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Abstract
This paper studies complexity theoretic aspects of quantum refereed games, which
are abstract games between two competing players that send quantum states to a ref-
eree, who performs an efficiently implementable joint measurement on the two states
to determine which of the player wins. The complexity class QRG(1) contains those
decision problems for which one of the players can always win with high probabil-
ity on yes-instances and the other player can always win with high probability on
no-instances, regardless of the opposing player’s strategy. This class trivially con-
tains QMA ∪ co-QMA and is known to be contained in PSPACE. We prove stronger
containments on two restricted variants of this class. Specifically, if one of the play-
ers is limited to sending a classical (probabilistic) state rather than a quantum state,
the resulting complexity class CQRG(1) is contained in ∃ · PP (the nondetermin-
istic polynomial-time operator applied to PP); while if both players send quantum
states but the referee is forced to measure one of the states first, and incorporates the
classical outcome of this measurement into a measurement of the second state, the
resulting class MQRG(1) is contained in P · PP (the unbounded-error probabilistic
polynomial-time operator applied to PP).

Keywords Quantum computing · Complexity theory · Game theory

1 Introduction

Abstract notions of games have long played an important role in complexity theory.
For example, combinatorial games provide complete problems for various complex-
ity classes [14], the notion of alternation is naturally described in game-theoretic
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terms [12], and interactive proof systems [3, 5, 22, 23] and many variants of them are
naturally formulated as games [13, 18].

This paper is concerned with games between two competing, computationally
unbounded players, administered by a computationally bounded referee. In the clas-
sical setting, complexity theoretic aspects of games of this form were investigated
in the 1990s by Koller and Megiddo [29], Feigenbaum, Koller, and Shor [18], Con-
don, Feigenbaum, Lund, and Shor [10, 11], and Feige and Kilian [17]. Quantum
computational analogues of these games were later considered in [24–26], and [28].

Our focus will be on one-turn refereed games, in which the players and the referee
first receive a common input string, and then each player sends a single polynomial-
length (quantum or classical) message to the referee, who then decides which player
has won. We will refer to the two competing players as Alice and Bob for conve-
nience. In the classical case Alice and Bob’s messages may in general be described
by probability distributions over strings, while in the quantum case Alice and Bob’s
messages are described by mixed quantum states, which are represented by den-
sity operators. In both cases, the referee’s decision process must be specified by a
polynomial-time generated family of (quantum or classical) circuits. Two complex-
ity classes are defined—RG(1) in the classical setting1 and QRG(1) in the quantum
setting—consisting of all promise problems A = (Ayes, Ano) for which there exists
a game (either classical or quantum, respectively) such that Alice can win with high
probability on inputs x ∈ Ayes and Bob can win with high probability on inputs
x ∈ Ano, regardless of the other player’s behavior.

In essence, the complexity classes RG(1) and QRG(1) may be viewed as exten-
sions of the classes MA and QMA in which two competing Merlins, one whose aim
is to convince the referee (whose role is analogous to Arthur, also called the veri-
fier, in the case of MA and QMA) that the input string is a yes-instance of a given
problem, and the other whose aim is to convince the referee that the input string is a
no-instance.

It is known that the complexity class RG(1) is equal to Sp

2 , which refers to the sec-
ond level of the symmetric polynomial-time hierarchy introduced by Canetti [9] and
Russell and Sundaram [35]. This class is most typically defined in terms of quanti-
fiers that suggest games in which Alice and Bob choose polynomial-length strings
(as opposed to probability distributions of strings) to send to the referee, but the class
does not change if one adopts a bounded-error definition in which Alice and Bob
are allowed to make use of randomness [16]. Moreover, the class does not change if
the referee is permitted the use of randomness, again assuming a bounded-error def-
inition. An essential fact through which these equivalences may be proved, due to
Althöfer [2] and Lipton and Young [32], is that non-interactive randomized games
always admit near-optimal strategies that are uniform over polynomial-size sets of
strings. It is also known that RG(1) is closed under Cook reductions [35] and satisfies
RG(1) ⊆ ZPPNP [8].

1 We note explicitly that this nomenclature clashes with [17], which defines RG(1) in terms of one-round
(i.e., two-turn) refereed games, which is RG(2) with respect to our naming conventions.
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In contrast to the containment RG(1) ⊆ ZPPNP, the best upper-bound known for
QRG(1) is that this class is contained in PSPACE [28]. It is reasonable to conjecture
that a stronger upper-bound on QRG(1) can be proved.

Indeed, Gutoski and Wu [27] proved that even the class QRG(2), which is analo-
gous to QRG(1) except that the referee first sends a message to Alice and Bob and
then receives responses from them, is contained in PSPACE. The two classes are in
fact equal, meaning QRG(2) = PSPACE, as a consequence of the trivial contain-
ment RG(2) ⊆ QRG(2) together with the known equality RG(2) = PSPACE [17].
While not directly relevant to our results, we note that the classes RG = RG(poly)
and QRG = QRG(poly) defined in an analogous way, but allowing any polynomial
number of messages between the referee and Alice and Bob are both equal to EXP
[17, 26].

In this work we consider two restricted variants of QRG(1), and prove stronger
upper-bounds than PSPACE on these restricted variants. The first variant is one in
which Alice is limited to sending a classical message to the referee, while Bob is
free to send a quantum state. The resulting class, which we call CQRG(1), is proved
to be contained in ∃ · PP (the class obtained when the nondeterministic polynomial-
time operator is applied to PP). This containment follows from an application of the
Althöfer–Lipton–Young technique mentioned above, although in the quantum set-
ting the proof requires relatively recent tail bounds on sums of matrix-valued random
variables, as opposed to a more standard Hoeffding–Chernoff type of bound that suf-
fices in the classical case. In particular, we make use of a tail bound of this sort due
to Tropp [36]. The second variant we consider is one in which both Alice and Bob
are free to send quantum states, but where the referee must first measure Alice’s state
and then incorporate the classical outcome of this measurement into a measurement
of Bob’s state. We call the corresponding class MQRG(1), and prove the contain-
ment MQRG(1) ⊆ P · PP (the class obtained when the unbounded error probabilistic
polynomial-time operator is applied to PP). Note that ∃ · PP is contained in P · PP,
which is, in turn, contained in PSPACE.

2 Preliminaries

We assume the reader is familiar with basic aspects of computational complex-
ity theory and quantum information and computation. There are four subsections
included in this preliminaries section, the first of which clarifies a few specific
concepts, conventions, and definitions concerning complexity theory. The second
subsection is concerned specifically with counting complexity, and presents a devel-
opment of some results on this topic that are central to this paper. Proofs are included
because these results represent minor generalizations of known results on counting
complexity. The third subsection discusses a few specific definitions and concepts
from quantum information and computation, along with a proof of a fact that may
be considered a known result, but for which a complete proof does not appear in
published form. The final subsection states the tail bound due to Tropp mentioned
above.
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2.1 Complexity theory basics

Throughout this paper, languages, promise problems, and functions on strings are
assumed to be over the binary alphabet � = {0, 1}. The set of natural numbers,
including 0, is denoted N.

A function of the form p : N → N is said to be polynomially bounded if
there exists a deterministic Turing machine that runs in polynomial time and out-
puts 0p(n) on input 0n for all n ∈ N. Unless it is explicitly indicated otherwise,
the input of a given polynomially bounded function p is assumed to be the natural
number |x|, for whatever input string x ∈ �∗ is being considered at that moment.
With this understanding in mind, we will write p in place of p(|x|) when referring
to the natural number output that is determined in this way. For example, in Defi-
nition 1 below, all of the occurrences of p in the displayed equations are short for
p(|x|). This convention helps to make formulas and equations more clear and less
cluttered.

A promise problem is a pair A = (Ayes, Ano) of sets of strings Ayes, Ano ⊆ �∗
with Ayes ∩ Ano = ∅. Strings in Ayes represent yes-instances of a decision problem,
strings in Ano represent no-instances, and all other strings represent “don’t care”
inputs for which no restrictions are placed on a hypothetical computation for that
problem.

We fix a pairing function that efficiently encodes two strings x, y ∈ �∗ into a
single binary string denoted 〈x, y〉 ∈ �∗, and we assume that this function satisfies
some simple properties:

1. The length of the pair 〈x, y〉 depends only on the lengths |x| and |y|, and is
polynomial in these lengths.

2. The computation of x and y from 〈x, y〉, as well as the computation of 〈x, y〉
from x and y, can be performed deterministically in polynomial time.

One suitable choice for such a function is suggested by the equation

〈a1a2 · · · an, b1b2 · · · bm〉 = 0a10a2 · · · 0an1b1b2 · · · bm (1)

for a1, a2, . . . , an, b1, b2, . . . , bm ∈ �. Any such pairing function may be extended
recursively to obtain a tuple function for any fixed number of inputs by taking

〈x1, x2, x3, . . . , xk〉 = 〈〈x1, x2〉, x3, . . . , xk〉 (2)

for strings x1, . . . , xk ∈ �∗, where k ≥ 3. Hereafter, when we refer to the compu-
tation of any function taking multiple string-valued arguments, we assume that these
input strings have been encoded into a single string using this tuple function. For
instance, when f is a function that represents a computation, we write f (x, y, z)

rather than f (〈x, y, z〉).
Finally, we define the nondeterministic and probabilistic polynomial-time opera-

tors, which may be applied to an arbitrary complexity class, as follows.

386 Theory of Computing Systems (2023) 67:383–412



Definition 1 For a given complexity class of languages C, the complexity classes
∃ · C and P · C are defined as follows.

1. The complexity class ∃ · C contains all promise problems A = (Ayes, Ano) for
which there exists a language B ∈ C and a polynomially bounded function p

such that these two implications hold:

x ∈ Ayes ⇒
{
y ∈ �p : 〈x, y〉 ∈ B

}
= ∅,

x ∈ Ano ⇒
{
y ∈ �p : 〈x, y〉 ∈ B

}
= ∅. (3)

2. The complexity class P · C contains all promise problems A = (Ayes, Ano) for
which there exists a language B ∈ C and a polynomially bounded function p

such that these two implications hold:

x ∈ Ayes ⇒
∣∣∣
{
y ∈ �p : 〈x, y〉 ∈ B

}∣∣∣ >
1

2
· 2p,

x ∈ Ano ⇒
∣∣∣
{
y ∈ �p : 〈x, y〉 ∈ B

}∣∣∣ ≤ 1

2
· 2p. (4)

2.2 Counting complexity

Counting complexity is principally concerned with the number of solutions to certain
computational problems. Readers interested in learning more about counting com-
plexity and some of its applications are referred to the survey paper of Fortnow [19].
As was suggested at the beginning of the current section, we will require some basic
results on counting complexity that represent minor generalizations of known results.
We begin with the following definition.

Definition 2 Let C be any complexity class of languages over the alphabet �. A
function f : �∗ → Z is a Gap · C function if there exist languages A, B ∈ C and a
polynomially bounded function p such that

f (x) = ∣∣{y ∈ �p : 〈x, y〉 ∈ A
}∣∣ − ∣∣{y ∈ �p : 〈x, y〉 ∈ B

}∣∣ (5)

for all x ∈ �∗.

We observe that this definition is slightly non-standard, as gap functions are usu-
ally defined in terms of differences between the number of accepting and rejecting
computations of nondeterministic machines (as opposed to a difference involving
two potentially unrelated languages A and B). It is also typical that one focuses on
specific choices for C, particularly C = P. Our definition is, however, equivalent to
the traditional definition in this case, and we will write GapP rather than Gap · P so
as to be consistent with the standard name for this class of functions. We will also be
interested in the case C = PP, which yields a class of functions Gap · PP that is less
commonly considered.

A key feature of the class of GapP functions that facilitates its use is that it pos-
sesses strong closure properties. This is true more generally for the class Gap · C
provided that C itself possesses certain properties. For the closure properties we
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require, it suffices that C is nontrivial (meaning that C contains at least one lan-
guage that is not equal to ∅ or �∗) and is closed under the join operation as well as
polynomial-time truth-table reductions. (The join of languages A and B is defined as
{x0 : x ∈ A} ∪ {x1 : x ∈ B}.) These properties are, of course, possessed by both
P and PP, with the closure of PP under truth table reductions having been proved by
Fortnow and Reingold [20] based on methods developed by Beigel, Reingold, and
Spielman [6].

The following proposition is immediate from the definitions of Gap · C and P · C.

Proposition 3 Let C be a complexity class of languages that is closed under comple-
mentation and joins. A promise problem A = (Ayes, Ano) is contained in P · C if and
only if there exists a Gap · C function f such that

x ∈ Ayes ⇒ f (x) > 0,

x ∈ Ano ⇒ f (x) ≤ 0. (6)

The lemmas that follow establish the specific closure properties we require. For
the first property the assumption that C is closed under joins and polynomial-time
truth-table reductions is not required; closure under Karp reductions suffices.

Lemma 4 Let C be a nontrivial complexity class of languages that is closed under
Karp reductions. Let f ∈ Gap · C and let p be a polynomially bounded function. The
function

g(x) =
∑

y∈�p

f (x, y) (7)

is a Gap · C function.

Proof By the assumption that f ∈ Gap · C, there exists a polynomially bounded
function q and languages A0, A1 ∈ C such that

f (x, y) = ∣∣{z ∈ �q(|〈x,y〉|) : 〈x, y, z〉 ∈ A0
}∣∣ − ∣∣{z ∈ �q(|〈x,y〉|) : 〈x, y, z〉 ∈ A1

}∣∣
(8)

for all x ∈ �∗ and y ∈ �p. By the assumptions on our pairing function described
above, it is the case that |〈x, y〉| depends only on |x| and |y|, and therefore there
exists a (necessarily polynomially bounded) function r such that r(|x|) = p(|x|) +
q(|〈x, y〉|) for all x ∈ �∗ and y ∈ �p. Define

B0 = {〈x, yz〉 : y ∈ �p, z ∈ �q(|〈x,y〉|), 〈x, y, z〉 ∈ A0
}
,

B1 = {
(x, yz) : y ∈ �p, z ∈ �q(|〈x,y〉|), 〈x, y, z〉 ∈ A1

}
. (9)

By the nontriviality and closure of C under Karp reductions, it is evident thatB0, B1 ∈
C. It may be verified that

g(x) = ∣∣{w ∈ �r : 〈x, w〉 ∈ B0
}∣∣ − ∣∣{w ∈ �r : 〈x, w〉 ∈ B1

}∣∣ (10)

for all x ∈ �∗, and therefore g ∈ Gap · C.
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For the next lemma, and elsewhere in the paper, we will use the following notation
for convenience: �n

1 denotes the set of all strings over the binary alphabet � that
have length n and contain exactly one occurrence of the symbol 1. It is therefore the
case that |�n

1 | = n.

Lemma 5 Let C be a nontrivial complexity class of languages that is closed under
joins and polynomial-time truth table reductions. Let f ∈ Gap · C and let p be a
polynomially bounded function. The function

g(x) =
∏

y∈�
p
1

f (x, y) (11)

is a Gap · C function.

Proof Given that f ∈ Gap · C, there exists a polynomially bounded function q and
languages A0, A1 ∈ C such that

f (x, y) =
∣∣∣
{
z ∈ �q(|(x,y)|) : 〈x, y, z〉 ∈ A0

}∣∣∣−
∣∣∣
{
z ∈ �q(|(x,y)|) : 〈x, y, z〉 ∈ A1

}∣∣∣
(12)

for all x, y ∈ �∗. We may assume further that A0 and A1 are disjoint languages, for
if they are not, we may replace A0 and A1 with A0 ∩ A1 and A1 ∩ A0, respectively;
this does not change the value of the right-hand side of the (12), and the languages
A0 ∩ A1 and A1 ∩ A0 must both be contained in C for A0, A1 ∈ C by the closure of
C under joins and truth-table reductions.

By the assumptions on our pairing function described above, there exists a polyno-
mially bounded function r such that r(|x|) = q(|(x, y)|) for all x ∈ �∗ and y ∈ �p.
We will write y1, . . . , yp to denote the elements of �

p

1 sorted in lexicographic order.
Define two languages B0 and B1 as follows:

• B0 is the language of all pairs 〈x, z1 · · · zp〉, where x ∈ �∗ and z1, . . . , zp ∈ �r ,
for which there exists a string w ∈ �p having even parity such that

〈x, y1, z1〉 ∈ Aw1, . . . , 〈x, yp, zp〉 ∈ Awp . (13)

• B1 is the language of all pairs 〈x, z1 · · · zp〉, where x ∈ �∗ and z1, . . . , zp ∈ �r ,
for which there exists a string w ∈ �p having odd parity such that

〈x, y1, z1〉 ∈ Aw1, . . . , 〈x, yp, zp〉 ∈ Awp . (14)

Given that A0 and A1 are disjoint and contained in C, along with the fact that C is
closed under joins and truth-table reductions, it follows that B0, B1 ∈ C. The lemma
now follows from the observation that

g(x) =
∣∣∣
{
z ∈ �s : 〈x, z〉 ∈ B0

}∣∣∣ −
∣∣∣
{
z ∈ �s : 〈x, z〉 ∈ B1

}∣∣∣ (15)

for all x ∈ �∗, where s = p · r .
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Lemma 6 Let C be a nontrivial complexity class of languages that is closed under
joins and polynomial-time truth table reductions, let f0, f1 ∈ Gap · C, and let p and
q be polynomially bounded functions. For every string x ∈ �∗ and y∈ �

q

1 , define
the matrix Mx,y as

Re
(〈z|Mx,y |w〉) = f0(x, y, z, w),

Im
(〈z|Mx,y |w〉) = f1(x, y, z, w), (16)

for all z, w ∈ �p. In other words, each Mx,y is a matrix whose entries are indexed
by z, w ∈ �p. There exist Gap · C functions g0 and g1 satisfying

Re
(〈z|Mx,y1 · · · Mx,yq |w〉) = g0(x, z, w),

Im
(〈z|Mx,y1 · · · Mx,yq |w〉) = g1(x, z, w), (17)

for all x ∈ �∗ and z, w ∈ �p, where y1, . . . , yq denote the elements of �q

1 sorted in
lexicographic order.

Proof By the assumptions on C stated in the lemma, there must exist a Gap · C
function h satisfying

h(x, y, 0z, 0w) = f0(x, y, z, w),

h(x, y, 0z, 1w) = f1(x, y, z, w),

h(x, y, 1z, 0w) = −f1(x, y, z, w),

h(x, y, 1z, 1w) = f0(x, y, z, w), (18)

for all x ∈ �∗, y∈ �
q

1 , and z, w ∈ �p. The matrix Nx,y defined as

〈u|Nx,y |v〉 = h(x, y, u, v) (19)

for all x ∈ �∗, y∈ �
q

1 and u, v ∈ �p+1 may be visualized as a 2 × 2 block matrix:

Nx,y =
(

Re(Mx,y) Im(Mx,y)

−Im(Mx,y) Re(Mx,y)

)
. (20)

We observe that

Nx,y1 · · · Nx,yq =
(

Re
(
Mx,y1 · · · Mx,yq

)
Im

(
Mx,y1 · · · Mx,yq

)
−Im

(
Mx,y1 · · · Mx,yq

)
Re

(
Mx,y1 · · · Mx,yq

)
)
. (21)

Given that h is a Gap · C function, there must exist a Gap · C function F for which

F(x, u0 · · · uq, yk) = h(x, yk, uk−1, uk) (22)

for all x ∈ �∗, u0, . . . , uq ∈ �p+1, and k ∈ {1, . . . , q}.
Finally, define

G(x, u0 · · · uq) =
∏

y∈�
q
1

F(x, u0 · · · uq, y) = h(x, y1, u0, u1) · · · h(x, yq, uq−1, uq)

(23)
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for all x ∈ �∗ and u0, . . . , uq ∈ �p+1, as well as

g0(x, z, w) = ∑
u∈�(q−1)(p+1)

G(x, 0zu0w),

g1(x, z, w) = ∑
u∈�(q−1)(p+1)

G(x, 0zu1w), (24)

for all x ∈ �∗ and z, w ∈ �p. It follows by Lemmas 4 and 5 that g0, g1 ∈ Gap · C.
Observing that g0 and g1 satisfy the (17), which is perhaps most evident from the

(21), the proof of the lemma is complete.

6.1 Quantum information and quantum circuits

The notation we use when discussing quantum information is standard for the subject,
and we refer the reader to the books [30, 34, 38, 39] for further details. A couple of
points concerning quantum information notation and conventions that may be helpful
to some readers follow.

First, when we refer to a register X, we mean a collection of qubits that we wish
to view as a single entity, and we then use the same letter X in a scripted font to
denote the finite-dimensional complex Hilbert space associated with X (i.e., the space
of complex vectors having entries indexed by binary strings of length equal to the
number of qubits in X). The set of density operators acting on such a space is denoted
D(X ).

Second, a channel transforming a register X into a register Y is a completely
positive and trace-preserving linear map Phi that transforms each density operator
ρ ∈ D(X ) into a density operator Phi(ρ) ∈ D(Y). (More generally, such a mapping
Phi transforms arbitrary linear operators acting on X into linear operators acting
on Y .) The adjoint of such a channel Phi is the uniquely determined linear map
Phi∗ transforming linear operators acting on Y into linear operators acting on X that
satisfies the equation

Tr
(
PPhi(ρ)

) = Tr
(
Phi∗(P )ρ

)
(25)

for all density operators ρ ∈ D(X ) and all positive semidefinite operators P acting
on Y . The adjoint Phi∗ of a channel Phi is not necessarily itself a channel, but
rather is a completely positive and unital linear map, which means that
(for and denoting the identity operators acting on X and Y , respectively).
Intuitively speaking, if P is a measurement operator in the equation above, one can
think of Phi∗ as transforming the measurement operator P into a new measurement
operator Phi∗(P ), with the probability of this outcome for the state ρ being the same
as if one first applied Phi to ρ and then measured with respect to P .

Now we will move on to quantum circuits, which are acyclic networks of quan-
tum gates connected by qubit wires. We choose to use the standard, general model of
quantum information based on density operators and quantum channels, as opposed
to the restricted model of pure state vectors and unitary operations, when discussing
quantum circuits. In this general model, each gate represents a quantum channel act-
ing on a constant number of qubits—including nonunitary gates, such as gates that
introduce fresh initialized qubits or gates that discard qubits. Through this model,
ordinary classical circuits, as well as classical circuits that introduce randomness into
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computations, can be viewed as special cases of quantum circuits. One may also
represent measurements directly as quantum gates or circuits.

It is well-known that this general model is equivalent to the purely unitary model,
as is explained in [1] and [37], for instance. The main benefits of using the general
model in the context of this paper are that (i) it allows us to avoid having to constantly
distinguish between input qubits and ancillary qubits, or output qubits and garbage
qubits, and (ii) it has the minor but nevertheless positive side effect of eliminating the
appearance of the irrational number 1/

√
2 in many of the formulas that will appear.

We choose a universal gate set from which all quantum circuits are assumed to
be composed. The gates in this set include Hadamard, Toffoli, and phase-shift gates
(which induce the single-qubit unitary transformation determined by the actions
|0〉 �→ |0〉 and |1〉 �→ i|1〉), as well as ancillary gates and erasure gates. Ancillary
gates take no input qubits and output a single qubit in the |0〉 state, while erasure gates
take one input qubit and produce no output qubits, and are described by the partial
trace. Any other choice for the unitary gates that is universal for quantum computing
could be taken instead, but the gate set just specified is both simple and convenient.

The size of a quantum circuit is defined to be the number of gates in the circuit
plus the total number of input and output qubits. Thus, if a quantum circuit were to
be represented in a standard way as a directed acyclic graph, its size would simply
be the number of vertices, including a vertex for each input and output qubit, of the
corresponding graph.

A collection {Qx : x ∈ �∗} of quantum circuits is said to be polynomial-time gen-
erated if there exists a polynomial-time deterministic Turing machine that, on input
x ∈ �∗, outputs an encoding of the circuit Qx . When such a family is parameter-
ized by tuples of strings, it is to be understood that we are implicitly referring to
one of the tuple-functions discussed previously. We will not have any need to dis-
cuss the specifics of the encoding scheme that we use, but naturally it is assumed
to be efficient, with the size of a circuit and its encoding length being polynomially
related.

The following lemma relates the complexity of computing circuit transition ampli-
tudes to GapP functions. The essential idea it expresses is due to Fortnow and
Rogers [21], who proved a variant of it for unitary computations by quantum Turing
machines. An idea, similar in spirit, also appears in [15]. While a result along the
lines of the lemma that follows is suggested in the survey paper [37], that paper does
not include a proof, and so we include one below.

Lemma 7 Let {Qx : x ∈ �∗} be a polynomial-time generated family of quantum
circuits, where each circuit Qx takes n input qubits and outputs k qubits, for poly-
nomially bounded functions n and k. There exists a polynomially bounded function r

and GapP functions f0 and f1 such that

Re
(〈u|Qx

(|z〉〈w|)|v〉) = 2−rf0(x, z, w, u, v),

Im
(〈u|Qx

(|z〉〈w|)|v〉) = 2−rf1(x, z, w, u, v), (26)

for all x ∈ �∗, z, w ∈ �n, and u, v ∈ �k .
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Proof Consider first an arbitrary channel Phi that maps n-qubit density operators to
k-qubit density operators. The action of Phi on density operators is linear, and can
therefore be represented through matrix multiplication. One concrete way to do this
is to use the so-called natural representation (also known as the linear representation)
of quantum channels.

A description of the natural representation of a quantum channel begins with the
vectorizationmapping: assuming M is a matrix whose rows and columns are indexed
by strings of some length m, the corresponding vector vec(M) is indexed by strings
of length 2m according to the following definition:

vec(M) =
∑

y,z∈�m

〈y|M|z〉 |yz〉. (27)

In words, the vectorization map reshapes a matrix into a vector by transposing the
rows of the matrix into column vectors and stacking them on top of one another.

With respect to the vectorization mapping, the action of the channel Phi is
described by its natural representation K(Phi), which is a linear mapping that acts
as

K(Phi)vec(ρ) = vec(Phi(ρ)) (28)

for every n-qubit density operator ρ. As a matrix, K(Phi) has columns indexed by
strings of length 2n and rows indexed by strings of length 2k. Its entries are described
explicitly by the equation

〈uv|K(Phi)|zw〉 = 〈u|Phi(|z〉〈w|)|v〉 (29)

holding for every z, w ∈ �n and u, v ∈ �k . The (26) may therefore be equivalently
written as

Re
(〈uv|K(Qx)|zw〉) = 2−rf0(x, z, w, u, v),

Im
(〈uv|K(Qx)|zw〉) = 2−rf1(x, z, w, u, v). (30)

It must be observed that the natural representation is multiplicative, in the sense
that channel composition corresponds to matrix multiplication: K(PhiPsi) =
K(Phi)K(Psi) for all channels Phi and Psi for which the composition PhiPsi

makes sense. It is also helpful to note that a channel Phi(ρ) = UρU∗ corresponding
to a unitary operation has as its natural representation the operator

K(Phi) = U ⊗ U . (31)

Now let us turn to the family {Qx : x ∈ �∗}. Because this family is polynomial-
time generated, there must exist a polynomially bounded function r for which
size(Qx) ≤ r for all x ∈ �∗. We may therefore write

Qx = Qx,r · · · Qx,1 (32)

for Qx,1, . . . , Qx,r being either identity channels or channels that describe the action
of a single gate of Qx tensored with the identity channel on all of the qubits besides
the inputs of the corresponding gate that exist at the moment that the gate is applied.
We also observe that the number of input qubits and output qubits of each Qx,k must
be bounded by r .
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Given that
K(Qx) = K(Qx,r ) · · · K(Qx,1), (33)

we are led to consider the natural representation of each channel Qx,k . It will be
convenient to identify each operator K(Qx,k) with the matrix indexed by strings
of length 2r , as opposed to being indexed by strings whose lengths depend on the
number of qubits in existence before and after Qx,k is applied, simply by padding
K(Qx,k) with rows and columns of zero entries.

The natural representations of the individual gates in the universal gate set we have
selected are as follows:

1. Hadamard gate:

1

2

⎛
⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ (34)

2. Phase gate: ⎛
⎜⎜⎝
1 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 1

⎞
⎟⎟⎠ (35)

3. Toffoli gate: ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(36)

4. Ancillary qubit gate: ⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ (37)

5. Erasure gate:
(1 0 0 1) (38)

Based on these representations, it is straightforward to define GapP functions (or, in
fact, FP functions) g0 and g1 such that

Re
(〈uv|K(Qx,k)|zw〉) = 1

2
g0(x, z, w, u, v, yk),

Im
(〈uv|K(Qx,k)|zw〉) = 1

2
g1(x, z, w, u, v, yk), (39)

for all x ∈ �∗, k ∈ {1, . . . , r}, and u, v, z, w ∈ �r , where we write y1, . . . , yr to
denote the elements of �r

1 sorted in lexicographic order. It now follows through a
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straightforward application of Lemma 6 there must exist GapP functions f0 and f1
satisfying (26) and therefore (30), for all x ∈ �∗, z, w ∈ �n, and u, v ∈ �k , as
required.

7.1 A tail bound for operator-valued random variables

We will make use of the following tail bound on the minimum eigenvalue of the
average of a collection of operator-valued random variables. This bound follows from
a more general result due to Tropp. In particular, the bound stated in the theorem
below follows from Theorem 5.1 of [36] together with Pinsker’s inequality, which
relates the relative entropy of two distributions to their total variation distance.

Theorem 8 (Tropp) Let d andN be positive integers, let η ∈ [0, 1] and ε > 0 be real
numbers, and let X1, . . . , XN be independent and identically distributed operator-
valued random variables having the following properties:

1. Each Xk takes d × d positive semidefinite operator values satisfying .
2. The minimum eigenvalue of the expected operator E(Xk) satisfies

λmin(E(Xk)) ≥ η.

It is the case that

Pr

(
λmin

(
X1 + · · · + XN

N

)
< η − ε

)
≤ d exp(−2Nε2). (40)

9 Complexity classes for one-turn quantum refereed games

In this section we define the complexity classes to be considered in this paper:
QRG(1), CQRG(1), and MQRG(1). The definitions of these classes all refer to the
notion of a referee, which (in this paper) is a polynomial-time generated family

R = {Rx : x ∈ �∗} (41)

of quantum circuits having the following special form

1. For each x ∈ �∗, the inputs to the circuit Rx are grouped into two registers: an
n-qubit register A and an m-qubit register B, for polynomially bounded functions
n and m.

2. The output of each circuit Rx is a single qubit, which is to be measured with
respect to the standard basis immediately after the circuit is run.

Given that classical probabilistic states may be viewed as special cases of quan-
tum states (corresponding to diagonal density operators), this definition of a referee
can still be used in the situation in which either or both of the registers A and B is
constrained to initially store a classical state.

We are interested in the situation that, for a given choice of an input string x ∈ �∗,
the input to the circuit Rx is a product state of the form ρ ⊗ σ , where ρ ∈ D(A) is a
state of the register A and σ ∈ D(B) is a state of the register B. The state ρ ∈ D(A)
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is to be viewed as representing the state that Alice plays, while σ ∈ D(B) represents
the state Bob plays. When the single output qubit of the circuit Rx is measured with
respect to the standard basis, the outcome 1 is interpreted as “Alice wins,” while the
outcome 0 is interpreted as “Bob wins.”

Now, consider the quantity defined as

ω(Rx) = max
ρ∈D(A)

min
σ∈D(B)

〈1|Rx(ρ ⊗ σ)|1〉. (42)

Given that D(A) and D(B) are compact and convex sets, and the value 〈1|Rx(ρ ⊗
σ)|1〉 is bilinear in ρ and σ , Sion’s min-max theorem implies that changing the order
of the minimum and maximum does not change the value of the expression. That is,
this quantity may alternatively be written

ω(Rx) = min
σ∈D(B)

max
ρ∈D(A)

〈1|Rx(ρ ⊗ σ)|1〉. (43)

This value represents the probability that Alice wins the game defined by the cir-
cuitRx , assuming both Alice and Bob play optimally. With that definition in hand, we
may now define the complexity class QRG(1), which is short for one-turn quantum
refereed games.

Definition 9 A promise problem A = (Ayes, Ano) is contained in the complexity
class QRG(1)α,β if there exists a referee R = {Rx : x ∈ �∗} such that the following
properties are satisfied:

1. For every string x ∈ Ayes, it is the case that ω(Rx) ≥ α.
2. For every string x ∈ Ano, it is the case that ω(Rx) ≤ β.

We also define QRG(1) = QRG(1)2/3,1/3.

In this definition, α and β may be constants, or they may be functions of the length
of the input x. A short summary of known facts and observations concerning the
complexity class QRG(1) follows.

• QMA ⊆ QRG(1). This is because the referee’s measurement may simply ignore
Bob’s state σ and treat Alice’s state ρ as a quantum proof in a QMA proof
system.

• QRG(1) is closed under complementation: QRG(1) = co-QRG(1). For a
promise problem (Ayes, Ano) ∈ QRG(1), one may obtain a one-turn quantum
refereed game for (Ano, Ayes) by simply exchanging the roles of Alice and Bob.

• It is the case that QRG(1) = QRG(1)α,β for a wide range of choices of α and
β, similar to error bounds for BPP, BQP, and QMA. In particular, QRG(1) =
QRG(1)α,β provided that α and β are polynomial-time computable and satisfy

α ≤ 1 − 2−p, β ≥ 2−p, and α − β ≥ 1

p
(44)
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Fig. 1 A CQRG(1) referee. The
register A is initially measured
(or, equivalently, dephased) with
respect to the standard basis,
causing a classical state to be
input into Qx , along with the
register B, which is unaffected
by this standard basis
measurement

for some choice of a strictly positive polynomially bounded function p.2

• QRG(1) ⊆ PSPACE [28].

9.1 Definitions of new complexity classes

The first variant of QRG(1) we define is one in which Alice’s state is restricted to be
a classical state. We will call this class CQRG(1).

Definition 10 A promise problem A = (Ayes, Ano) is contained in the complex-
ity class CQRG(1)α,β if there exists a referee R = {Rx : x ∈ �∗} such that the
following properties are satisfied:

1. For every string x ∈ �∗, the circuit Rx takes the form illustrated in Fig. 1. That
is, Rx takes an n-qubit register A and an m-qubit register B as input, measures
each qubit of A with respect to the standard basis, leaving it in a classical state,
and then runs the circuit Qx on the pair (A, B), producing a single output qubit.

2. For every string x ∈ Ayes, it is the case that ω(Rx) ≥ α.
3. For every string x ∈ Ano, it is the case that ω(Rx) ≤ β.

We also define CQRG(1) = CQRG(1)2/3,1/3.

Formally speaking, the standard basis measurement suggested by Definition 10
can be implemented by independently performing the completely dephasing channel

2Error reduction may be performed through parallel repetition followed by majority vote. An analysis
of this method for QRG(1) requires that one considers the possibility that the dishonest player (meaning
the one that should not have a strategy that wins with high probability) entangles his or her state across
the different repetitions, with the claimed bounds following from a similar analysis to parallel repetition
followed by majority vote for QMA [30]. We note that there is no “in place” error reduction method known
for QRG(1) that is analogous to the technique of [33] for QMA.
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on each qubit of A. This channel can be constructed using the universal gate set we
have selected using a Toffoli gate with suitably initialized inputs as follows:

Here the square labeled |0〉 is an ancillary gate, the square labeled |1〉 denotes
an ancillary gate composed with a not-gate X = HPPH (for H and P denoting
Hadamard and phase-shift gates), and the square labeled Tr denotes an erasure gate.

In effect, a referee R that satisfies the first requirement of Definition 10 forces the
state Alice plays to be a classical state (i.e., a state represented by a diagonal density
operator). That is, for any density operator ρ that Alice might choose to play, the state
of A that is input into Qx takes the form

∑
y∈�n

p(y) |y〉〈y| (45)

for some probability vector p over n-bit strings, and therefore the state that is plugged
into the top n qubits of the circuit Qx represents a classical state. Given that the
standard basis measurement acts trivially on all diagonal states, we observe that Alice
may cause an arbitrary diagonal density operator of the form (45) to be input into
Qx . In short, the set of possible states that may be input into the top n qubits of the
circuit Qx is precisely the set of diagonal n-qubit density operators.

The second variant of QRG(1) we define is one in which Alice and Bob both send
quantum states to the referee, but the referee first measures Alice’s state, obtaining a
classical outcome, which is then measured together with Bob’s state (as illustrated in
Fig. 2).

Definition 11 A promise problem A = (Ayes, Ano) is contained in the complexity
class MQRG(1)α,β if there exists a referee R = {Rx : x ∈ �∗} such that the
following properties are satisfied:

1. For every string x ∈ �∗, the circuitRx takes the form illustrated in Fig. 2. That is,
Rx takes an n-qubit register A and anm-qubit register B as input, and first applies

Fig. 2 An MQRG(1) referee
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a quantum circuit Px to A, yielding a k-qubit register Y, for k a polynomially
bounded function. The register Y is then measured with respect to the standard
basis, so that it then contains a classical state, and finally a quantum circuit Qx

is applied to the pair (Y, B), yielding a single qubit.
2. For every string x ∈ Ayes, it is the case that ω(Rx) ≥ α.
3. For every string x ∈ Ano, it is the case that ω(Rx) ≤ β.

We also define MQRG(1) = MQRG(1)2/3,1/3.

In essence, an MQRG(1) referee measures Alice’s qubits with respect to a gen-
eral, efficiently implementable measurement, which yields a k-bit classical outcome,
which is then plugged into Qx along with Bob’s quantum state.

It is of course immediate that

CQRG(1) ⊆ MQRG(1) ⊆ QRG(1); (46)

a CQRG(1) referee is a special case of an MQRG(1) referee in which Px is the iden-
tity map on n qubits, while anMQRG(1) referee is a special case of a QRG(1) referee.
We also observe that both CQRG(1) and MQRG(1) are robust with respect to error
bounds in the same way as was described above for QRG(1).

10 Upper-bound on CQRG(1)

In this section, we prove that CQRG(1) is contained in ∃ · PP. The proof represents
a fairly direct application of the Althöfer–Lipton–Young [2, 32] technique, although
(as was suggested above) the quantum setting places a new demand on this technique
that requires the use of a tail bound on sums of matrix-valued random variables. We
will split the proof of this containment into two lemmas, followed by a short proof of
the main theorem—this is done primarily because the lemmas will also be useful for
proving MQRG(1) ⊆ P ·PP in the section following this one. Some readers may wish
to skip to the statement and proof of Theorem 14 below, as it explains the purpose of
these two lemmas within the context of that theorem.

The first lemma represents an implication of Theorem 8 due to Tropp to the setting
at hand.

Lemma 12 Let k and m be positive integers, let p ∈ P(�k) be a probability distri-
bution on k-bit strings, let Sy be a 2m × 2m positive semidefinite operator satisfying

for each y ∈ �k , and let N ≥ 72(m + 2). For strings y1, . . . , yN ∈ �k

sampled independently from the distribution p, it is the case that

Pr

(
λmin

(
Sy1 + · · · + SyN

N

)
< λmin

( ∑

y∈�k

p(y)Sy

)
− 1

12

)
<

1

3
. (47)

Proof Define X1, . . . , XN to be independent and identically distributed operator-
valued random variables, each taking the (operator) value Sy with probability p(y),
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for every y ∈ �k . The expected value of each of these random variables is therefore
given by

P =
∑

y∈�k

p(y)Sy . (48)

By taking η = λmin(P ) and ε = 1/12 in Theorem 8, we find that

Pr

(
λmin

(
X1 + · · · + XN

N

)
< λmin(P ) − 1

12

)
≤ 2m exp

(
− N

72

)
<

1

3
, (49)

which is equivalent to the bound stated in the lemma.

The second lemma uses counting complexity to relate the minimum eigenvalue of
measurement operators defined by quantum circuits to PP languages. We note that
the technique of weakly estimating the largest eigenvalue of a measurement operator
using the trace of a power of that operator, through the relations (53) appearing in the
proof below, is the essential idea behind the unpublished proof of the containment
QMA ⊆ PP claimed in [31].

Lemma 13 Let {Qx : x ∈ �∗} be a polynomial-time generated family of quantum
circuits, where each circuit Qx takes as input a k-qubit register Y and an m-qubit
register B, for polynomially bounded functions k and m, and outputs a single qubit.
For each x ∈ �∗ and y ∈ �k , define an operator

(50)

For every polynomially bounded function N , there exists a language B ∈ PP for
which the following implications are true for all x ∈ �∗ and y1, . . . , yN ∈ �k:

λmin

(
Sx,y1 + · · · + Sx,yN

N

)
≥ 2

3
⇒ (x, y1 · · · yN) ∈ B, (51)

λmin

(
Sx,y1 + · · · + Sx,yN

N

)
≤ 1

3
⇒ (x, y1 · · · yN) ∈ B. (52)

Proof The essence of the proof is that if P is an operator whose entries have real
and imaginary parts proportional to GapP functions, and r is a polynomially bounded
function, then there exists a GapP function that is proportional to the real part of
Tr(P r). When P is a 2m × 2m positive semidefinite operator, this allows one to
choose r to be sufficiently large, but still polynomially bounded, so that a GapP
function is obtained that takes positive or negative values in accordance with the
required implications (51) and (52), through the use of the following bounds relating
the largest eigenvalue and the trace of any such P :

λmax(P )r = λmax(P
r) ≤ Tr(P r) ≤ 2mλmax(P

r) = 2mλmax(P )r . (53)

In the case at hand, it will suffice to take r = 2m.
In greater detail, let us begin by defining

(54)
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for each x ∈ �∗ and y ∈ �k . Observe that Sx,y and Tx,y are positive semidefinite

operators satisfying , so that the implication in the statement of the
lemma may alternatively be written as

λmax

(
Tx,y1 + · · · + Tx,yN

N

)
≤ 1

3
⇒ (x, y1 · · · yN) ∈ B, (55)

λmax

(
Tx,y1 + · · · + Tx,yN

N

)
≥ 2

3
⇒ (x, y1 · · · yN) ∈ B. (56)

Thus, if the operator

Px,y1···yN
= Tx,y1 + · · · + Tx,yN

N
(57)

satisfies λmax(Px,y1···yN
) ≤ 1/3, then

Tr(P 2m
x,y1···yN

) ≤ 2m

32m
<

1

3m
(58)

while if λmax(Px,y1···yN
) ≥ 2/3, then

Tr(P 2m
x,y1···yN

) ≥
(2
3

)2m
>

1

3m
. (59)

By Lemma 7 there exists a polynomially bounded function r along with GapP
functions f and g satisfying

Re(〈z|Tx,y |w〉) = Re
(〈0|Qx

(|yz〉〈yw|)|0〉) = 2−rf (x, y, z, w),

Im(〈z|Tx,y |w〉) = −Im
(〈0|Qx

(|yz〉〈yw|)|0〉) = 2−rg(x, y, z, w), (60)

for all x ∈ �∗, y ∈ �k , and z, w ∈ �m. Define functions F and G as follows:

F(x, y1 · · · yN, z, w) = f (x, y1, z, w) + · · · + f (x, yN, z, w),

G(x, y1 · · · yN, z, w) = g(x, y1, z, w) + · · · + g(x, yN, z, w), (61)

for all x ∈ �∗, y1, . . . , yN ∈ �k , and z, w ∈ �m. It is the case that F and G are
GapP functions satisfying

F(x, y1 · · · yN, z, w) = 2r · N · Re(〈z|Px,y1···yN
|w〉),

G(x, y1 · · · yN, z, w) = 2r · N · Im(〈z|Px,y1···yN
|w〉). (62)

Through an application of Lemmas 4 and 6, we conclude that there must exist a
GapP function H satisfying

H(x, y1 · · · yN) = 22rm · N2m · Tr(P 2m
x,y1···yN

)
. (63)

The GapP function

K(x, y1 · · · yN) = 22rm · N2m − 3m · H(x, y1 · · · yN) (64)

therefore takes positive values if λmax(Px,y1···yN
) ≤ 1/3, and takes negative values if

λmax(Px,y1···yN
) ≥ 2/3, implying the existence of a PP language B as claimed.

Theorem 14 CQRG(1) ⊆ ∃ · PP.
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Proof Let A = (Ayes, Ano) be any promise problem contained in CQRG(1), let a
referee be fixed that establishes the inclusion A ∈ CQRG(1)3/4,1/4, and let {Qx :
x ∈ �∗} be the collection of circuits that describes this referee, in accordance with
Definition 10.

Let x ∈ Ayes ∪ Ano be any input string. Consider first the situation that Alice
plays deterministically, sending a string y ∈ �n to the referee, so that ρ = |y〉〈y|.
Having selected a state ρ representing Alice’s play, we are effectively left with a
binary-valued measurement being performed on the state sent to the referee by Bob.
We observe that, for any choice of a state σ ∈ D(B) representing Bob’s play, the
probabilities that the referee’s measurement generates the outcomes 0 and 1 are given
by

〈0|Qx(|y〉〈y| ⊗ σ)|0〉 and 〈1|Qx(|y〉〈y| ⊗ σ)|1〉, (65)

respectively. By defining an operator Sx,y ∈ Pos(B) as

(66)

we therefore obtain the measurement operator corresponding to the 1 outcome of this
measurement, as

Tr
(
Sx,yσ

) = 〈1|Qx(|y〉〈y| ⊗ σ)|1〉 (67)

and

(68)

for all σ ∈ D(B).
Now, as Bob aims to minimize the probability for outcome 1 to appear, the relevant

property of the operator Sx,y is itsminimum eigenvalue λmin(Sx,y). A large minimum
eigenvalue means that Alice has managed to force the outcome 1 to appear, regardless
of what state Bob plays, whereas a small minimum eigenvalue means that Bob has at
least one choice of a state that causes the outcome 1 to appear with small probability.
Stated in more precise terms, Bob’s optimal strategy in the case that Alice plays
ρ = |y〉〈y| is to play any state σ ∈ D(B) whose image is contained in the eigenspace
of Sx,y corresponding to the minimum eigenvalue λmin(Sx,y), which leads to a win
for Alice with probability equal to this minimum eigenvalue and a win for Bob with
probability 1 − λmin(Sx,y).

In general, Alice will not play deterministically, but will instead play a distribution
of strings p ∈ P(�n). In this case, the resulting measurement operator on Bob’s
space becomes ∑

y∈�n

p(y)Sx,y . (69)

That is to say, the probability that Alice wins when she plays a distribution p ∈
P(�n), and Bob plays optimally against this distribution, is given by the expression

λmin

( ∑
y∈�n

p(y)Sx,y

)
. (70)

Determining whether x is a yes-instance or a no-instance of A is therefore equiva-
lent to discriminating between the case that there exists a distribution p ∈ P(�n)
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for which the minimum eigenvalue (70) is at least 3/4 and the case in which this
minimum eigenvalue is at most 1/4 for all choices of p ∈ P(�n).

The goal of the proof is to show that this decision problem is contained in ∃ · PP.
The ∃ operator will represent the existence or non-existence of a distribution p ∈
P(�n) for which the minimum eigenvalue (70) is large, while a PP predicate will
allow for an estimation of this minimum eigenvalue itself. A challenge that must
be overcome in making this approach work is that using the ∃ operator in this way
requires Alice’s strategy to have a polynomial-length representation. However, given
that a distribution p ∈ P(�n) may have support that is exponentially large in n,
an explicit description of p will generally have exponential size, assuming that the
individual probabilities p(y) are represented with a polynomial number of bits of
precision.

This obstacle may be overcome using the Althöfer–Lipton–Young [2, 32] tech-
nique mentioned in the introduction: in place of a distribution p ∈ P(�n), we
consider an N-tuple of strings (y1, . . . , yN), representing N possible deterministic
plays for Alice, for N = N(|x|) being a suitable polynomially bounded function of
the input length. This N-tuple will represent the distribution q ∈ P(�n) obtained by
selecting j ∈ {1, . . . , N} uniformly at random and then outputting the string yj . That
is, the distribution q ∈ P(�n) represented by the N-tuple (y1, . . . , yN) is given by

q(y) =
∣∣{j ∈ {1, . . . , N} : y = yj }

∣∣
N

(71)

for each y ∈ �n. Naturally, most choices of a distribution p ∈ P(�n) are far away
from any such distribution q. Nevertheless, the existence of a distribution p ∈ P(�n)

for which the minimum eigenvalue (70) is large does in fact imply the existence of an
N-tuple (y1, . . . , yN) for which the distribution q ∈ P(�n) defined by (71) is still a
good play for Alice, meaning that the minimum eigenvalue

λmin

(
Sx,y1 + · · · + Sx,yN

N

)
(72)

is also large, provided N is sufficiently large. This is precisely the content of
Lemma 12.

In particular, by choosing N = 72(m + 2), where m is the number of qubits of B,
we find that if the minimum eigenvalue (70) is at least 3/4, then with probability at
least 2/3 (over the random choices of y1, . . . , yN ) the minimum eigenvalue (72) is at
least 2/3. Of course, this implies the existence of an N-tuple (y1, . . . , yN) for which
the minimum eigenvalue (72) is at least 2/3.

Naturally, if x ∈ Ano, then the minimum eigenvalue (70) is at most 1/4 for all
choices of p ∈ P(�n), and therefore it must be that

λmin

(
Sx,y1 + · · · + Sx,yN

N

)
≤ 1

4
<

1

3
(73)

for all N-tuples (y1, . . . , yN). This is because the distribution q defined by (71) is
simply one example of a distribution in P(�n).

The purpose of Lemma 13 is now evident, for it states that there exists a language
B ∈ PP such that if the minimum eigenvalue (72) is at least 2/3, then (x, y1 · · · yN) ∈
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B, while if this minimum eigenvalue is at most 1/3, then (x, y1 · · · yN) ∈ B.
Consequently, if x ∈ Ayes, then there exists a string y1 · · · yN ∈ �nN such that
(x, y1 · · · yN) ∈ B, while if x ∈ Ano, then for every string y1 · · · yN ∈ �nN it is
the case that (x, y1 · · · yN) ∈ B. It has therefore been proved that A ∈ ∃ · PP as
required.

11 Upper-bound onMQRG(1)

We now turn to the complexity class MQRG(1), and prove the containment
MQRG(1) ⊆ P · PP. In order to do this, we will first introduce a QMA-operator that,
in some sense, functions in a way that is similar to the ∃ and P operators previously
discussed.

Definition 15 For a given complexity class C, the complexity class QMA ·C contains
all promise problems A = (Ayes, Ano) for which there exists a polynomial-time gen-
erated family of quantum circuits {Px : x ∈ �∗}, where each Px takes n = n(|x|)
input qubits and outputs k = k(|x|) qubits, along with a language B ∈ C, such that
the following implications hold.

1. If x ∈ Ayes, then there exists a density operator ρ on n qubits for which

Pr
(
Px(ρ) ∈ B

) ≥ 2

3
. (74)

2. If x ∈ Ano, then for every density operator ρ on n qubits,

Pr
(
Px(ρ) ∈ B

) ≤ 1

3
. (75)

Here, the notation Px(ρ) ∈ B refers to the event that Px is applied to the state ρ, the
output qubits are measured with respect to the standard basis, and the resulting string
is contained in the language B. Figure 3 illustrates the associated process, with χB

being the characteristic function of B on inputs of length k.

Theorem 16 If C is nontrivial complexity class of languages that is closed under
joins and truth-table reductions, then QMA · C ⊆ P · C.

Fig. 3 Definition 15 is concerned with the probability that the output of a circuit Px , measured with respect
to the standard basis, is contained in the language B, assuming the input is ρ
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Proof Let A = (Ayes, Ano) ∈ QMA · C, and let {Px : x ∈ �∗} be a polynomial-
time generated family of quantum circuits that, together with a language B ∈ C,
establishes this inclusion according to Definition 15.

By Lemma 7 there exists a polynomially bounded function r and GapP functions
f0 and f1 such that

Re
(〈u|Px

(|z〉〈w|)|v〉) = 2−rf0(x, z, w, u, v),

Im
(〈u|Px

(|z〉〈w|)|v〉) = 2−rf1(x, z, w, u, v), (76)

for all x ∈ �∗, z, w ∈ �n, and u, v ∈ �k . Define

g0(x, z, w, u) =
{

f0(x, z, w, u, u) if u ∈ B

0 if u ∈ B,

g1(x, z, w, u) =
{

f1(x, z, w, u, u) if u ∈ B

0 if u ∈ B,
(77)

for all x ∈ �∗, z, w ∈ �n, and u ∈ �k . By the properties of C, it is the case that
g0, g1 ∈ Gap · C.

Next, define

F0(x, z, w) =
∑

u∈�k

g0(x, z, w, u),

F1(x, z, w) = −
∑

u∈�k

g1(x, z, w, u), (78)

for all x ∈ �∗ and z, w ∈ �n. By Lemma 4 we have that F0, F1 ∈ Gap · C. We
observe that

Re
(〈w|Rx |z〉

) = 2−rF0(x, z, w),

Im
(〈w|Rx |z〉

) = 2−rF1(x, z, w) (79)

for all x ∈ �∗ and z, w ∈ �n, where

Rx =
∑

u∈�k∩B

P ∗
x

(|u〉〈u|). (80)

Now let us consider the cases x ∈ Ayes and x ∈ Ano. If x ∈ Ayes then
λmax(Rx) ≥ 2/3, while if x ∈ Ano then λmax(Rx) ≤ 1/3. Observing that Rx is a
positive semidefinite operator on a 2n dimensional space, we have that

λmax(Rx)
n+1 = λmax(R

n+1
x ) ≤ Tr(Rn+1

x ) ≤ 2nλmax(R
n+1
x ) = 2nλmax(Rx)

n+1,

(81)
similar to (53) in the proof of Lemma 13. By Lemma 6 it follows that there exists a
Gap · C function G possessing the following properties.

1. If x ∈ Ayes then

G(x) = 2(n+1)r tr(Rn+1
x ) ≥ 2(n+1)r+n+1

3n+1
(82)
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2. If x ∈ Ano then

G(x) = 2(n+1)r tr(Rn+1
x ) ≤ 2(n+1)r+n

3n+1
. (83)

The Gap · C function
H(x) = 3n+1G(x) − 2(n+1)r+n (84)

therefore satisfies H(x) > 0 when x ∈ Ayes and H(x) ≤ 0 when x ∈ Ano. By
Proposition 3 it follows that A ∈ P · C.

Next, we prove that MQRG(1) is contained in QMA ·PP. Combining this fact with
the previous theorem will establish the main result as an immediate corollary.

Theorem 17 MQRG(1) ⊆ QMA · PP.

Proof Consider any promise problem A = (Ayes, Ano) in MQRG(1), and fix a ref-
eree that establishes the inclusion A ∈ MQRG(1)3/4,1/4. Let {Px : x ∈ �∗} and
{Qx : x ∈ �∗} be a collection of circuits that describe this referee, in accordance
with Definition 11. As in the proof of Theorem 14, define an operator

(85)

for each x ∈ �∗ and y ∈ �k . If x ∈ Ayes, there must exists a state ρ ∈ D(A) such
that

λmin

( ∑

y∈�k

〈y|Px(ρ)|y〉Sx,y

)
≥ 3

4
, (86)

while if x ∈ Ano, it is the case that

λmin

( ∑

y∈�k

〈y|Px(ρ)|y〉Sx,y

)
≤ 1

4
(87)

for every ρ ∈ D(A).
Now define a function N = 72(m + 2) and observe that N is polynomially

bounded in |x|. By Lemma 13, there exists a language B ∈ PP for which these
implications hold for all x ∈ �∗ and y1, . . . , yN ∈ �k:

λmin

(
Sx,y1 + · · · + Sx,yN

N

)
≥ 2

3
⇒ (x, y1 · · · yN) ∈ B, (88)

λmin

(
Sx,y1 + · · · + Sx,yN

N

)
≤ 1

3
⇒ (x, y1 · · · yN) ∈ B. (89)

Finally, for each input x, define a circuit Kx that takes as input N reg-
isters (A1, . . . , AN), each consisting of n qubits, and outputs N + 1 registers
(X, Y1, . . . , YN). The register X is initialized to the state |x〉〈x|, so that it simply
echoes the input string x, and each register Yj is obtained by independently applying
the circuit Px to Aj . Alternatively, one could write

Kx = |x〉〈x| ⊗ P ⊗N
x , (90)
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with the understanding that we are identifying the state |x〉〈x| with the channel that
inputs nothing and outputs the state |x〉〈x|.

To prove that the promise problem A is contained in QMA ·PP, it suffices to prove
two things:

Completeness If it is the case that x ∈ Ayes, then there must exist a state ξ ∈
D(A⊗N) such that

Pr(Kx(ξ) ∈ B) ≥ 2

3
. (91)

Soundness If it is the case that x ∈ Ano, then for every state ξ ∈ D(A⊗N) it must
be that

Pr(Kx(ξ) ∈ B) ≤ 1

3
. (92)

The proof of completeness follows a similar argument to the proof of Theorem 14.
Let ρ ∈ D(A) be any state for which (86) is satisfied, and let ξ = ρ⊗N . It is evident
that the output of Kx(ξ) is given by (x, y1 · · · yN), for y1, . . . , yN ∈ �k sampled
independently from the distribution

p(y) = 〈y|Px(ρ)|y〉. (93)

It follows by Lemma 12 that

Pr(Kx(ξ) ∈ B) ≥ 2

3
. (94)

For the proof of soundness, the possibility that the state ξ ∈ D(A⊗N) does not
take product form must be considered. Our aim is to prove that if y1, . . . , yN are
randomly selected according to the distribution that assigns the probability

〈
y1 · · · yN

∣∣P ⊗N
x (ξ)

∣∣y1 · · · yN

〉
(95)

to each tuple (y1, . . . , yN), then

Pr

(
λmin

(
Sx,y1 + · · · + Sx,yN

N

)
≤ 1

3

)
≥ 2

3
, (96)

for this implies that Pr(Kx(ξ) ∈ B) ≤ 1/3 by (89). Toward this goal, choose a
density operator σ ∈ D(B) for which

∑

y∈�k

〈y|Px(ρ)|y〉Tr(Sx,yσ
) ≤ 1

4
(97)

for all ρ ∈ D(A), which is possible by Sion’s min-max theorem under the assumption
(87), and define random variables Z1, . . . , ZN as

Zj = Tr
(
Sx,yj

σ
)

(98)

for every j ∈ {1, . . . , N}, assuming that y1, . . . , yN are chosen at random as above.
It suffices to prove that

Pr

(
Z1 + · · · + ZN

N
≤ 1

3

)
≥ 2

3
, (99)

as we have λmin(H) ≤ Tr(Hσ) for all Hermitian operators H .
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The complication we face at this point is that the random variables Z1, . . . , ZN

are not necessarily independent (because ξ does not necessarily have product form),
so the most standard form of Hoeffding’s inequality will not suffice to establish
the required bound (99). However, we observe that Z1, . . . , ZN are discrete random
variables that take values in the interval [0, 1] and satisfy the inequality

E(Zj |Z1 = α1, . . . , Zj−1 = αj−1) ≤ 1

4
(100)

for all j ∈ {2, . . . , N} and α1, . . . , αj−1 ∈ [0, 1] for which Pr(Z1 = α1, . . . , Zj−1 =
αj−1) is nonzero. This is evident from the inequality (97), for it must hold when ρ is
equal to the reduced state of register Aj , conditioned on any choice of y1, . . . , yj−1
(and therefore on any choice of values Z1 = α1, . . . , Zj−1 = αj−1) that appear with
nonzero probability. While the standard statement of Hoeffding’s inequality does not
suffice for our needs, the standard proof of Hoeffding’s inequality does establish that

Pr

(
Z1 + · · · + ZN

N
≥ 1

3

)
= Pr

(
Z1 + · · · + ZN

N
≥ 1

4
+ 1

12

)
≤ exp

(
− 2N

144

)
<

1

3
,

(101)
as explained in an appendix at the end of the paper. Having obtained this bound, the
proof is complete.

Corollary 18 MQRG(1) ⊆ P · PP.

12 Conclusion

We have proved containments on two restricted versions of QRG(1), which we have
called CQRG(1) and MQRG(1) (Fig. 4). A diagram illustrating the containments is
provided.

Fig. 4 Hasse diagram showing
the relationships between
CQRG(1), MQRG(1), and other
complexity classes
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The question that originally motivated the work reported in this paper is whether
the containment QRG(1) ⊆ PSPACE can be improved. We did not succeed in this
endeavor, and so we leave this as an open question. Observing that the contain-
ments we prove establish that CQRG(1) and MQRG(1) are contained in the counting
hierarchy, we ask specifically: is QRG(1) also contained in the counting hierarchy?

Appendix A: Hoeffding’s inequality for dependent random variables
with bounded conditional expectation

In the proof of Theorem 17 we used a slight variant of Hoeffding’s inequality, where
the assumption of independence is replaced by a bound on conditional expectation.
We expect that a bound along these lines has been observed before, but we have
not found a suitable reference. (A similar bound is proved in [4] for Bernoulli ran-
dom variables, but we require the bound to hold more generally for discrete random
variables.)

It is, however, straightforward to adapt the most typical proof of Hoeffding’s
inequality to obtain this bound, as we now explain. We begin with Hoeffding’s
lemma, which is the essential ingredient in the proof, and which we state without
proof. (A proof may be found in [7], among many other references).

Lemma 19 Let X be a random variable taking values in [α, β], for real numbers
α < β, and assume E(X) ≤ 0. For every λ > 0 it is the case that

E
(
exp(λX)

) ≤ exp

(
λ2

8(β − α)2

)
. (102)

Remark 20 The more typical assumption for this lemma is that E(X) = 0, but (as is
not surprising) it is true assuming instead that E(X) ≤ 0. This follows immediately
from the observation that if E(X) ≤ 0, then

E(exp(λX)) ≤ E(exp(λ(X − E(X)))). (103)

The next lemma provides the inequality in the proof of Hoeffding’s inequality
that would ordinarily follow from the assumption of independence. For simplicity we
prove this lemma for discrete random variables, which suffices for our needs.

Lemma 21 LetX and Y be discrete random variables taking values in [α, β] for real
numbers α < β, and assume that E(Y | X) ≤ 0. For every λ > 0 it is the case that

E (exp(λ(X + Y )) ≤ exp

(
λ2

8(β − α)2

)
E(exp(λX)). (104)
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Proof We may write

E (exp(λ(X + Y )) =
∑
x

exp(λx)E(exp(λY ) | X = x)Pr(X = x), (105)

where the sum ranges over all possible values of X. By the assumption E(Y | X) ≤ 0,
Hoeffding’s lemma implies

∑
x

exp(λx)E(exp(λY ) | X = x)Pr(X = x)

≤ exp

(
λ2

8(β − α)2

)∑
x

exp(λx)Pr(X = x)

= exp

(
λ2

8(β − α)2

)
E(exp(λX)), (106)

as required.

Finally, we state and prove the variant of Hoeffding’s inequality we have used
(again for discrete random variables).

Theorem 22 Let X1, . . . , Xn be discrete random variables taking values in [0, 1],
let γ ∈ [0, 1], and assume that

E(Xk | X1, . . . , Xk−1) ≤ γ (107)

for all k ∈ {1, . . . , n}. For all ε > 0 it is the case that

Pr
(
X1 + · · · + Xn ≥ (γ + ε)n

) ≤ exp(−2nε2). (108)

Proof For every λ > 0 we have that

Pr
(
X1 + · · · + Xn ≥ (γ + ε)n

)

= Pr
(
exp

(
λ(X1 + · · · + Xn − γ n)

) ≥ exp(λεn)
)

≤ E
(
exp

(
λ(X1 + · · · + Xn − γ n)

))

exp(λεn)
(109)

by Markov’s inequality. Applying Lemma 21 iteratively yields

E
(
exp

(
λ(X1 + · · · + Xn − γ n)

)) ≤ exp

(
nλ2

8

)
. (110)

Choosing λ = 4ε yields the claimed bound.

References

1. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, pp. 20–30 (1998)
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