self-terminating encodings or separator characters in
the alphabet.

NTIGU(t (n), w(n)) is the class of languages decidable by a multitape Turing
machine that takes at most O(t(n)) steps and uses at most w(n) nondeterministic
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bits on any input of length n (for instance, see [4]). The following results explain our
choice of Definition 6, by relating the time-witness TIWI classes to the more familiar
NTIME (Lemma 8) and time-guess NTIGU (Lemma 9) classes.

First we consider the case where witness size is quite large, even possibly
dominating the input size.

Lemma 8 If w(n) = �(n), then TIWI(n, O(w(n))) = NTIME(w(n)).

Proof First suppose c > 0 and let K ∈ TIWI(n, c · w(n)). Then there is some L ∈
DTIME(n) such that K = L[c · w(n)]. Let M be a deterministic Turing machine
which decides L in O(n) steps. We define a nondeterministic Turing machine M ′ that
given an n-bit input x, writes a copy of x followed by a string y consisting of c ·w(n)

bits chosen nondeterministically, and simulates M with input 〈x, y〉. Then M ′ takes
O(n + c · w(n)) + O(c · w(n)) = O(w(n)) steps to decide whether 〈x, y〉 ∈ L, and
therefore K ∈ NTIME(w(n)).

Now suppose K ∈ NTIME(w(n)). Then there is a nondeterministic Turing
machine M ′ which decides K in O(w(n)) steps. Given an n-bit input x, we then can
construct a Turing machine M which records O(w(n)) nondeterministic bits for the
steps taken by M ′, and verifies in linear time in the size of the guessed sequence of
actions whether M ′ accepts. Consider the language L consisting of strings 〈x, y〉 such
that x ∈ K and |y| = O(w(n)), where y records the moves made by an accepting
computation of M ′ on input x. Then L ∈ DTIME(n) and K = L[O(w(n))]. Hence
K ∈ TIWI(n, O(w(n))).

If k ≥ 3 then any k-tape Turing machine can be simulated by a two-tape machine
with a logarithmic increase in time [15]. This slowdown does not affect Lemma 8 as
we are not trying to reduce the number of tapes: in the proof each inclusion increases
the number of tapes. This increase does not matter for the purpose of establishing
the result, or for the applications where we use it, although it might be important
for other applications of the technique where the number of tapes has to be more
carefully controlled.

Lemma 8 showed that TIWI classes for superlinear witness bounds lose the dis-
crimination power of the NTIGU classes. However, our next result shows that TIWI
and NTIGU classes coincide for at most linear witness size and many common time
bounds.

Lemma 9 Suppose that w(n) ≤ n for all n, and that there exist constants c ≥ 1 and
d ≥ 0 such that t (n) = �(nc(lg n)d). Then TIWI(t (n), w(n)) = NTIGU(t (n), w(n)).

Proof First let K ∈ TIWI(t (n), w(n)). Then there exists some language L ∈
DTIME(t (n)) such that K = L[w(n)]. Suppose that M is a deterministic Turing
machine which decides L in O(t(n)) steps. We need to decide whether x ∈ K using
a nondeterministic machine M ′. M ′ first copies x to a tape (which will be the input
tape of M), appends w(|x|) bits to this tape the values of which are determined
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nondeterministically, and then simulates M . The simulation can be performed using
a constant number of deterministic steps per step of M , so the total number of steps
to decide whether x ∈ K is at most a · t (|x| + w(|x|)) + b · w|x| for some constants
a, b. Moreover, M ′ uses w(|x|) nondeterministic bits and accepts x if, and only if,
there is some y ∈ �w(n) such that 〈x, y〉 ∈ L. This is equivalent to saying that M ′
accepts x iff x ∈ K , so M ′ correctly decides K .

We now claim that if T (n) ≤ a · t (n + w(n)) + b · w(n) eventually for con-
stants a, b, then the conditions guarantee that T (n) = O(t(n)). Therefore K ∈
NTIGU(t (n), w(n)) by putting T (n) as the largest number of steps taken by M ′ to
decide an input of n bits. To prove the claim, suppose there are constants a, b such
that T (n) ≤ a · t (n + w(n)) + b · w(n) eventually. Since t (n) = O(nc(lg n)d),
we have some constant e so that t (n) ≤ e · nc(lg n)d eventually. Then T (n) ≤
a · t (n + w(n)) + b · w(n) ≤ a · e(n + w(n))c(lg(n + w(n)))d + b · w(n) ≤
a · e(2n)c(1+ lg n)d +b ·n ≤ a · e · (2n)c(2 lg n)d +b ·n = (a2c2de)nc(lg n)d +b ·n
eventually. As c ≥ 1 and d ≥ 0 it follows that T (n) = O(nc(lg n)d). Now since
t (n) = �(nc(lg n)d), we have that T (n) = O(t(n)), and we are done.

For the other direction, suppose K ∈ NTIGU(t (n), w(n)). There is then some
nondeterministic Turing machine M ′ which decides K using O(t(n)) steps and with
w(n) bits of nondeterminism. M ′ accepts x precisely when there is some y ∈ �w(n)

representing the nondeterministic moves made by M ′ in reaching an accepting state
(within O(t(n)) steps). We build a deterministic Turing machine M , which when
given x and the nondeterministic moves y as input 〈x, y〉, simulates M ′ using a num-
ber of deterministic steps per step of M ′ that is bounded by some constant a. To
achieve this we first compute w(|x|) in at most O(t(|x|) steps and store this on a
unary tape, which we can then use to determine where x ends and y begins. Hence M

on input 〈x, y〉 takes at most a · t (|x|) + b|y| steps, so O(t(|x| + |z|)) steps. We can
now let language L be the language of words 〈x, y〉 accepted by M . There is some
y ∈ �w(n) such that machine M accepts 〈x, y〉 iff M ′ accepts x. Then K = L[w(n)]
and L ∈ DTIME(t (n)), so K ∈ TIWI(t (n), w(n)).

In the proof of Lemma 9 each inclusion increases the number of tapes by one. This
does not affect our results but might restrict some applications.

While classes such as NTIGU(t (n), w(n)) measure the time bound in terms of
the input, TIWI(t (n), w(n)) measures the time bound as a function of both the
input and the witness. For witnesses growing strictly faster than the size of the
input, the two definitions can diverge where TIWI(t (n), O(w(n))) is not equal to
NTIGU(t (n), O(w(n))). To see this, take t (n) = n and w(n) = n2. We have
that NTIGU(n, O(n2)) = NTIGU(n, O(n)) = NTIME(n) because additional guess
bits beyond O(t(n)) do not help us. However, NTIME(n2) = TIWI(n, O(n2))

by Lemma 8. Therefore, NTIGU(n, O(n2)) = NTIME(n) � NTIME(n2) =
TIWI(n, O(n2)) by the nondeterministic time hierarchy theorem.

Notice from the preceding discussion that as the witness size grows beyond
the input size, the NTIGU classes no longer capure new languages while the TIWI
classes become equivalent to the coarser classical nondeterministic time classes.
Even though these two definitions can diverge when the witness size is larger than
the input size, Lemma 9 allows us to use TIWI rather than NTIGU in the subsequent
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discussion, because in this work we are interested in witnesses of moderate size,
at most as large as the input size and computable within the given time bounds.
The choice of TIWI avoids technical difficulties arising from instance size blowup
when composing simulations, and essentially amounts to preallocating the nonde-
terministic bits which are used in a computation and including them in the instance
size.

7 Strong Effective GuessingWould Imply Linear-Time Simulation
of P

In this section we show that a strong form of guessing would imply that all of P
is contained in NTIME(n). It appears to us that this is unlikely to be true. Even
though such an inclusion in turn would imply that P �= NP , many other rather less
likely consequences would also follow. These include improving the current best
O(n2.37286) algorithm for multiplication of n by n matrices (see [16]) to Õ(n2) time,
reducing the time for general graph maximum matching from Õ(n2.5) (see [17]) to
Õ(n2), and reducing the nk/c time (for some c such that 1 ≤ c < k) to decide if
an input graph contains a k-clique to O(n lg n) time, all achieved through the use of
nondeterminism. Yet it is not at all clear that allowing guessing could significantly
speed up so many well-studied and disparate algorithms. (Here we use the common
convention that Õ(t (n)) denotes the class of functions

⋃
c>0 O(t(n)(lg t (n))c).)

Informally, our argument for Theorem 1 works as follows. We have defined the
class TIWI(n, lg n), which by Lemma 5 can be regarded as the class of languages
decided by nondeterministic machines that use linear time and lg n bits of nonde-
terminism. We suppose that DTIME(n2) ⊆ TIWI(n, lg n). By a padding argument it
follows that DTIME(n4) ⊆ TIWI(n2, lg n). Now suppose L ∈ TIWI(n2, lg n); this
means that there is a language L′ ∈ DTIME(n2) such that x ∈ L if there is a y

of length lg n and xy ∈ L′. Again applying our hypothesis, this time to L′, we
conclude via Lemmas 7 and 8 that L ∈ TIWI(n, lg n). We therefore conclude that
DTIME(n4) ⊆ TIWI(n, lg n). We can then use this step in an induction argument. We
now proceed with a formal version of this argument.

In preparation for our result, we need to demonstrate that time-witness classes are
structurally well-behaved. We first establish conditions which ensure that increases
in witness size are kept reasonable when applying effective guessing.

Lemma 10 If DTIME(t (n)) ⊆ TIWI(t ′(n), w(n)) then

TIWI(t (n), w′(n)) ⊆ TIWI(t ′(n), w(n + w′(n)) + w′(n)).

Proof Suppose that DTIME(t (n)) ⊆ TIWI(t ′(n), w(n)), and let J be an arbitrary
language in TIWI(t (n), w′(n)). By definition then there exists some language K in
DTIME(t (n)) such that J = K[w′(n)]. By our assumption there must exist some L ∈
DTIME(t ′(n)) such that K = L[w(n)]. By Lemma 5, we have that J = K[w′(n)] =
L[w(n), w′(n)] = L[w(n + w′(n)) + w′(n)]. Finally, we can conclude that J ∈
TIWI(t ′(n), w(n + w′(n)) + w′(n)).
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Lemma 11 (Strong Speedup) Suppose DTIME(t (n)) ⊆ TIWI(t ′(n), w(n)). For all
functions w′ : N → N for which there exists a constant C such that w(n + w′(n)) ≤
C · w(n) eventually, we have that

TIWI(t (n), w′(n)) ⊆ TIWI(t ′(n), C · w(n) + w′(n)).

Proof Suppose first that the inclusion DTIME(t (n)) ⊆ TIWI(t ′(n), w(n)) holds, and
let K be a language in TIWI(t (n), w′(n)). Via Lemma 10 we can now conclude that
K ∈ TIWI(t ′(n), w(n + w′(n)) + w′(n)). From the properties of w′ and Lemma 7 it
then follows that K ∈ TIWI(t ′(n), C · w(n) + w′(n)).

We continue with a useful amplification property of time-witness classes in the
presence of effective guessing. By analogy with superadditive functions (see [18]),
we say that a function f : N → N is weakly superadditive if f (n + d) ≥ f (n) +
d for all d, n ∈ N. Note that any function f (n) = nc, where c ≥ 1, is weakly
superadditive.

Lemma 12 Let f be a weakly superadditive function. If

DTIME(t (n)) ⊆ TIWI(t ′(n), w(n))

then
DTIME(t (f (n))) ⊆ TIWI(t ′(f (n)), w(f (n))).

Proof Suppose that DTIME(t (n)) ⊆ TIWI(t ′(n), w(n)). Further, let K be an arbitrary
language in DTIME(t (f (n))). Consider the function B(n) = f (n) − n. Let

padB -K = { 〈1k, x〉 | k = B(|x|) ∧ x ∈ K }.
As K ∈ DTIME(t (f (n))), we have padB -K ∈ DTIME(t (n)). By the assumption,
padB -K ∈ TIWI(t ′(n), w(n)). Hence there is some L ∈ DTIME(t ′(n)) such that
padB − K = L[w(n)]. Let

L′ = { 〈x, y〉 | y ∈ �w(f (|x|)) ∧ 〈1B(|x|), 〈x, y〉〉 ∈ L }.
Since 〈1B(|x|), 〈x, y〉〉 = 〈〈1B(|x|), x〉, y〉, it follows that K = L′[w(f (n))]. To
show that K ∈ TIWI(t ′(f (n)), w(f (n))), it then suffices to show that L′ ∈
DTIME(t ′(f (n))).

Because of our choice of the function B and since L ∈ DTIME(t ′(n)), we can
determine if 〈x, y〉 ∈ L′, where |y| = w(f (|x|)), in time

O(t ′(|〈1B(|x|), 〈x, y〉〉|)) = O(t ′(B(|x|) + |x| + |y|))
= O(t ′(f (|x|) + |y|))
≤ O(t ′(f (|x| + |y|)))
= O(t ′(f (|〈x, y〉|))).

Therefore, L′ ∈ DTIME(t ′(f (n))).

558 Theory of Computing Systems  (2023) 67:548–568



We say that a function f (n) is subpolynomial if for every c > 0 we have that
f (n) = o(nc), and semihomogeneous (see [18]) if for any d > 1 there is a constant
C = C(d) such that eventually f (dn) ≤ C · f (n). Note that any polylogarithmic
function (such as f (n) = (lg n)3) is subpolynomial and also semihomogeneous.

This leads up to our first amplification argument, showing that a form of effective
guessing with small witnesses can be amplified to yield a larger speedup at the cost
of only a moderate amount of additional guessing.

Lemma 13 Let c ≥ 1 be a constant, and let v(n) be a non-decreasing function that
is subpolynomial, semihomogeneous, and increases infinitely often. If DTIME(nc) ⊆
TIWI(n, v(n)) then for all k ∈ N, DTIME(nck+1

) ⊆ TIWI(n, Ck · v(nck
)) for some

constant C ≥ 1.

Proof Suppose that DTIME(nc) ⊆ TIWI(n, v(n)). We will show by induction that

DTIME(nck+1
) ⊆ TIWI(n, Ck · v(nck

))

for all k ∈ N. The base case holds for k = 0 since DTIME(nc) ⊆ TIWI(n, v(n)) is
true by assumption. For the inductive step, suppose that for some k ≥ 1 we have

DTIME(nck

) ⊆ TIWI(n, Ck−1 · v(nck−1
)).

Now apply Lemma 11 to this inclusion with w(n) = Ck−1 · v(nck−1
), w′(n) =

Ck−1 · v(nck
), t (n) = nck

, and t ′(n) = n, to obtain

TIWI(nck

, Ck−1 · v(nck

)) ⊆ TIWI(n, Ck · v(nck−1
) + Ck−1 · v(nck

)).

We can do this because the properties of v ensure that for any ε > 0, eventually

w(n + w′(n)) = Ck−1 · v((n + w′(n))c
k−1

)

≤ Ck−1 · v(((1 + ε)n)c
k−1

)

≤ Ck−1 · C · v(nck−1
)

= C · w(n).

As a second step, now apply Lemma 12 to the same assumption, with f (n) = nck
,

w(n) = Ck−1 · v(n), t (n) = nc, and t ′(n) = n, to obtain

DTIME(nck+1
) ⊆ TIWI(nck

, Ck−1 · v(nck

)).

This allows us to conclude that

DTIME(nck+1
) ⊆ TIWI(n, Ck · v(nck−1

) + Ck−1 · v(nck

)),

and hence

DTIME(nck+1
) ⊆ TIWI(n, Ck · v(nck

)(v(nck−1
)/v(nck

) + 1/C)).

As v increases infinitely often, by Lemma 7 we then have that

DTIME(nck+1
) ⊆ TIWI(n, Ck · v(nck

)),

which completes our proof.
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We now wrap up our second amplification argument into a theorem.

Theorem 14 If there exists a constant c > 1 and a subpolynomial function v(n) such
that DTIME(nc) ⊆ TIWI(n, v(n)), then P � NTIME(n) � NP .

Proof Suppose that there exists c > 1 and a subpolynomial function v(n) such that
DTIME(nc) ⊆ TIWI(n, v(n)). Since v(n) is subpolynomial, so is v(nc) for any c > 0.
By applying Lemma 13, we then have that for all k ∈ N,

DTIME(nck

) ⊆ TIWI(n, w(n))

for some subpolynomial function w(n). Since c > 1, limk→∞ ck = ∞. By Lemmas 7
and 8 we then have that for all k ∈ N, TIWI(n, w(n)) ⊆ TIWI(n, O(n)) = NTIME(n).
It follows that P ⊆ NTIME(n). Further, P �= NTIME(n) can be shown by a standard
padding argument applied to the nondeterministic time hierarchy theorem [12].

Via Lemma 9, Theorem 1 is a corollary of Theorem 14 for the special case that
v(n) is a subpolynomial function that grows faster than any polylogarithmic function;
v(n) = (lg n)lg lg n is an example of such a function. A result similar to Theorem 14
was sketched in [10], with a logarithmic witness bound v(n) rather than our stronger
subpolynomial bound. To extract the most out of the iterated guessing technique, we
have found that it is crucial (as we have done) to carefully take into account how the
witness size grows as simulations are composed.

8 Effective GuessingWould Imply a SAT Breakthrough

We now show that if general computations can be significantly sped up by using
nondeterministic guessing to replace part of the computation, then this would imply
a breakthrough for solving SAT. More precisely, we show that using guessing to
obtain an at least logarithmic factor reduction in time would imply that SAT can
be decided in linear time on a nondeterministic multitape Turing machine.1 Simple
nondeterministic Turing machine algorithms for SAT use O(n(lg n)c) time, for some
constant c ≥ 1, but this bound has resisted improvement for several decades and the
at least logarithmic factor has stubbornly remained [5, 6].

A high level sketch of the argument for proving Theorem 2 is as follows. First,
we show that any n-bit CNF formulas (in a reasonable encoding) can have at most
4n/ lg n variables. Then we establish a fairly precise time bound for sorting on
deterministic multi-tape Turing machines: a list of m integers, each of size lg n,
can be sorted in at most O(m(lg m)(lg n)) steps. Combining these results we can
show that SAT is in TIWI(n lg n, 4n/ lg n). Now if DTIME(n lg n) were contained in

1The question of whether SAT can be solved in linear time on a nondeterministic multitape Turing machine
has previously been discussed within the cstheory stackexchange community [19].
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NTIME(n), then TIWI(n lg n, 4n/ lg n) would be contained in NTIME(n), and there-
fore SAT ∈ NTIME(n). We proceed by proving technical results which will allow us
to formalize this argument.

The following lemma shows that a nontrivial speedup of deterministic computa-
tion would also allow computations with a significant nondeterministic component
to be sped up.

Lemma 15 (Weak Speedup) If DTIME(t (n)) ⊆ NTIME(n), then

TIWI(t (n), n) ⊆ NTIME(n).

Proof Suppose DTIME(t (n)) ⊆ NTIME(n) and let J ∈ TIWI(t (n), n). Then there is
some K ∈ DTIME(t (n)) such that J = K[n]. By our assumption, K ∈ NTIME(n).
By Lemma 8 it follows that there is some c > 0 such that K ∈ TIWI(n, cn). Hence
there is some L ∈ DTIME(n) such that K = L[cn]. We conclude via Lemma 5 that
J = K[n] = L[cn, n] = L[n+2cn], so again by Lemma 8, J ∈ TIWI(n, (2c+1)n) ⊆
NTIME(n).

Although Lemma 15 is closely related to Lemma 11, the weaker hypothesis of the
Weak Speedup Lemma means that these results are not directly comparable.

8.1 Improved Algorithms For SAT From Effective Guessing

We now apply the Weak Speedup Lemma to show that effective guessing implies
improved algorithms for SAT.

Corollary 16 Suppose SAT ∈ TIWI(t (n), n) for some function t : N → N. If further
DTIME(t (n)) ⊆ NTIME(n), then SAT ∈ NTIME(n).

Proof From Lemma 15 it follows that if DTIME(t (n)) ⊆ NTIME(n) then
TIWI(t (n), n) ⊆ NTIME(n).

In Corollary 16, the time upper bound t (n) for SAT enables the efficient guess-
ing hypothesis to yield an improved algorithm for SAT. Classical results imply that
SAT ∈ TIWI(n(lg n)c, n) for some unspecified constant c. This is because a guess-
and-check procedure can be implemented via sorting [5], and the number of variables
determinines the witness size yet cannot exceed the input size. We could therefore
conclude a linear time upper bound for SAT from an effective guessing hypothesis of
the form DTIME(n(lg n)c) ⊆ NTIME(n).

A smaller time bound for SAT permits a weaker effective guessing hypothesis.
How weak can the hypothesis be made? It turns out that we can actually take c = 1
with some additional work. This sharper bound requires two ingredients.

The first ingredient is a reasonable encoding of SAT, which distinguishes between
formulas in conjunctive normal form (CNF) which only differ by a permutation of
their variable names. Reasonable encodings are used in Cook’s original proof of the
Cook–Levin theorem [20] and Karp’s list of 21 NP-complete problems [21]. In fact,
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we are not aware of any work which relies on a particular encoding of SAT yet does
not use a reasonable encoding of SAT. Furthermore, the standard DIMACS CNF
encoding used by SAT solvers2 also qualifies as reasonable. We show that a reason-
able encoding of SAT has the property that an n-bit CNF formula cannot represent
more than O(n/ lg n) different variables, eventually.

Second, we need sharp time bounds for sorting on a Turing machine. Standard
mergesort algorithms are slightly wasteful when implemented on a Turing machine,
so we take a closer look at Schnorr’s classical approach (from [5]) to obtain a more
precise time bound.

The saving in the witness size due to a reasonable encoding is offset by overhead
from sorting, but combining these two ingredients allows us to conclude c = 1.

8.2 Bounding the Number of Variables in a CNF Formula

The following technical lemmas will be used to relate the number of variables in a
SAT instance to its size.

Lemma 17 Suppose x0 > 0 and v is a real-valued function which satisfies the
inequality v(x) lg v(x) ≤ x for all x ≥ x0. Then for every C > 1 there is some
x1 > 1 such that for every x ≥ x1, v(x) < Cx/ lg x.

Proof Instead of working with v(x) such that v(x) lg v(x) ≤ x, let’s work with
an extremal function w(x) such that v(x) ≤ w(x) and w(x) lg w(x) = x for all
x ≥ x0. Further, put w(x) = 2k(x) and x = w(x) lg w(x) = k(x)2k(x). Then
w(x)/(x/ lg x) = lg x/ lg w(x) = (k(x)+lg k(x))/k(x) = 1+(lg k(x))/k(x), which
tends to 1 as k(x) → ∞ (which coincides with x → ∞). However, this expression
is strictly greater than 1 for k(x) > 1, i.e. for w(x) > 2. Eventually the fraction
becomes arbitrarily close to 1, so we can say that eventually w(x) < Cx/ lg x for
any C > 1, and the result follows.

Lemma 18 Suppose 0 < d < 1 and x0 > 0. Further, suppose that v is a real-valued
function such that v(x) ≥ 0 and (1 − d)v(x) lg v(x) ≤ x for all x ≥ x0. Then for
every C ≥ 4 there is some x1 > 1 such that for every x ≥ x1, v(x) < Cx/ lg x.

Proof Given C ≥ 4, let d be the smaller of the two solutions of the equation d(1 −
d) = 1/C. Since 0 < 1/C ≤ 1/4, we have that 0 < d ≤ 1/2, and it follows that
lg(1 − d) < 0. Let w(x) = (1 − d)v(x). Then for all x ≥ x0, w(x) lg w(x) =
(1 − d)v(x)(lg(1 − d) + lg v(x)) < (1 − d)v(x) lg v(x) ≤ x. Since 1/d ≥ 2 > 1, by
Lemma 17 eventually w(x) < (1/d)x/ lg x. Therefore eventually v(x) < x/(d(1 −
d) lg x) = Cx/ lg x.

We now assert that an encoding of SAT which removes all symmetries due to
variable names does not constitute a reasonable encoding. An unreasonable encoding

2See http://archive.dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.tex.
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could represent a CNF formula by a binary encoded integer which represents one
particular CNF formula out of a predetermined list of equivalence classes of CNF
formulas, with formulas regarded as equivalent up to reordering and renaming of
variables. We instead consider only reasonable encodings, which have the property
that if two CNF formulas can be obtained from each other by simply permuting
variable names, then these formulas will be represented by different words in the
language. With this restriction on what constitutes a reasonable encoding of SAT, we
now prove an upper bound on how many variables can appear in a SAT instance in
terms of its size.

Lemma 19 In any reasonable encoding, n-bit CNF formulas eventually contain at
most 4n/ lg n distinct variables.

Proof Suppose x is an n-bit input. We are only interested in inputs that are valid CNF
formulas, so further suppose that x represents a propositional formula in CNF, and
that this formula uses v distinct variables. We will show that v ≤ 4n/ lg n eventually.

Let sx be the v-element sequence formed by listing the first occurrence of each
variable in the formula encoded by x. (Note that v depends on x.) Any reasonable
representation must be able to distinguish each of the v! possible ways that sx can
occur, one for each permutation of the variables. Hence at least lg(v!) bits are required
in the worst case, for any reasonable encoding of SAT. By the Robbins bounds [22]

lg v! = v lg v − v lg e + (1/2) lg(2π) + (1/2) lg v + rv

where (1/(12v + 1)) lg e < rv < (1/12v) lg e, and so for n = |x| we have

v lg v − v lg e + (1/2) lg(2π) + (1/2) lg v + (1/(12v + 1)) lg e < n.

Hence for any 0 < d < 1, eventually (1 − d)v lg v < n. By Lemma 18 there is then
some n1 ≥ n0 + 1 such that for all n ≥ n1, v < 4n/ lg n.

8.3 AMore Precise Sorting Time Bound

Results about sorting on a Turing machine are used in many classical papers. How-
ever, as far as we are aware, a time bound has not been expressed in the literature
in the precise form that we will present here. We do not claim originality for such
a result, but also have not been able to locate a proof with this bound. We therefore
provide a proof for completeness.

Lemma 20 A deterministic multitape Turing machine can sort a list of m non-
negative integers, each represented in binary encoding using lg n bits, in O(m(lg m)

(lg n)) steps.

Proof We use a form of bottom-up mergesort. Instead of a random access algo-
rithm such as that of Batcher [23], we use a procedure that uses a fixed number
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of tapes and only sequential access, and can therefore be efficiently implemented
on a deterministic multitape Turing machine. This algorithm is a more detailed ver-
sion of that outlined by Schnorr [5, Program p1]. These additional details allow
a more precise analysis of the time bound, which Schnorr was not attempting to
optimise.

The algorithm proceeds in stages. At each stage we use three tapes containing
permutations of the list of m integers: Result, Source, and Target. During each stage,
Source and Target are piecewise merged to form Result. Result then becomes the
Source for the next stage, and is copied to Target to begin the next stage. Half the
elements to be merged in each stage are on Source and the other half on Target: the
actual contents of Source and Target are identical but we pay attention to a different
pattern of sequences on Source compared to Target. We use two copies of the list
(one on Source and one on Target), rather than a single source tape, to avoid back-
and-forth tape head moves. This is key to keeping the runtime under control.

After �lg m� ≤ 2 lg m stages the current Result tape contains a sorted list. More-
over, each stage uses O(m lg n) steps. This is because we can use a small fixed
number of tapes to keep track of various unary quantities, and two tapes as tempo-
rary workspace to copy the integers on Source and Target that are the current focus of
attention. This allows the machine to move the heads on Result, Source, and Target
tapes only in one direction, with no backward motion required. Backward motion is
only used when the heads are repositioned to the start of each tape, at the end of each
stage. Moreover, the head movements on the auxiliary tapes only require a constant
factor overhead. The overall time bound then follows.

We first pad the input with dummy values that represent a number larger than the
largest integer represented using lg n bits, so that the number of values in the list
is a power of 2 (and, in particular, lg m is a non-negative integer). The overhead of
this padding stage is included in the unspecified constant factor in the overall time.
(Moreover this also only increases the space used by at most a factor of 2.) We now
outline the key steps for the case where m is a power of 2.

For each i = 0, 1, . . . , (lg m) − 1, if Source and Target at the start of stage i

contain m/2i sequences of sorted sublists, each sublist of length 2i , then at the end
of the stage Result will contain m/2i+1 sorted subsequences, each containing 2i+1

elements. At stage i, the Source tape head is at the start of the tape, and we move the
Target tape head to the position after the 2i th entry in the list (position 2i lg n if the
first position on the tape is numbered 0). Once the first sublist has been processed, we
move the heads forward by 2i lg n positions. We proceed until the Target tape head
reaches the position after the end of the whole list, position m lg n.

To process a single pair of sublists S and T (on the Source and Target tapes,
respectively), we first set up a unary counter using an auxiliary tape to keep track of
the length of these sublists, then scan the elements sequentially and write the sublist
formed by merging S and T to the Result tape. At each step we are deciding which of
a pair of elements to write to the result tape. We write the smaller of the two current
elements to the Result tape. We do this by copying the current elements to two aux-
iliary tapes, and during copying flagging which tape contains the smaller of the two
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elements. The auxiliary tapes are then rewound, and the flagged tape is copied to the
Result tape.

Schnorr proved a time bound of O(m(lg m)c(lg n)) steps for some unspecified
c [5]. By a more detailed analysis of the tape head motion than was considered in
Schnorr’s argument we have obtained this more precise exponent for the logarithmic
factor of c = 1.

8.4 Improving the Time-Witness Bound For SAT

We are now able to prove a time-witness upper bound on SAT.

Lemma 21 SAT ∈ TIWI(n lg n, 4n/ lg n).

Proof By Lemma 19, SAT can be decided nondeterministically by guessing an
assignment to the eventually at most 4n/ lg n variables, and then verifying that the
assignment satisfies the input formula. The verification is deterministic, and can
be done by first making a copy of the input formula while annotating every lit-
eral with a clause number, then sorting the literals by variable identifier, replacing
each literal by its value in the guessed assignment, and finally sorting the values by
clause number and scanning to check that at least one literal in each clause is set
to true. This procedure is a special case of the more general algorithm suggested by
Schnorr [5, Program p3]. The augmented formula is at most twice as long as the orig-
inal, and by Lemma 20 it can be sorted in at most O((n/ lg n) (lg n)2) steps, which is
O(n lg n) steps. It follows that SAT ∈ TIWI(n lg n, 4n/ lg n).

We restate this in terms of the NTIGU notation.

Theorem 2 SAT ∈ NTIGU(n log n,O(n/log n)).

Proof Follows immediately from Lemmas 21 and 9.

Our time-witness bound for SAT then yields the main result of this section.

Theorem 3 If DTIME(n log n) ⊆ NTIME(n), then SAT ∈ NTIME(n).

Proof By Lemmas 21 and 7, we conclude that SAT ∈ TIWI(n lg n, 4n/ lg n) ⊆
TIWI(n lg n, n). Now we can apply Corollary 16, and so if DTIME(n lg n) ⊆
NTIME(n) then TIWI(n lg n, n) ⊆ NTIME(n).

9 Conclusion and Further Work

Our contributions in this work demonstrate that effective guessing has unlikely con-
sequences. We therefore propose an ineffective guessing conjecture, that it is not
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in general possible to speed up a computation significantly by using more nondeter-
minism.

More precisely, we propose the following ineffective guessing conjecture:

Conjecture 22 (IGC) DTIME(t (n)) �⊆ NTIME(n) for all time-constructible functions
t (n) such that t (n) = ω(n lg n).

According to this ineffective guessing conjecture, it is not in general possible
to obtain even a slightly greater than logarithmic speedup by making essentially
every step of a computation nondeterministic. Furthermore, our ineffective guess-
ing conjecture implies that the effective guessing hypothesis from Theorem 1, with
a polynomial speedup, is too strong while the weaker effective guessing hypothesis
from Theorem 2 could still hold.

To put Theorems 14 and 2 into context, the effective guessing hypotheses used in
these theorems fall between two extremes.

excessively-weak EGH : DTIME(n) ⊆ NTIGU(n, 0)

weak EGH : DTIME(n lg n) ⊆ NTIME(n)

strong EGH : (∃c > 1) (∀d > 0) DTIME(nc) ⊆ NTIGU(n, nd)

excessively-strong EGH : (∃c > 0) DTIME(n2+c) ⊆ NTIGU(n, lg n)

The hypothesis from Theorem 14 is the strong EGH, while Theorem 2 posits the
weak EGH. To be clear, both of these hypotheses currently remain open, although we
have shown that they have somewhat unlikely consequences.

Excessively weak forms of effective guessing are always true such as DTIME(n) ⊆
NTIGU(n, w(n)) which holds for any function w(n), even w(n) = 0. This therefore
forms one extreme, a hypothesis about effective guessing that is too weak to be inter-
esting. On the other hand, we show in the following that excessively strong forms of
effective guessing (such as that stated above) can be ruled out unconditionally.

Lemma 23 If t (n) = ω(n2) is a function that is computable in t (n) steps, then

DTIME(t (n)) �⊆ NTIGU(n, lg n).

Proof Suppose t (n) = ω(n2) such that t (n) is computable in t (n) steps and
DTIME(t (n)) ⊆ NTIGU(n, lg n). By trying all 2lg n = n possible values for the wit-
ness and checking each in O(n) time we have NTIGU(n, lg n) ⊆ DTIME(n2). Thus
DTIME(t (n)) ⊆ DTIME(n2). As t (n) = ω(n2) this then contradicts the deterministic
time hierarchy theorem [3].

Proposition 24 DTIME(n2+c) �⊆ NTIGU(n, lg n) for all c > 0.

Proof The result follows from Lemma 23 for t (n) = n2+c.
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Since the strong EGH trivially implies the weak EGH, we can therefore rank the
hypotheses in terms of logical strength as follows:

excessively-strong EGH [false]

⇓
strong EGH [open]

⇓
weak EGH [open]

⇓
excessively-weak EGH [true]

Finally, our effective guessing hypotheses focus on nondeterministic linear time
because the Paul et al. [11] result that DTIME(n) � NTIME(n) invites many questions
about the potential computational power of nondeterministic linear time. A natural
future direction would be to consider the computational power of NTIME(nk) for
k > 1. In particular, it is still is not known whether DTIME(nk) � NTIME(nk) for any
k > 1. Furthermore, there are many additional open questions such as whether any
languages exist in NTIME(nk) \ NTIGU(nk, o(nk)).
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