
https://doi.org/10.1007/s00224-022-10084-x

On the Decision Tree Complexity of Threshold
Functions

Anastasiya Chistopolskaya1 ·Vladimir V. Podolskii2

Accepted: 4 May 2022 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2022

Abstract
In this paper we study decision tree models with various types of queries. For a
given function it is usually not hard to determine the complexity in the standard deci-
sion tree model (each query evaluates a variable). However in more general settings
showing tight lower bounds is substantially harder. Threshold functions often have
non-trivial complexity in such models and can be used to provide interesting exam-
ples. Standard decision trees can be viewed as a computational model in which each
query depends on only one input bit. In the first part of the paper we consider nat-
ural generalization of standard decision tree model: we address decision trees that
are allowed to query any function depending on two input bits. We show the first
lower bound of the form n−o(n) for an explicit function (namely, the majority func-
tion) in this model. We also show that in the decision tree model with AND and OR
queries of arbitrary fan-in the complexity of the majority function is n − 1. In the
second part of the paper we address parity decision trees that are allowed to query
arbitrary parities of input bits. There are various lower bound techniques for parity
decision trees complexity including analytical techniques (degree over F2, Fourier
sparsity, granularity) and combinatorial techniques (generalizations of block sensi-
tivity and certificate complexity). These techniques give tight lower bounds for many
natural functions. We give a new inductive argument tailored specifically for thresh-
old functions. A combination of this argument with granularity lower bound allows

The results presented in Section 3 are supported by Russian Science Foundation (21-11-00318). The
results presented in Section 4 were prepared within the framework of the HSE University Basic
Research Program. The preliminary version of the paper has appeared in the proceedings of CSR
2020 conference.

� Vladimir V. Podolskii
podolskii@mi-ras.ru

Anastasiya Chistopolskaya
a.chistopolskaia@gmail.com

1 HSE University, Moscow, Russia

2 Steklov Mathematical Institute, Moscow, Russia

Published online: 23 August 2022

Theory of Computing Systems (2022) 66:1074–1098

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-022-10084-x&domain=pdf
http://orcid.org/0000-0001-7154-138X
mailto: podolskii@mi-ras.ru
mailto: a.chistopolskaia@gmail.com

us to provide a simple example of a function for which all previously known lower
bounds are not tight.

Keywords Decision tree · Parity decision tree · Granularity · Threshold function ·
Lower bound

1 Introduction

Decision trees is a computational model in which we compute a known Boolean
function f : {0, 1}n → {0, 1} on an unknown input x ∈ {0, 1}n and in one step we can
query q(x) for q : {0, 1}n → {0, 1} from a fixed set of queries. In the standard and
the most studied decision tree model we can query only individual variables of the
input x [5, 12] (the complexity of f is denoted by D(f)). The studies of this model
among other things are related to the well-known sensitivity conjecture [10] that was
recently resolved [11]. Among other cases studied in the literature are parity decision
trees that can query any parity of input bits [28], linear decision trees in which the
queries are linear threshold functions [8, 12] and decision trees with AND and OR
queries [1].

In this paper we will mainly deal with threshold functions. Threshold function
THRk

n on n bits outputs 1 iff there are at least k ones in the input. The majority

function MAJn is simply THR�n/2�
n .

The main goal of the first part of the paper is to study a natural generalization of
standard decision tree model: we address decision trees that are allowed to query any
function depending on two input bits. We denote the complexity in this model by
DB2(f). More generally, we can consider decision trees that can query arbitrary func-
tions depending on at most r inputs, where r is a parameter. The standard decision
tree model corresponds to the case r = 1.

This model can be viewed as a uniform version of multi-party Communication
Complexity (see the book by Kushilevitz and Nisan [17] for details on Commu-
nication Complexity). In this model k players are trying to compute the function
f : {0, 1}nk → {0, 1} and the input is shared by the players. Each player is associ-
ated with a piece of input of size n. In the Number in Hand model (NIH) players
see only the input bits associated with them. In the Number on the Forehead model
(NOF) players see all input bits except those that are associated with them (thus the
inputs visible to players have large overlaps). Decision tree model with r = n for
the computation of f can be viewed as a version of communication model where for
each n bits there is a player seeing exactly these n bits. The decision tree model with
r = (k − 1)n can be viewed as a generalization of NOF communication model.

The special case of this model was considered by Posobin [21] where the com-
putation of MAJn with MAJk-queries was studied for k < n. There are results on a
related model with non-Boolean counting queries [6, 13]. Related settings with non-
Boolean domain also arise in algebraic decision tree model (see, e. g. [12, Section
14.8]).

1075Theory of Computing Systems (2022) 66:1074–1098

We initiate the study of strong lower bounds for decision trees with queries of
bounded fan-in considering the case of queries of fan-in 2. It is easy to see that the
complexity DB2(f) in this model is lower bounded by D(f)/2 (each binary query
can be simulated by two unary queries). However, in the view of generalization to
larger r it is interesting to obtain lower bounds greater than n/2. We show that

DB2(MAJn) ≥ n − o(n).

We also show that if we allow additionally to query parities of three bits, the complexity
of majority (as well as any symmetric function) drops to at most 2n/3. Thus to obtain
strong lower bounds for r = 3 more complicated functions need to be considered.

Also in this part of the paper we address the complexity of majority function MAJ
in decision tree model with AND and OR queries (of arbitrary fan-in). We denote the
complexity of a function f in this model by D∧,∨(f). The complexity of threshold
functions in this model was studied by Ben-Asher and Newman [1] with the relation
to a certain PRAM model. It was shown there that THRk

n functions have complexity
�(k/ log(n/k)). In this paper we are interested in the precise complexity of functions
in this model. We show that D∧,∨(MAJ) = n − 1.

In the second part of the paper we turn to parity decision tree model D⊕(f).
Apart from being natural and interesting on its own parity decision tree model

was studied mainly in connection with Communication Complexity and more specif-
ically, with Log-rank Conjecture. In Communication Complexity’s most standard
model there are two players Alice and Bob. Alice is given x ∈ {0, 1}n and
Bob is given y ∈ {0, 1}n and they are trying to compute some fixed function
F : {0, 1}n × {0, 1}n → {−1, 1} on input (x, y). The question is how much com-
munication is needed to compute F(x, y) in the worst case. It is known that the
deterministic communication complexity Dcc(F) of the function F is lower bounded
by log rank(MF), where MF is the communication matrix of F [17]. It is a long
standing conjecture and one of the key open problems in Communication Complex-
ity, called Log-rank Conjecture [18], to prove that Dcc(F) is upper bounded by a
polynomial of log rank(MF).

An important special case of Log-rank Conjecture addresses the case of XOR-
functions F(x, y) = f (x⊕y) for some f , where x⊕y is a bit-wise XOR of Boolean
vectors x and y. On one hand, this class of functions is wide and captures many
important functions (including equality and Hamming distance), and on the other
hand the structure of XOR-functions allows to use analytic tools. For such functions
rank(MF) is equal to the Fourier sparsity sparf , the number of non-zero Fourier
coefficients of f . Thus, the Log-rank Conjecture for XOR-functions can be restated:
is it true that Dcc(F) is bounded by a polynomial of log sparf ?

Given a XOR-function f (x ⊕ y) a natural way for Alice and Bob to compute the
value of the function is to use a parity decision tree for f . They can simulate each
query in the tree by computing parity of bits in their parts of the input separately
and sending the results to each other. One query requires two bits of communication
and thus Dcc(F) ≤ 2D⊕(f), where by D⊕(f) we denote the parity decision tree

1076 Theory of Computing Systems (2022) 66:1074–1098

complexity of f . This leads to an approach to establish Log-rank Conjecture for
XOR-function [28]: show that D⊕(f) is bounded by a polynomial of log sparf .

This approach received a lot of attention in recent years and drew attention to
parity decision trees themselves [9, 23–25, 27, 28]. In a recent paper [9] it was shown
that actually Dcc(F) and D⊕(f) are polynomially related. This means that the simple
protocol described above is not far from being optimal and that the parity decision
tree version of Log-rank Conjecture stated above is actually equivalent to the original
Log-rank Conjecture for XOR-functions.

Known techniques for lower bounds for parity decision trees fall into one of the
two categories: of analytical and combinatorial flavor. Analytical techniques include
lower bounds on D⊕(f) through sparsity spar(f), granularity gran(f) and degree
deg2(f) over F2. The strongest lower bound among these is D⊕(f) ≥ gran(f) + 1
(see details in Section 2).

Regarding combinatorial techniques, for standard decision trees there are several
combinatorial measures known that lower bound decision tree complexity. Among
them the most common are certificate complexity and block sensitivity. Zhang and
Shi [28] generalized these measures to the setting of parity decision tree complexity.

Parity decision tree complexity versions of combinatorial measures are actually
known to be polynomially related to parity decision tree complexity [28]. For analyt-
ical techniques it is known that existence of polynomial relation between D⊕(f) and
gran(f) (or spar(f)) is equivalent to Log-rank Conjecture for XOR-functions [9].

In view of this it is interesting to further study lower bounds for parity decision
trees.

In this paper we prove a new lower bound for parity decision tree complexity of
threshold functions. We show that

D⊕(THRk+1
n+2) ≥ D⊕(THRk

n) + 1

for any k, n.
The combination of this result with granularity lower bound allows to show that

for n = 8k + 2, k > 0 we have D⊕(THR3
n) = n − 1, whereas all previous techniques

give at most n − 2 lower bound. Thus, we give an example of a function, for which
all known general techniques are not tight.

The rest of the paper is organized as follows. In Section 2 we provide neces-
sary definitions, preliminary information and review lower bounds for parity decision
trees. In Section 3 we study decision trees with binary queries as well as decision trees
with AND and OR queries. In Section 4 we study parity decision tree complexity of
threshold functions. In Section 5 we give concluding remarks.

2 Preliminaries

In many parts of the paper we assume that Boolean functions are functions of the
form f : {0, 1}n → {−1, 1}, for n ∈ N. That is, input bits are treated as 0 and 1
and to them we will usually apply operations over F2. Output bits are treated as −1
and 1 and the arithmetic will be over R. The value −1 corresponds to ‘true’ and 1
corresponds to ‘false’. In other parts of the paper it is more convenient to consider

1077Theory of Computing Systems (2022) 66:1074–1098

Boolean functions in the form f : {−1, 1}n → {−1, 1} with the same semantics of
−1 and 1.

We denote the variables of functions by x = (x1, . . . , xn). We use the notation
[n] = {1, . . . , n}.

2.1 Boolean Fourier Analysis

We briefly review the notation and needed facts from Boolean Fourier analysis. For
extensive introduction see [19].

For functions f, g : {0, 1}n → R consider an inner product

〈f, g〉 = Exf (x)g(x),

where the expectation is taken over uniform distribution of x on {0, 1}n.
For a subset S ⊆ [n]we denote by χS(x) = ∏

i∈S(−1)xi the Fourier character cor-
responding to S. We denote by f̂ (S) = 〈f, χS〉 the corresponding Fourier coefficient
of f .

It is well-known that for any x ∈ {0, 1}n we have f (x) = ∑
S⊆[n] f̂ (S)χS(x).

If f : {0, 1}n → {−1, 1} (that is, if f is Boolean) then the well-known Parseval’s
Identity holds:

∑

S⊂[n]
f̂ (S)2 = 1.

By the support of the Boolean function f we denote

Supp(f) = {S ⊆ [n] | f̂ (S) �= 0}.
The sparsity of f is spar(f) = |Supp(f)|. Basically, the sparsity of f is the l0-norm
of the vector of its Fourier coefficients.

Consider a binary fraction α, that is α is a rational number that can be written in a
form that its denominator is a power of 2. By the granularity gran(α) of α we denote
the minimal integer k ≥ 0 such that α · 2k is an integer.

We will also frequently use the following closely related notation. For an integer
L denote by P(L) the maximal power of 2 that divides L. It is convenient to set
P(0) = ∞.

Note that for Boolean f the Fourier coefficients of f are binary fractions. By the
granularity of f : {0, 1}n → Z we call the following value

gran(f) = max
S⊆[n] gran(f̂ (S)).

It is easy to see that for any f : {0, 1}n → {−1, 1} it is true that 0 ≤ gran(f) ≤ n−1
and both of these bounds are achievable (for example, for f (x) = ⊕

i xi and f (x) =∧
i xi respectively).
It is known [7, 25] that gran(f) is always not far from the logarithm of spar(f):

log spar(f)

2
≤ gran(f) ≤ log spar(f) − 1.

The first inequality can be easily obtained from Parseval’s identity. The second is less
trivial (see [25] or [19, Exercise 3.32]). Again, both inequalities are tight (the first

1078 Theory of Computing Systems (2022) 66:1074–1098

one is tight for inner product IP(x, y) = ⊕
i (xi ∧yi) or any other bent function [19];

the second one is tight for example for the conjunction of two variables).
For a Boolean function f {0, 1}n → {−1, 1} denote by deg2(f) the degree of the

multilinear polynomial p ∈ F2[x1, . . . , xn] computing f as a Boolean function, that
is for all x ∈ F

n
2 we have p(x) = 1 if f (x) = −1 and p(x) = 0 otherwise. It is well

known that such multilinear polynomial p is unique for any f and thus deg2(f) is
well defined.

It is known that deg2(f) ≤ log spar(f) for any f [2]. We observe that the
granularity is also lower bounded by the degree of the function.

Lemma 1 For any f : {0, 1}n → {−1, 1} we have deg2(f) ≤ gran(f) + 1.

The proof strategy is similar to the one of [2]. We present the proof for the sake of
completeness.

Proof For a function f : {0, 1}n → {−1, 1} consider two subfunctions f0 and f1 on
n−1 variables obtained from f by setting variable xn to 0 and to 1 respectively. Note
that for any S ⊆ [n − 1] we have
f̂ (S) = Ex∈{0,1}nf (x)χS(x)

= 1

2
Ex∈{0,1}n−1f0(x)χS(x) + 1

2
Ex∈{0,1}n−1f1(x)χS(x) = 1

2
f̂0(S) + 1

2
f̂1(S)

and

f̂ (S ∪ {n})
= Ex∈{0,1}nf (x)χS(x)

= 1

2
Ex∈{0,1}n−1f0(x)χS(x)− 1

2
Ex∈{0,1}n−1f1(x)χS(x)= 1

2
f̂0(S)− 1

2
f̂1(S).

Thus,
f̂0(S) = f̂ (S) + f̂ (S ∪ {n})

and
f̂1(S) = f̂ (S) − f̂ (S ∪ {n}).

In particular, the granularity of both f0 and f1 is not larger than the granularity of
f . From this we conclude that the granularity of a subfunction of f is at most the
granularity of f .

Denote d = deg2(f) and consider a monomial of degree d in the polynomial p

for f . For simplicity of notation assume that this is the monomial x1 . . . xd . Fix all
variables xi for i > d to 0. We get a subfunction g of f of d variables and degree d.
As discussed above gran(g) ≤ gran(f), so it is enough to show that d ≤ gran(g)+1.
For this note that since the function g is of maximal degree we have that |g−1(−1)|
is odd (see, e.g. [12, Section 2.1]). Thus,

ĝ(∅) = Ex∈{0,1}d g(x) = 1

2d

(
|g−1(1)| − |g−1(−1)|

)
= 1

2d

(
2n − 2|g−1(−1)|

)

and the granularity of ĝ(∅) is d − 1.

1079Theory of Computing Systems (2022) 66:1074–1098

2.2 Decision Trees

A decision tree T is a rooted directed binary tree. Each of its leaves is labeled by
−1 or 1, each internal vertex v is labeled by some function qv : {0, 1}n → {−1, 1}.
Each internal node has two outgoing edges, one labeled by −1 and another by 1. A
computation of T on input x ∈ {0, 1}n is the path from the root to one of the leaves
that in each of the internal vertices v follows the edge, that has label equal to the value
of qv(x). Label of the leaf that is reached by the path is the output of the computation.
The tree T computes the function f : {0, 1}n → {−1, 1} iff on each input x ∈ {0, 1}n
the output of T is equal to f (x).

Decision tree models differ by the types of functions qv that are allowed in the
vertices of the tree. For any set Q of functions the decision tree complexity of the
function f is the minimal depth of a tree (that is, the number of edges in the longest
path from the root to a leaf) using functions from Q and computing f . We denote
this value by DQ(f).

The standard decision tree model allows to query individual variables in the ver-
tices of the tree. The complexity in this model is denoted simply by D(f). In the
paper we also consider D⊕(f), D∧,∨(f), DB2(f) standing for Q equal to the set of
all parities, the set of all AND and OR functions and the set B2 of all binary functions
respectively.

2.3 Parity Decision Trees

There are various techniques known for lower bounds for parity decision trees (that
is, decision trees with parity queries). Since we are not aware of the exposition of
some bounds that follow from known techniques and the exposition on the connection
of parity decision tree complexity with multiplicative complexity, we survey them
here.

As discussed in the Introduction, one technique is via sparsity through communi-
cation complexity.

Lemma 2 For any function f : {0, 1}n → {−1, 1} we have D⊕(f) ≥ log spar(f)
2 .

Although, if Log-rank conjecture for XOR-functions is true, this approach gives
optimal bounds up to a polynomial, in many cases it does not help to determine
the precise parity decision tree complexity of Boolean functions. For example, this
approach always gives bounds of at most n/2 for functions of n variables.

Another lower bound obtained through analytical approach is via granularity.

Lemma 3 For any non-constant function f : {0, 1}n → {−1, 1} we have D⊕(f) ≥
granf + 1.

It is not hard to deduce this lemma from [19, Exercise 3.26]. However, as we have
not seen this statement in the literature, we provide a proof.

1080 Theory of Computing Systems (2022) 66:1074–1098

Proof Along with the function f : {0, 1}n → {−1, 1} consider the function
f ′ : {0, 1}n → {0, 1} such that f ′(x) = f (x)+1

2 . Clearly, the parity decision tree com-
plexity of f and f ′ are equal. Also it is easy to see directly from the definition that
for any non-constant f we have gran(f ′) = gran(f) + 1.

From Exercise 3.26 in [19] it follows that D⊕(f ′) ≥ gran(f ′).
Combining all of these together we get

D⊕(f) = D⊕(f ′) ≥ gran(f ′) = gran(f) + 1.

Another standard approach is through the degree of polynomials. It is well known
that the complexity of a function in standard decision trees model is lower bounded
by the degree of the function over R (see, e.g. [5]). Completely analogously it can be
shown that the parity decision tree complexity of a function is lower bounded by the
degree of the function over F2.

Although it is very similar to analogous connection for standard decision trees, we
have not seen it in the literature.

Lemma 4 For any f : {0, 1}n → {−1, 1} we have D⊕(f) ≥ deg2(f).

Proof The proof of this lemma follows closely the proof connecting standard
decision tree complexity of a function with its degree over R (see, e.g. [5]).

Consider a parity decision tree T computing f with depth equal to D⊕(f). Con-
sider arbitrary leaf l of this tree and consider the path in T leading from the root to
l. For computation to follow this path on input x in each internal vertex v the input
x must satisfy some linear restriction L(x) = 1 (L(x) is the parity Lv(x) labeling
v if the path follows the edge labeled by −1 out of v and L(x) = Lv(x) ⊕ 1 if the
path follows the edge labeled by 1). Denote all these linear forms in these restrictions
along the path by L1(x), . . . , Lp(x), where p ≤ D⊕(f). Thus, on input x we follow
the path to l iff L1(x) ∧ . . . ∧ Lp(x) is satisfied. Denote this expression by Tl(x).

Denote by S the set of all leaves of T that are labeled by −1. For any input x we
have that f (x) = −1 iff the computation path in T reaches a leaf labeled with −1 iff

⊕

l∈S

Tl(x) = 1.

It is left to observe that the latter expression is a multilinear polynomial over F2 of
degree at most D⊕(f).

From the bounds discussed above it follows that the lower bound through granu-
larity is stronger than the lower bounds through the sparsity and the degree. In fact,
it allows to determine the exact complexity of some Boolean functions including
majority and recursive majority. Since we have not seen these bounds presented in
the literature, we present them here.

The majority function MAJn : {0, 1}n → {−1, 1} is defined as follows:
MAJn(x) = −1 ⇔ ∑n

i=1 xi ≥ n
2 .

To state our result we will need the following notation: let B(n) be the number of
ones in a binary representation of n.

1081Theory of Computing Systems (2022) 66:1074–1098

Theorem 1 D⊕(MAJn) = n − B(n) + 1.

Recursive majority MAJ⊗k
3 is a function on n = 3k variables and it can be defined

recursively. For k = 1 we just let MAJ⊗1
3 = MAJ3. For k > 1 we let

MAJ⊗k
3 = MAJ3

(
MAJ⊗k−1

3 ,MAJ⊗k−1
3 ,MAJ⊗k−1

3

)
,

where each MAJ⊗k−1
3 is applied to a separate block of variables.

Theorem 2 D⊕(MAJ⊗k
3) = n+1

2 , where n = 3k is the number of variables.

The upper bound in Theorems 1 is a simple adaptation of the folklore algorithm.
Other parts of the proofs of Theorems 1 and 2 are purely technical. For these reasons
we move these proofs to Appendix A.1 and A.2.

Next we describe a connection to multiplicative complexity.
Multiplicative complexity c∧(f) of a Boolean function f is the minimal number

of AND-gates in a circuit computing f and consisting of AND, ⊕ and NOT gates,
each gate of fan-in at most 2 (for formal definitions from Circuit Complexity see,
e.g. [12]). This measure was studied in Circuit Compexity [3, 4, 14] as well as in con-
nection to Cryptography [15, 26] and providing an explicit function f on n variables
with c∧(f) > n is an important open problem.

The following lemma was communicated to us by Alexander Kulikov [16] and
with his permission we include it here.

Lemma 5 For any f on n variables D⊕(f) ≤ c∧(f) + 1.

Proof The proof is by induction on s = c∧(f).
If s = 0, then f is computed by a circuit consisting of ⊕ and NOT gates and thus

f is a linear form of its variables. We can compute it by one query in parity decision
tree model.

For the step of induction, consider an arbitrary f and consider a circuit C comput-
ing f with the number of AND-gates equal to c∧(f). Consider the first AND-gate
g in C. Both of its inputs compute linear forms over F2. Our decision tree algorithm
queries one of inputs of g. Depending on the answer to the query, g computes either
constant 0, or its second input. In both cases the gate g computes a linear form over
F2, so we can simplify the circuit and obtain a new circuit C′ computing the same
function on inputs consistent with the answer to the first query and with at most s −1
AND-gates. By induction hypothesis in both cases the function computed by C′ is
computable in parity decision tree model with at most s queries. Overall, we make
s + 1 queries.

As a corollary from Theorem 1 and Lemma 5 we get the following lower bound
on the multiplicative complexity of majority.

Corollary 1 c∧(MAJn) ≥ n − B(n).

1082 Theory of Computing Systems (2022) 66:1074–1098

This improves a lower bound of [4]. Previously this lower bound was known only
for n = 2k for some k [4].

Returing to lower bounds for parity decision trees, another known approach is of
a more combinatorial flavor. For standard decision trees there are several combina-
torial measures known that lower bound decision tree complexity. Among them the
most common are certificate complexity and block sensitivity. In [28] these measures
were generalized to the setting of parity decision tree complexity. Parity decision
tree complexity versions of these measures are actually known to be polynomially
related to parity decision tree complexity [28]. It is also known that the certificate
complexity provides a better bound [28]. The paper [20] provides an example of a
function for which combinatorial measures give polynomially better lower bound
than granularity.

Another more combinatorial approach goes through analogs of certificate com-
plexity and block sensitivity for parity decision trees [28]. Since parity block
sensitivity is always less or equal than parity certificate complexity and we are
interested in lower bounds, we will introduce only certificate complexity here.

For a function f : {0, 1}n → {−1, 1} and x ∈ {0, 1}n denote by C⊕(f, x) the
minimal co-dimension of an affine subspace in {0, 1}n that contains x and on which
f is constant. The parity certificate complexity of f is C⊕(f) = maxx C⊕(f, x).

Lemma 6 [28] For any function f : {0, 1}n → {−1, 1} we have D⊕(f) ≥ C⊕(f).

The described techniques allow to establish tight lower bounds for most standard
functions. The complexity of both AND and OR is equal to n through, for example,
certificate complexity. The exact complexity of MOD3 function can be determined
through the degree lower bound. Lower bounds for majority and recursive majority
were discussed above.

3 Decision Trees with B2-Queries

In this section we show a n− o(n) lower bound for the complexity of MAJn function
for B2-queries. As a warm-up we start with the analysis of the complexity of MAJn
in decision tree model with AND and OR queries of arbitrary fan-in. This model was
studied in [1] with the relation to certain PRAM model.

In this section it will be convenient to switch to {−1, 1} variables, that is we will
consider MAJn : {−1, 1}n → {−1, 1} that is equal to 1 iff

∑n
i=1 xi ≥ 0.

First we observe that the complexity of all monotone functions cannot be maximal.

Lemma 7 For any monotone function f : {−1, 1}n → {−1, 1} we have D∧,∨(f) ≤
n − 1.

Proof We can query all variables one by one until two variables are left. Now,
observe that a monotone function of two remaining variables is either a constant, or a
variable, or AND2, or OR2. We can compute this function in at most one query.

1083Theory of Computing Systems (2022) 66:1074–1098

This upper bound is tight for MAJn.

Theorem 3 D∧,∨(MAJn) = n − 1.

Proof The upper bound follows from Lemma 7.
For the lower bound we will argue by adversary argument, that is we will describe

the strategy of query answering forcing the decision tree to make at least n−1 queries.
During the computation we will fix the values of some of the variables. We will

maintain an undirected graph G on the variables that are not yet fixed. Each vertex
in this graph will have degree either 0 or 1 (that is, our graph is a matching). Each
edge in the graph is labeled by either 1 or −1. The intuition behind the edges is the
following. We connect xi and xj by an edge labeled by a iff we add the restriction
that at least one of the variables xi and xj is equal to a. That is, we are not allowed
to fix both variables to −a in the future.

In the beginning the set of vertices of G consists of all variables and there are no
edges. In one query the number of connected components will reduce by at most 1,
with only one exception (when we remove one connected component without making
queries). We will answer the queries in such a way that to know the value of the
function the decision tree should reduce our graph to an empty graph. From this it
follows that at least n − 1 queries are needed.

Along with the graph we maintain the parameter t that is equal to the sum of
the values of already fixed variables. During most of the process we will have that
t ∈ {−1, 0}.

Next we describe how to answer the queries. If the query asks the value of one of
the variables xi , there are two cases. If this variable is isolated in G, we fix the value
of the variable in such a way that the new value of t still lies in {−1, 0}. If xi was
connected by an edge to xj , we fix xi = 1 and xj = −1. The value of t does not
change. In both cases we remove one connected component from G.

Next suppose the query asks AND or OR of several variables. Without loss of
generality consider a query

∧
i∈S xi for some S ⊆ [n] with |S| ≥ 2. The case of

OR-query is symmetric. We can assume that none of the variables in S are already
fixed, since otherwise we can either answer the query without fixing new variables,
or simplify the query. Suppose there is an edge {xi, xj } in G, such that i ∈ S. In
this case we fix xi = 1 and xj = −1. The answer to the query is 1 (that is, ‘false’).
The number of connected components has reduced by 1 and t does not change. Next
suppose that all vertices xi with i ∈ S are isolated. Since |S| ≥ 2 we can consider two
distinct variables xi and xj with i, j ∈ S. We connect these vertices by an edge with
the label 1. Thus, we promise that at least one of the variables is 1 and the answer to
the query is 1. Since we introduce one edge, the number of connected components
reduces by 1. The value of t does not change since we do not fix any variables.

We maintain this query answering strategy until a certain condition is met. To
describe this condition we need to introduce some notation. At an arbitrary point of
computation denote by A the number of −1-edges, by B the number of 1-edges and
by C the number of isolated vertices. Note that A+B+C is the number of connected
components in G.

1084 Theory of Computing Systems (2022) 66:1074–1098

At some point of the query answering we will have that A+C = 1 or B +C = 1.
These cases are symmetric, without loss of generality suppose we have A + C = 1.
If at this point of the computation we have t = 0 this might be a potential problem:
note that none of 1-edges can change the balance to the negative side. If after fixing
the last isolated vertex or the last −1-edge the balance does not decrease, it must be
non-negative for all assignments of variables consistent with the current restrictions.
So, to keep the function non-constant we will fix the last isolated vertex or −1-edge
as soon as A+C = 1. If C = 1, we set the isolated vertex to −1 and we have t = −1
or t = −2. If A = 1 and t = 0, we set both of the variables connected by the edge to
−1 and we have t = −2. If A = 1 and t = −1 we set one of the variables to 1 and
the other to −1 and we have t = −1.

In the rest of the process we have that all the remaining vertices are connected by
1-edges. Answering the queries as before we keep t the same. Thus, there is an input
consistent with our answers such that MAJn is −1 on this input. On the other hand,
if at least one of 1-edges is still present in the graph we can set both of its vertices to
1 and make the balance t non-negative. Thus, in this case there is also an assignment
on which the value of the function is equal to 1. Thus, to make the function to be
constant we should remove all connected components from G.

We now proceed to the proof of the lower bound for binary queries. The main idea
behind the proof is the same as in the previous theorem, but there are many technical
problems we need to overcome.

Theorem 4 DB2(MAJn) ≥ n − O(
√

n).

Proof Let us first classify the queries that can be made by functions in B2. First note,
that the queries q and −q are equivalent. Next, there are functions in B2 depending
on at most one variable. They correspond to querying just one one variable. Next,
there are OR-type functions in B2, that is the function of the form (xa

i ∨xb
j) for a, b ∈

{0, 1}, where x1
i = xi and x0

i = −xi . Finally, there are two XOR-type functions in
B2. Due to the equivalence of a query and its negation, they correspond to the query
xi ⊕ xj . Note that the last query basically asks whether variables xi and xj are equal.

The proof strategy is similar to the one in the previous proof. During the computa-
tion we will maintain the graph G. But now the vertices of G are new fresh variables
that we denote by y1, . . . , yk (here k is the number of vertices in G). To each of the
vertices yi we assign some integer weight ci . Some of the vertices are connected by
edges, labeled by 1 or −1. The edges form a matching. We will maintain that the
weights of connected vertices are equal. We will maintain that 1 ≤ ci ≤ √

n.
The intuition behind the graph is the following. At each point of the computation

some of the original input variables xi are fixed to constants and the rest are split into
equivalence classes. All variables in each of the classes are fixed to some variable yj ,
or to its negation −yj . We will maintain the following relation

∑

i : xi is unfixed

xi =
k∑

j=1

cj yj .

1085Theory of Computing Systems (2022) 66:1074–1098

Basically, if at some point we fix all unfixed variables yi , then the weighted sum of
yj ’s with weights cj is the same as the sum of all xi variables. In the beginning of the
computation none of the variables xi are fixed and each variable constitutes its own
equivalence class. In other words, initially k = n, for all i we set xi = yi , ci = 1 and
there are no edges in the graph G.

We will answer queries in such a way that the number of connected components
of G will reduce as slowly as possible. On almost all steps the number of connected
components will reduce by 1, but sometimes we will have to reduce it by 2. We will
show that such steps cannot happen too many times. We will show how to answer
queries in such a way that to know the value of the function the decision tree must
reduce the number of connected components to a small number.

We also maintain a parameter t that is equal to the sum of the values of already
fixed variables xi .

The computation will proceed in two phases. In the first phase we will maintain
that −√

n ≤ t ≤ √
n.

We now explain how to answer the queries in the first phase. Note that each query
to variables of x can be restated as a query to variables of y (since each xi is fixed
either to a constant or to some variable yj). First we consider the case that the query
addresses the variables of y that are isolated (as nodes of graph G).

Queries to Isolated Vertices Suppose the query asks the value of one of the variables
yi . We then fix the value of the variable in such a way that ciyi and t have opposite
signs. We remove the variable yi from the graph. Since ci ≤ √

n the balance t is still
at most

√
n in absolute value.

Suppose the query asks whether yi = yj . Suppose first that ci �= cj , suppose
without loss of generality that ci > cj . Then the adversary reply with yi �= yj , so we
identify yj = −yi , remove the vertex yj from G and subtract cj from ci . It is easy to
see that all properties are maintained. The number of connected components reduces
by 1.

If on the other hand ci = cj , then if ci >
√

n/2, we fix yi = 1 and yj = −1,
and remove both vertices from G. The number of connected components in this case
reduces by 2. If on the other hand ci ≤ √

n/2, we set yj = yi , remove yj from G

and add cj to ci . The number of connected components reduces by 1.
Suppose next that the query asks the function yi ∨ ¬yj . In this case if t ≥ 0 we

set yi = −1, otherwise we fix yj = 1. In the first case we remove yi from G and in
the second we remove yj . The answer to the query in both cases is −1. The number
of connected components reduces by 1 and since ci, cj ≤ √

n the balance t is still at
most

√
n in absolute value.

Finally, suppose the query asks yi ∨ yj or yi ∧ yj . Suppose first that ci �= cj ,
suppose without loss of generality that ci > cj . Then again we set yj = −yi , remove
the vertex yj from G and subtract cj from ci . It is easy to see that all properties are
maintained. The number of connected components reduces by 1.

If on the other hand ci = cj we connect yi and yj by an edge. We label the edge
by −1 for the case of yi ∨yj query and by 1 for the case of yi ∧yj query. The number
of connected components reduces by 1.

Next we proceed to queries to non-isolated vertices.

1086 Theory of Computing Systems (2022) 66:1074–1098

Queries to Non-Isolated Vertices First consider arbitrary queries of the form yi , yi ∨
¬yj , yi ∨ yj or yi ∧ yj and suppose yi is connected by an edge to some other vertex
yl (possibly l = j). For all these types of queries we can fix the answer to the query
by fixing yi to some constant. We also fix yl to the opposite constant and remove
both vertices from G. Since ci = cl the balance t does not change. The number of
connected components reduces by 1.

The only remaining case is the query of the form yi = yj for the case when yi is
connected to some other vertex yl by an edge. If l = j we simply set yi = 1, yj = −1
and remove both vertices from G. The balance t does not change and the number of
connected components reduces by 1. If l �= j we let yi = yj and yl = −yj . We
remove vertices yi and yl from the graph. Since ci and cl are equal the weight of yj

does not change. The number of connected components reduce by 1.
We have described how to answer queries in the first phase. Next we describe at

which point this phase ends. For this denote by A the sum of weights of vertices
connected by −1-edges, by B the sum of weights of vertices connected by 1-edges
and by C the sum of weights of isolated vertices. The first phase ends once either
A+C ≤ 3

√
n or B+C ≤ 3

√
n. Without loss of generality assume thatA+C ≤ 3

√
n

(the other case is symmetric). Note that we can claim that A+C >
√

n. Indeed, note
that in one step of the first phase at most two vertices are removed and the weight of
each vertex is at most

√
n, so if A + C ≤ √

n, then on the previous step we already
had A + C ≤ 3

√
n.

At this step of the computation we fix all isolated vertices and all vertices con-
nected by −1-edges to −1. Before that we had −√

n ≤ t ≤ √
n. Thus, since√

n < A + C ≤ 3
√

n, after this step we have −4
√

n ≤ t < 0 (we could be more
careful here, but this only results in a multiplicative constant factor in O(

√
n) in the

theorem). After this the second phase of the computation starts. There are only ver-
tices connected by 1-edges remained. We answer the queries as in the first phase.
Note that the balance t does not change anymore. Thus if the sum of the weights
of the remaining variables is at least 4

√
n, then the function is non-constant: on one

hand setting one vertex in each pair to 1 and the other to −1 we set function to −1
and setting all variables to 1 we set the function to 1. Thus the function becomes con-
stant only once the total weight of the remaining vertices is below 4

√
n, that is there

are less than 2
√

n connected components.
Let us now calculate how many queries the decision tree needs to make to set the

function to a constant. In the beginning G has n connected components and in the
end it has at most 2

√
n connected components. On each step the number of connected

components reduces by 1 with some exceptions that we consider below.
On the first phase there is the case when the number of connected components

reduces by 2. Note that in this case the total weight of all vertices reduces by at least√
n. Since originally the total weight is n and the total weight never increases, this

step can occur at most
√

n times.
Between the two phases we fix a lot of variables without answering any queries.

Note that their total weight is at most 3
√

n, thus the number of connected components
reduces by at most 3

√
n.

Thus, in total the decision tree needs to make at least n − 2
√

n − √
n − 3

√
n =

n − O(
√

n) queries to fix the function to a constant.

1087Theory of Computing Systems (2022) 66:1074–1098

We observe that the complexity of MAJn drops substantially if we allow to query
parities of three variables.

Lemma 8 Suppose f : {−1, 1}n → {−1, 1} is symmetric function. Then there is a
decision tree of depth � 2n

3 � making queries only of the form AND2, OR2 and XOR3
and computing f .

Proof Split the variables in blocks of size 3. In each block query the parity of its
variables. If the answer is −1, query AND2 of any two variables in the block. If the
answer to the first query is 1, query OR2 of any two variables in the block. It is easy
to see that after these two queries we know the number of −1 variables in the block.
In the case when n is not divisible by 3, if there is a small block of size 1, it requires
one query to handle. If there is block of size 2 we will handle it with two queries.
Knowing the number of −1 variables in all blocks is enough to output the value of
the symmetric function.

4 Parity Decision Tree Complexity of Threshold Functions

In this section we show a new lower bound for parity decision tree complexity of
threshold functions.

To show that all previous techniques are not tight for some threshold functions we
need an approach to prove even better lower bounds. We will do this via the following
theorem.

Theorem 5 For any k and n we have D⊕(THRk+1
n+2) ≥ D⊕(THRk

n) + 1.

Proof Let s = D⊕(THRk+1
n+2). We will construct a parity decision tree for THRk

n

making no more than s − 1 queries.
Denote the input variables to THRk

n by x = (x1, . . . , xn) ∈ {0, 1}n. We introduce
one more variable y (which we will fix later) and consider x1, . . . , xn, y, ¬y as inputs
to the algorithm for THRk+1

n+2. Note that THR
k
n(x) = THRk+1

n+2(x, y,¬y). Our plan is

to simulate the algorithm for THRk+1
n+2 on (x, y,¬y) (possibly reorded) and save one

query on our way.
Consider the first query that the algorithm for THRk+1

n+2 makes. There are two sub-
stantially different cases: the first query asks parity of a proper subset of its inputs and
the first query asks the parity of all inputs. We consider these two cases separately.

Suppose first that the query does not ask the parity of all input variables. Since
the function THRk+1

n+2 is symmetric we can reorder the inputs in such a way that the
query contains input y and does not contain ¬y, that is the query asks the parity
(
⊕

i∈S xi) ⊕ y for some S ⊆ [n]. Now it is time for us to fix the value of y. We let
y = ⊕

i∈S xi . Then the answer to the first query is 0, we can skip it and proceed to
the second query. For each next query of the algorithm for THRk+1

n+2 if it contains y

or ¬y (or both) we substitute them by
⊕

i∈S xi and (
⊕

i∈S xi) ⊕ 1 respectively. The

1088 Theory of Computing Systems (2022) 66:1074–1098

result is the parity of some variables among x1, . . . , xn and we make this query to
our original input x. Clearly the answer to the query to x is the same as the answer
to the original query to (x, y,¬y). Thus, making at most s − 1 queries we reach the
leaf of the tree for THRk+1

n+2 and thus compute THRk+1
n+2(x, y,¬y) = THRk

n(x).

It remains to consider the case when the first query to THRk+1
n+2 is (

⊕n
i=1 xi)⊕y ⊕

¬y. This parity is equal to
⊕n

i=1 xi and we make this query to x. Now we proceed
to the second query in the computation of THRk+1

n+2 and this query does not query the
parity of all input variables. We perform the same analysis as above for this query:
rename the inputs, fix y to the parity of subset of x to make the answer to the query
to be equal to 0, simulate further queries to (x, y,¬y). Again we save one query in
this case and compute THRk

n(x) in at most s − 1 queries.

Next we analyze the decision tree complexity of THR2
n functions. For them the

lower bound through granularity is tight. We need this analysis to use in combination
with Theorem 5 to prove lower bound for THR3

n.

Lemma 9 For even n we have D⊕(THR2
n) = n and for odd n we have D⊕(THR2

n) =
n − 1.

Proof We start with a lower bound.

Here we will need to consider two Fourier coefficients, T̂HR
2
n(∅) and T̂HR

2
n([n]).

We start with the latter one.
We have

T̂HR
2
n([n]) = 1

2n

(
1∑

i=0

(−1)i
(

n

i

)

−
n∑

i=2

(−1)i
(

n

i

))

= 1

2n

(

2
1∑

i=0

(−1)i
(

n

i

)

−
n∑

i=0

(−1)i
(

n

i

))

= 1

2n

(

2
1∑

i=0

(−1)i
(

n

i

)

−0

)

.

From this we can see that gran(T̂HR
2
n([n])) = n − P

(∑1
i=0(−1)i

(
n
i

)) − 1 and thus

D⊕(THR2
n) ≥ n − P

(
1∑

i=0

(−1)i
(

n

i

))

.

By the same analysis for T̂HR
2
n(∅) we can show that

D⊕(THR2
n) ≥ n − P

(
1∑

i=0

(
n

i

))

.

Note that
∑1

i=0(−1)i
(
n
i

) = 1 − n and
∑1

i=0

(
n
i

) = 1 + n. From this for even n we
clearly obtain a lower bound of D⊕(THR2

n) ≥ n. For odd n it is easy to see that one
of the numbers 1− n and 1+ n is not divisible by 4. Thus for odd n we obtain lower
bound D⊕(THR2

n) ≥ n − 1.

1089Theory of Computing Systems (2022) 66:1074–1098

It remains to prove that the lower bound is tight for odd n. To provide an algorithm
making at most n − 1 queries we again will split variables into blocks and again
will assume that in the beginning all blocks are of size 1. We split all variables but
one into pairs and check whether variables in each pair are equal. After this we have
(n − 1)/2 blocks of size 2 and one block of size 1. If there is a balanced block of
size 2, again we can just query one variable from each of the remaining blocks thus
learning the number of ones in the input. This allows us to compute the function in at
most n − 1 queries. If all blocks of size 2 contain equal variables, then note that the
value of the function does not depend on the variable in the block of size 1. Indeed,
THR2

n(x) = 1 iff
∑

i xi ≥ 2 iff there is a block of size 2 containing variables equal
to 1. Thus it remains to query one variable from each block of size 2, which again
alows us to compute the function with at most n − 1 queries.

Next we compute the granularity for threshold functions with threshold three.

Lemma 10 For n = 8m + 2 for integer m we have gran(THR3
n) = n − 3.

Proof For the upper bound we need to consider an arbitrary Fourier coefficient

T̂HR
3
n(S). We have

T̂HR
3
n([S]) = 1

2n

⎛

⎝
∑

x,|x|≤2

χS(x) −
∑

x,|x|≥3

χS(x)

⎞

⎠

= 1

2n

⎛

⎝2
∑

x,|x|≤2

χS(x) −
∑

x∈{0,1}n
χS(x)

⎞

⎠ ,

where by |x| we denote ∑n
i=1 xi . The second sum in the last expression is equal to

either 2n or 0 depending on S. Thus we have

gran(T̂HR
3
n(S)) = n − P

⎛

⎝
∑

x,|x|≤2

χS(x)

⎞

⎠ − 1. (1)

Denote the size of S by l. Then we have
∑

x,|x|≤2

χS(x) = 1 − l + (n − l) + l(l − 1)

2
− l(n − l) + (n − l)(n − l − 1)

2
,

where the first summand corresponds to x with |x| = 0, the next two summands
correspond to |x| = 1 and the last three correspond to |x| = 2.

Rearranging this expression we obtain

∑

x,|x|≤2

χS(x) = 4l2 + 2 + (n + 1)(n − 4l)

2
.

We need to show that for n ≡ 2 (mod 8) this number is divisible by 4, that is its
numerator is divisible by 8. Since divisibility by 8 depends only on the remainder

1090 Theory of Computing Systems (2022) 66:1074–1098

of n when divided by 8, it is enough to check divisibility of the numerator by 8 for
n = 2. We have

4l2 + 2 + (n + 1)(n − 4l) = 4l2 + 2 + 3(2 − 4l) = 4(l2 − 3l + 2),

which is clearly divisible by 8 for all l. Thus P
(∑

x,|x|≤2 χS(x)
)

≥ 2 for n = 8m+2

and
gran(THR3

n) ≤ n − 3.

For the lower bound on the granularity it is enough to consider Fourier coefficients

T̂HR
3
n(∅) and T̂HR

3
n([n]). For them we have

∑

x,|x|≤2

χ∅(x) = 1 + n + n(n − 1)

2
= 2 + n(n + 1)

2

and
∑

x,|x|≤2

χ[n](x) = 1 − n + n(n − 1)

2
= 2 + n(n − 3)

2
.

To show the lower bound it is enough to show that for any n = 8m + 2 at least one
of these expressions is not divisible by 8, that is their numerators are not divisible by
16. It is straightforward to check that for n ≡ 2 (mod 16) we have 2+ n(n + 1) ≡ 8
(mod 16) and for n ≡ 10 (mod 16) we have 2 + n(n − 3) ≡ 8 (mod 16). In both
cases by (1) we found a Fourier coefficients with granularity at least n − 3.

We now show that for functions in Lemma 10 their decision tree complexity is
greater than their granularity plus one. Note, that since granularity lower bound is
not worse than the lower bounds through the sparsity and the degree, they also do not
give tight lower bounds. Also it is easy to see that the certificate complexity does not
give optimal lower bound as well (note that each input x lies in an affine subspace of
dimension 2 on which the function is constant).

Theorem 6 For n = 8m + 2 for integer m > 0 we have D⊕(THR3
n) = n − 1.

Proof For the lower bound we note that n − 2 is even and thus by Lemma 9 we have
D⊕(THR2

n−2) ≥ n − 2. Then by Theorem 5 we have D⊕(THR3
n) ≥ n − 1.

For the upper bound we again view the inputs as blocks of size 1 and by checking
equality of variables start combining all variables but two into larger blocks. We first
combine them into blocks of size 2 and then combine all unbalanced blocks, except
possibly one, to blocks of size 4. If in this process we ever encounter a balanced block
we just query one variable from all other blocks thus learning the number of ones in
the input in at most n − 1 queries. If all blocks contain equal variables, then there is
one block of size 2. As in the proof of Lemma 9 we observe that two variables in this
block do not affect the value of the function. Indeed, THR3

n(x) = 1 iff
∑

i xi ≥ 3 iff
there is a block of size 4 containing variables equal to 1.

Thus, we have shown that previously known lower bounds are not tight for
THR3

8m+2. However, the gap between the lower bound and the actual complexity is 1.

1091Theory of Computing Systems (2022) 66:1074–1098

Remark 1 We note that from our analysis it is straightforward to determine the com-
plexity of THR3

n for all n. If n = 4m or 4m+3 for some m, then D⊕(THR3
n) = n and

if n = 4m + 1 or n = 4m + 2, then D⊕(THR3
n) = n − 1. The lower bounds (apart

from the case covered by Theorem 6) follows from the consideration of T̂HR
3
n(∅) and

T̂HR
3
n([n]) as in the proof of Lemma 10. The upper bound follows the same analysis

as in the proof of Theorem 6.

5 Conclusion

The next natural question would be address the complexity of Boolean functions in
decision tree model that can query functions of k variables for k > 2. In this model
lower bounds of the form n/k are trivial, but it is not clear how to prove truly linear
lower bounds. On the other hand, it is easy to show by counting argument that there
are hard functions for this model. Recall, that the majority function has complexity
at most 2n/3 for k = 3. So more complicated functions are needed here.

Another important direction is further studies of lower bounds for parity decision
trees. One of the key goals here is to show that parity decision tree complexity and
sparsity are polynomially related. This would resolve Log-rank Conjecture for XOR-
functions.

Appendix

A.1 Proof of Theorem 1

We start with an upper bound. The following lemma is a simple adaptation of the
folklore algorithm (see, e.g. [22]).

Lemma 11

D⊕(MAJn) ≤ n − B(n) + 1.

Proof Our parity decision tree will mostly make queries of the form y ⊕ z for a pair
of variables. Note that such a query basically checks whether y and z are equal.

Our algorithm will maintain splitting of input variables into blocks of two types.
We will maintain the following properties:

– the size of each block is a power of 2;
– all variables in each block of type 1 are equal;
– blocks of type 2 are balanced, that is they have equal number of ones and zeros.

In the beginning of the computation each variable forms a separate block of size one.
During each step the algorithm will merge two blocks into a new one. Thus, after k

steps the number of blocks is n − k.

1092 Theory of Computing Systems (2022) 66:1074–1098

The algorithm works as follows. On each step we pick two blocks of type 1 of
equal size. We pick one variable from each block and query the parity of these two
variables. If the variables are equal, we merge the blocks into a new block of type
1. If the variables are not equal, the new block is of type 2. The process stops when
there are no blocks of type 1 of equal size.

It is easy to see that all of the properties listed above are maintained. In the end
of the process we have some blocks of the second type (possibly none of them) and
some blocks of the first type (possibly none of them) of pairwise non-equal size. Note
that the value of the majority function is determined by the value of variables in the
largest block of type 1. Indeed, all blocks of type 2 are balanced and the largest block
of type 1 has more variables then all other blocks of type 1 in total. Thus, to find the
value of MAJn it remains to query one variable from the largest block of type 1. Note,
that the case when there are no blocks of type 1 in the end of the process correspond
to balanced input (and even n). In this case we can tell that the output is −1 without
any additional queries.

Note that the sum of sizes of all blocks is equal to n. Since the size of each block is
a power of 2, there are at least B(n) blocks in the end of the computation (one cannot
break n in the sum of less then B(n) powers of 2). Thus, overall we make at most
n − B(n) + 1 queries and the lemma follows.

Before proceeding with the lower bound through granularity we briefly dis-
cuss lower bounds that can be obtained by other approaches. It is known that
spar(MAJn) = 2n−1 [19]. Thus from the sparsity lower bound we can only get
D⊕(MAJn) ≥ log spar(MAJn)/2 = n−1

2 .
Note also that each input x ∈ {0, 1}n to MAJn lies in the constant-valued sub-

cube of dimension at least �n−1
2 �. Indeed, if MAJn(x) = 1 just pick a subcube on

some subset of variables of size �n−1
2 � containing all ones of the input. The case

MAJn(x) = −1 is symmetric. Thus, in the approach through certificate complexity
we get D⊕(MAJn) ≥ �n−1

2 �.
Finally, we observe that the degree approach also does not give a matching lower

bound.

Lemma 12 For any n we have deg(MAJn) = 2p where p is the largest integer such
that 2p ≤ n.

Proof Consider a multilinear polynomial p over F2 computing MAJn. For a set S ⊆
[n] denote by cS the coefficient of the monomial

∏
i∈S xi in p. Denote |S| = k and

denote by xS ∈ {0, 1}n the input such that xi = 1 iff i ∈ S. By [12, Section 2.1] we
have

cS =
⊕

x≤xS

MAJn(x),

where the order on {0, 1}n is coordinate-wise.
From this we obtain that

cS =
k∑

i=� n
2 �

(
k

i

)

=
k∑

i=� n
2 �

(−1)i
(

k

i

)

(mod 2),

1093Theory of Computing Systems (2022) 66:1074–1098

where the second equation follows since changing the sign of an integer summand
does not change its remainder when divided by 2.

Denote l = �n
2 �. We can simplify the latter sum as follows:

k∑

i=l

(−1)i
(

k

i

)

=
k∑

i=l

(−1)i
((

k − 1

i − 1

)

+
(

k − 1

i

))

= (−1)l
(

k − 1

l − 1

)

.

By Kummer’s theorem
(
k−1
l−1

)
is odd iff the summation process of l − 1 and k − l

in binary representation does not have any carry bits. Note that both l − 1 = �n
2 � − 1

and k − l ≤ �n
2 � are less or equal n/2. Thus their binary representations are one

bit shorter than the binary representation of n. The maximal k for which
(
k−1
l−1

)
is

odd (and thus cS is non-zero) is the one for which k − l has a binary representation
inverted compared to l−1, that is (k− l)+(l−1) = k−1 has a binary representation
consisting of ones only. That is, k is a power of 2 not exceeding n.

It is not hard to see that this lower bound matches the upper bound of Lemma 11
only for n = 2r and n = 2r +1. On the other hand, for example it is far from optimal
by approximately a factor of 2 for n = 2r − 1 for some r .

We next show that Lemma 3 gives a tight lower bound for parity decision tree
complexity of MAJn.

Lemma 13 gran(MAJn) = n − B(n).

Proof We will show that gran(MAJn) ≥ n − B(n). The inequality in the other
direction follows from Lemma 11 and Lemma 3.

We consider the Fourier coefficient M̂AJn([n]) and show that its granularity is at
least n − B(n). Let k = �(n + 1)/2�. Note that k is the smallest number such that
MAJn is −1 on inputs with k ones.

Then we have

M̂AJn([n]) = 1
2n

(∑k−1
i=0 (−1)i

(
n
i

) − ∑n
i=k(−1)i

(
n
i

))

= 1
2n

(∑n
i=0(−1)i

(
n
i

) − 2
∑n

i=k(−1)i
(
n
i

)) = 1
2n

(
0 − 2

∑n
i=k(−1)i

(
n
i

))
.

From this we can see that

gran(M̂AJn([n])) = n − P

(

2
n∑

i=k

(−1)i
(

n

i

))

.

We proceed to simplify the sum of binomials (a very similar analysis is presented
in [22]):

n∑

i=k

(−1)i
(

n

i

)

=
n∑

i=k

(−1)i
((

n − 1

i − 1

)

+
(

n − 1

i

))

= (−1)k
(

n − 1

k − 1

)

.

Thus it remains to compute P(2
(
n−1
k−1

)
). For even n = 2h we have k = h and 2

(
n−1
k−1

) =
2
(2h−1

h−1

) = (2h
h

)
. For odd n = 2h + 1 we have k = h + 1 and 2

(
n−1
k−1

) = 2
(2h

h

)
.

1094 Theory of Computing Systems (2022) 66:1074–1098

By [22, Proposition 3.4] we have P(
(2h

h

)
) = B(h) (alternatively this can be seen

from Kummer’s theorem). Finally, notice that B(2h) = B(h) and B(2h+1) = B(h)+
1. It follows that

P

(

2
n∑

i=k

(−1)i
(

n

i

))

= B(n)

and
gran(M̂AJn([n])) = n − B(n).

Overall, Theorem 1 follows.

A.2 Proof of Theorem 2

We start with an upper bound.

Lemma 14 D⊕(MAJ⊗k
3) ≤ (n + 1)/2.

Proof Basically, recursive majority MAJ⊗k
3 is a function computed by a Boolean

circuit whose graph is a complete ternary tree of depth k, each internal vertex is
labeled by the function MAJ3 and each leaf is labeled by a (fresh) variable.

To construct an algorithm we first generalize the problem. We consider functions
computed by Boolean circuits whose graphs are ternary tree, where each non-leaf has
fan-in 3 and is labeled by MAJ3, and each leaf is labeled by a fresh variable. We will
show that if the number of non-leaf vertices in the circuit is l, then the function can
be computed by a parity decision tree of size l + 1.

The proof is by induction on l. If l = 1, then the function in question is just MAJ3
and by the results of Appendix A.1 it can be computed by a parity decision tree of
depth 2.

For the step of induction consider a tree with l non-leaf vertices. Consider a non-
leaf vertex of the largest depth. All of its three inputs must be variables, lets denote
them by y, z and t , and in this vertex the functionMAJ3(y, z, t) is computed. Our first
query will be y ⊕ z. It will tell us whether y and z are equal. If y = z are equal, then
MAJ3(y, z, t) = y, and if y �= z, then MAJ3(y, z, t) = t . Thus, we can substitute
the gate in our vertex by the corresponding variable and reduce the problem to the
circuit with l − 1 non-leaf vertices. By induction hypothesis, the function computed
by this circuit can be computed by at most (l − 1)+ 1 = l queries. Thus, our original
function is computable by l + 1 queries.

It is left to observe that a complete ternary tree of depth k has 3k−1+. . .+1 = 3k−1
2

non-leaf vertices and for this tree our algorithm makes 3k+1
2 = n+1

2 queries.

Before proceeding to the lower bound through granularity we again discuss lower
bounds that can be obtained by other techniques.

First note that each input x ∈ {0, 1}n lies in the subspace of co-dimension at most
2k on which the function is constant. For this it is enough to show that in each x we
can flip 3k − 2k variables without changing the value of the function. This is easy
to check by induction on k. For k = 1 there are two variables that are equal to each

1095Theory of Computing Systems (2022) 66:1074–1098

other and we can flip the third variable without changing the value of the function.
For k > 1 consider inputs to the MAJ3 at the top of the circuit. Two of them are
equal and by induction hypothesis we can flip 3k−1 − 2k−1 variables in each of them
without changing the value of the function. The last input to the top gate does not
affect the value of the function and we can flip all 3k−1 variables in it. Overall this
gives us 3k − 2k variables. This gives us C⊕(MAJ⊗k

3) ≤ 2k = nlog3 2 which does not
give a matching lower bound.

Also note that the polynomial computing MAJ3 is p(x) = x1x2⊕x2x3⊕x1x3. The
polynomial for MAJ⊗k

3 can be computed by a simple composition of p with itself. It
is easy to see that its degree is 2k = nlog3 2. Thus, an approach through polynomials
over F2 does not give strong lower bounds.

For Fourier analytic considerations it is convenient to switch to {−1, 1} Boolean
inputs. For a variable y ∈ {0, 1} let us denote by y ′ ∈ {−1, 1} the variable y′ = 1−2y.
For now we will use new variables as inputs to Boolean functions.

The Fourier decomposition of MAJ3 is

MAJ3(y
′, z′, t ′) = 1

2

(
y′ + z′ + t ′ − y′z′t ′

)
. (2)

From this the Fourier decomposition of MAJ⊗k
3 can be obtained by recursion:

MAJ⊗k
3 (x1, x2, x3) = 1

2 (MAJ⊗k−1
3 (x1) + MAJ⊗k−1

3 (x2) + MAJ⊗k−1
3 (x3)

−MAJ⊗k−1
3 (x1) · MAJ⊗k−1

3 (x2) · MAJ⊗k−1
3 (x3)),

(3)

where x1, x2, x3 are blocks of 3k−1 variables.
Lemma 2 can give lower bounds up to n/2 and thus in principle might give at least

almost matching lower bound. However, this is not the case as we discuss below.
Note that since there is no free coefficient in the polynomial (2), Fourier coeffi-

cients arising from all three summands in the right-hand side of (3) will not cancel
out with each other: no two of them have equal set of variables. Thus, if we denote
S(k) = spar(MAJ⊗k

3) we have that S(1) = 4 and

S(k) = 3S(k − 1) + S(k − 1)3 (4)

for k > 1. On one hand, this means that S(k) > S(k−1)3. This gives S(k) > 22·3k−1
.

Thus log spar(MAJ⊗k
3) > 2 · 3k−1 = 2n/3 and D⊕(MAJ⊗k

3) > n/3.
On the other hand if we let S′(k) = S(k) + 1/2, it is easy to check that (4) implies

S′(k) < S′(k − 1)3.

Since S′(1) = 9/2 this gives S′(k) < 2(log2
9
2)·3k−1

. Thus,

log spar(MAJ⊗k
3) <

(

log2
9

2

)

· n

3
< 0.723 · n.

Thus Lemma 2 can give us a lower bound of at most 0.362 · n. We note that this
upper bound on the sparsity can be further improved by letting S′(k) = S(k) + α for
smaller α.

Now we proceed to the tight lower bound. Again we will estimate gran

(M̂AJ
⊗k

3 [n]). Observe that this Fourier coefficient can be easily computed from (2)

1096 Theory of Computing Systems (2022) 66:1074–1098

and (3). Indeed, from (2) we have that
∣
∣
∣M̂AJ

⊗1
3 [n]

∣
∣
∣ = 1

2 . From (3) we have that

∣
∣
∣M̂AJ

⊗k

3 [n]
∣
∣
∣ =

∣
∣
∣
∣
1

2
(M̂AJ

⊗k−1
3 [n])3

∣
∣
∣
∣ .

The numerator of this Fourier coefficient equals to 1 for any k. Thus, denoting

G(n) = gran(M̂AJ
⊗k

3 [n]) for n = 3k we have G(3) = 1 and

G(n) = 3G
(n

3

)
+ 1.

It is straightforward to check that G(n) = n−1
2 . From this, Lemma 3 and Lemma 14

Theorem 2 follows.

Acknowledgments We would like to thank Alexander Kulikov for letting us know about the connection
between parity decision trees and multiplicative complexity and for permission to add the proof to the
paper. We also would like to thank Alexander for drawing our attention to the connection of parity decision
tree complexity to the degree over F2.

References

1. Ben-Asher, Y., Newman, I.: Decision trees with boolean threshold queries. J. Comput. Syst Sci. 51(3),
495–502 (1995)

2. Bernasconi, A., Codenotti, B.: Spectral analysis of boolean functions as a graph eigenvalue problem.
IEEE Trans. Comput. 48(3), 345–351 (1999)

3. Boyar, J., Find, M.G.: The relationship between multiplicative complexity and nonlinearity. In: Math-
ematical Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014,
Budapest, Hungary, August 25-29, 2014. Proceedings, Part II, pp. 130–140 (2014)

4. Boyar, J., Peralta, R.: Tight bounds for the multiplicative complexity of symmetric functions. Theor.
Comput. Sci. 396(1-3), 223–246 (2008)

5. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: A survey. Theor.
Comput. Sci. 288(1), 21–43 (2002)

6. Eppstein, D., Hirschberg, D.S.: From discrepancy to majority. Algorithmica 80(4), 1278–1297 (2018)
7. Gopalan, P., O’Donnell, R., Servedio, R.A., Shpilka, A., Wimmer, K.: Testing fourier dimensionality

and sparsity. SIAM J. Comput. 40(4), 1075–1100 (2011)
8. Gröger, H.D., Turän, G.: On linear decision trees computing boolean functions. In: Automata, Lan-

guages and Programming, 18th International Colloquium, ICALP91, Madrid, Spain, July 8-12, 1991,
Proceedings, pp. 707–718 (1991)

9. Hatami, H., Hosseini, K., Lovett, S.: Structure of protocols for XOR functions. In: IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA, pp. 282–288 (2016)

10. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture. Theor. Comput. Grad.
Surv. 4, 1–27 (2011)

11. Huang, H.: Induced subgraphs of hypercubes and a proof of the sensitivity conjecture.
arXiv:abs/1907.00847 (2019)

12. Jukna, S.: Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms and
Combinatorics. Springer (2012)

13. Knop, D., Pilipczuk, M., Wrochna, M.: Tight complexity lower bounds for integer linear programming
with few constraints. In: 36th International Symposium on Theoretical Aspects of Computer Science,
STACS 2019, March 13-16, 2019, Berlin, Germany, pp. 44:1–44:15 (2019)

14. Kojevnikov, A., Kulikov, A.S.: Circuit complexity and multiplicative complexity of boolean func-
tions. In: Ferreira, F., Löwe, B., Mayordomo, E., Gomes, L.M. (eds.) Programs, Proofs, Processes, 6th
Conference on Computability in Europe, CiE 2010, Ponta Delgada, Azores, Portugal, June 30 - July

1097Theory of Computing Systems (2022) 66:1074–1098

http://arxiv.org/abs/1907.0084

4, 2020. Proceedings, volume 6158 of Lecture Notes in Computer Science, pp. 239–245. Springer
(2010)

15. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In:
Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Program-
ming & Track C: Security and Cryptography Foundations, pp. 486–498 (2008)

16. Kulikov, A.S.: Personal communication
17. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press (1997)
18. Lovász, L., Saks, M.E.: Lattices Möbius functions and communication complexity. In: 29th Annual

Symposium on Foundations of Computer Science, White Plains, New York, USA, 24-26 October
1988, pp 81–90 (1988)

19. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press (2014)
20. O’Donnell, R., Wright, J., Zhao, Y., Sun, X., Tan, L.-Y.: A composition theorem for parity kill number.

In: IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June
11-13, 2014, pp. 144–154 (2014)

21. Posobin, G.: Computing majority with low-fan-in majority queries. arXiv:abs/1711.10176 (2017)
22. Saks, M.E., Werman, M.: On computing majority by comparisons. Combinatorica 11(4), 383–387

(1991)
23. Shpilka, A., Tal, A., Volk, B.L.: On the structure of boolean functions with small spectral norm. In:

Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014,
pagesp. 37–48 (2014)

24. Tsang, H.Y., Wong, C.H., Xie, N., Zhang, S.: Fourier sparsity, spectral norm, and the log-rank con-
jecture. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October, 2013, Berkeley, CA, USA, pp. 658–667 (2013)

25. Tsang, H.Y., Xie, N., Zhang, S.: Fourier sparsity of GF(2) polynomials. In: Computer Science - The-
ory and Applications - 11th International Computer Science Symposium in Russia, CSR 2016, St.
Petersburg, Russia, June 9-13, 2016, Proceedings, pp. 409–424 (2016)

26. Vaikuntanathan, V.: Computing blindfolded: New developments in fully homomorphic encryption.
In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, Palm Springs, CA, USA, October 22-25, 2011, pp. 5–16. IEEE Computer Society (2011)

27. Yao, P.: Parity decision tree complexity and 4-party communication complexity of xor-functions are
polynomially equivalent. Chicago J. Theor. Comput. Sci., 2016 (2016)

28. Zhang, Z., Shi, Y.: On the parity complexity measures of boolean functions. Theor. Comput. Sci.
411(26-28), 2612–2618 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

1098 Theory of Computing Systems (2022) 66:1074–1098

http://arxiv.org/abs/1711.10176

	On the Decision Tree Complexity of Threshold Functions
	Abstract
	Introduction
	Preliminaries
	Boolean Fourier Analysis
	Decision Trees
	Parity Decision Trees

	Decision Trees with B2-Queries
	Queries to Isolated Vertices
	Queries to Non-Isolated Vertices

	Parity Decision Tree Complexity of Threshold Functions
	Conclusion
	Appendix:
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	References

