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Abstract
We study the problem of finding maximumweakly stable matchings when preference
lists are incomplete and contain one-sided ties of bounded length. We show that if
the tie length is at most L, then it is possible to achieve an approximation ratio of
1 + (1 − 1

L
)L. We also show that the same ratio is an upper bound on the integrality

gap, which matches the known lower bound. In the case where the tie length is at
most 2, our result implies an approximation ratio and integrality gap of 5

4 , which
matches the known UG-hardness result.

Keywords Stable matching · Approximation algorithm · Integrality gap

1 Introduction

The stable matching model of Gale and Shapley [3] involves a two-sided market
in which the agents are typically called men and women. Each agent has ordinal
preferences over the agents of the opposite sex. A matching is said to be stable if no
man and woman prefer each other to their partners. Stable matchings always exist
and can be computed efficiently by the proposal algorithm of Gale and Shapley. Their
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This journal article combines the results presented in two conference papers [1, 2]. The first of these
papers establishes an approximation ratio of 1 + 1

e
. The second establishes the more detailed bound

stated in the abstract. The latter bound is increasing in L and approaches 1 + 1
e
as L tends to infinity.
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algorithm is also applicable when the preference lists are incomplete, that is, when
agents are allowed to omit from their preference lists any unacceptable agent of the
opposite sex. If ties are allowed in the preference lists, the notion of stability can
be generalized in several ways [4]. This paper focuses on weakly stable matchings,
which always exist and can be obtained by invoking the Gale-Shapley algorithm
after breaking all the ties arbitrarily. When incomplete lists are absent, every weakly
stable matching is a maximum matching and hence has the same size. When ties
are absent, the Rural Hospital Theorem guarantees that all stable matchings have the
same size [5, 6]. However, when both ties and incomplete lists are present, weakly
stable matchings can vary in size.

In this paper, we study the problem of finding large weakly stable matchings. Our
main result is a polynomial-time algorithm that achieves an approximation ratio of
1 + (1 − 1

L
)L for maximum stable matching with one-sided ties and incomplete lists

where the lengths of the ties are at most L. Since (1 − 1
L
)L ≤ 1

e
, our algorithm

achieves a 1 + 1
e
approximation ratio for one-sided ties with unbounded lengths.

In Section 1.1, we review the prior work related to this problem. In Section 1.2, we
present an overview of our techniques. In Section 1.3, we describe the organization
of the rest of the paper.

1.1 RelatedWork

In Section 1.1.1, we review the prior work on the maximum stable matching problem
where ties are allowed on both sides of the market. In Section 1.1.2, we review the
prior work for the case where ties are only allowed on one side. In Section 1.1.3,
we review the prior work for the case where the maximum tie length is restricted. In
Section 1.1.4, we mention other special cases of maximum stable matching that have
been studied in the literature. In Section 1.1.5, we mention recent work on strategic
issues associated with approximation algorithms for the maximum stable matching
problem.

1.1.1 Two-Sided Ties

It is straightforward to see that any weakly stable matching is a 2-approximate solu-
tion [7]. Using a local search approach, Iwama et al. [8] gave an algorithm with an
approximation ratio of 15

8 (= 1.875). Király [9] improved the approximation ratio to
5
3 (≈ 1.6667) by introducing the idea of promoting unmatched agents to higher pri-
orities for tie-breaking. The current best approximation ratio for two-sided ties and
incomplete lists is 3

2 (= 1.5), which is attained by the polynomial-time algorithm of
McDermid [10], and the linear-time algorithms of Paluch [11] and of Király [12].

For hardness results, Iwama et al. [13] were the first to prove that finding a maxi-
mum weakly stable matching with ties and incomplete lists is NP-hard. Halldórsson
et al. [14] showed that it is NP-hard to get an approximation ratio of 1 + ε. Results
by Yanagisawa [15] imply that getting an approximation ratio of 33

29 − ε (≈ 1.1379)

646 Theory of Computing Systems (2022) 66:645–678



is NP-hard, and achieving 4
3 − ε (≈ 1.3333) is UG-hard. These hardness results hold

even when the maximium tie length is two.
In the case of two-sided ties, Iwama et al. [16] showed that the integrality gap

for the associated linear programming formulation is at least 3L−2
2L−1 , where L is the

maximum tie length. For the case of unbounded tie lengths, this implies a lower
bound of 3

2 for the integrality gap, which coincides with the best approximation ratio
known [10–12], indicating a potential barrier to further improvements.

1.1.2 One-Sided Ties

For the case where ties appear only on one side of the market, Király [9] showed an
approximation ratio of 3

2 (= 1.5) for an algorithm based on the idea of promotion,
and conjectured that a ( 32 −ε)-approximation is UG-hard. However, Iwama et al. [16]
later presented an algorithm based on linear programming with an approximation
ratio of 25

17 (≈ 1.4706). Dean and Jalasutram [17] improved on this approach to obtain
an approximation ratio of 19

13 (≈ 1.4615). Huang and Kavitha [18] established an
approximation ratio of 22

15 (≈ 1.4667) using an algorithm based on rounding half-
integral stable matchings. Subsequently, a tight analysis [19, 20] of their algorithm
established an approximation ratio of 13

9 (≈ 1.4444).
With one-sided ties, the problem of finding a maximum weakly stable matching

remains NP-hard [7]. Results by Halldórsson et al. [21] imply that getting an approx-
imation ratio of 21

19 − ε (≈ 1.1053) is NP-hard, and that achieving 5
4 − ε (≈ 1.25) is

UG-hard. These hardness results hold even when each tie has length at most two.
In the case of one-sided ties, Iwama et al. [16] showed that the integrality gap for

the associated linear programming formulation is at least 1 + (1 − 1
L
)L, where L is

the maximum tie length. For the case of unbounded tie lengths, this implies a lower
bound of 1 + 1

e
(≈ 1.3679) for the integrality gap. In a paper by Huang et al. [22],

the integrality gap is claimed to be at least 3
2 , but their proof contains an error.1

1.1.3 Ties with Restricted Lengths

For the case of two-sided ties where the length of each tie is at most two, Halldórsson
et al. [21] presented an algorithm based on checking a small subset of tie breakers
that achieves an approximation ratio of 13

7 (≈ 1.8571). For the same special case,

1In the proof of this claim [22, Theorem 19], Huang et al. exhibit a family of instances with 2k men and
2k women such that the corresponding LP has a feasible fractional value of (3/2 − o(1))k. It is asserted
that a certain weakly stable matching of size k is a maximum weakly stable matching, but this assertion is
incorrect. For the case when k = 2, there exists a weakly stable matching of size 3. Similarly, when k > 2,
it can be shown that the maximum size of weakly stable matching is greater than k.

There is also a flaw related to the main result of their paper, which asserts an approximation ratio of
5
4 for the special case where ties are one-sided and are restricted to the end of the preference lists. In the

derivation of inequalities (11) and (12) in their proof [22, Lemma 16], it is claimed that δm,w

1+νw
≤ δm,w .

This claim depends on the unproven assumption that δm,w is non-negative. It is unclear whether this flaw
can be fixed. Both flaws have been acknowledged by Huang et al. in a personal communication.
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the randomized algorithm of Halldórsson et al. [23] gives an expected approximation
ratio of 7

4 (= 1.75). Huang and Kavitha [18] established an approximation ratio of 10
7

(≈ 1.4286) using the approach of rounding half-integral stable matchings. A better
analysis [24] of their algorithm improved the approximation ratio to 4

3 (≈ 1.3333),
which matches the UG-hardness result [15] and the lower bound for the integrality
gap [16].

For the case of one-sided ties, the deterministic algorithm of Halldórsson et al. [21]
attains an approximation ratio of 2

1+L−2 , where L is the maximum length of the ties.
The randomized algorithm of Halldórsson et al. [23] attains an approximation ratio
of 10

7 (≈ 1.4286) for the case of one-sided ties where the length of each tie is at most
two.

1.1.4 Other Special Cases

Further known NP-hard problems include the case where ties are restricted to the
tail of the preference lists [21], where preference lists have length at most three [25],
where preferences are symmetric [26], or where preferences are derived from master
lists [27]. Some parameterized complexity results are also known [28].

1.1.5 Strategyproofness

In recent work, Hamada et al. [29] study strategic issues related to approximation
algorithms for the maximum stable matching problem. For the case where ties appear
only on one side, they show that no ( 32 −ε)-approximation algorithm is strategyproof
for the side with ties, and no (2 − ε)-approximation algorithm is strategyproof for
the side without ties. They also show that these bounds are tight, even for group
strategyproof mechanisms.

1.2 Overview of the Techniques

The key techniques for the design and analysis of our approximation algorithm are
based on linear programming. We focus on the maximum stable matching problem
with one-sided ties and incomplete lists, and obtain a polynomial-time (1 + (1 −
1
L
)L)-approximation algorithm, where L is the maximum tie length.
Our algorithm is motivated by a proposal process similar to that of Iwama et

al. [16], and that of Dean and Jalasutram [17], in which numerical priorities are
adjusted according to the linear programming solution, and are used for tie-breaking
purposes. However, instead of using their priority manipulation schemes, we intro-
duce a method of priority incrementation based on an adjustable step size parameter.
We first present the description and the properties of our process in terms of the step
size parameter. We then consider the limit of this process as the step size becomes
infinitesimally small, and present a polynomial-time algorithm which satisfies the
key properties with the step size parameter set to zero.

Using these key properties, we analyze the approximation ratio of our algorithm
by directly comparing the size of our output matching with the optimal value of
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the linear program. Although this is a standard approach to analyze approximation
algorithms, it has not been used in prior work on this problem. Prior analyses [9, 18–
20] which are not based on linear programming consider the symmetric difference of
the output matching and an unknown optimal matching, and count augmenting paths
of various lengths. Such symmetric difference arguments are also used in the analyses
of Iwama et al. [16], and Dean and Jalasutram [17], where the output matching is
compared to both an unknown optimal matching and an optimal linear programming
solution. Instead of focusing on the symmetric difference, we develop a scheme that
assigns charges to the matched man-woman pairs based on an exchange function. By
applying the stability constraint and the tie-breaking criterion to the charges incurred
due to indifferences in the preferences, we show that the charges cover the value of
the linear programming solution. While none of the prior analyses directly implies an
upper bound for the integrality gap, our approach enables us to obtain an upper bound
of 1 + (1 − 1

L
)L for the integrality gap, where L is the maximum tie length. This

matches the known lower bound for the integrality gap [16]. When the maximum
length of the ties is two, our result implies an approximation ratio and integrality gap
of 5

4 (= 1.25), which matches the known UG-hardness result [21].
As part of our analysis, we formulate an infinite-dimensional factor-revealing

linear program to find a good exchange function. The finite-dimensional factor-
revealing linear programming technique was introduced by Jain et al. [30], and since
then a number of variants have been proposed [31–33]. However, it is often difficult
to obtain a nice closed-form solution. For the maximum stable matching problem
with one-sided ties and incomplete lists, Dean and Jalasutram [17] obtained an
approximation ratio of 19

13 by enumerating the combinatorial structures of augmenting
paths and resorting to a computer-assisted proof for solving a large factor-revealing
linear program. In contrast, our infinite-dimensional factor-revealing linear program
is derived from our charging argument. Using numerical results as guidance, we are
able to obtain an analytical solution for this linear program.

1.3 Organization of the Rest of the Paper

In Section 2, we formally define the stable matching market with one-sided ties. In
Section 3, we present the linear programming formulation used by our algorithm. In
Section 4, we present the proposal process and the implementations of our algorithm.
In Section 5, we analyze the approximation ratio of our algorithm.

2 Stable Matching with One-Sided Ties

The stable matching market involves a set I of men and a set J of women. The
sets I and J are assumed to be disjoint and finite. Furthermore, we assume that the
sets I and J do not contain the element 0, which we use to denote being unmatched.
The preference relation of each man i ∈ I is specified by a binary relation ≥i over
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J ∪ {0} that satisfies asymmetry2, transitivity3, and totality4. Similarly, the pref-
erence relation of each woman j ∈ J is specified by a binary relation ≥j over
I ∪ {0} that satisfies transitivity and totality. We denote this stable matching market
as (I, J, {≥i}i∈I , {≥j }j∈J ).

For every man i ∈ I and woman j ∈ J , man i is said to be acceptable to woman
j if i ≥j 0. Similarly, woman j is said to be acceptable to man i if j ≥i 0. The
preference lists are allowed to be incomplete. In other words, there may exist i ∈ I

and j ∈ J such that 0 >j i or 0 >i j .
Notice that the preference relations {≥j }j∈J of the women are not required to be

antisymmetric, while the preference relations {≥i}i∈I of the men are required to be
antisymmetric. For every man i ∈ I , we write >i to denote the asymmetric part5 of
≥i . For every woman j ∈ J , we write >j and =j to denote the asymmetric part and
the symmetric part6 of ≥j , respectively. A tie in the preference list of woman j is an
equivalence class of size at least 2 with respect to the equivalence relation =j , and
the length of a tie is the size of this equivalence class.7 We assume that there is at
least one tie in a given problem instance, for otherwise every stable matching has the
same size. We use L to denote the maximum length of the ties in the preference lists
of the women, where 2 ≤ L ≤ |I | + 1.

Acceptability can be defined in terms of the preference relations. For every pair
of agents k and k′ of opposite sex, either k′ ≥k 0 or 0 >k k′. We say that agent k′
is acceptable to agent k in the former case, and unacceptable to agent k in the latter
case. If man i and woman j are acceptable to each other, we say that (i, j) is an
acceptable pair. Otherwise, (i, j) is an unacceptable pair. Agent k is said to have a
complete preference list if every agent k′ of the opposite sex is acceptable to agent k.
Otherwise, agent k is said to have an incomplete preference list.

A matching is a subset μ ⊆ I × J such that for every (i, j), (i′, j ′) ∈ μ, we have
i = i′ if and only if j = j ′. For every man i ∈ I , if (i, j) ∈ μ for some woman j ∈ J ,
we say that man i is matched to woman j in matching μ, and we write μ(i) = j .
Otherwise, we say that man i is unmatched in matching μ, and we write μ(i) = 0.
Similarly, for every woman j ∈ J , if (i, j) ∈ μ for some man i ∈ I , we say that
woman j is matched to man i in matching μ, and we write μ(j) = i. Otherwise, we
say that woman j is unmatched in matching μ, and we write μ(j) = 0.

2A binary relation 	 over a set K is said to satisfy antisymmetry if for every k1, k2 ∈ K such that k1 	 k2
and k2 	 k1, we have k1 = k2.
3A binary relation 	 over a set K is said to satisfy transitivity if for every k1, k2, k3 ∈ K such that k1 	 k2
and k2 	 k3, we have k1 	 k3.
4A binary relation 	 over a set K is said to satisfy totality if for every k1, k2 ∈ K , we have either k1 	 k2
or k2 	 k1.
5 The asymmetric part of a binary relation 	 over a set K is the binary relation 
 over the set K such that
for every k1, k2 ∈ K , we have k1 
 k2 if and only if k1 	 k2 and ¬(k2 	 k1).
6 The symmetric part of a binary relation 	 over a set K is the binary relation ∼ over the set K such that
for every k1, k2 ∈ K , we have k1 ∼ k2 if and only if k1 	 k2 and k2 	 k1.
7Some of the literature on stable matching with indifferences does not allow an agent to be indifferent
between being matched to an agent and being unmatched. Our formulation of the stable matching problem
with one-sided ties and incomplete lists allows for this possibility, since we can have i =j 0 for any man
i and woman j .
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A matching μ is individually rational if for every (i, j) ∈ μ, we have j ≥i 0 and
i ≥j 0. An individually rational matching μ is weakly stable if for every man i ∈ I

and woman j ∈ J , either μ(i) ≥i j or μ(j) ≥j i. Otherwise, (i, j) forms a strongly
blocking pair.

The goal of the maximum stable matching problem is to find a maximum-
cardinality weakly stable matching for a given stable matching market. We say that
a polynomial-time algorithm is a z-approximation algorithm, or achieves an approx-
imation ratio of z, where z ≥ 1, if the algorithm produces a weakly stable matching
with cardinality at least 1

z
times that of the largest weakly stable matching. We also

say that a maximization-based linear program has an integrality gap of z ≥ 1 if z is
the minimum ratio such that the objective value of an optimal fractional solution is
at most z times that of an optimal integral solution.

3 The Linear Programming Formulation

The following linear programming formulation is based on that of Rothblum [34],
which extends that of Vande Vate [35]. We seek to maximize

∑
(i,j)∈I×J xi,j subject

to the following constraints:
∑

j∈J

xi,j ≤ 1 ∀i ∈ I (C1)

∑

i∈I

xi,j ≤ 1 ∀j ∈ J (C2)

∑

j ′∈J
j ′>ij

xi,j ′ +
∑

i′∈I
i′≥j i

xi′,j ≥ 1 ∀(i, j) ∈ I × J such that j >i 0 and i >j 0 (C3)

xi,j = 0 ∀(i, j) ∈ I × J such that 0 >i j or 0 >j i (C4)

xi,j ≥ 0 ∀(i, j) ∈ I × J (C5)

For the model with strict preferences and incomplete lists, it is known [34] that
an integral solution x = {xi,j }(i,j)∈I×J corresponds to the indicator variables of a
weakly stable matching if and only if x satisfies constraints (C1)–(C5). Our model
allows ties to appear in the preference lists of the women. We also allow a woman to
be indifferent between being unmatched and being matched with some of the men.
Accordingly, we provide a proof of Lemma 1 for the sake of completeness.

Lemma 1 An integral solution x corresponds to the indicator variables of a weakly
stable matching if and only if it satisfies constraints (C1)–(C5).

Proof Suppose x satisfies constraints (C1)–(C5). Constraints (C1), (C2), and (C5)
imply that x corresponds to a valid matching μ. Constraint (C4) implies that μ is
individually rational. To show the weak stability ofμ, consider man i ∈ I and woman
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j ∈ J . It suffices to show that (i, j) is not a strongly blocking pair. We may assume
that j >i 0 and i >j 0, for otherwise individual rationality implies μ(i) ≥i 0 ≥i j

or μ(j) ≥j 0 ≥j i. Consider constraint (C3) associated with (i, j). At least one of
the two summations is equal to 1. If the first summation is equal to 1, then μ(i) >i j .
If the second summation is equal to 1, then μ(j) ≥j i. Thus, μ is a weakly stable
matching.

Conversely, suppose x corresponds to a weakly stable matching μ. Since μ is a
valid matching, constraints (C1), (C2), and (C5) are satisfied. Also, the individual
rationality of μ implies that constraint (C4) is satisfied. To show that constraint (C3)
is satisfied, consider (i, j) ∈ I × J such that j >i 0 and i >j 0. It suffices to show
that at least one of the two summations in constraint (C3) associated with (i, j) is
equal to 1. By the weak stability of μ, we have either μ(i) ≥i j or μ(j) ≥j i. We
consider two cases.

Case 1: μ(j) ≥j i. Since μ(j) ≥j i >j 0, the second summation is equal to 1.
Case 2: i >j μ(j) and μ(i) ≥i j . Since i >j μ(j), we have (i, j) /∈ μ. Since

μ(i) ≥i j and (i, j) /∈ μ, we have μ(i) >i j . Since μ(i) >i j >i 0, the first
summation is equal to 1.

Given x which satisfies constraints (C1)–(C5), it is useful to define auxiliary
variables

yi,j =
∑

j ′∈J
j≥i j

′

xi,j ′

for every (i, j) ∈ I × (J ∪ {0}), and
zi,j =

∑

i′∈I
i>j i′

xi′,j

for every (i, j) ∈ (I ∪ {0}) × J .

Lemma 2 The auxiliary variables satisfy the following conditions.

1. For every i ∈ I , we have yi,0 = 0.
2. For every i ∈ I and j ∈ J , we have xi,j ≤ yi,j ≤ 1.
3. For every i ∈ I and j, j ′ ∈ J such that j >i j ′, we have yi,j ≥ xi,j + yi,j ′ .
4. For every i, i′ ∈ I ∪ {0} and j ∈ J such that i =j i′, we have zi,j = zi′,j .
5. For every i ∈ I and j ∈ J such that j ≥i 0 and i ≥j 0, we have yi,j + zi,j ≤ 1.

Proof 1. Let i ∈ I . Then the definition of yi,0 implies

yi,0 =
∑

j ′∈J
0≥i j

′

xi,j ′ =
∑

j ′∈J
0>ij

′

xi,j ′ = 0,

where the last equality follows from constraint (C4).
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2. Let i ∈ I and j ∈ J . By the definition of yi,j , we have

yi,j =
∑

j ′∈J
j≥i j

′

xi,j ′ ≥ xi,j ,

where the inequality follows from constraint (C5). Also by the definition of yi,j ,
we have

yi,j =
∑

j ′∈J
j≥i j

′

xi,j ′ ≤
∑

j ′∈J

xi,j ′ ≤ 1,

where the first inequality follows from constraint (C5), and the second inequality
follows from constraint (C1).

3. Let i ∈ I and j, j ′ ∈ J such that j >i j ′. Then the definitions of yi,j and yi,j ′
imply

yi,j =
∑

j ′′∈J
j≥i j

′′

xi,j ′′ ≥ xi,j +
∑

j ′′∈J
j ′≥i j

′′

xi,j ′′ = xi,j ′ + yi,j ′ .

4. Let i, i′ ∈ I ∪ {0} and j ∈ J such that i =j i′. Then the definitions of zi,j and
zi,j ′ imply

zi,j =
∑

i′′∈I
i>j i′′

xi′′,j =
∑

i′′∈I
i′>j i′′

xi′′,j = zi′,j ,

where the second equality follows from i =j i′.
5. Let (i, j) ∈ I × J such that j ≥i 0 and i ≥j 0. We consider two cases.

Case 1: i =j 0. Then the definition of zi,j implies

zi,j =
∑

i′∈I
i>j i′

xi′,j =
∑

i′∈I
0>j i′

xi′,j = 0 ≤ 1 − yi,j ,

where the second equality follows from i =j 0, the third equality follows from
constraint (C4), and the last inequality follows from part 2.

Case 2: i >j 0. Since j ∈ J and j ≥i 0, we have j >i 0. Since j >i 0 and
i >j 0, constraints (C1)–(C3) imply

0 ≤
(
1 −

∑

j∈J

xi,j

)
+

(
1 −

∑

i∈I

xi,j

)
+

(
−1 +

∑

j ′∈J
j ′>ij

xi,j ′ +
∑

i′∈I
i′≥j i

xi′,j
)

= 1 −
∑

j ′∈J
j≥i j

′

xi,j ′ −
∑

i′∈I
i>j i′

xi′,j

= 1 − yi,j − zi,j ,

where the last equality follows from the definitions of yi,j and zi,j .
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4 The Algorithm

In Section 4.1, we present a proposal process along with some key properties in
terms of a step size parameter. In Section 4.2, we present a polynomial-time algo-
rithm to simulate this process with an infinitesimally small step size. In Section 4.3,
we present some properties of the loop body of our algorithm. In Section 4.4, we
show that our algorithm satisfies the key properties. In Section 4.5, we present an
alternative implementation of our algorithm.

4.1 A Proposal Process with Priorities

Our proposal process with priorities takes a stable matching market and a step size
parameter η > 0 as input, and produces a weakly stable matching μ as output. In the
preprocessing phase, we compute an optimal fractional solution x to the associated
linear program. Then, in the initialization phase, we assign the empty matching to μ

and each man i is assigned a priority pi equal to 0. For each man i, we also maintain
a set Si of women that is initialized to the empty set. We use the set Si to store the
women to whom man i must propose before his priority pi is increased by η. After
that, the process enters the proposal phase and proceeds iteratively.

In each iteration, we pick an unmatched man i with priority pi < 1 + η. If the
set Si is empty, we increment his priority pi by η and then update Si to the set

{j ∈ J : j ≥i 0 and pi ≥ 1 − yi,j }.
Otherwise, the man i that we pick has a non-empty set Si of women. Let j denote the
most preferred woman of man i in Si . We remove j from Si and man i proposes to
woman j . When woman j receives the proposal from man i, she tentatively accepts
him if she is currently unmatched and he is acceptable to her. Otherwise, if woman j

is currently matched to another man i′, she tentatively accepts her preferred choice
between men i and i′, and rejects the other. In the event of a tie, she compares the
current priorities pi and pi′ of the men and accepts the one with higher priority. (If
the priorities of i and i′ are equal, she breaks the tie arbitrarily.) If man i is tentatively
accepted by woman j , the matching μ is updated accordingly.

When every unmatched man i has priority pi ≥ 1+ η, the process terminates and
outputs the final matching μ.

Our process is similar to that of Iwama et al. [16], and that of Dean and Jalasu-
tram [17], who also use a proposal scheme with priorities. In particular, the way that
we populate the set Si with a subset of women by referring to the linear programming
solution is based on their methods. The major difference is that, in our process, pri-
orities only increase by a small step size η, whereas in their algorithms, the priorities
may increase by a possibly larger amount, essentially to ensure that a new woman
is added to Si . As in their algorithms, for every woman j , the sequence of tentative
partners μ(j) of woman j satisfies a natural monotonicity property. Woman j is ini-
tially unmatched, and becomes matched the first time she receives a proposal from
a man who is acceptable to her. In each subsequent iteration, she either keeps her
current partner or gets a weakly preferred partner. Furthermore, if she is indifferent
between her new partner and her old partner, then the new partner has a weakly larger

654 Theory of Computing Systems (2022) 66:645–678



priority. When the process terminates, the following properties hold, which are anal-
ogous to properties satisfied by the algorithms of Iwama et al. [16] and Dean and
Jalasutram [17].

(P1) Let (i, j) ∈ μ. Then j ≥i 0 and i ≥j 0.
(P2) Let i ∈ I be a man and j ∈ J be a woman such that j ≥i μ(i) and i ≥j 0.

Then μ(j) 
= 0 and μ(j) ≥j i.
(P3) Let i ∈ I be a man. Then 1 − yi,μ(i) ≤ pi ≤ 1 + 2η.8

(P4) Let i ∈ I be a man and j ∈ J be a woman such that j ≥i 0 and i ≥j 0.
Suppose pi − η > 1 − yi,j . Then μ(j) 
= 0 and μ(j) ≥j i. Furthermore, if
μ(j) =j i, then pμ(j) ≥ pi − η.

For (P1), it is easy to see that man i proposes to woman j only if she is acceptable
to him, and woman j accepts a proposal from man i only if he is acceptable to her.

For (P2), if man i weakly prefers woman j to μ(i) and is acceptable to woman j ,
then man i has proposed to woman j . Thus the monotonicity property implies that
μ(j) 
= 0 and μ(j) ≥j i.

For (P3), it is easy to see that the priority pi of man i lies within the specified
range when he proposes to woman μ(i).

For (P4), if man i and woman j satisfy the stated assumptions, then man i pro-
posed to woman j when his priority was equal to pi − η, and this proposal was
eventually rejected. Immediately after this proposal was rejected, woman j was
matched with a man i′ such that i′ 
= i and i′ ≥j i. The monotonicity property
implies that μ(j) 
= 0 and μ(j) ≥j i′ ≥j i. Furthermore, if μ(j) =j i, then
μ(j) =j i′ =j i. Since i′ =j i, the priority of man i′ was at least pi − η when the
aforementioned proposal was rejected. Since μ(j) =j i′, the monotonicity property
implies that pμ(j) ≥ pi − η.

4.2 A Polynomial-Time Implementation

The proposal process with priorities of Section 4.1 depends on a step size parameter
η > 0. To obtain a good approximation ratio, we would like the step size parameter η

to be small. However, the running time of a naive implementation grows in proportion
to η−1. We can imagine that if we take an infinitesimally small step size, then (P1)–
(P4) can be satisfied with η = 0.

Our algorithm is motivated by the idea of simulating the process of Section 4.1
with an infinitesimally small step size. We maintain for every man i ∈ I a priority pi

and a pointer �i ∈ J ∪ {0} into the preference list of man i. For every man i ∈ I

and woman j ∈ J , we think of man i as having proposed to woman j if and only if
j >i �i and j ≥i 0. Given � = {�i}i∈I and j ∈ J , we define

Ij (�) = {i ∈ I : j >i �i and j ≥i 0}

8For any positive step size η, the upper bound on pi can be strengthened to pi < 1 + 2η. Later in the
paper, we present an algorithm (Algorithm 1) that terminates in a state satisfying (P1) through (P4) with
η = 0 (Lemma 13); in that context, we have pi ≤ 1 and not pi < 1.
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as the set of all men i who have proposed to woman j . Given � = {�i}i∈I , we define
G(�) as the bipartite graph with vertex set I ∪ J and edge set

E(�) = {(i, j) ∈ I × J : i ∈ Ij (�) and i ≥j i′ for every i′ ∈ Ij (�) ∪ {0}}.

Given � and μ, we say that a (possibly zero-length) path π in G(�) is μ-alternating
if it alternates between edges not in μ and edges in μ. We say that a μ-alternating
path π is oriented from k to k′ if no edge in π ∩ μ is incident to vertex k. The details
of the implementation are given in Algorithm 1.

It is straightforward to prove that throughout any execution of Algorithm 1, the
program variable μ corresponds to a matching. Likewise, where it is defined, the pro-
gram variable μ0 corresponds to a matching. Accordingly, throughout our analysis,
we assume that μ and μ0 are matchings.

In Sections 4.3 and 4.4 below, we establish that Algoritm 1 terminates in a state
that satisfies (P1)–(P4) with η = 0 (Lemma 13). Before proceeding to our formal
analysis, we offer some intuition regarding the sense in which Algorithm 1 can be
viewed as simulating the proposal process of Section 4.1 with an infinitesimally small
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step size. A reader who is interested only in the formal presentation can skip the next
two paragraphs without loss of continuity.

When the step size η is small, the proposal process of Section 4.1 is subject to a
great deal of churn. For example, consider two men i and i′ and a woman j such
that i =j i′ ≥j 0 and j is the top choice of both i and i′. The proposal process can
begin with man i proposing to, and becoming matched with, woman j . Subsequently,
we can have a large number of iterations in which one of the two men i and i′ is
matched to j , and the other is unmatched and is chosen to propose. The priority of the
unmatched man increases until it exceeds that of the matched man, at which point the
matching is updated with the roles of the two men reversed. Throughout this period,
whenever the sets Si or Si′ associated with the proposal process are constructed, they
are equal to {j}. This pattern continues, with woman j being alternately matched to
i and i′, and with the priorities of man i and i′ gradually increasing (and remaining
approximately equal) until the priority of one of the men, say i, either reaches a
sufficiently high value to ensure that Si contains a second woman, or reaches its
maximum value. Algorithm 1 is designed to efficiently simulate this churn by directly
increasing the priorities of men i and i′ to the critical value.

The foregoing two-man one-woman scenario is a special case of a much more gen-
eral class of “churn scenarios” that are efficiently simulated by Algorithm 1. At each
iteration of Algorithm 1, an unmatched man i0 is selected at line 7. Each successive
time a given man is selected in line 7, the set of women to whom he is willing to pro-
pose (i.e., Si0 ) includes one new entry. This new entry corresponds to the woman j0
defined in line 7. If woman j0 is unmatched and finds man i0 acceptable, then we add
(i0, j0) to the current matching in line 10. If not, we determine in line 12 the man i1
(either i0 or μ(j0)) who is tentatively rejected by woman j0, and we update the cur-
rent matching accordingly in line 13. In lines 14 through 18, Algorithm 1 efficiently
simulates a possible trajectory of the proposal process in which an unmatched man
in the set I0 (which includes i1) is repeatedly chosen to propose until the priority of
some man in this set, say man i, has either increased sufficiently for a new woman to
be added to his set Si , or has reached its maximum value. Using property (P4), it is
not difficult to verify that in this trajectory (and with η infinitesimally small), the low-
est priorities associated with the men in I0 gradually increase until mini∈I0 w(i, �i)

is reached. It follows that the overall effect on the priorities is faithfully captured
by the update performed in line 17. Similarly, the overall change to the matching is
faithfully captured by the update performed in line 18.

4.3 The Loop Body of the Algorithm

In this subsection, we analyze the loop body of Algorithm 1. It is convenient to define
the following predicates.

Q1(�): for every i ∈ I , we have �i ≥i 0.
Q2(�, μ): μ is a matching of G(�) such that for every i ∈ I and j ∈ J , if i ∈ Ij (�)

and i ≥j 0, then μ(j) 
= 0.
Q3(�,p): for every i ∈ I , we have pi ≤ w(i, �i).
Q4(�, μ,p): for every i ∈ I such that μ(i) = 0, we have pi = w(i, �i).
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Q5(�,p): for every i ∈ I and j ∈ J such that j >i �i , we have w(i, j) ≤ pi .
Q6(�, μ,p): for every i, i′ ∈ I and j ∈ J such that (i, j) ∈ E(�) and μ(i′) = j ,
we have pi ≤ pi′ .
Q(�, μ,p): all of Q1(�), Q2(�, μ), Q3(�,p), Q4(�, μ,p), Q5(�, p), and
Q6(�, μ,p) hold.

Consider the loop body of Algorithm 1. Throughout the rest of this subsection, we
let �−, μ−, and p− denote the values of �, μ, and p before a given iteration of the
loop, and we assume that Q(�−, μ−, p−) and the loop condition are satisfied. Also,
we let �+, μ+, p+ denote the values of �, μ, and p after the iteration.

Lemma 3 For every i ∈ I , we have �+
i ≥i 0.

Proof The only line in the loop body that modifies � is line 8, which updates �i0 . The
definition of i0 implies that �−

i0
>i0 0. It follows that �

+
i0

≥i0 0 holds.

The following lemma characterizes how E(�) changes in a single iteration of the
loop of Algorithm 1. We omit the proof, which is straightforward but tedious.

Lemma 4 The following conditions hold.

1. For every j ∈ J , we have μ−(j) ≥j 0.
2. If i0 <j0 μ−(j0), then E(�+) = E(�−).
3. If μ−(j0) = 0 and i0 ≥j0 0, then E(�+) = E(�−) ∪ {(i0, j0)}.
4. If μ−(j0) 
= 0 and i0 =j0 μ−(j0), then E(�+) = E(�−) ∪ {(i0, j0)}.
5. If μ−(j0) 
= 0 and i0 >j0 μ−(j0), then E(�+) = {(i, j) ∈ E(�−) : j 
= j0} ∪

{(i0, j0)}.

Lemma 5 Condition Q2(�
+, μ+) holds. Furthermore, if μ−(j0) 
= 0 or 0 >j0 i0,

then Q2(�
+, μ0) holds.

Proof Since Q2(�
−, μ−) holds, we know that μ− is a matching of G(�−). Let i ∈ I

and j ∈ J be such that i ∈ Ij (�
+) and i ≥j 0.

Case 1: μ−(j0) = 0 and i0 ≥j0 0. Then μ+ = μ− ∪ {(i0, j0)}. Since μ−(j0) = 0,
i0 ≥j0 0, and Q2(�

−, μ−) holds, part 3 of Lemma 4 implies that E(�+) = E(�−) ∪
{(i0, j0)}. Since μ− is a matching of G(�−), μ−(i0) = 0, μ−(j0) = 0, E(�+) =
E(�−)∪{(i0, j0}, and μ+ = μ− ∪{(i0, j0)}, we find that μ+ is a matching of G(�+).
To establish that Q2(�

+, μ0) holds, it remains to prove that μ+(j) 
= 0.
Case 1.1: j 
= j0. Then Ij (�

+) = Ij (�
−), and hence i ∈ Ij (�

−). Since i ∈ Ij (�
−),

i ≥j 0, and Q2(�
−, μ−) holds, we have μ−(j) 
= 0. Since μ+ = μ− ∪{(i0, j0)} and

j 
= j0, we have μ+(j) = μ−(j). Since μ+(j) = μ−(j) and μ−(j) 
= 0, we have
μ+(j) 
= 0.

Case 1.2: j = j0. Since μ+ = μ− ∪ {(i0, j0)}, μ+ is a matching of G(�+), and
j = j0, we deduce that μ+(j) = i0 
= 0.

Case 2: μ−(j0) 
= 0 or 0 >j0 i0. We need to prove that Q2(�
+, μ0) and

Q2(�
+, μ+) hold. We begin by establishing two useful claims.
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The first claim is that μ0 is a matching of G(�+) that matches the same set of
women as μ−. To prove this claim, we consider three cases.

(a) i0 <j0 μ−(j0). Then i1 = i0 and part 2 of Lemma 4 implies E(�+) = E(�−).
Since i1 = i0, we have μ0 = μ−. Since μ0 = μ−, E(�+) = E(�−), and μ− is
a matching of G(�−), the claim follows.

(b) i0 =j0 μ−(j0). Then part 4 of Lemma 4 implies E(�+) = E(�−) ∪ {(i0, j0)}.
Since μ0 = (μ− ∪ {(i0, j0)}) \ {(i1, j0)}, E(�+) = E(�−) ∪ {(i0, j0)}, and μ−
is a matching of G(�−), the claim follows.

(c) i0 >j0 μ−(j0). Then i1 
= i0 and part 5 of Lemma 4 implies E(�+) = {(i, j) ∈
E(�−) : j 
= j0}∪{(i0, j0)}. Since μ0 = (μ− ∪{(i0, j0)})\ {(i1, j0)}, E(�+) =
{(i, j) ∈ E(�−) : j 
= j0} ∪ {(i0, j0)}, and μ− is a matching of G(�−), the
claim follows.

The second claim is that μ+ is a matching of G(�+) that matches the same set of
women as μ0. Since μ0 is a matching of G(�+) and μ+ is the symmetric difference
between μ0 and an oriented μ0-alternating path in G(�+) from i1 to i2, the second
claim follows.

Given the two preceding claims, we can establish that Q2(�
+, μ0) and

Q2(�
+, μ+) hold by proving that μ−(j) 
= 0. If j = j0, the latter inequality fol-

lows from the Case 2 condition. Now suppose that j 
= j0. Then Ij (�
+) = Ij (�

−),
and hence i ∈ Ij (�

−). Since i ∈ Ij (�
−), i ≥j 0, and Q2(�

−, μ−) holds, we have
μ−(j) 
= 0.

Lemma 6 For every i ∈ I , we have p+
i ≤ w(i, �+

i ).

Proof Let i ∈ I . We consider two cases.
Case 1: p+

i = p−
i . Since Q3(�

−, p−) holds, we have p−
i ≤ w(i, �−

i ). Line 8 of
Algorithm 1 implies w(i, �−

i ) ≤ w(i, �+
i ). Thus p+

i = p−
i ≤ w(i, �−

i ) ≤ w(i, �+
i ).

Case 2: p+
i 
= p−

i . Then line 17 of Algorithm 1 implies i ∈ I0 and p+
i =

w(i2, �
+
i2
). Since i ∈ I0, line 15 of Algorithm 1 implies w(i2, �

+
i2
) ≤ w(i, �+

i ). Thus

p+
i = w(i2, �

+
i2
) ≤ w(i, �+

i ).

Lemma 7 For every i ∈ I such that μ+(i) = 0, we have p+
i = w(i, �+

i ).

Proof Let i ∈ I be such that μ+(i) = 0. Then Lemma 6 implies that p+
i ≤ w(i, �+

i ).
It remains to show that p+

i ≥ w(i, �+
i ). We consider two cases.

Case 1: μ−(j0) = 0 and i0 ≥j0 0. Then p+
i = p−

i . Since μ+(i) = 0, line 10
of Algorithm 1 implies i 
= i0 and μ−(i) = 0. Since μ−(i) = 0, condition
Q4(�

−, μ−, p−) implies p−
i = w(i, �−

i ). Since i 
= i0, line 8 of Algorithm 1 implies
�+
i = �−

i . Thus p+
i = p−

i = w(i, �−
i ) = w(i, �+

i ).
Case 2: μ−(j0) 
= 0 or 0 >j0 i0. We consider two subcases.
Case 2.1: i = i2. Then line 15 of Algorithm 1 implies i2 ∈ I0. Since i = i2 ∈ I0,

line 17 of Algorithm 1 implies p+
i ≥ w(i, �+

i ).
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Case 2.2: i 
= i2. Since μ+(i) = 0, i 
= i2, and {i′ ∈ I : μ+(i′) 
= 0} = ({i′ ∈
I : μ−(i′) 
= 0} ∪ {i0}) \ {i2}, we deduce that i 
= i0 and μ−(i) = 0. Line 17
of Algorithm 1 implies p+

i ≥ p−
i . Since μ−(i) = 0, condition Q4(�

−, μ−, p−)

implies p−
i = w(i, �−

i ). Since i 
= i0, line 8 of Algorithm 1 implies �+
i = �−

i . Thus
p+

i ≥ p−
i = w(i, �−

i ) = w(i, �+
i ).

Lemma 8 For every i ∈ I and j ∈ J such that j >i �+
i , we have w(i, j) ≤ p+

i .

Proof Let i ∈ I and j ∈ J be such that j >i �+
i . Line 17 of Algorithm 1 implies

p+
i ≥ p−

i . We consider two cases.
Case 1: j >i �−

i . Then Q5(�
−, p−) implies p−

i ≥ w(i, j). Thus p+
i ≥ p−

i ≥
w(i, j).

Case 2: �−
i ≥i j . Since �−

i ≥i j >i �+
i , line 8 of Algorithm 1 implies i = i0 and

j = �−
i . Since i = i0, line 7 of Algorithm 1 implies μ−(i) = 0. Since μ−(i) = 0,

condition Q4(�
−, μ−, p−) implies p−

i = w(i, �−
i ). We conclude that p+

i ≥ p−
i =

p+
i ≥ p−

i = w(i, j).

Lemma 9 Suppose that μ−(j0) 
= 0 or 0 >j0 i0. Then the following conditions hold.

1. For every i, i′ ∈ I and j ∈ J such that (i, j) ∈ E(�+) and μ0(i
′) = j , we have

p−
i ≤ p−

i′ .
2. For every i, i′ ∈ I and j ∈ J such that (i, j) ∈ E(�+) and μ0(i

′) = j , we have
p+

i ≤ p+
i′ .

3. For every i ∈ I on path π0, we have p+
i = w(i2, �

+
i2
).

4. For every i, i′ ∈ I and j ∈ J such that (i, j) ∈ E(�+) and μ+(i′) = j , we have
p+

i ≤ p+
i′ .

Proof

1. Let i, i′ ∈ I and j ∈ J be such that (i, j) ∈ E(�+) and μ0(i
′) = j . We consider

two cases.
Case 1: j 
= j0. Since j 
= j0, we have μ−(j) = μ0(j) = i′. In addition,

Lemma 4 implies that (i, j) ∈ E(�−). Since μ−(j) = i′ and (i, j) ∈ E(�−),
condition Q6(�

−, μ−, p−) implies p−
i ≤ p−

i′ .
Case 2: j = j0. Thus i′ = μ0(j0). Let i′′ ∈ I denote μ−(j0). We consider

two subcases.
Case 2.1: i 
= i0. Since i 
= i0, Lemma 4 implies that (i, j0) ∈ E(�−). Since

(i, j0) ∈ E(�−), condition Q6(�
−, μ−, p−) implies p−

i ≤ p−
i′′ . Since i 
= i0 and

(i, j0) ∈ E(�+), Lemma 4 implies that i ≥j0 i0. Since i ≥j0 i0, lines 12 and 13
of Algorithm 1 imply that p−

i′′ ≤ p−
i′ . Thus p−

i ≤ p−
i′′ ≤ p−

i′ .
Case 2.2: i = i0. Since (i0, j0) ∈ E(�+), we have i0 ≥j0 i′′. Since i0 ≥j0 i′′,

lines12 and 13 of Algorithm 1 imply that p−
i0

≤ p−
i′ .

2. Let i, i′ ∈ I and j ∈ J be such that (i, j) ∈ E(�+) and μ0(i
′) = j . We consider

two cases.
Case 1: p+

i = p−
i . Then line 17 of Algorithm 1 implies p+

i′ ≥ p−
i′ . Part (1)

implies p−
i′ ≥ p−

i . Thus p+
i′ ≥ p−

i′ ≥ p−
i = p+

i .
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Case 2: p+
i 
= p−

i . Then line 17 of Algorithm 1 implies i ∈ I0 and p+
i =

w(i2, �
+
i2
). Since i ∈ I0, line 14 of Algorithm 1 implies there exists an oriented

μ0-alternating path in G(�+) from i1 to i. Since (i, j) ∈ E(�+) and μ0(i
′) = j ,

there exists an oriented μ0-alternating path in G(�+) from i to i′. Hence there
exists an an oriented μ0-alternating path in G(�+) from i1 to i′. So line 14 of
Algorithm 1 implies i′ ∈ I0. Since i′ ∈ I0, line 17 of Algorithm 1 implies
p+

i′ ≥ w(i2, �
+
i2
). Thus p+

i′ ≥ w(i2, �
+
i2
) = p+

i .
3. Let i1 = i′1, . . . , i′s = i2 denote the sequence of men on path π0. By part (1), we

have p−
i′t

≤ p−
i′t+1

for 1 ≤ t < s. It follows that p−
i ≤ p−

i2
for every man i on

path π0. Since Q3(�
−, p−) holds, we have p−

i2
≤ w(i2, �

−
i2
) ≤ w(i2, �

+
i2
). Thus

p−
i ≤ w(i2, �

+
i2
) for every man i on path π0. Since every man on path π0 belongs

to I0, line 17 of Algorithm 1 implies that p+
i = w(i2, �

+
i2
) for every man i on

path π0.
4. Let J ′ denote the set of women who are matched in μ0. Line 18 of Algorithm 1

ensures that the set of women who are matched in μ+ is also J ′. Moreover, by
part (3), p+

μ+(j)
= p+

μ0(j) for every woman j in J ′. Consequently, part (2) implies

that Q6(�
+, μ+, p+) holds.

Lemma 10 Let i, i′ ∈ I and j ∈ J be such that (i, j) ∈ E(�+) and μ+(i′) = j .
Then p+

i ≤ p+
i′ .

Proof If μ−(j0) 
= 0 or 0 >j0 i0, then part (4) of Lemma 9 implies that p+
i ≤ p+

i′ .
For the remainder of the proof, assume that μ−(j0) = 0 and i0 ≥j0 0. Thus μ+ =
μ−∪{(i0, j0)}, p+ = p−, and part 3 of Lemma 4 impliesE(�+) = E(�−)∪{(i0, j0)}.
We consider two cases.

Case 1: j 
= j0. Since j 
= j0 and μ+ is equal to μ−∪{(i0, j0)}, we have μ−(j) =
μ+(j) = i′. Since (i, j) ∈ E(�+) = E(�−) ∪ {(i0, j0)} and j 
= j0, we have
(i, j) ∈ E(�−). Since (i, j) ∈ E(�−), μ−(i′) = j , and Q6(�

−, μ−, p−) holds, we
have p−

i ≤ p−
i′ . Since p−

i ≤ p−
i′ and p

+ = p−, we have p+
i ≤ p+

i′ .
Case 2: j = j0. Since μ−(j0) = 0 and Q2(�

−, μ−) holds, we deduce that none
of the edges in E(�−) are incident on j0. Since j = j0 and none of the edges in
E(�−) are incident on j0, we have (i, j) /∈ E(�−). Since (i, j) /∈ E(�−) and (i, j) ∈
E(�+) = E(�−)∪{(i0, j0)}, we have (i, j) = (i0, j0). Sinceμ+ = μ−∪{(i0, j0)}, we
have μ+(j0) = i0. Since (i, j) = (i0, j0) and μ+(j0) = i0, we have i′ = μ+(j) =
μ+(j0) = i0 = i. Since i = i′ we have p+

i = p+
i′ .

4.4 Correctness of the Algorithm

Lemma 11 Consider the loop body of Algorithm 1. Let �−, μ−, and p− denote the
values of �, μ, and p at the start of the iteration. Assume that the loop condition is
satisfied, and that Q(�−, μ−, p−) holds. Let �+, μ+, and p+ denote the values of �,
μ, and p at the end of the iteration. Then Q(�+, μ+, p+) holds.
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Proof Lemma 3 implies that Q1(�
+) holds. Lemma 5 implies that Q2(�

+, μ+)

holds. Lemma 6 implies that Q3(�
+, p+) holds. Lemma 7 implies that

Q4(�
+, μ+, p+) holds. Lemma 8 implies that Q5(�

+, p+) holds. Lemma 10 implies
that Q6(�

+, μ+, p+) holds. Thus Q(�+, μ+, p+) holds.

Lemma 12 Let �, μ, and p be such that Q(�, μ,p) holds. Suppose that for every
i ∈ I , either μ(i) 
= 0 or 0 ≥i �i . Then (μ, p) satisfies (P1)–(P4) with η = 0.

Proof We begin by proving that (P1) holds. Let (i, j) ∈ μ. Since Q2(�, μ) holds,
μ is a matching of G(�). Since (i, j) ∈ μ and μ is a matching of G(�), we have
(i, j) ∈ E(�). Since (i, j) ∈ E(�), we have i ∈ Ij (�) and i ≥j 0. Since i ∈ Ij (�),
we have j >i �i . Since Q1(�) holds, we have �i ≥i 0. Since j >i �i and �i ≥i 0, we
have j >i 0.

We now prove that (P2) holds. Let i ∈ I be a man and j ∈ J be a woman such
that j ≥i μ(i) and i ≥j 0. We prove that i ∈ Ij (�) by considering two cases.

Case 1: μ(i) = 0. Then 0 ≥i �i . Since j ∈ J and j ≥i μ(i) = 0, we have j >i 0.
Since j >i 0 ≥i �i , we have i ∈ Ij (�).

Case 2: μ(i) 
= 0. Since (i, μ(i)) ∈ μ ⊆ E(�), we have i ∈ Ij (�).
Having established that i ∈ Ij (�), we now complete the proof that (P2) holds.

Since i ∈ Ij (�) and i ≥j 0, condition Q2(�, μ) implies μ(j) 
= 0. Since (μ(j), j) ∈
E(�) and i ∈ Ij (�), the definition of E(�) implies μ(j) ≥j i.

We now prove that (P3) holds. Let i ∈ I be a man. We consider two cases.
Case 1: μ(i) = 0. Then 0 ≥i �i . Since Q1(�) holds, we have �i ≥i 0. Since

0 ≥i �i and �i ≥i 0, we have �i = 0. Since �i = 0, we have w(i, �i) = 1− yi,�i
= 1.

Since μ(i) = 0, w(i, �i) = 1, and Q4(�, μ,p) holds, we have pi = 1.
Case 2: μ(i) 
= 0. Let j denote μ(i). Since Q2(�, μ) holds, μ is a matching of

G(�). Since μ(i) = j and μ is a matching of G(�), we have (i, j) ∈ E(�). Since
(i, j) ∈ E(�), we have i ∈ Ij (�) and hence j >i �i . Since j >i �i and Q5(�,p)

holds, we have pi ≥ w(i, j) = 1 − yi,j . It remains to argue that pi ≤ 1. Since
constraint (C1) holds, we have w(i, �i) ≤ 1. Since w(i, �i) ≤ 1 and Q3(�,p) holds,
we have pi ≤ 1.

It remains to prove that (P4) holds. Let i ∈ I be a man and j ∈ J be a woman such
that j ≥i 0, i ≥j 0, and pi > 1 − yi,j . Since pi > 1 − yi,j = w(i, j) and Q3(�,p)

holds, we have j >i �i and hence i ∈ Ij (�). Since i ∈ Ij (�), i ≥j 0, and Q2(�, μ)

holds, we know that μ is a matching of G(�) with μ(j) 
= 0. Let i′ ∈ I denote μ(j).
Since μ is a matching of G(�) and (i′, j) belongs to μ, we have (i′, j) ∈ E(�). Since
(i′, j) ∈ E(�) and i ∈ Ij (�), the definition of E(�) implies that i′ ≥j i. It remains to
prove that if i′ =j i then pi ≤ pi′ . Assume i′ =j i. Since (i′, j) ∈ E(�), i ∈ Ij (�),
and i′ =j i, the definition of E(�) implies that (i, j) ∈ E(�). Since (i, j) ∈ E(�),
μ(i′) = j , and Q6(�, μ,p) holds, we have pi ≤ pi′ .

Lemma 13 When Algorithm 1 terminates, (μ, p) satisfies (P1)–(P4) with η = 0.

Proof It is straightforward to verify that Q(�, μ,p) holds before the first itera-
tion of the algorithm. So, by Lemma 11 and induction on the number of iterations,
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Q(�, μ,p) holds when the algorithm terminates. Moreover, line 6 implies that for
every i ∈ I , we have μ(i) 
= 0 or 0 ≥i �i when the algorithm terminates. Hence
Lemma 12 implies that (μ, p) satisfies (P1)–(P4) with η = 0 when the algorithm
terminates.

Lemma 14 Let μ be a matching such that (μ, p) satisfies (P1) and (P2) for some p.
Then μ is a weakly stable matching.

Proof Since (P1) holds, μ is individually rational. To establish weak stability of μ,
consider (i, j) ∈ I × J . It suffices to show that (i, j) is not a strongly blocking pair.
For the sake of contradiction, suppose j >i μ(i) and i >j μ(j). If 0 >j i, then
0 >j i >j μ(j), contradicting the individual rationality of μ. If i ≥j 0, then since
j >i μ(i), i ≥j 0, and (P2) holds, we deduce that μ(j) ≥j i, contradicting the
assumption that i >j μ(j).

4.5 An Alternative Implementation

In this subsection, we present a more succinct alternative algorithm that does
not maintain a priority vector p. This alternative algorithm, which we refer to as
Algorithm 2, is implemented with weighted matchings.

Let us define the weight of any edge (i, j) ∈ E(�) as w(i, �i). Also we define the
weight of μ ⊆ E(�) as the total weight of all the edges in μ. We use the abbrevia-
tions MCM and MWMCM to denote the terms maximum-cardinality matching and
maximum-weight MCM, respectively.

Re-examining Algorithm 1 with the foregoing notions in mind, it is natural to
conjecture that the predicate “μ is an MWMCM of G(�)” is an invariant of the Algo-
rithm 1 loop. Certainly, the straightforward update performed in line 10 is consistent
with this conjecture. Moreover, the more complex update performed in lines 12 to 18
chooses to unmatch a vertex i2 in I0 such that w(i2, �i2) = mini∈I0 w(i, �i); accord-
ingly, no other choice of the unmatched vertex in I0 results in a matching of higher
weight. In Lemma 17 below, we establish that the above conjecture does in fact hold.

For iterations of the Algorithm 1 loop where G(�) admits multiple MWMCMs,
it is natural to ask whether the predicate Q(�, μ,p) continues to be an invariant
if we modify Algorithm 1 so that it sets μ to an arbitrary MWMCM of G(�) at
the end of each iteration. We answer this question in the affirmative in Lemma 19
below. It is then straightforward to establish the correctness (see Lemma 21) of
Algorithm 2 below, which iteratively updates � and computes an MWMCM of
G(�).

While Algorithm 2 is simpler to state than Algorithm 1, we emphasize that for
an efficient implementation, it is useful to proceed as in Algorithm 1, since at each
iteration we can (1) use the priority vector to efficiently update the MWMCM, and
(2) efficiently update the priority vector. Our primary interest in presenting Algo-
rithm 2 is to demonstrate that Algorithm 1 admits a succinct interpretation in terms
of weighted matchings.
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Lemma 15 Let �, μ, and p satisfy Q6(�, μ,p), let i, i′ ∈ I , and let π be an oriented
μ-alternating path in G(�) from i to i′. Then pi ≤ pi′ .

Proof If i = i′ then pi = pi′ , so we can assume that i 
= i′. Let i = i1, i2, . . . , ik =
i′ denote the sequence of k > 1 men appearing on path π . Since Q6(�, μ,p) holds
and π is an oriented μ-alternating path in G(�) from i to i′, we deduce that pij ≤
pij+1 for all j such that 1 ≤ j < k. Hence pi = pi1 ≤ pik = pi′ .

Lemma 16 Let �, μ, and p satisfy Q2(�, μ), Q3(�,p), Q4(�, μ,p), and
Q6(�, μ,p). Then μ is an MWMCM of G(�).

Proof Since Q2(�, μ) holds, μ is an MCM of G(�). Let μ′ be an MWMCM of G(�).
Since μ′ is an MCM of G(�), Q2(�, μ) implies that μ and μ′ match the same set of
women. Thusμ⊕μ′ corresponds to a collectionX of cycles (of positive even length)
and man-to-man paths (of positive even length). For any cycle γ in X , the edges of
μ on γ match the same set of men as the edges of μ′ on γ . Thus the total weight (in
G(�)) of the edges of μ on γ is equal to the total weight of the edges of μ′ on γ .

Now consider a man-to-man path π in X . Let the endpoints of π be i and
i′, where i is matched in μ and not in μ′, and i′ is matched in μ′ and not in μ.
Since μ′ is an MWMCM of G(�), and since μ′ ⊕ π is an MCM of G(�), we
deduce that w(i, �i) ≤ w(i′, �i′). Since μ(i′) = 0 and Q4(�, μ,p) holds, we have
pi′ = w(i′, �i′). Since Q6(�, μ,p) holds and π is an oriented μ-alternating path in
G(�) from i′ to i, Lemma 15 implies that pi ≥ pi′ . Since Q3(�, p) holds, we have
pi ≤ w(i, �i). Since pi ≥ pi′ and pi ≤ w(i, �i) ≤ w(i′, �i′) = pi′ , we deduce that
pi = w(i, �i) = w(i′, �i′) = pi′ . Thus the total weight (in G(�)) of the edges of μ

on π is equal to the total weight of the edges of μ′ on π .
The foregoing analysis of the cycles and paths in X implies that the weight of μ

is equal to that of μ′, and hence that μ is an MWMCM of G(�).

Lemma 17 An invariant of the Algorithm 1 loop is that μ is an MWMCM of G(�).
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Proof It is easy to check thatμ is an MWMCM ofG(�)when the Algorithm 1 loop is
first encountered. Hence the claim of the lemma follows by Lemmas 11 and 16.

Lemma 18 Let �, μ, and p satisfy Q2(�, μ), Q3(�,p), Q4(�, μ,p), and
Q6(�, μ,p), and let μ′ be an MWMCM of G(�). Then Q2(�, μ

′), Q4(�, μ
′, p), and

Q6(�, μ
′, p) hold.

Proof Lemma 16 implies that μ is an MWMCM of G(�). Let J ′ denote the set
of women with nonzero degree in G(�). Since Q2(�, μ) holds, the set of women
matched by μ is J ′. Since μ′ is an MCM, we deduce that the set of women matched
by μ′ is also J ′, and hence that Q2(�, μ

′) holds. Thus μ ⊕ μ′ corresponds to a
collection X of cycles (of positive even length) and man-to-man paths (of positive
even length).

Consider a cycle γ in X . Since Q6(�, μ,p) holds and there is an oriented μ-
alternating path in G(�) from i to i′ for every pair of men i and i′ on γ , Lemma 15
implies that pi = pi′ for all men i and i′ on γ .

Consider a path π in X . Let the endpoints of π be i and i′, where i is matched
in μ and not in μ′, and i′ is matched in μ′ and not in μ. Since Q6(�, μ,p) holds
and π is an oriented μ-alternating path in G(�) from i′ to i, there are oriented μ-
alternating paths in G(�) from i′ to i′′ and from i′′ to i for every man i′′ on π . Thus
Lemma 15 implies that pi′ ≤ pi′′ ≤ pi for every man i′′ on π . Since μ and μ′ are
eachMWMCMs, andμ⊕π andμ′⊕π are MCMs ofG(�), we deduce thatw(i, �i) =
w(i′, �i′). Since Q4(�, μ,p) holds, we have pi′ = w(i′, �i′). Since Q3(�,p) holds,
we have pi ≤ w(i, �i). Since pi ≤ w(i, �i) = w(i′, �i′) = pi′ ≤ pi , we deduce that
pi = w(i, �i) = pi′ . Since pi = w(i, �i), we conclude that Q4(�, μ

′, p) holds. Since
pi = pi′ and pi′ ≤ pi′′ ≤ pi for every man i′′ on π , we deduce that pi = pi′′ for
every man i′′ on π .

The foregoing analysis of the cycles and paths in X implies that pμ(j) = pμ′(j)

for every woman j in J ′. Since Q6(�, μ,p) holds, we find that Q6(�, μ
′, p) holds.

We now use our results concerning Algorithm 1 to reason about Algorithm 2.
To do this, it is convenient to introduce a hybrid algorithm, which we define by
modifying Algorithm 1 as follows: At the end of each iteration of the while loop,
update the matching μ to an arbitrary MWMCM of G(�).

Lemma 19 Consider the loop body of the hybrid algorithm. Let �−, μ−, and p−
denote the values of �, μ, and p at the start of the iteration. Assume that the loop
condition is satisfied, and that Q(�−, μ−, p−) holds. Let �+, μ+, and p+ denote the
values of �, μ, and p at the end of the iteration. Then Q(�+, μ+, p+) holds.

Proof Lemma 11 implies that Q(�, μ,p) holds just before μ is updated to an arbi-
trary MWMCM of G(�). Lemma 16 implies that μ is an MWMCM of G(�) at this
point in the execution. Thus Lemma 18 implies that Q2(�

+, μ+), Q4(�
+, μ+, p+),
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andQ6(�
+, μ+, p+) hold. SinceQ(�, μ,p) holds just beforeμ is updated to an arbi-

trary MWMCM of G(�), we conclude that Q1(�
+), Q3(�

+, p+), and Q5(�
+, p+)

hold. Hence Q(�+, μ+, p+) holds, as required.

The converse of the following lemma also holds, but we only need the stated
direction.

Lemma 20 Fix an execution of Algorithm 2, and let T denote the number of times
the body of the loop is executed. For 0 ≤ t ≤ T , let �(t) and μ(t) denote the values
of the corresponding program variables after t iterations of the loop. Then there is a
T -iteration execution of the hybrid algorithm such that, for 0 ≤ t ≤ T , the program
variables � and μ are equal to �(t) and μ(t), respectively, after t iterations of the loop.

Proof Observe that Algorithm 2 and the hybrid algorithm are equivalent in terms of
their initialization of � and μ, and also in terms of the set of possible updates to � and
μ associated with any given iteration. (While the hybrid algorithm also maintains a
priority vector p, this priority vector has no influence on the overall update applied
to � and μ in a given iteration.) Given this observation, the claim of the lemma is
straightforward to prove by induction on t .

Lemma 21 When Algorithm 2 terminates, there exists p such that (μ, p) satisfies
(P1)–(P4) with η = 0.

Proof Fix an execution of Algorithm 2, and let �∗ and μ∗ denote the final values of
� and μ. Lemma 20 implies that there exists an execution of the hybrid algorithm
with the same final values of � and μ. Fix such an execution of the hybrid algorithm,
and let p∗ denote the final value of p. It is straightforward to verify that Q(�, μ,p)

holds the first time the loop is reached in this execution of the hybrid algorithm.
Thus, Lemma 19 implies that Q(�∗, μ∗, p∗) holds. Moreover, line 6 implies that for
every i ∈ I , we have μ∗(i) 
= 0 or 0 ≥i �∗

i . Hence Lemma 12 implies that (μ∗, p∗)
satisfies (P1)–(P4) with η = 0.

5 Analysis of the Approximation Ratio

In this section, we analyze the approximation ratio and the integrality gap. Our anal-
ysis applies to Algorithms 1 and 2 alike. Throughout this section, whenever we
mention x and μ, we are referring to their values when the algorithm terminates.
Given x, we let the auxiliary variables {yi,j }(i,j)∈I×(J∪{0}) and {zi,j }(i,j)∈(I∪{0})×J be
defined as in Section 3. By Lemmas 13 and 21, there exists p such that (μ, p) satisfies
(P1)–(P4) with η = 0. We fix such a priority vector p throughout this section.

In Section 5.1, we describe a charging scheme which covers the value of the linear
programming solution. In Section 5.2, we bound the charge incurred by each matched
man-woman pair. In Section 5.3, we show that the approximation ratio is at most
1 + (1 − 1

L
)L.
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5.1 The Charging Argument

Our charging argument is based on an exchange function h : [0, 1] × [0, 1] → R

which satisfies the following properties.

(H1) For every ξ1, ξ2 ∈ [0, 1], we have 0 = h(0, ξ2) ≤ h(ξ1, ξ2) ≤ 1.
(H2) For every ξ1, ξ2 ∈ [0, 1] such that ξ1 > ξ2, we have h(ξ1, ξ2) = 1.
(H3) The function h(ξ1, ξ2) is non-decreasing in ξ1 and non-increasing in ξ2.
(H4) For every ξ1, ξ2 ∈ [0, 1], we have

L ·
∫ ξ2

ξ2·(1−1/L)

(
1 − h(ξ1, ξ)

)
dξ ≤ max(ξ2 − ξ1, 0).

Given an exchange function h that satisfies (H1)–(H4), our charging argument is
as follows. For every (i, j) ∈ I × J , we assign to man i a charge of

θi,j =
∫ xi,j

0
h(1 − pi, yi,j − ξ) dξ

and to woman j a charge of

φi,j =

⎧
⎪⎪⎨

⎪⎪⎩

0 if μ(j) = 0 or i >j μ(j)

xi,j if μ(j) 
= 0 and μ(j) >j i

xi,j −
∫ xi,j

0
h(1 − pμ(j), 1 − zμ(j),j − ξ) dξ if μ(j) 
= 0 and μ(j) =j i

The following lemma shows that the charges are non-negative and cover the
value of an optimal solution to the linear program. We prove this using the stability
constraint in the linear program and the tie-breaking criterion of our algorithm.

Lemma 22 Let i ∈ I and j ∈ J . Then θi,j and φi,j satisfy the following conditions.

1. θi,j ≥ 0 and φi,j ≥ 0.
2. xi,j ≤ θi,j + φi,j .

Proof

1. The definition of θi,j implies

θi,j =
∫ xi,j

0
h(1 − pi, yi,j − ξ) dξ ≥ 0,

where the inequality follows from (H1). Also, the definition of φi,j implies

φi,j ≥ min
(
0, xi,j , xi,j −

∫ xi,j

0
h(1 − pμ(j), 1 − zμ(j),j − ξ) dξ

)

≥ min
(
0, xi,j , xi,j −

∫ xi,j

0
1 dξ

)

= 0,

where the second inequality follows from (H1).
2. We consider two cases.
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Case 1: yi,j ≤ 1 − pi . Then (H3) implies

0 ≤
∫ xi,j

0

(
h(1 − pi, yi,j − ξ) − h(1 − pi, 1 − pi − ξ)

)
dξ

=
∫ xi,j

0

(
h(1 − pi, yi,j − ξ) − 1

)
dξ

= θi,j − xi,j

≤ θi,j + φi,j − xi,j ,

where the first equality follows from (H2), the second equality follows from the
definition of θi,j , and the last inequality follows from part 1.

Case 2: yi,j > 1 − pi . We may assume that xi,j 
= 0, for otherwise part 1
implies θi,j + φi,j ≥ 0 = xi,j . Since xi,j 
= 0, constraint (C4) implies j ≥i 0
and i ≥j 0. So (P4) with η = 0 implies μ(j) 
= 0 and μ(j) ≥j i. We consider
two subcases.

Case 2.1: μ(j) >j i. Then the definition of φi,j implies

0 = φi,j − xi,j ≤ θi,j + φi,j − xi,j ,

where the inequality follows from part 1.
Case 2.2: μ(j) =j i. Then (P4) with η = 0 implies pi ≤ pμ(j). Also, since

μ(j) =j i, parts 4 and 5 of Lemma 2 imply zμ(j),j = zi,j ≤ 1 − yi,j . Since
pi ≤ pμ(j) and yi,j ≤ 1 − zμ(j),j , (H3) implies

0 ≤
∫ xi,j

0

(
h(1 − pi, yi,j − ξ) − h(1 − pμ(j), 1 − zμ(j),j − ξ)

)
dξ = θi,j + φi,j − xi,j ,

where the equality follows from the definitions of θi,j and φi,j .

5.2 Bounding the Charges

To bound the approximation ratio, Lemma 22 implies that it is sufficient to bound
the charges. In Lemma 23, we derive an upper bound for the charges incurred by
a man using the strict ordering given by his preferences. In Lemma 24, we derive
an upper bound for the charges incurred by a woman due to indifferences using the
constraint on the tie length. In Lemma 25, we derive an upper bound for the total
charges incurred by a matched couple by combining the results of Lemmas 23 and 24.

Lemma 23 Let i ∈ I be a man. Then

∑

j∈J

θi,j ≤
∫ 1

0
h(1 − pi, ξ) dξ .
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Proof Let j1, . . . , j|J | ∈ J such that j|J | >i j|J |−1 >i · · · >i j1. Then part 2 of
Lemma 2 implies yi,j|J | ≤ 1. Also, parts 2 and 3 of Lemma 2 imply

yi,jk
− xi,jk

≥
{
0 if k = 1

yi,jk−1 if 1 < k ≤ |J | (1)

for every 1 ≤ k ≤ |J |. Hence the definitions of {θi,jk
}1≤k≤|J | imply

θi,jk
=

∫ xi,jk

0
h(1 − pi, yi,jk

− ξ) dξ

=
∫ yi,jk

yi,jk
−xi,jk

h(1 − pi, ξ) dξ

≤

⎧
⎪⎪⎨

⎪⎪⎩

∫ yi,jk

0
h(1 − pi, ξ) dξ if k = 1

∫ yi,jk

yi,jk−1

h(1 − pi, ξ) dξ if 1 < k ≤ |J |

for every 1 ≤ k ≤ |J |, where the inequality follows from (1) and (H1). Thus

∑

j∈J

θi,j =
∑

1≤k≤|J |
θi,jk

≤
∫ yi,j1

0
h(1 − pi, ξ) dξ +

∑

1<k≤|J |

∫ yi,jk

yi,jk−1

h(1 − pi, ξ) dξ

=
∫ yi,j|J |

0
h(1 − pi, ξ) dξ

≤
∫ 1

0
h(1 − pi, ξ) dξ,

where the last inequality follows from yi,j|J | ≤ 1 and (H1).

Lemma 24 Let j ∈ J be a woman such that μ(j) 
= 0. Then
∑

i∈Iμ(j)=j i

φi,j ≤ max(pμ(j) − zμ(j),j , 0).

Proof Let

H(ξ ′) =
∫ 1−zμ(j),j

1−zμ(j),j −ξ ′

(
1 − h(1 − pμ(j), ξ)

)
dξ

for every ξ ′ ∈ [0, 1]. Then (H1) and (H3) imply that H is concave and non-
decreasing. Also, (H4) implies

L · H
(1 − zμ(j),j

L

)
= L ·

∫ 1−zμ(j),j

(1−zμ(j),j )(1−1/L)

(
1 − h(1 − pμ(j), ξ)

)
dξ

≤ max(pμ(j) − zμ(j),j , 0). (2)
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Let I ′ = {i ∈ I : μ(j) =j i}. Then |I ′| ≤ L since L is the maximum tie-length. Let
i1, . . . , i|I ′| ∈ I such that I ′ = {i1, . . . , i|I ′|}. Let

ξk =
{

xik,j if 1 ≤ k ≤ |I ′|
0 if |I ′| < k ≤ L

for every 1 ≤ k ≤ L. Then the definition of zμ(j),j implies

1 − zμ(j),j = 1 −
∑

i∈I
μ(j)>j i

xi,j ≥
∑

i∈I

xi,j −
∑

i∈I
μ(j)>j i

xi,j ≥
∑

i∈I
μ(j)=j i

xi,j =
∑

1≤k≤|I ′|
xik,j =

∑

1≤k≤L

ξk,

where the first inequality follows from constraint (C2), the second equality follows
from the definitions of I ′ and {ik}1≤k≤|I ′|, and the third equality follows from the
definitions of {ξk}1≤k≤L. Hence the monotonicity and concavity of H imply

L · H
(1 − zμ(j),j

L

)
≥ L · H

( 1

L

∑

1≤k≤L

ξk

)
≥

∑

1≤k≤L

H(ξk). (3)

Thus the definitions of the definitions of {φi,j }i∈I imply

∑

i∈I
μ(j)=j i

φi,j =
∑

i∈I
μ(j)=j i

(
xi,j −

∫ xi,j

0
h(1 − pμ(j), 1 − zμ(j),j − ξ) dξ

)

=
∑

i∈I
μ(j)=j i

∫ 1−zμ(j),j

1−zμ(j),j −xi,j

(
1 − h(1 − pμ(j), ξ)

)
dξ

=
∑

i∈I
μ(j)=j i

H(xi,j )

=
∑

1≤k≤|I ′|
H(xik,j )

=
∑

1≤k≤L

H(ξk)

≤ L · H
(1 − zμ(j),j

L

)

≤ max(pμ(j) − zμ(j),j , 0),

where the third equality follows from the definition of H , the fourth equality follows
from the definitions of I ′ and {ik}1≤k≤|I ′|, the fifth equality follows from the defi-
nitions of {ξk}1≤k≤L, the first inequality follows from (3), and the second inequality
follows from (2).

Lemma 25 Let i ∈ I and j ∈ J ∪ {0} such that μ(i) = j . Then the following
conditions hold.
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1. If j 
= 0, then

∑

j ′∈J

θi,j ′ +
∑

i′∈I

φi′,j ≤ 1 +
∫ 1

1−pi

h(1 − pi, ξ) dξ .

2. If j = 0, then θi,j ′ = 0 for every j ′ ∈ J .

Proof

1. Suppose j 
= 0. Then (P1) implies j ≥i 0 and i ≥j 0. So part 5 of Lemma 2
implies

zi,j ≤ 1 − yi,j ≤ pi,

where the second inequality follows from (P3) with η = 0. So the definitions of
{φi′,j }i′∈I imply

∑

i′∈I

φi′,j =
∑

i′∈I
μ(j)=j i′

φi′,j +
∑

i′∈I
μ(j)>j i′

xi′,j ≤ max(pi − zi,j , 0) + zi,j = pi, (4)

where the first inequality follows from Lemma 24 and the definition of zi,j , and
the last equality follows from pi ≥ zi,j . Also, by Lemma 23, we have

∑

j ′∈J

θi,j ′ ≤
∫ 1

0
h(1 − pi, ξ) dξ

=
∫ 1−pi

0
h(1 − pi, ξ) dξ +

∫ 1

1−pi

h(1 − pi, ξ) dξ

=
∫ 1−pi

0
1 dξ +

∫ 1

1−pi

h(1 − pi, ξ) dξ

= 1 − pi +
∫ 1

1−pi

h(1 − pi, ξ) dξ, (5)

where the second equality follows from (H2). Combining (4) and (5) gives the
desired inequality.

2. Suppose j = 0. Let j ′ ∈ J . Since μ(i) = j = 0, (P3) with η = 0 implies

1 ≥ pi ≥ 1 − yi,j = 1 − yi,0 = 1,

where the last equality follows from part 1 of Lemma 2. Hence the definition of
θi,j ′ implies

θi,j ′ =
∫ xi,j ′

0
h(1 − pi, yi,j ′ − ξ) dξ =

∫ xi,j ′

0
h(0, yi,j ′ − ξ) dξ = 0,

where the second equality follows from pi = 1, and the third equality follows
from (H1).

5.3 The Approximation Ratio

To obtain the approximation ratio, it remains to select an exchange function h satis-
fying (H1)–(H4) such that the right hand side of part 1 of Lemma 25 is small. We
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can formulate this as an infinite-dimensional factor-revealing linear program. More
specifically, we can minimize

sup
ξ1∈[0,1]

∫ 1

ξ1

h(ξ1, ξ) dξ

over the set of all functions h that satisfy (H1)–(H4). Notice that the objective value
and the constraints induced by (H1)–(H4) are linear in h. However, the space of
all feasible solutions is infinite-dimensional. One possible approach to the infinite-
dimensional factor-revealing linear program is to obtaining a numerical solution via
a suitable discretization. Using the numerical results as guidance, we obtain the
candidate exchange function

h(ξ1, ξ2) = max
(
{0} ∪

{
(1− 1

L
)k : k ∈ {0, 1, 2, . . . } and ξ1 > ξ2 · (1− 1

L
)k

})
. (6)

Lemma 26 below provides a formal analytical proof that the above choice of h satis-
fies (H1)–(H4) and achieves an objective value of (1− 1

L
)L. At the end of this section,

we discuss a simpler choice for the exchange function that can be used to match the
results presented in [1].

Lemma 26 Let h be the function defined by (6). Then the following conditions hold.

1. The function h satisfies (H1)–(H4).

2. For every ξ1 ∈ [0, 1], we have
∫ 1

ξ1

h(ξ1, ξ) dξ ≤
(
1 − 1

L

)L

.

Proof

1. It is straightforward to see that (H1)–(H3) hold by inspecting the definition of h.
To show that (H4) holds, let ξ1, ξ2 ∈ [0, 1]. We consider three cases.

Case 1: ξ2 ≤ ξ1. Then

L·
∫ ξ2

ξ2·(1−1/L)

(
1−h(ξ1, ξ)

)
dξ = L·

∫ ξ2

ξ2·(1−1/L)

(1−1) dξ = 0 = max(ξ2−ξ1, 0).

Case 2: ξ2 > ξ1 = 0. Then

L·
∫ ξ2

ξ2·(1−1/L)

(
1−h(ξ1, ξ)

)
dξ = L·

∫ ξ2

ξ2·(1−1/L)

(1−0) dξ =ξ2 = max(ξ2−ξ1, 0).
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Case 3: ξ2 > ξ1 > 0. Let k ∈ {0, 1, 2, . . . } such that (1 − 1
L
)k+1 <

ξ1
ξ2

≤
(1 − 1

L
)k . Then

L ·
∫ ξ2

(1−1/L)·ξ2

(
1 − h(ξ1, ξ) dξ

)

= ξ2 − L ·
∫ ξ2

(1−1/L)·ξ2
h(ξ1, ξ) dξ

= ξ2 − L ·
∫ ξ1/(1−1/L)k

(1−1/L)·ξ2
h(ξ1, ξ) dξ − L ·

∫ ξ2

ξ1/(1−1/L)k
h(ξ1, ξ) dξ

= ξ2 − L ·
∫ ξ1/(1−1/L)k

(1−1/L)·ξ2

(
1 − 1

L

)k

dξ − L ·
∫ ξ2

ξ1/(1−1/L)k

(
1 − 1

L

)k+1
dξ

= ξ2 − L · (ξ1 − ξ2 · (1 − 1
L
)k+1) − L · (ξ2 · (1 − 1

L
)k+1 − ξ1 · (1 − 1

L
))

= ξ2 − ξ1

= max(ξ2 − ξ1, 0).

2. Let ξ1 ∈ [0, 1]. We may assume that ξ1 > 0, for otherwise

∫ 1

ξ1

h(ξ1, ξ) dξ =
∫ 1

ξ1

0 dξ = 0 ≤
(
1 − 1

L

)L

.

Let k ∈ {0, 1, 2, . . . } such that (1 − 1
L
)k+1 < ξ1 ≤ (1 − 1

L
)k . Then

∫ 1

ξ1

h(ξ1, ξ) dξ

=
∫ 1

ξ1/(1−1/L)k
h(ξ1, ξ) dξ +

∑

0≤k′<k

∫ ξ1/(1−1/L)k
′+1

ξ1/(1−1/L)k
′ h(ξ1, ξ) dξ

=
∫ 1

ξ1/(1−1/L)k

(
1 − 1

L

)k+1
dξ +

∑

0≤k′<k

∫ ξ1/(1−1/L)k
′+1

ξ1/(1−1/L)k
′

(
1 − 1

L

)k′+1
dξ

=
((

1 − 1

L

)k+1 − ξ1 ·
(
1 − 1

L

))
+

∑

0≤k′<k

ξ1

L

= (1 − 1
L
)k+1 + ξ1

L
(k − L + 1). (7)

We consider three cases.
Case 1: k = L − 1. Then (7) implies

∫ 1

ξ1

h(ξ1, ξ) dξ = (1 − 1
L
)k+1 + ξ1

L
(k − L + 1) = (1 − 1

L
)L.
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Case 2: k ≥ L. Then (7) implies

∫ 1

ξ1

h(ξ1, ξ) dξ = (1 − 1
L
)k+1 + ξ1

L
(k − L + 1)

≤ (1 − 1
L
)k+1 + 1

L
(k − L + 1)(1 − 1

L
)k

= (1 − 1
L
)L · k

L
· (1 − 1

L
)k−L

≤ (1 − 1
L
)L · ek/L−1 · e(L−k)/L

= (1 − 1
L
)L,

where the first inequality follows from ξ1 ≤ (1− 1
L
)k , and the second inequality

follows from ek/L−1 ≥ k
L
and e−1/L ≥ 1 − 1

L
.

Case 3: k ≤ L − 2. Then (7) implies

∫ 1

ξ1

h(ξ1, ξ) dξ = (1 − 1
L
)k+1 + ξ1

L
(k − L + 1)

< (1 − 1
L
)k+1 − 1

L
(L − k − 1)(1 − 1

L
)k+1

= (1 − 1
L
)L · k+1

L−1 · (1 + 1
L−1 )

L−k−2

≤ (1 − 1
L
)L · e(k+1)/(L−1)−1 · e(L−k−2)/(L−1)

= (1 − 1
L
)L,

where the first inequality follows from ξ1 > (1 − 1
L
)k+1, and the second

inequality follows from e(k+1)/(L−1)−1 ≥ k+1
L−1 and e1/(L−1) ≥ 1 + 1

L−1 .

Lemma 27 below is obtained by combining Lemmas 22, 25, and 26. Our main
results are presented in Theorems 28 and 29 and proved using Lemma 27.

Lemma 27
∑

(i,j)∈I×J xi,j ≤
(
1 +

(
1 − 1

L

)L)
· |μ|.

Proof Consider the charging argument with the exchange function h as defined by
(6). By part 1 of Lemma 26, the function h satisfies (H1)–(H4). Lemma 22 implies

∑

(i,j)∈I×J

xi,j ≤
∑

(i,j)∈I×J

(θi,j + φi,j )

=
∑

(i,j)∈μ

( ∑

j ′∈J

θi,j ′ +
∑

i′∈I

φi′,j
)
+

∑

i∈I
μ(i)=0

∑

j∈J

θi,j +
∑

j∈J
μ(j)=0

∑

i∈I

φi,j . (8)
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Part 1 of Lemma 25 implies

∑

(i,j)∈μ

( ∑

j ′∈J

θi,j ′ +
∑

i′∈I

φi′,j
)

≤
∑

(i,j)∈μ

(
1 +

∫ 1

1−pi

h(1 − pi, ξ) dξ
)

≤
∑

(i,j)∈μ

(
1 +

(
1 − 1

L

)L)

= (1 + (1 − 1
L
)L) · |μ|, (9)

where the second inequality follows from part 2 of Lemma 26. Part 2 of Lemma 25
implies

∑

i∈I
μ(i)=0

∑

j∈J

θi,j = 0. (10)

The definitions of {φi,j }(i,j)∈I×J imply
∑

j∈J
μ(j)=0

∑

i∈I

φi,j = 0. (11)

Combining (8), (9), (10), and (11) gives the desired inequality.

Theorem 28 For the maximum stable matching problem with one-sided ties and
tie length at most L, Algorithms 1 and 2 are polynomial-time (1 + (1 − 1

L
)L)-

approximation algorithms.

Proof Algorithms 1 and 2 each run in polynomial time because linear programming
is polynomial-time solvable and the number of iterations of the loop is at most |I | ×
|J |.

By Lemmas 13 and 21, Algorithms 1 and 2 each produce a matching μ such that
(μ, p) satisfies (P1)–(P4) with η = 0. So Lemma 14 implies that the output μ is a
weakly stable matching. Let μ′ be a maximum weakly stable matching, and x′ be the
indicator variables of μ′. Since μ′ is weakly stable, x′ satisfies constraints (C1)–(C5).
Hence Lemma 27 implies

(
1 +

(
1 − 1

L

)L)
· |μ| ≥

∑

(i,j)∈I×J

xi,j ≥
∑

(i,j)∈I×J

x′
i,j = |μ′|,

where the second inequality follows from the optimality of x.

Theorem 29 For the maximum stable matching problem with one-sided ties and
tie length at most L, the integrality gap of the linear programming formulation in
Section 3 is 1 + (1 − 1

L
)L.

Proof Consider the matching μ produced by Algorithms 1 or 2. By Lemmas 13
and 21, there exists p such that (μ, p) satisfies (P1)–(P4) with η = 0. So Lemma 14
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implies that the output μ is a weakly stable matching. Hence Lemma 27 implies
(
1 +

(
1 − 1

L

)L)
· |μ| ≥

∑

(i,j)∈I×J

xi,j .

Let x′ be the indicator variables of μ. Since μ is weakly stable, Lemma 1 implies that
x′ is an integral solution satisfying constraints (C1)–(C5). Since

(
1 +

(
1 − 1

L

)L)
·

∑

(i,j)∈I×J

x′
i,j =

(
1 +

(
1 − 1

L

)L)
· |μ| ≥

∑

i∈I

∑

j∈J

xi,j ,

the integrality gap is at most 1 + (1 − 1
L
)L. This upper bound matches the known

lower bound for the integrality gap [16, Section 5.1].

We now discuss a simpler choice for the exchange function that can be used to
match the results presented in [1]. For any ξ1, ξ2 ∈ [0, 1], let

h̃(ξ1, ξ2) =

⎧
⎪⎨

⎪⎩

0 if ξ1 = ξ2 = 0,

1 if 0 = ξ2 < ξ1, and

min(1, ξ1/ξ2) otherwise.

We claim that h̃ is the “smooth” version of h, in the following sense: h̃(ξ1, ξ2) =
limL→∞ h(ξ1, ξ2) for all ξ1, ξ2 ∈ [0, 1]. It is straightforward to prove this claim
by considering the cases ξ1 = ξ2 = 0, 0 = ξ2 < ξ1, 0 < ξ2 < ξ1, and
0 < ξ1 ≤ ξ2 separately. (In the last case, observe that ξ1

ξ2
(1 − 1

L
) ≤ h(ξ1, ξ2) <

ξ1
ξ2
,

and hence limL→∞ h(ξ1, ξ2) = ξ1/ξ2 = h̃(ξ1, ξ2).) This claim, together with
Lemma 26, implies that h̃ satisfies (H1)–(H4) and that

∫ 1
ξ1

h̃(ξ1, ξ) dξ ≤ 1
e
for all

ξ1 ∈ [0, 1]. (Alternatively, it is straightforward to prove these facts directly from
the definition of h̃.) Hence, using h̃ instead of h, we obtain weakened versions of
Lemmas 26 and 27 and Theorems 28 and 29 in which the expression (1 − 1

L
)L is

replaced by 1
e
. We remark that the term

∫ 1
ξ1

h̃(ξ1, ξ) dξ = −ξ1 ln ξ1 appearing in
this variant of Lemma 26 is analogous to the term (p0 − 1) ln(1 − p0) that appears
in [1, Section 4.3.1].
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of Computer Science, Eötvös Loránd University (2014)
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