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Abstract
Impartial selection has recently received much attention within the multi-agent sys-
tems community. The task is, given a directed graph representing nominations to the
members of a community by other members, to select a member with the highest
number of nominations. This seemingly trivial goal becomes challenging when there
is an additional impartiality constraint, requiring that no single member can influence
her chance of being selected. Recent progress has identified impartial selection rules
with optimal approximation ratios. Moreover, it was noted that worst-case instances
are graphs with few vertices. Motivated by this fact, we propose the study of addi-
tive approximation, the difference between the highest number of nominations and
the number of nominations of the selected member, as an alternative measure of the
quality of impartial selection. Our positive results include two randomized impartial
selection mechanisms which have additive approximation guarantees of Θ(

√
n) and

Θ(n2/3 ln1/3 n) for the two most studied models in the literature, where n denotes the
community size. We complement our positive results by providing negative results
for various cases. First, we provide a characterization for the interesting class of
strong sample mechanisms, which allows us to obtain lower bounds of n − 2, and
of Ω(

√
n) for their deterministic and randomized variants respectively. Finally, we

present a general lower bound of 3 for all deterministic impartial mechanisms.
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1 Introduction

We study the problem that arises in a community of individuals that want to select a
community member to receive an award. This is a standard social choice [7] prob-
lem, that is typically encountered in scientific and sports communities but has also
found important applications in distributed multi-agent systems. To give an entertain-
ing example, the award for the player of the year1 by the Professional Footballers
Association (PFA) is decided by the members of PFA themselves; each PFA mem-
ber votes for the two players they consider the best for the award and the player with
the maximum number of votes receives the award. Footballers consider it as one of
the most prestigious awards, due to the fact that it is decided by their opponents. In
distributed multi-agent systems, leader election (e.g., see [2]) can be thought of as
a selection problem of similar flavor. Other notable examples include (see [11]) the
selection of a representative in a group, funding decisions based on peer reviewing
or even (see [1]) finding the most popular user of a social network.

The input of the problem can be represented as a directed graph, which we usually
call nomination profile. Each vertex represents an individual and a directed edge
indicates a vote (or nomination) by a community member to another. A selection
mechanism (or selection rule) takes a nomination profile as input and returns a single
vertex as the winner. Clearly, there is a highly desirable selection rule: the one which
always returns the highest in-degree vertex as the winner. Unfortunately, such a rule
suffers from a drawback that is pervasive in social choice. Namely, it is susceptible
to manipulation.

In particular, the important constraint that makes the selection challenging is
impartiality. As every individual has a personal interest to receive the award, selec-
tion rules should take the individual votes into account but in such a way that no
single individual can increase her chance of winning by changing her vote. The prob-
lem, known as impartial selection, was introduced independently by Holzman and
Moulin [13] and Alon et al. [1]. Unfortunately, the ideal selection rule mentioned
above is not impartial. Consider the case with a few individuals that are tied with the
highest number of votes. The agents involved in the tie might be tempted to lie about
their true preferences to break the tie in their favor.2

Impartial selection rules may inevitably select as the winner a vertex that does
not have the maximum in-degree. Holzman and Moulin [13] considered minimum
axiomatic properties that impartial selection rules should satisfy. For example, a
highly desirable property, called negative unanimity, requires that an individual with
no votes at all, should never be selected. Alon et al. [1] quantified the efficiency loss

1Some basic information for the award can be found in https://en.wikipedia.org/wiki/PFA Players%27
Player of the Year
2As an illustrative example, consider a rule which assigns the prize to the maximum in-degree vertex, and
if a tie exists, is resolved by some arbitrary tie breaking rule. It is not hard to see that any such rule cannot
be impartial. Indeed, consider the case where two vertices, a and b have maximum in-degree, they both
vote for each other and let a be the winner according to the tie breaking rule. Observe that b has incentive to
decrease a’s in-degree, by removing its outgoing edge towards a, and become the sole maximum in-degree
vertex, and thus the winner.
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with the notion of approximation ratio, defined as the worst-case ratio of the maxi-
mum vertex in-degree over the in-degree of the vertex which is selected by the rule.
According to their definition, an impartial selection rule should have as low approxi-
mation ratio as possible. This line of research was concluded by the work of Fischer
and Klimm [11] who proposed impartial mechanisms with the optimal approximation
ratio of 2.

It was pointed out in [1, 11], that the most challenging nomination profiles for
both deterministic and randomized mechanisms are those with small in-degrees. In
the case of deterministic mechanisms, the situation is quite extreme as all determin-
istic mechanisms can be easily seen to have an unbounded approximation ratio on
inputs with a maximum in-degree of 1 for a single vertex and 0 for all others; see [1]
for a concrete example. As a result, the approximation ratio does not seem to be an
appropriate measure to classify deterministic selection mechanisms. Finally, Bous-
quet et al. [6] have shown that if the maximum in-degree is large enough, randomized
mechanisms that return a near optimal impartial winner do exist.

We deviate from previous work and instead propose to use additive approximation
as a measure of the quality of impartial selection rules. Additive approximation is
defined using the difference between the maximum in-degree and the in-degree of
the winner returned by the selection mechanism. Note that deterministic mechanisms
with low additive approximation always return the highest in-degree vertex as the
winner when her margin of victory is large. When this does not happen, we have a
guarantee that the winner returned by the mechanism has a close-to-maximum in-
degree.

Our Contribution We provide positive and negative results for impartial selection
mechanisms with additive approximation guarantees. We distinguish between two
models. In the first model, which was considered by Holzman and Moulin [13], nom-
ination profiles consist only of graphs with all vertices having an out-degree of 1. The
second model is more general and allows for multiple nominations and abstentions
(hence, vertices have arbitrary out-degrees).

As positive results, we present two randomized impartial mechanisms which
have additive approximation guarantees of Θ(

√
n) and Θ(n2/3 ln1/3 n) for the sin-

gle nomination and multiple nomination models, respectively. Notice that both these
additive guarantees are o(n) functions of the number n of vertices. We remark that
an o(n)-additive approximation guarantee can be translated to an 1 − multiplica-
tive guarantee for graphs with sufficiently large maximum in-degree, similar to the
results of [6]. Conversely, the multiplicative guarantees of [6] can be translated to an
O(n8/9)-additive guarantee.3 This analysis further demonstrates that additive guar-
antees allow for a more smooth classification of mechanisms that achieve good
multiplicative approximation in the limit.

3The authors in [6] do not provide additive guarantees, hence we based our calculations on their provided
bounds on the multiplicative guarantee 1 − . It is important to note however that they claim that they
have not optimized their parameters, so it is possible that this guarantee can be further reduced by a tighter
analysis.
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Our mechanisms first select a small sample of vertices, and then select the winner
among the vertices that are nominated by the sample vertices. These mechanisms are
randomized variants of a class of mechanisms which we define and call strong sam-
ple mechanisms. Strong sample mechanisms are impartial mechanisms which select
the winner among the vertices nominated by a sample set of vertices. In addition,
they have the characteristic that the sample set does not change with changes in the
nominations of the vertices belonging to it. For the single nomination model, we pro-
vide a characterization, and we show that all deterministic strong sample mechanisms
should use a fixed sample set that does not depend on the nomination profile. This
yields a n− 2 lower bound on the additive approximation guarantee of any determin-
istic strong sample mechanism. For their randomized variants, where the sample set
is selected randomly, we present an Ω(

√
n) lower bound which shows that our first

randomized impartial mechanism is best possible among all randomized variants of
strong sample mechanisms. Finally, for the most general, multiple nomination model,
we present a lower bound of 3 for all deterministic mechanisms.

Related Work Besides the papers by Holzman and Moulin [13] and Alon et al. [1],
which introduced impartial selection as we study it here, de Clippel et al. [10] consid-
ered a different version with a divisible award. Alon et al. [1] used the approximation
ratio as a measure of quality for impartial selection mechanisms. After realizing that
no deterministic mechanism achieves a bounded approximation ratio, they focused
on randomized mechanisms and proposed the 2-PARTITION mechanism, which guar-
antees an approximation ratio of 4 and complemented this positive result with a lower
bound of 2 for randomized mechanisms.

Later, Fischer and Klimm were able to design a mechanism that achieves an
approximation ratio of 2, by generalizing 2-PARTITION. Their optimal mechanism,
called PERMUTATION, examines the vertices sequentially following their order in a
random permutation and selects as the winner the vertex of highest degree counting
only edges with direction from “left” to “right.” They also provided lower bounds
on the approximation ratio for restricted inputs (e.g., with no abstentions) and have
shown that the worst case examples for the approximation ratio are tight when the
input nomination profiles are small.

Bousquet et al. [6] noticed this bias towards instances with small in-degrees and
examined the problem for instances of very high maximum in-degree. After show-
ing that PERMUTATION performs significantly better for instances of high in-degree,
they have designed the SLICING mechanism with near optimal asymptotic behaviour
for that restricted family of graphs. More precisely, they have shown that, if the
maximum in-degree is large enough, SLICING can guarantee that the winner’s in-
degree approximates the maximum in-degree by a small error. As we discussed in
the previous section, the SLICING mechanism can achieve an additive guarantee of
O(n8/9).

Holzman and Moulin [13] explored impartial mechanisms through an axiomatic
approach. They focused on the single nomination model and proposed several
deterministic mechanisms, including the MAJORITY WITH DEFAULT mechanism.
MAJORITY WITH DEFAULT defines a vertex as a default winner and examines if
there is any vertex with in-degree more than n/2 , ignoring the outgoing edge
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from the default winner. If such a vertex exists, then this is the winner; otherwise
the default vertex wins. While this mechanism has the unpleasant property that the
default vertex may become the winner with no incoming edges at all, its additive
approximation is at most n/2 . Further to that, they came up with a fundamental
limitation of the problem: no impartial selection mechanism can be simultaneously
negative and positive unanimous (i.e., never selecting as a winner a vertex of in-
degree 0 and always selecting the vertex of in-degree n − 1, whenever there exists
one).

Mackenzie in [16] characterized symmetric (i.e., name-independent) rules in the
single nomination model. Tamura and Ohseto [18] observed that when the demand
for only one winner is relaxed, then impartial, negative unanimous and positive unan-
imous mechanisms do exist. Later on, Tamura [17] characterized them. On the same
agenda, Bjelde et al. in [5] proposed a deterministic version of the permutation mech-
anism that achieves the 1/2 bound by allowing at most two winners. Alon et al. [1]
also present results for selecting multiple winners.

Finally, we remark that impartiality has been investigated as a desired property
in other contexts where strategic behaviour occurs. Recent examples include peer
reviewing [3, 14, 15], selecting impartially the most influential vertex in a network [4]
and in linear regression algorithms as a means to tackle strategic noise [9].

2 Preliminaries

Let N = {1, ..., n} be the set of n ≥ 2 agents. A nomination graph G = (N, E)

is a directed graph with vertices representing the agents. The set of outgoing edges
from each vertex represents the nominations of each agent; it contains no self-loops
(as, agents are not allowed to nominate themselves) and can be empty (as an agent
is, in general, allowed to abstain). We write G = Gn for the set of all graphs with n

vertices and no self-loops. We also use the notation G1 = G1
n to denote the subset

of G with out-degree exactly 1. For convenience in the proofs, we sometimes denote
each graph G by a tuple x, called nomination profile, where xu denotes the set of
outgoing edges of vertex u in G. For u ∈ N , we use the notation x−u to denote the
graph (N, E \ ({u} × N)) and, for the set of vertices U ⊆ N , we use x−U to denote
the graph (N, E \ (U × N)). We use the terms nomination graphs and nomination
profiles interchangeably.

The notation δS(u, x) refers to the in-degree of vertex u in the graph x taking into
account only edges that originate from the subset S ⊆ N . When S = N , we use the
shorthand δ(u, x) and when S = {v} we use the simplified notation δv(u, x). If the
graph is clearly identified by the context we omit x too, using δ(u). We denote the
maximum in-degree of graph x as (x) = maxu∈N δ(u, x) and, whenever x is clear
from the context, we use instead.

A selection mechanism for a set of graphs G ⊆ G, is a function f : G →
[0, 1]n+1, mapping each graph of G to a probability distribution over all vertices
(which can be potential winners) as well as to the possibility of returning no win-
ner at all. A selection mechanism is deterministic in the special case where for all x,
(f (x))u ∈ {0, 1} for all vertices u ∈ N .
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A selection mechanism is impartial if for all graphs x ∈ G , all possible sets xu of
outgoing edges (from vertex u), it holds (f (x))u = (f (xu, x−u))u for every vertex u.
In words, the probability that u wins must be independent of the set of its outgoing
edges.

We use E [ δ(f (x)) ] to denote the expected in-degree of f on x, i.e.
E [ δ(f (x)) ] = u∈N(f (x))uδ(u, x). A selection mechanism f is called α(n)-
additive if

max
x∈Gn

{ (x) − E [ δ(f (x)) ]} ≤ α(n),

for every n ∈ N.

3 Upper Bounds

In this section we provide randomized selection mechanisms for the two best studied
models in the literature. First, in Section 3.1 we propose a mechanism for the single
nomination model of Holzman and Moulin [13], where nomination profiles consist
only of graphs with all vertices having an out-degree of 1. Then, in Section 3.2 we
provide a mechanism for the more general model studied by Alon et al. [1], which
allows for multiple nominations and abstentions.

3.1 The SAMPLE AND VOTE Mechanism

Our first mechanism, SAMPLE AND VOTE, forms a sample S of vertices by repeat-
ing k times the selection of a vertex uniformly at random with replacement.4 Any
vertex that is selected at least once belongs to the sample S. Let W := {u ∈
N \ S : δS(u, x) ≥ 1} be the set of vertices outside S that are nominated by the
vertices of S. If W = ∅, no winner is returned. Otherwise, the winner is a vertex in
arg maxu∈W δN\W(u, x). We note here the crucial fact that the selection of the sam-
ple set S is independent of the profile x. An example of this mechanism is shown in
Fig. 1a.

Impartiality follows since a vertex that does not belong to W (no matter if it
belongs to S or not) cannot become the winner and the nominations of vertices in W

are not taken into account for deciding the winner among them. We now argue that,
for a carefully selected k, this mechanism also achieves a good additive guarantee.

Theorem 1 For k = Θ(
√

n), the SAMPLE AND VOTE mechanism is impartial and
Θ(

√
n)-additive in the single nomination model.

Proof Consider a nomination graph and let u∗ be a vertex of maximum in-degree .
In our proof of the approximation guarantee, we will use the following two technical
lemmas.

4Sampling uniformly at random with replacement allows for a simple analysis of the mechanism. In
Section 4.1, we show that this is indeed a good choice, as no other sampling method yields better additive
approximation.
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Fig. 1 Examples for SAMPLE AND VOTE and SAMPLE AND POLL, with sample size k = 3 and n = 12.
In both cases we use the same sample set S = {2, 3, 12}. For SAMPLE AND VOTE, the vertices in S define
the set W = {4, 5} of possible winners. The winner is then the vertex with maximum in-degree from the
votes from N \ W to W (the solid drawn edges in the figure). For SAMPLE AND POLL, the sample set
S immediately declares the winner, as one of the maximum in-degree vertices from edges starting in S,
while the edges from vertices in N \ S are completely ignored. In both cases, the dark vertex is the winner
and the light dashed-lined vertices belong to the sample set S. Also, all edges drawn with a dotted line are
ignored by the mechanism. The shaded area in Fig. 1a shows which vertices belong in set W

Lemma 1 If u∗ ∈ W , then the winner has in-degree at least − k.

Proof This is clearly true if the winner returned by SAMPLE AND VOTE is u∗.
Otherwise, the winner w satisfies

δ(w, x) ≥ δN\W(w, x) ≥ δN\W(u∗, x) = δ(u∗, x) − δW (u∗, x) ≥ − k.

The first inequality is trivial. The second inequality follows by the definition of
the winner w. The third inequality follows since W is created by nominations of
vertices in S, taking into account that each vertex has out-degree exactly 1. Hence,
δW (u∗, x) ≤ |W | ≤ |S| ≤ k.

Lemma 2 The probability that u∗ belongs to the nominated set W is

Pr u∗ ∈ W = 1 − 1 −
n − 1

k

1 − 1

n

k

.

Proof Indeed, u∗ belongs to W if it does not belong to the sample S and instead some
of the vertices that nominate u∗ is picked in some of the k vertex selections. The
probability that u∗ is not in the sample is

Pr u∗ ∈ S = 1 − 1
n

k

, (1)

i.e., the probability that vertex u∗ is not picked in some of the k vertex selections.
Observe that the probability that some of the vertices that nominate u∗ is picked in
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a vertex selection step assuming that u∗ is never selected is
n−1 . Hence, the probabil-

ity that some of the vertices nominating u∗ is in the sample assuming that u∗ ∈ S

is

Pr δS(u∗, x) ≥ 1|u∗ ∈ S = 1 − 1 −
n−1

k

. (2)

The lemma follows by the chain rule

Pr u∗ ∈ W = Pr u∗ = S ∧ δS(u∗, x) ≥ 1

= Pr δS(u∗, x) ≥ 1|u∗ ∈ S · Pr u∗ ∈ S

and(1) and (2).

By Lemmas 1 and 2, we have that the expected degree of the winner returned by
mechanism SAMPLE AND VOTE is

E [ δ(w, x) ] ≥ Pr u∗ ∈ W · ( − k)

= 1 − 1 −
n − 1

k

1 − 1

n

k

( − k)

≥ 1 − 1 −
n − 1

k

1 − k

n
( − k)

> 1 − 1 −
n − 1

k

( − 2k)

= − 2k − 1 −
n − 1

k

( − 2k)

The second inequality follows by Bernoulli’s inequality (1 + x)r ≥ 1 + rx for
every real x ≥ −1 and r ≥ 0 and the third one since n > . Now, the quan-

tity 1 −
n−1

k

( − 2k) is maximized for = n−1+2k2

k+1 to a value that is at most
n+1
k+1 − 2. Hence,

E [ δ(w, x) ] ≥ − 2(k − 1) − n+1
k+1 .

By setting k ∈ Θ(
√

n), we obtain that E [ δ(w, x) ] ≥ − Θ(
√

n), as desired.

3.2 The SAMPLE AND POLL Mechanism

In the most general model, we propose the randomized mechanism SAM-
PLE AND POLL, which is even simpler than SAMPLE AND VOTE. SAM-
PLE AND POLL forms a sample S of vertices by repeating k times the selection of
a vertex uniformly at random with replacement. The winner (if any) is a vertex w

in arg maxu∈N\S δS(u, x). We remark that, for technical reasons, we allow S to be
a multi-set if the same vertex is selected more than once. Then, edge multiplici-
ties are counted in δS(u, x). Clearly, SAMPLE AND POLL is impartial. The winner
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is decided by the vertices in S, which in turn have no chance to become winners.5

Figure 1b shows an example of this mechanism. Our approximation guarantee is
slightly weaker now.

Theorem 2 For k = 41/3n2/3 ln1/3 n , the SAMPLE AND POLL mechanism is
impartial and Θ(n2/3 ln1/3 n)-additive.

Proof Let u∗ be a vertex of maximum in-degree . If ≤ k, SAMPLE AND POLL

is clearly Θ(n2/3 ln1/3 n)-additive. So, in the following, we assume that > k. Let
C be the set of vertices of in-degree at most − k − 1. We first show that the
probability Pr δ(w, x) ≤ − k − 1 that some vertex of C is returned as the winner
by SAMPLE AND POLL is small.

Notice that if one of the vertices of C is the winner, then either vertex u∗ belongs
to to the sample set S or it does not belongs to S but it gets the same or fewer
nominations compared to some vertex u of C. Hence,

Pr [δ(w, x) ≤ − k − 1]

≤ Pr u∗ ∈ S + Pr u∗ ∈ S ∧ δS(u∗, x) ≤ δS(u, x)for some u ∈ C s.t. u ∈ S

≤ Pr u∗ ∈ S +
u∈C

Pr u∗ ∈ S ∧ u ∈ S ∧ δS(u∗, x) ≤ δS(u, x)

= Pr u∗ ∈ S +
u∈C

Pr u∗, u ∈ S Pr δS(u∗, x) ≤ δS(u, x)|u∗, u ∈ S (3)

We will now bound the rightmost probability in (3).

Claim 1 For every u ∈ C, Pr δS(u∗, x) ≤ δS(u, x)|u∗ ∈ S, u ∈ S ≤ exp − k3

2n2 .

Proof Assuming that u∗ and u do not belong to the sample set S, we will express
the difference δS(u∗, x) − δS(u, x) as the sum of independent random variables Yi

for i = 1, ..., k. Variable Yi indicates the contribution of the i-th vertex selection to
the difference δS(u∗, x) − δS(u, x). In particular, Yi is equal to 1, −1, and 0 if the
outgoing edges of the i-th vertex selected in the sample set points to vertex u∗ but
not to vertex u, to vertex u but not to vertex u∗, and either to none or to both of them,
respectively. Hence, δS(u∗, x) − δS(u, x) = k

i=1 Yi with Yi ∈ {−1, 0, 1} and

E δS(u∗, x) − δS(u, x)|u∗, u ∈ S = − δu(u
∗, x) − δ(u, x) + δu∗(u, x)

k

n − 2

≥ k2

n
.

Notice that for the computation of the expectation, we have used the facts that −
δu(u

∗, x) vertices besides u have outgoing edges pointing to u∗, δ(u, x) − δu∗(u, x)
vertices besides u∗ have outgoing edges pointing to u, and each of them is included in

5Note that the main differences between SAMPLE AND VOTE and SAMPLE AND POLL is (i) that the
former utilizes the nominations from vertices in N \ (S ∪ W), while the latter does not, and (ii) that
SAMPLE AND VOTE counts the nominations of vertices in the sample set S only once.
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the sample set with probability k
n−2 . The inequality follows since δ(u, x) ≤ −k−1

and δu(u
∗, x), δu∗(u, x) ∈ {0, 1}.

We will now apply Hoeffding’s bound, which is stated as follows.

Lemma 3 (Hoeffding [12]) Let X1, X2, ..., Xt be independent random variables
so that Pr aj ≤ Xj ≤ bj = 1. Then, the expectation of the random variable X =

t
j=1 Xj is E[X] = t

j=1 E[Xj ] and, furthermore, for every ν ≥ 0,

Pr X ≤ E[X] − ν ≤ exp − 2ν2

t
j=1 (bj − aj )2

.

In particular, we apply Lemma 3 on the random variable X = δS(u∗, x) − δS(u, x)
(assuming that u∗, u ∈ S). Note that t = k, aj = −1 and bj = 1, and recall that

E [ X ] ≥ k2

n
. We obtain

Pr δS(u∗, x) − δS(u, x) ≤ 0|u∗, u ∈ S = Pr [X ≤ 0]

≤ −E [ X ]2

2k
≤ exp − k3

2n2
,

as desired.

Using the definition of E [ δ(w, x) ], inequality (3), and Claim 1, we obtain

E [ δ(w, x) ] ≥ ( − k) · (1 − Pr [δ(w, x) ≤ − k − 1])

≥ ( − k) Pr u∗ ∈ S

− ( − k)

u∈C

Pr u∗, u ∈ S · Pr δS(u∗, x) ≤ δS(u, x)|u∗, u ∈ S

≥ ( − k) 1 − 1

n

k

− ( − k)

u∈C

1 − 2

n

k

· exp − k3

2n2

≥ ( − k) 1 − k

n
− ( − k) · n · exp − k3

2n2

≥ − 2k − n2 · exp − k3

2n2
. (4)

The last inequality follows since n ≥ . Setting k = 41/3n2/3 ln1/3 n , (4) yields
E [ δ(w, x) ] ≥ − Θ n2/3 ln1/3 n , as desired.

4 Lower Bounds

In this section we complement our positive results by providing impossibility results.
First, in Section 4.1, we provide lower bounds for a class of mechanisms which we
call strong sample mechanisms, in the single nomination model of Holzman and
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Moulin [13]. Then, in Section 4.2, we provide a lower bound for the most general
model of Alon et al. [1], which applies to any deterministic mechanism.

4.1 Strong Sample Mechanisms

In this section, we give a characterization theorem for a class of impartial mechanisms
which we call strong sample impartial mechanisms. We then use this characterization
to provide lower bounds on the additive approximation of deterministic and ran-
domized mechanisms that belong to this class. Our results suggest that the SAMPLE

AND VOTE mechanism from Section 3.1 is essentially the best possible randomized
mechanism in this class.

For a graph G ∈ G and a subset of vertices S, let W := WS(G) be the set of
vertices outside S nominated by S, i.e. W = {w ∈ N \ S : (v, w) ∈ E, v ∈ S}.
Then, a deterministic sample mechanism6 (g, f ) firstly selects a subset S using some
sample function g : G → 2N , and then applies a (possibly randomized) selection
mechanism f by restricting its range on vertices in W ; notice that if W = ∅, f does
not select any vertex.

This definition allows for a large class of mechanisms. For example, the special
case of sample mechanisms with |S| = 1 (in which, the winner has in-degree at
least 1), coincides with all negative unanimous mechanisms defined by Holzman and
Moulin [13]. Indeed, when |S| = 1, the set W in never empty and the winner has in-
degree at least 1. This is not however the case for |S| > 1, where W could be empty
when all vertices in S have outgoing edges destined for vertices in S and no winner
can be declared. Characterizing all impartial sample mechanisms is an outstanding
open problem. We are able to provide a first step, by providing a characterization for
the more restricted class of impartial and strong sample mechanisms. Informally, in
strong sample mechanisms, vertices cannot affect their chance of being selected in
the sample set S.

Definition 1 (Deterministic strong sample mechanisms) We call a deterministic
sample mechanism (g, f ) with sample function g : G → 2N strong if g(xu, x−u) =
g(x) for all u ∈ g(x), xu ∈ N \ {u} and x ∈ G.

The reader may observe the similarity of this definition with impartiality (function
g of a strong sample mechanism satisfies similar properties with function f of an
impartial selection mechanism). The following lemma describes a straightforward,
yet useful, consequence of the above definition.

Lemma 4 Let (g, f ) be a deterministic strong sample mechanism and let S ⊆ N .
For any nomination profiles x, x with x−S = x−S , if S \g(x) = ∅ then S \g(x ) = ∅.
Proof For the sake of contradiction, let us assume that S \ g(x ) = ∅, i.e., the sample
vertices in x are disjoint from S. Then, by Definition 1, g(x) remains the same as

6For simplicity we use the notation (g, f ) rather the more precise (g, f (g)).
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outgoing edges from vertices in S should not affect the sample set. But then, S \
g(x) = ∅, which is a contradiction.

In the next theorem, we provide a characterization for the sample function of deter-
ministic impartial strong sample mechanisms in the single nomination model. The
theorem essentially states that the only possible way to choose the sample set must
be independently of the graph.

Theorem 3 In the single nomination model, any impartial deterministic strong sam-
ple mechanism (g, f ) selects the sample set independently of the nomination profile,
i.e., for all x, x ∈ G1, g(x) = g(x ) = S.

Proof Since we are in the single nomination model, without loss of generality, we
can use the simplified notation xu = v instead of xu = {(u, v)} for any graph x ∈
G1. Consider any sample mechanism (g, f ) and any nomination profile x ∈ G1. It
suffices to show that for any vertex u, and any alternative vote xu, the sample set must
remain the same, i.e., g(xu, x−u, ) = g(x). If u ∈ g(x), this immediately follows by
Definition 1. In the following, we prove two claims showing that this holds also when
u /∈ g(x); Claim 2 treats the case where u is a winner of a profile, while Claim 3
treats the case where u is a not a winner.

Claim 2 Let (g, f ) be an impartial deterministic strong sample mechanism and let x
be any nomination profile in G1. Then the sample set must remain the same for any
other vote of the winner, i.e., g(x) = g(xf (x), x−f (x)) for any xf (x) ∈ N \ {f (x)}.

Proof Let w = f (x) be the winner, for some nomination profile x. We will prove the
claim by induction on the in-degree of the winner, δ(w, x). Note that δ(w, x) > 0 for
any sample mechanism and any x ∈ G .

(Base case: δ(w, x) = 1) Let S = g(x) be the sample set for profile x. Assume for
the sake of contradiction that when w changes its vote to xw, the sample for profile
x = (xw, x−w) changes, i.e., g(x ) = S = S. We first note that impartiality of f

implies that w = f (x ). Next, observe that the vertex voting for w in S must be also
in S ; otherwise, w becomes a winner without getting any vote from the sample set,
which contradicts our definition of sample mechanisms. We will show that this must
be the case for all vertices in S.

To do this, we will expand two parallel branches, creating a sequence of nomi-
nation profiles starting from x and x which will eventually lead to a contradiction.
Figure 2 depicts the situation for x and x .

We start with the profile x . Consider a vertex s ∈ S \ S. We create a profile z in
which all vertices in S \ s vote for s (i.e., zv = s , for each v ∈ S \ s ), vertex s

votes for w (i.e., zv = w), while the rest of the vertices vote as in x (i.e., zv = xv ,
for each v ∈ S ). For illustration, see Fig. 3a and b. By the definition of a strong
sample mechanism, we obtain g(z ) = g(x ), since only votes of vertices in S have
changed. Notice also that f (z ) = w, as this is the only vertex outside S that receives
votes from S . We now move to profile x and apply the same sequence of deviations,
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Fig. 2 The starting profiles x and x in Claim 2. The dark vertex is the winner, while the light, dashed-lined
vertices are the members of the sets S and S , respectively

involving all the vertices in S . These lead to the profile z, which differs from z only
in the outgoing edge of vertex w.

By Lemma 4, there is a vertex v ∈ S such that v /∈ g(z). If v = s , then we end
up in a contradiction. This is because f (z) = w, since s is the only vertex voting
for w in z and s is not in the sample, while f (z ) = w, as stated by the other

Fig. 3 Profiles z and z in the base case of the proof of Claim 2: if v = s then s /∈ g(z) and since this
is the only vertex voting for w, w cannot win in z, while it must be the winner in z —a contradiction.
Profiles y and y : if s ∈ g(y), we let s vote for v and v for w, making w the winner in y but not in y.
A dark circle denotes the winner, while light, dashed-lined circles denote the members of the sample sets
S and S . A solid-lined diamond denotes a vertex that cannot be the winner and a dashed-lined diamond
denotes a vertex that cannot be in the sample set

733Theory of Computing Systems (2022) 66:721–742



branch and since, when w change its vote to xw, the created profile is (xw, z−w) = z
contradicting impartiality (see also Fig. 3a and b).

We are now left with the case where s ∈ g(z) and v = s . Starting from z and
z , we will create profiles y and y (see Fig. 3c and d) as follows: we construct y by
letting s vote towards v (i.e., ys = v), v vote towards w (i.e., yv = w) and yi = zi

for all other vertices i = v, s . By the strong sample property, when s votes towards
v the sample set is preserved, i.e., v cannot get in the sample. Also, when v votes, v

cannot get in the sample (by a trivial application of Lemma 4); therefore, v ∈ g(y).
Hence, w cannot be the winner as its only incoming vote is from v, a vertex that does
not belong to the sample set g(y).

Starting from z , we create similarly y by letting s vote towards v (y
s

= v), v to
vote towards w (yv = w) and yi = zi for all other vertices i = v, s . In this case, S

will be preserved as sample set in profile y (i.e. g(y ) = S ). Therefore, w is the only
vertex voted by the sample set and must be the winner, leading to a contradiction (see
Fig. 3c and d).

(Induction step) Assume as induction hypothesis that, for all profiles x ∈ G1, it
holds g(x) = g(xw, x−w) = S when δ(w, x) ≤ λ, for some λ ≥ 1. Now, consider
any profile x where f (x) = w and δ(w, x) = λ + 1 and assume for the sake of
contradiction that there is some graph x = (xw, x−w) where g(x ) = S = S.
Without loss of generality, let δS(w, x) ≤ δS (w, x ).

Starting from x , we create profile z , by letting all vertices in S vote for some
s ∈ S and s vote for w, i.e., zv = s for each vertex v ∈ S \ {s } and z

s
= w.

The strong sample property implies that g(z ) = S and f (z ) = w. We focus now
on profile x, and create the profile z, by performing the same series of deviations,
i.e., by letting all vertices in S \ s vote for s and s vote for w. Note here that z
differs from z only in the outgoing edge of w. Like before, Lemma 4 establishes
that there will be some vertex v ∈ S such that v /∈ g(z), i.e., g(z) = S . Turning
our attention back to z , we let w change its vote to xw, creating profile (xw, z−w).
Observe that (xw, z−w) = z. When δ(w, z ) < δ(w, x), by the induction hypothesis
we have g(z) = S , a contradiction.

We need also to handle the case δ(w, z ) = δ(w, x). We will use a series of careful
steps to decrease the in-degree of w, without changing the sample set. This will allow
us to use the induction hypothesis to finalize our proof.

Let L denote the set of vertices which vote for w in profile x. We note here that,
we may end up in the case δ(w, z ) = δ(w, x) only because a single vertex votes for
w in z , i.e. |g(z ) ∩ L| = 1; otherwise we could decrease the in-degree of w in z
without changing the sample set and directly use the induction hypothesis to prove
the claim. The aforementioned vertex s is the single vertex in g(z ) ∩ L. Note here
that there exists at least one vertex in g(x)∩L. Say this is vertex s. If δ(s, z ) ≤ λ−1,
we can create the profile y , where s votes for s (i.e. y

s
= s and y = (y

s
, z−s

)),
hence f (y ) = s and g(y ) = g(z ) = S (recall that s is the single vertex in g(z )

voting outside of g(z ) ). We can create now the profile q where vertex s votes for
vertex s (i.e. qs = s ) and the other vertices vote like in y , i.e. q = (qs, y−s). Since
δ(s, y ) ≤ λ and f (y ) = s, by changing the outgoing edge of the winning vertex s,
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the sample set does not change, due to the induction hypothesis, i.e. g(q ) = g(y ) =
S . Finally, we create the profile r , where s votes for w (i.e. r

s
= w) and the other

vertices vote like in q (i.e. r = (r
s
, q−s

)). The strong sample property now implies
that g(r ) = g(q ) = S and f (r ) = w. Since δ(w, r ) = λ, we can invoke the
induction hypothesis once again: we can create profile r by letting w vote as in x (i.e.
r = (xw, r−w)) and g(r) = S .

At this point, we reverse our previous moves. First, we create the profile q by
allowing s change its vote for s (i.e. qs = s and q = (qs , r−s )). Again, the strong
sample property implies that g(q) = g(r) = S , which results to f (q) = s. Finally,
we create profile y by letting s vote for w (i.e. ys = w and y = (ys, q−s)). The
induction hypothesis implies now that g(y) = S . Observe that y is indeed profile z
(i.e. y = z), which is identical to z , except from the vote of w, hence g(z) = S .
Recall however, that g(z) = S , a contradiction. Given that δ(s, z ) ≤ λ−1, the claim
follows.

If δ(s, z ) > λ−1, we generalize the idea described in the previous two paragraphs.
We will revert enough edges towards s , for the in-degree of s to become equal to
λ − 1. To do this we identify a tree T in z , with vertex s as the root: We start from
the vertices voting towards s and we select δ(s, z) − (λ − 1) of them as children of
s: first, we select vertices with in-degree at most λ − 1. If we end up with vertices
with higher in-degree than λ − 1, we repeat the process for each child, until all leafs
in the tree have in-degrees at most λ − 1. This is assured, since we are in the single
nomination model and each vertex belongs in at most one directed cycle.

Let k be the number of vertices in the tree T and let r(0) = z ; hence g(r(0) ) = S .
Starting from an arbitrary leaf on T , let vi denote the i-th vertex we visit. For each
i ∈ {1, ..., k}, we create three profiles: y(i) , q(i) and r(i) . First, we create profile y(i)

by letting s vote for vi (i.e. y
(i)

s
= vi) and the remaining vertices vote like in r(i−1) ,

i.e. y(i) = (y
(i)

s
, r(i−1)

−vi
). Due to the strong sample property, g(y(i) ) = g(r(i−1) ).

Also, f (y(i) ) = vi since vi is the only vertex voted by the sample. Then we create

the profile q(i) , where q
(i)
vi

= s and the other vertices vote like y(i) , i.e. q(i) =
(q

(i)
vi

, y(i)
−i ). Due to impartiality f (q(i) ) = vi . If we are traversing the tree T from

the leaves to the root, each vertex vi has in-degree at most λ and by the induction
hypothesis g(q(i) ) = g(y(i) ) = S . Finally, we create the profile r(i) by letting s

vote for w, i.e r
(i)

s
= w and r(i) = (r

(i)

s
, y(i)

−s
). We traverse the vertices starting

from a leaf, and after visiting all vertices in the same level, we pass to the next level
and we keep the order of the vertices visited. Note that in all these changes the sample
set does not change and each vertex in T (including vertex s, which is traversed last,
i.e. vk = s) has in-degree at most λ. An example of this process is depicted in Fig. 4.

At this point, we start a reverse procedure. We first create the profile r(k) =
(xw, r(k)

−w), where we let vertex w to vote like in profile x. By the induction hypothe-
sis, g(r(k)) = g(r(k) ) = S , since f (r(k) ) = w and δ(w, r(k) ) ≤ λ. We then start to
traverse the vertices in tree T on the opposite direction, i.e. vk, vk−1, ..., v1. For each
i ∈ {1, ..., k} We create a similar series of profiles, where the sample set will remain
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Fig. 4 Induction step for the proof of Claim 2. An example with λ = 2. To use the induction hypothesis,
we need to decrease the in-degree of w to 2. In Fig. 4a, vertex s is the single vertex in the sample voting
for the winner w. The other vertices in the sample vote for s . To decrease the in-degree of w, we identify
the tree T , denoted by the solid thick edges. First, we let s vote for s3, which is now the winner (Fig. 4b).
Then we let s3 vote for s . By impartiality s3 (with in-degree 1) retains its winner status and the sample set
is still the same (Fig. 4c). The same procedure continues until all edges of T are redirected to s and the
in-degree of w decreases to 2. During this process, the sample set remains invariant. (Fig. 4d). The dark
vertex denotes the winner, while the light, dashed-lined vertices denote members of the sample set

invariant. Starting from r(i) we create the profile q(i), where s votes towards q
(i)

s
,

i.e. q(i) = (q
(i)

s
, r(i)

−s
). Due to the strong sample property g(q(i)) = g(r(i)) = S

and f (q(i)) = q
(i)

s
. Observe that q(i) and q(i) differ only in the outgoing edge of
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w. As a result δ(q
(i)

s
, q(i)) ≤ λ. We create now the profile y(i) where q

(i)

s
, the win-

ning node in q(i), votes towards y
(i)

q
(i)

s

, i.e. y
(i)

q
(i)

s

= y
(i)

q
(i)

s

and y(i) = (y
(i)

q
(i)

s

, q(i)

−q
(i)

s

).

Again y(i) and y(i) defer only in the vote of w. Because of the induction hypothesis
g(y(i)) = g(q(i)) = S . Finally, we revert s towards w and create the profile r(i−1)

such that r
(i−1)

s
= w and r(i−1) = (r

(i−1)

s
, y(i)

−s
). Again g(r(i−1)) = g(y(i)) = S .

After this series of changes, we end up in profile r(0), which differs from r(0)

only in the outgoing edge of w. Since in all changes described above the sample set
remains invariant, then g(r(0)) = S . Observe now that r(0) = z, for which we know
that g(z) = S , a contradiction. This concludes the proof.

The next claim establishes the remaining case, that no vertex u ∈ g(x), u = f (x)
can change the sample set.

Claim 3 Let (g, f ) be an impartial deterministic strong sample mechanism, x be a
nomination profile in G1 and u a vertex with u ∈ g(x), u = f (x). Then g(x) =
g(xu, x−u) for any other vote xu ∈ N \ {u}.

Proof For the sake of contradiction, consider any profile x ∈ G1 and assume that
there exists some nomination profile x = (xu, x−u) with g(x ) = S = g(x). Starting
from x , we define a profile z in which all vertices in S vote for u, and the rest vote as
in x . That is, zv = u, for all v ∈ S and zv = xv otherwise. Clearly f (z ) = u, as all
the sample vertices vote for u. By Claim 2, we know that g(xu, z−u) = g(z ) = S .

Starting from x, we define a profile z in which all vertices in S vote for u, and
the rest vote as in x. Since S = g(x), by Lemma 4, we get g(z) = S . Observe that
z = (xu, z−u), which leads to a contradiction.

This completes the proof of Theorem 3.

We next use Theorem 3 to obtain lower bounds on the additive approximation
guarantee obtained by any deterministic strong sample mechanisms.

Corollary 1 There is no impartial deterministic strong sample mechanism with
additive approximation better than n − 2 in the single nomination model.

Proof Let S be the sample set which, by Theorem 3, must be selected independently
of x, and let v ∈ S. Define x so that all vertices in N \ {v} vote for v and all other
vertices have in-degree either 0 or 1. Then, (x) = n − 1, but the mechanism selects
a vertex of in-degree exactly 1.

We remark that the strong sample mechanism that uses a specific vertex as
singleton sample achieves this additive approximation guarantee.

Our next step, is to extend the notion of sample mechanisms to randomized vari-
ants and provide a lower bound on their additive approximation guarantee, which
shows that SAMPLE AND VOTE (with k = Θ(

√
n); see Section 3.1) is an optimal
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mechanism from this class. We next define the family of randomized strong sample
mechanisms.

Definition 2 (Randomized strong sample mechanisms) A randomized strong sample
mechanism (g, f ) is a probability distribution over a family {(gi, fi) : i ∈ N} of
strong sample mechanisms.

Note that SAMPLE AND VOTE and SAMPLE AND POLL are both randomized
strong sample mechanisms: For a given k, each of the possible sample sets define a
deterministic sample mechanism, and the winner (if any) belongs in the set W . This
is however not the case for more complex mechanisms like those appearing in [6]
and in [11].

Corollary 2 There is no impartial randomized strong sample mechanism with
additive approximation better than Ω(

√
n) in the single nomination model.

Proof By Theorem 3, in any deterministic strong sample mechanism, the sample set
is the same for any input graph x. Hence, in a randomized strong sample mechanism,
the probability that a vertex u belongs in the sample set, is affected only by the sample
functions used by the mechanism. As such, it is independent of the input graph. Then
for any such mechanism we can construct graphs which yield additive approximation
Ω(

√
n).

First, if there exists any vertex v ∈ N with Pr v ∈ S > 1/
√

n, then consider a
nomination profile consisting of vertex v having maximum in-degree = n−1 (i.e.,
all other vertices are pointing to it), with all other vertices having in-degree either 1 or
0. Since u∗ belongs to the sample (and, hence, cannot be the winner) with probability
at least 1/

√
n, the expected degree of the winner is at most 1 + (n− 1)(1 − 1/

√
n) =

− Θ(
√

n).
Otherwise, assume that every vertex v ∈ N has probability at most 1/

√
n of being

selected in the sample set. Consider a nomination profile with a vertex u∗ ∈ N

having maximum degree = √
n/2 and all other vertices having in-degree either 0

or 1. Consider a vertex u pointing to vertex u∗. The probability that u belongs to the
sample is at most 1/

√
n. Hence, by the union bound, the probability that some of the√

n/2 vertices pointing to u∗ is selected in the sample set is at most 1/2. Hence, the
probability that u∗ is returned as the winner is not higher than 1/2 and the expected
in-degree of the winner is at most 1 + √

n/2 · 1/2 = − Θ(
√

n).

4.2 General Lower Bound

Our last result is a lower bound for all deterministic impartial mechanisms in the
most general model of Alon et al. [1], where each agent can nominate multiple other
agents or even abstain. We remark that our current proof applies to mechanisms that
always select a winner.

Theorem 4 There is no impartial deterministic α-additive mechanism for α ≤ 2.
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Fig. 5 Vertex a is the winner in profile s. This leads to the three profiles x, y and z, where each diamond-
shaped vertex cannot be the winner

Proof Let f be a deterministic impartial mechanism and, for the sake of contradic-
tion, assume that it achieves additive approximation at most equal to 2. We will show
that there is a profile with four vertices (denoted by a, b, c and d), in which the winner
has in-degree 0, while the maximum in-degree is 3, which leads to a contradiction.

We first consider the profile with no edges, say s, and let us assume, without loss
of generality, that the winner is a (see Fig. 5). Now consider the three profiles x, y
and z produced when each of the other three vertices c, b and d vote for the other two
of them, respectively (c votes for d and b, b votes for c and d, and d votes for b and
c, as shown in Fig. 5). In all these profiles, the voter (the vertex which changes its
outgoing edges, compared to profile s) cannot be the winner since this would break
impartiality. Focus for example on the profile x. Since c cannot be the winner, it must
be either a, b or d. There are essentially two cases, which we treat separately.

Case 1: a is theWinner for at Least One of x, y, z Consider the profile x, where vertex
c votes for both b and d and assume that a = f (x) (see Fig. 6). We let a vote for
both b and d, to get the profile w = ({(a, b)(a, d)}, x−a). Impartiality implies that
a = f (w).

On the one hand, if b votes for d (profile w = ({(b, d)},w−b)), impartiality
implies that b = f (w ) and approximation allows only f (w ) = d. On the other
hand, if d votes for b (profile w = ({(d, b)},w−d)), by similar arguments we have
f (w ) = b (see Fig. 6). Now, consider the profile t where both b and d vote for
each other, i.e., t = ({(d, b)},w −d) and, at the same time, t = ({(b, d)},w −b).
Impartiality (applied to w and w , respectively) implies that both b and d must be

Fig. 6 Case 1 in the proof of Theorem 4. We assume that a is the winner in profile x. When a adds votes,
the profile w is created. Then, in the upper profile w , vertex d must win (for an additive approximation
guarantee strictly less than 3) and in the lower profile w , vertex b must win. This however leads to the
final profile t, where both d and b must win, due to impartiality —a contradiction
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Fig. 7 Case 2 in the proof of Theorem 4. Vertex a is not the winner in any of the profiles x, y, z. In
Fig. 7a, we assume that two of the winners in x, y, z are the same, and this leads to a mechanism with two
winners —a contradiction. In Fig. 7b, we assume that no two profiles among x, y, z have the same winner.
Impartiality implies that in the rightmost profile t where three vertices have in-degree 2, the winner is
vertex a. When a votes for any other vertex, a remains the winner with in-degree 0, while the graph
includes a vertex with in-degree 3—a contradiction
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winners which is absurd and leads to a contradiction. Similar arguments would apply
for the other cases, establishing that a cannot be the winner in any of the profiles x, y
or z.

Case 2: a is Not theWinner for Any x, y, z In this case, due to impartiality, only vertices
with in-degree 1 are possible winners. Hence, we are left only with two sub-cases;
either two of these profiles share the same winner or all of them have a different
winner.

In the first sub-case, consider (without loss of generality) the scenario where
f (x) = f (y). Impartiality, plus the fact that a is not the winner in x, imply that
f (x) = d. Assume that f (z) = b (illustrated in Fig. 7a). The alternative case
f (z) = c follows through similar arguments. In profile y, we let d add 2 votes and
create profile t = ({(d, b)(d, c)}, y−d). By impartiality, f (t ) = d. In profile z, we
let b add 2 votes and create again the profile ({(b, c)(b, d)}, z−b) = t . Note that these
graphs are, indeed, the same. By impartiality f (t ) = b, hence the impartial mecha-
nism f at profile t must award two vertices, a contradiction. Similar arguments hold
in all the cases where two of the profiles x, y, z share the same winner.

We are left now with the case where all these profiles, x, y and z have different
winners, where none of them is a. There are 2 possible such scenarios: f (x) = d,
f (y) = c and f (z) = b (see Fig. 7b), or f (x) = b, f (y) = d and f (z) = c. Consider
the first one (similar arguments hold also for the second). From these profiles x, y
and z we reach the profiles x = ({(d, b)(d, c)}, x−d), y = ({(c, b)(c, d)}, y−c) and
z = ({(b, c)(b, d)}, z−d), by letting the respective winners to add edges. Because
of impartiality, all the winners are preserved, i.e., f (x) = f (x ), f (y) = f (y )

and f (z) = f (z ). Let us now focus on profile x . By letting vertex b add edges
(b, c) and (b, d), we create the profile t = ({(b, c)(b, d)}, x−b): a directed clique
on the vertices b, c and d and the vertex a with no incoming nor outgoing edges (see
Fig. 7b). Focusing now on profile y , we reach the profile ({(d, b)(d, c)}, y−d) = t
by a deviation of vertex d; the same profile as before. In a similar fashion, on profile
z we reach the profile ({(c, b)(c, d)}, z−c) = t by a deviation of c. By impartiality,
f (t ) /∈ {b, c, d}, which implies that f (t ) = a. Now, if a votes for at least any other
vertex, impartiality implies that a must remain the winner, while the nominees of a

will have in-degree 3, contradicting the approximation guarantee of f .
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