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Abstract
Consider the revenue maximization problem of a risk-neutral seller with m heteroge-
neous items for sale to a single additive buyer, whose values for the items are drawn
from known distributions. If the buyer is also risk-neutral, it is known that a simple
and natural mechanism, namely the better of selling separately or pricing only the
grand bundle, gives a constant-factor approximation to the optimal revenue. In this
paper we study revenue maximization without risk-neutral buyers. Specifically, we
adopt cumulative prospect theory, a well established generalization of expected utility
theory. Our starting observation is that such preferences give rise to a very rich space
of mechanisms, allowing the seller to extract arbitrary revenue. Specifically, a seller
can construct extreme lotteries that look attractive to a mildly optimistic buyer, but
have arbitrarily negative true expectation. Therefore, giving the seller absolute free-
dom over the design space results in absurd conclusions; competing with the optimal
mechanism is hopeless. Instead, in this paper we study four broad classes of mech-
anisms, each characterized by a distinct use of randomness. Our goal is twofold: to
explore the power of randomness when the buyer is not risk-neutral, and to design
simple and attitude-agnostic mechanisms—mechanisms that do not depend on details
of the buyer’s risk attitude—which are good approximations of the optimal in-class
mechanism, tailored to a specific risk attitude. Our main result is that the same sim-
ple and risk-agnostic mechanism (the better of selling separately or pricing only the
grand bundle) is a good approximation to the optimal non-agnostic mechanism within
three of the mechanism classes we study.
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1 Introduction

Expected utility theory (EUT), first set forth by [36], has long reigned as the pre-
vailing model of decision making under uncertainty. However, a substantial body
of evidence, including the famous Allais paradox [1], shows that most people make
choices that violate this theory. Cumulative prospect theory (CPT) [35] is arguably
the most prominent alternative. A key element of this theory is a non-linear trans-
formation of cumulative probabilities by a probability weighting function. This
transformation can model a person’s tendency towards optimism or pessimism.1 On
the other hand, as mechanism designers we use randomization as an important tool in
optimizing our objective, typically (and crucially) assuming that agents make choices
according to the tenets of expected utility theory. While we have vastly deepened our
understanding of mechanism design under this assumption, it is essential to study
empirically validated models of human decision-making.

In this paper we study the revenue-maximization problem of a risk-neutral seller
with m heterogeneous items for sale to a single, additive buyer with cumulative
prospect theory preferences. We call a mechanism risk-robust if it is agnostic to the
underlying probability weighting function of the buyer. Our goal is to design sim-
ple, risk-robust mechanisms that achieve a good approximation to the revenue of the
optimal mechanism tailored to this weighting function. To understand our results in
context, we begin by briefly reviewing cumulative prospect theory.

1.1 Prospect Theory Basics

In full generality, cumulative prospect theory (CPT) asserts that preferences are
parameterized by a reference point (or status quo) r , a value function U that maps
(deterministic, i.e. certain) outcomes into utils (or dollars), and two probability
weighting functions, w+ and w−, for weighting the cumulative probabilities of pos-
itive and negative outcomes (relative to r). Taking these weighting functions to be
the identity function, one recovers expected utility theory.2 Thus, CPT generalizes
expected utility theory.

To gain an understanding of the weighting functions, consider first a simple event
E which occurs with probability 1

2 , and assume that r = 0 and U(x) = x. Sup-
pose that E corresponds to an agent receiving value 10; if E does not occur, the
agent receives nothing. A risk-neutral agent would value this potential income at
10 · Pr [E] = 5. An optimistic agent, overestimating the possibility of receiving 10,
might value E at slightly more than 5, whereas a pessimistic agent might value it
at slightly less. CPT uses a weighting function w+ which modifies probabilities of
positive (with respect to r) outcomes: the agent values event E at 10 · w+(Pr [E]).

1As we discuss below, real-world attitudes are not merely “optimistic” or “pessimistic”, but such simplistic
attitudes are easily and naturally captured by this model.
2In EUT, risk attitudes are modeled through the utility function, U
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Then w+(x) > x corresponds to optimism, and w+(x) < x corresponds to
pessimism.3

In general, the event of interest might correspond to a positive or negative out-
come. For example, E might correspond to the agent losing value 10. In that case, we
expect the optimistic agent to underweight the probability of E occurring. For this
reason, CPT models probability weighting for gains and losses (relative to r) with
functions w+ and w−, respectively. Finally, when the random variable is supported
on multiple non-zero values, applying w+ (or w−) directly to the probability of each
event leads to violations of first-order stochastic dominance. For this reason, [30]
proposed rank-dependent utility theory (RDUT), which weights the cumulative distri-
bution function rather than the probability mass function. Incorporating this advance
into a reformulation of their earlier prospect theory, [35] called the result cumulative
prospect theory.

1.2 Our Results

Our interest is in highlighting the mechanism-design implications of a buyer exhibit-
ing nonlinear probability weighting. We therefore focus on the special case of CPT
corresponding to [30]’s rank dependent utility theory, with the further assumption,
standard in mechanism design, that the buyer has linear utility for money. This the-
ory is rich enough to explain a number of known violations of expected utility theory
(e.g., the Allais paradox [31]), yet simple enough to be mathematically tractable.
Chawla et al. [9] have previously studied the same model, giving a class of mecha-
nisms which optimally sell a single item to a pessimistic buyer. However, they restrict
themselves to convex weighting functions. Here we study general weighting func-
tions and multi-item auctions. We postpone details of rank dependent utility theory
until Section 2, and refer the reader to Appendix A for the expected utility of a general
CPT agent for a simple lottery.

Our starting point is the observation that even very mild probability weighting
gives rise to rich seller behavior, which allows the seller to extract unbounded rev-
enue. Specifically, we show that under assumptions satisfied by most weighting
functions in the literature, the seller can design a bet that has arbitrarily negative
(risk-neutral) expectation, but looks attractive to a RDUT buyer. (Similar behavior
has been observed before this work for more general models, e.g. by [2] and [16]).
This bet can be easily turned into an auction for selling any number of items by giv-
ing the items for free if and only if the buyer takes the bet, allowing the seller to
extract unbounded revenue.

Mechanism Classes In light of such negative results for arbitrary buyer-seller inter-
actions, we focus our attention to specific classes of mechanisms, imposing various

3CPT captures much more complex behaviors than merely optimism and pessimism. For example, in
experiments (e.g. [7, 35]), subjects tend to overweight extreme events: in a sense, people are optimistic
about very good outcomes and pessimistic about very bad outcomes. This sort of behavior can be readily
captured by CPT, and as it turns out, it suggests inverse-S-shaped weighting functions.
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restrictions on the mechanism’s description and implementation. These serve to iso-
late particular uses of randomization and to illustrate the various effects RDUT
preferences have on mechanism design.

Deterministic-Price Mechanisms. The first class we consider is that of determinis-
tic price mechanisms, which we denote Cdp. The seller offers a menu of (possibly
correlated) distributions over the items, each at a fixed price. The buyer may pay
the price for a distribution, after which she receives a draw from the distribution.
To bypass some technical barriers, we also consider a special case of this class,
nested deterministic price mechanisms, or Cndp, which impose certain constraints
on the distributions over items in a menu. These constraints are mild (for exam-
ple they are always satisfied by independent distributions) and are without loss of
generality for a risk-neutral buyer.

Deterministic-Allocation Mechanisms. Next, we consider the class of determinis-
tic allocation mechanisms, Cda , where the mechanism deterministically allocates
a bundle of items for a possibly randomized, non-negative payment. Cda is
equivalent to deterministic mechanisms for a risk-neutral buyer.

Binary-Lottery Mechanisms. Finally, we consider a multi-item generalization of
the single-item class of mechanisms that is optimal for convex weighting functions
(as shown by [9]). We call this class binary-lottery mechanisms and denote it by
Cb; this class is without loss of generality for a risk-neutral buyer.

We emphasize that the classes of mechanisms we study are quite general. In partic-
ular, deterministic-price and binary-lottery mechanisms are each completely general
when selling to a risk-neutral buyer, and thus contain implementations of the vast
majority of mechanisms studied in the literature. Again, when offered to a risk-
neutral buyer, deterministic-allocation mechanisms are equivalent to the class of all
deterministic mechanisms. Furthermore, binary-lottery mechanisms include the opti-
mal mechanisms found by [9] for selling a single item to a buyer with a convex
weighting function.

Main Result Our main result is that, for classes Cndp, Cda and Cb, a single simple
mechanism, agnostic to the underlying weighting function, gives a good approxima-
tion on the revenue of the optimal in-class mechanism tailored to w. That simple
mechanism is the better of selling every item separately at a fixed price (henceforth
SREV) and selling the grand bundle as a single item at a fixed price (henceforth
BREV), which is a valid mechanism in all classes considered. Furthermore, this
mechanism is deterministic, which implies that its expected revenue is the same for
all weighting functions w, and only depends on the buyer’s value distribution D.

Our proof relates the revenue of each class of mechanisms to the revenue obtain-
able from a risk-neutral buyer via any mechanism, combined with a result of [3],
which shows that max{SREV,BREV} is a constant approximation to this risk-neutral
revenue. For Cdp our understanding is partial; we show that max{SREV,BREV}
approximates the optimal, risk non-agnostic Cdp auction within a doubly exponen-
tial in the number of items factor. This, of course, implies a constant approximation
for a constant number of items (in fact, for two items we can show an approximation
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factor of 2 for just SREV), but we leave it as an open problem whether a constant
approximation is possible for the general case. All our results can be extended to a
unit-demand buyer or an additive buyer with a downward-closed demand constraint
by paying an extra factor of 4 and 31.1, respectively, using the results of [10].

Challenges and Techniques Intuitively, the difficulty with analyzing mechanisms for
RDUT buyers is that, given a mechanism, we cannot generally argue about howmuch
a buyer type t values the menu item purchased by a type t ′. This is especially the
case for general deterministic price mechanisms, where allocations over items could
be arbitrarily correlated. This, in turn, prevents us from using basic “simulation argu-
ments”: starting from an auction M, manipulate the allocation rule and pricing rule
to get a different auction M′. Such arguments are very useful in getting meaningful
upper bounds on the optimal revenue. For example, [23] upper bound the optimal rev-
enue from a product distribution, REV(D×D′), by REV(D) +VAL(D′)4 using such
an argument, where they give a concrete auction forD by manipulating the allocation
and payment rule of the optimal auction for D × D′. Similar “marginal mechanism”
arguments are crucial in many works that give simple and approximately optimal
mechanisms for additive buyers, e.g. [3, 26, 40]; for example, the so-called core-tail
decomposition technique depends on such arguments.

On the other hand, the recently developed Lagrangian duality-based approach [5,
6, 13, 17, 18, 21, 27] also seems to fail here. This technique has been success-
ful in getting benchmarks in a number of settings by giving a solution to the dual
of the mathematical program that computes the optimal auction. To the best of our
knowledge, all works that use this technique start from a linear program. Here, the
mathematical program for the optimal risk non-agnostic auction is not even convex.
Even though in theory only weak duality is necessary for this technique to work, we
have not succeeded in applying it to our problem.

Alternate Robustness Benchmark Finally, we mention another reasonable approach
to studying robustness with respect to risk. Find the mechanism M that maxi-
mizes (over all mechanisms) the seller’s revenue in the worst case with respect to
the weighting function w. (This is similar to recent results of [8, 22] for robust-
ness with respect to correlation). In this scenario, we observe (see Appendix B)
that the optimal mechanism is the optimal deterministic mechanism, so we get that
max{SREV,BREV} is a good approximation to the optimal revenue by a trivial
reduction to the risk-neutral buyer setting. To see why this is the case, notice that
w(x) could take the value one for all x except x = 0. In this case the buyer is
extremely optimistic; her utility for a random variable X is equal to her utility for
her favorite outcome. We argue that randomizing only hurts the seller, since doing
so decreases both the expected utility of the buyer and the expected revenue of the
seller.

4D and D′ here are distribution over m1 and m2 items, respectively. VAL(D′) = ∑
j∈[m2] E[D′

j ], i.e. the
total expected sum of values from items in D′.
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1.3 RelatedWork

Prospect theory was originally defined by [25] but, though successful in explaining
experimentally observed behavior, it suffered from a number of weaknesses, namely
violations of first-order stochastic dominance between random variables. Several
works [30, 34, 38, 39] proposed solutions to these issues, resulting in cumulative
prospect theory [35]. Next to expected utility theory, cumulative prospect theory is
likely the best studied theory of decision-making under uncertainty. We refer the
reader to the book of [37] for a thorough exposition of the model. Also see [28] for a
survey of non-EUT models.

Although widely studied in behavioral economics, prospect theory has received
much less attention in the game theory and mechanism design literature. Our work
is most closely related to that of [9], who study optimal and robust mechanisms
for a single buyer and a single item. Their work, unlike ours, places much stronger
assumptions on the weighting function: namely, they assume convexity (which in
turn implies w(x) ≤ x). In this paper we consider general weighting functions,
but restrict the mechanism design space. Further afield, [15] study contract design
in a crowdsourcing setting with a prospect-theoretic model of workers. Fiat and
Papadimitriou [19] demonstrate that equilibria may not exist in two-player games
when players have prospect-theoretic preferences. Dughmi and Peres [14] and [20]
study mechanism design with risk-averse agents in a setting where risk-averse behav-
ior is represented by a concave utility function, while more recently, in a similar
setting, [29] study optimal mechanisms for risk-loving agents.

A recent, thematically related line of work [11, 12] studies multi-item rev-
enue maximization (with risk-neutral buyers) under restrictions on the mechanism
design space, and specifically “buy-many” or “Sybil-proof” mechanisms, where the
buyer is allowed to interact with the mechanism multiple times. When the seller is
restricted to use these types of mechanisms, simple mechanisms are finite approxi-
mations to the optimal (buy-many) mechanism, as opposed to known impossibility
results for the unconstrained case [24] (importantly, this is a setting with correlated
items).

Our main result is that the better of selling separately and selling the grand bundle
is a risk-robust approximation to the optimal revenue. The approximation ratio of this
mechanism has been studied extensively for risk-neutral buyers having a large class
of valuations [3, 5, 6, 10, 33]. Our result relies on this work, but our techniques are
very different.

1.4 Roadmap

Section 2 poses our model and some preliminaries. We discuss the limits of our
model in Section 3, and show that if the seller is allowed to use an arbitrary mech-
anism, then he can extract arbitrarily large revenue. In Section 4 we formally define
the mechanism classes considered in this paper, which we proceed to analyze in
Sections 5 (deterministic price mechanisms), Section 6 (deterministic allocation
mechanisms) and Section 7 (binary lottery mechanisms).
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2 Preliminaries

A risk-neutral seller, whose aim is to maximize revenue, is auctioning offm items to a
single buyer with cumulative prospect theory preferences. The value of the buyer for
item i is vi , and is distributed according to a known distribution Di . We assume that
the item distributions are independent, and denote the joint distribution byD. We first
go over the buyer’s preference model in detail, and then formulate our mechanism
design problem.

Weighted Expectation. In this paper we focus on a special case of cumulative
prospect theory, rank dependent utility theory. In rank dependent utility theory a
weighting function w distorts cumulative probabilities [30]. The weighting function
w satisfies the following properties: (1) w : [0, 1] → [0, 1], (2) w is non-decreasing,
(3)w(0) = 0 andw(1) = 1. We use the notation I to indicate the risk-neutral weight-
ing function; that is I(x) = x. For a random variable Z over k outcomes, where the
i-th outcome occurs with probability pi and gives utility ui , and ui ≤ ui+1, an agent
with weighting function w has expected utility

Ew [Z] =
k−1∑

i=1

ui

⎛

⎝w

⎛

⎝
k∑

j=i

pj

⎞

⎠ − w

⎛

⎝
k∑

j=i+1

pj

⎞

⎠

⎞

⎠+ukw(pk) = u1+
k∑

i=2

(ui−ui−1)·w
⎛

⎝
k∑

j=i

pj

⎞

⎠ .

The intuitive interpretation (for the latter expression) is that the agent always gets
utility u1. Then, the event that the agent gets an additional utility of at least u2 − u1
occurs with probability 1 − p1 = ∑k

j=2 pj (which is weighted by the function w).

The agent gets an additional utility of at least u3 −u2 with probability
∑k

j=3 pj , and
so on. We note that this definition makes no assumption about the sign of ui ; that is,
the uis can be positive (corresponding to gains) or negative (corresponding to losses).
We will also use the following, equivalent definition.

Definition 1 (Weighted expectation, probability version) Let Z be a random variable
supported in (−∞, ∞) with cumulative distribution function FZ . Then the weighted
expectation of Z with respect to the weighting function w is

E [Z] = −
∫ 0

−∞
[1 − w (1 − FZ(z))] dz +

∫ ∞

0
w (1 − FZ(z)) dz. (1)

Before continuing our exposition, we illustrate the flexibility and power of the
model through some examples. The weighting function can be used also to pick out
various statistics of interest, as the next two examples illustrate.

Example 1 Suppose w is given by

w(x) =
{
0 x ∈ [0, 1

2 )

1 x ∈ [ 12 , 1].
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Let Z be an arbitrary random variable with median mZ . For all z ≤ mZ , 1−FZ(z) ≥
1/2, and thereforew(1−FZ(z)) = 1. Similarly, for all z > mZ , 1−FZ(z) < 1/2, and
therefore w(1 − FZ(z)) = 0. If mZ ≥ 0 the w-weighted expectation of Z becomes

E [Z] = −
∫ 0

−∞
[1 − w (1 − FZ(z))] dz+

∫ ∞

0
w (1 − FZ(z)) dz =

∫ mZ

0
1dz = mZ .

If mZ ≤ 0 the w-weighted expectation of Z becomes

E [Z] = −
∫ 0

−∞
[1 − w (1 − FZ(z))] dz+

∫ ∞

0
w (1 − FZ(z)) dz = −

∫ 0

mZ

1dz = −|mZ | = mZ .

Therefore, the w-weighted expectation of any random variable is equal to its median.

In general, of course, Example 1 could be modified to pick out any quantile; sim-
ply change 1

2 in the definition of w to some τ ∈ [0, 1]. As special cases, the maxmin
choice rule, in which the agent evaluates a distribution according to the worst-case
outcome, corresponds to picking τ = 1, and the maxmax choice rule corresponds to
τ = 0.5

Example 2 Suppose w(x) is given by

w(x) =
{

θ x ∈ [0, 1)
1 x = 1,

for some θ ∈ (0, 1). Then the w-weighted expectation is equal to the weighted aver-
age of the highest and lowest outcomes in the support. E.g., if Z is supported on
[L, H ], then Ew[Z] = (1 − θ)L + θH .

We note that Examples 1 and 2 are among the utility functions studied by [19];
they show that games need not possess any Nash equilibrium when the players seek
to maximize the corresponding weighted expectations.

Properties of weighted expectation. Weighted expectation in this model satisfies the
following properties; proofs can be found in Appendix C.

Lemma 1 For any weighting function w, any random variable Z and any c ∈ R,(1)
E [c + Z] = c + E [Z], and (2) E [cZ] = cE [Z].

Despite Lemma 1, and unlike risk-neutral expectation, the weighted expectation
is not a linear operator on random variables, as the following example demonstrates.

Example 3 Let Z1 be distributed uniformly on {0, 1} and let Z2 be independently
distributed uniformly on {0, 2}. Let w(x) = x2. Then E [Z1] = 1 · w( 12 ) = 1

4 .

5Rostek [32] studies in depth the preference model, termed “quantile maximization”, implied by such
weighting functions.
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Similarly, Ew [Z2] = 1
2 , so that Ew [Z1]+ Ew [Z2] = 3

4 . On the other hand, because
Z1 and Z2 are independent, the random variable Z1 + Z2 is uniform on {0, 1, 2, 3},
with weighted expectation

E [Z1 + Z2] = 1 · (w( 34 ) − w( 12 )) + 2 · (w( 12 ) − w( 14 )) + 3 · w( 14 ) = 7
8 .

Mechanism Design Any mechanism can be described by the allocation it makes
and the payment it charges as a function of the buyer’s report. For a report v =
(v1, . . . , vm), we denote by X(v) the random variable for the allocation, giving a
probability to each possible allocation of the items in {0, 1}m. Similarly, P(v) is the
random variable for the payment when the report is v. X(v) and P(v) may be cor-
related. Importantly, common practices from mechanism design in the risk-neutral
setting, like treating the allocation as a vector in [0, 1]m or the payment as a real num-
ber (i.e. replacing the random variable of the payment with its expectation), are with
loss of generality in our setting.

We assume that the buyer has additive utility for the items and is quasilinear with
respect to payments: if she receives a set of items S for a payment p, her total value
for this outcome is

∑
i∈S vi − p. The buyer’s weighted expected utility from the

mechanism’s outcome is Ew [v · X(v) − P(v)]; we say that a mechanism is incen-
tive compatible (IC) for a buyer with weighting function w if for all possible values
v, v′ of the buyer, it holds that Ew [v · X(v) − P(v)] ≥ Ew

[
v · X(v′) − P(v′)

]
. It is

without loss of generality to express an incentive compatible mechanism in the form
of a menu M, with each menu item corresponding to a particular (allocation, pay-
ment) pair of correlated random variables (X, P ). Then, the allocation and payment
of a buyer with value v and weighting function w is given by the utility-maximizing
menu item6 (Xw(v), Pw(v)) = argmax(X,P )∈M Ew [v · X − P ]. The revenue of the
mechanism is given by REVM(w,D) = E[P(v)], where the expectation is with
respect to the random valuation v (drawn from D), as well as the random outcome of
the payment random variable P(v). A mechanism is individually rational (IR) if the
buyer has non-negative expected utility when participating. Throughout the paper we
focus on IC and IR mechanisms.

We slightly overload notation and let REV(w,D) denote the optimal revenue
achievable by an incentive compatible mechanism from selling m items to a buyer
with weighting function w and values drawn from D. We will frequently drop w to
indicate the risk-neutral optimal revenue, i.e. we use REV(D) to mean REV(I,D)

(recall that I is the risk-neutral weighting function, I(x) = x), and DREV(D) for
the optimal revenue from a deterministic mechanism. Note that DREV(w,D) =
DREV(w′,D), for all w, w′.

In this paper we show that the best of SREV(D) (or just SREV), the auction that
sells each item separately at its optimal posted price, and BREV(D) (or just BREV),
the auction that sells the grand bundle as a single item, is a risk-robust approximation
for a prospect theoretic buyer. For a risk-neutral buyer, the following result is known.

6We assume that any ties are broken in favor of menu items with a higher expected price.
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Theorem 1 [3, 5] For a single, risk-neutral, additive bidder and any independent
item distribution D it holds that

REV(I,D) ≤ 2BREV(D) + 4SREV(D) ≤ 6max{SREV(D),BREV(D)}.

Quantifying Sensitivity to Risk Ideally, we would like to give simple auctions that
perform well for all weighting functions w, with respect to the optimal auction tai-
lored for w. Unfortunately, as we see in the next section, for some of the mechanism
classes we study such a goal is too optimistic without any restrictions on w. For
instance, the w(x) could take the value 1 for all x except x = 0. Here, the buyer’s
extreme optimism yields utility equal to that in her favorite outcome. Therefore, slight
randomization in the outcomes (say with probability ε > 0 the buyer pays nothing,
but otherwise pays a very high price) would result in the buyer always having non-
negative utility, making her an easy target for extracting arbitrary revenue. For some
of our results we will therefore impose a mild restriction on w in order to escape
these extreme situations, and otherwise make no assumptions (such as convexity or
Lipschitzness).

Definition 2 Aweighting functionw is (α, β)-limited if it satisfies (1)w(x) ≤ α(x−
1) + 1, and (2) w(x) ≥ βx.

Geometrically, an (α, β)-limited weighting function w lies below the line with
slope α passing through (1, 1), and above the line with slope β passing through the
origin; see Fig. 1. The purpose of this definition is to control the slope of the weight-
ing function as it approaches 0 and 1. Note that meaningful values for α and β lie in
the range [0, 1]. As α and β approach 1, the buyer becomes less sensitive to risk; the
risk-neutral weighting function is the unique (1, 1)-limited weighting function. For
any α < α′ and any β, an (α, β)-limited weighting function is also (α′, β)-limited.
We stress that we don’t use this restriction in all our results, and when we do use

Fig. 1 Any (α, β)-limited
weighting function lies between
the two red lines. The upper line
has slope α and the lower has
slope β
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it, we need only one of the two sides of the bound, i.e. we ask for either (α, 0)- or
(0, β)-limited weighting functions.

3 Limits of theModel

In this section, we demonstrate how our model, absent any additional assumptions
on the mechanism or the weighting function, can lead to absurd results. Such results
were known before our work. Azevedo and Gottlieb [2] show that under assumptions
on the weighting functions a principal can extract unbounded revenue from a CPT
agent, simply by offering a bet on a single coin-flip. Furthermore, [16] show that
CPT behavior gives rise to time inconsistency, allowing a seller to extract the buyer’s
entire wealth over multiple rounds of interaction. We reproduce similar results in our
context for completeness and to illustrate the variety of behaviors possible in this
model. In later sections, we develop restrictions on the mechanism which preclude
this sort of unreasonable behavior. First, the following simple lemma is instructive.

Lemma 2 For every distribution D, constant R ∈ R≥0, and weighting function w

such that there exists x∗ < 1 with w(x∗) = 1, there exists a mechanismM such that
REVM(w,D) = R.

Proof Consider the following lottery, where (positive) Z represents a transfer to the
agent.

Z =
{
0 with probability x∗
−R
1−x∗ with probability 1 − x∗.

(2)

The agent’s utility is E [Z] = −R
1−x∗ (1 − w(x∗)) = 0, while the seller’s revenue

is E [−Z] = R
1−x∗ (1 − x∗) = R. This lottery can be transformed into a mechanism

for selling any number of items, by giving everything for free to the buyer, requiring
only that she participates in the lottery.

Lemma 2 relies on the dubious assumption that the buyer would assign no weight
at all to an extremely negative—albeit potentially highly unlikely—outcome. How-
ever, even seemingly reasonable weighting functions can be exploited, as our next
result shows.

Lemma 3 For every distribution D, constant R ∈ R≥0, and weighting function w

such that there exists x∗ with 1 > w(x∗) > x∗, there exists a mechanism M such
that REVM(w,D) = R.

Proof Consider the following lottery, where (positive) Z represents a transfer to the
agent.

Z =
{

a with probability x∗

−ρa with probability 1 − x∗,
(3)

626 Theory of Computing Systems (2022) 66:616–644
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where a > 0. The expected value of an agent with weighting function w is E [Z] =
aw(x∗) − ρa (1 − w(x∗)). Pick ρ = w(x∗)

1−w(x∗) ; then, for all a, Ew [Z] = 0. That is,
the buyer has utility exactly zero for this lottery.

On the other hand, the expected revenue of the seller, who pays a with probability
x∗ and gets paid ρa with probability 1 − x∗, is equal to

E [−Z] = ρa(1 − x∗) − ax∗ = a ·
(

w(x∗)(1−x∗)
1−w(x∗) − x∗

)
= a · w(x∗)−x∗

1−w(x∗) .

The lemma follows by setting a = R
1−w(x∗)
w(x∗)−x∗ ; similarly to Lemma 2, this lot-

tery can be turned into an auction by giving all the items for free to the agent after
participating in the lottery.

We note that the conditions of Lemma 3 are satisfied for nearly all weighting
functions implied by experiments in the literature; we refer the reader to [35, 37] for
concrete examples. Furthermore, the issue exhibited by Lemma 3 persists even if one
enforces ex-post individual rationality, so long as the seller is allowed to utilize a
multi-round protocol.

Lemma 4 For every distribution D, constant ε > 0 and weighting function w such
that there exists x∗ with 1 > w(x∗) > x∗ + ε

1+ε
, there exists a multi-round, ex-post

individually rational mechanismM such that REVM(w,D) = E[D].

Proof For simplicity we only prove the m = 1 item case; the general case is iden-
tical. Consider again the random transfer defined in (3). Picking ρ = w(x∗)

1−w(x∗) − ε

provides the buyer strictly positive utility. The seller’s revenue is equal to E[−Z] =
a ·

(
w(x∗)(1−x∗)
1−w(x∗) − ε(1 − x∗) − x∗

)
, which is again strictly positive for every a > 0.

By picking a and x∗ appropriately the seller can thus make both Ew [Z] and E[−Z]
very small positive numbers. This suffices to extract full buyer welfare as follows.

The buyer and seller will interact over T rounds. In the first round, the buyer
reports a bid b. In rounds t > 1, the seller will offer lottery Z (and the buyer has
the option to not participate), unless the seller has already extracted an amount larger
than the bid b. After T rounds have passed, the item will be awarded to the buyer for
free. Of course, since Ew [Z] > 0, the buyer always chooses to participate in round
t , and (in expectation) loses a little bit of money. By picking T large enough, the
buyer eventually goes bankrupt at some intermediate round, but since she eventually
gets the item this mechanism is in fact ex-post IR. Notice that this mechanism is
also truthful! Precisely because when the buyer is calculating (in the first round) her
expected utility from reporting b she thinks that she will “come out on top”, and
therefore is indifferent between all bids b (and thus reports her true value v).

As the previous lemmas exhibit, practical mechanisms cannot hope to compete
against the theoretically optimal revenue maximizing mechanism in this model, and
thus this theory does not give accurate predictions for the simple mechanisms that
we observe in practice. There are multiple ways to proceed. A natural one is to put
restrictions on the weighting functions considered. Indeed, this is the approach taken
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by [9] for the single item case, where the weighting function is restricted to be con-
vex (therefore the buyer is always risk-averse). Another is to put restrictions on the
mechanisms considered. In this paper we restrict our attention to specific mechanism
classes; for some of our results this does not suffice and some mild restrictions on w

are necessary as well.

4 Mechanism Classes

We define four classes of mechanisms. Recall that REVM (w,D) denotes the seller’s
expected revenue from a mechanismM, given that the buyer has weighting function
w and her values are distributed according to D. We denote the expected revenue
of the optimal mechanism in a class C by REV (w,D, C). That is, REV (w,D, C) =
maxM∈C REVM (w,D).

4.1 The Class Cdp of Deterministic Price Allocations

First, we consider mechanisms which use randomness only in the allocation. That
is, the seller offers a menu of distributions over the items, each at a fixed price. The
buyer may pay the price for a distribution over the items, after which she receives a
draw from the distribution. We call this class deterministic price (DP) mechanisms,
and denote it by Cdp. It will be convenient to think of a mechanismM in this class as
a menu, where the buyer selects her favorite menu item, of the form (p, X), where p

is the payment and X is a (possibly correlated) distribution over items. Observe that
this class remains completely general for risk-neutral buyers.

Unfortunately, general deterministic price mechanisms are technically difficult
to work with. The arbitrary correlation allowed between items (in the allocation)
makes arguing about the buyer’s expected utility problematic. Specifically, differ-
ent buyer types order outcomes of X differently, and therefore could have wildly
different expected weighted utility for the same distribution X (since arbitrary cor-
relation allows us to assign arbitrary probabilities to outcomes); this property can be
used to tailor to each type v an allocation X(v) that is attractive only to this type.
Our understanding of general Cdp mechanisms is therefore partial. We show that
max{SREV,BREV} gives a doubly exponential (in the number of items) approxima-
tion to the optimal deterministic price mechanism. This trivially implies a constant
approximation for a constant number of items; we leave it as an open problem
whether a constant approximation can be achieved for an arbitrary number of items.

To mitigate the problems caused by arbitrary correlation, we also consider a
special case of deterministic price mechanisms, which imposes a specific form of
correlation on the distribution over allocations: we ask that the allocations in the
support of the allocation distribution form a nested set. We term this class nested
deterministic price (NDP) mechanisms and denote it by Cndp. We say a random vari-
able X supported in 2[m] is a monotone lottery if X is supported on a chain of subsets
S1, · · · , Sk , k ≤ m, such that Si ⊂ Si+1 for all i ∈ [k − 1]. We use ΔN(2[m])
to denote the set of such correlated distributions over the set of m items. For a
mechanism M ∈ Cndp the allocation distributions for each menu item are restricted
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to be inΔN(2[m]). Observe that nested deterministic price mechanisms are again com-
pletely general for risk-neutral buyers. This is so because the optimal mechanism for
a risk-neutral buyer can be specified in terms of the marginal probabilities of allo-
cation for each item. For any marginal probabilities, we can find a monotone lottery
having the same marginal probabilities.

Observation 1 For any distribution D, the class Cndp of nested deterministic
price mechanisms contains an optimal mechanism for a risk-neutral buyer. That is,
REV(I,D) = REV(I,D, Cndp).

Our main result for nested deterministic price mechanisms is that the seller
cannot exploit the buyer’s risk attitude at all in this class: REV(w,D, Cndp) is
equal to REV(I,D)! This trivially implies that max{SREV,BREV} is a constant
approximation to REV(w,D, Cndp) by Theorem 1.

4.2 The Class Cda of Deterministic-AllocationMechanisms

In Section 3, we showed that the seller can use randomized payments, utilizing very
large positive transfers, to extract unbounded revenue from an optimistic buyer. But
what power do randomized payments have when the buyer’s willingness to partic-
ipate is exogenous to the seller? Here, we consider mechanisms which satisfy two
conditions: first, they sell only (deterministic) bundles of items, and second they can-
not offer positive transfers, that is, monetary transfers from the seller to the buyer.
We refer to these as deterministic allocation (DA) mechanisms, and denote it by
Cda . Formally, every M ∈ Cda offers one lottery for each subset of items S ⊆ [m].
The lottery for a subset S always allocates S but charges a random (non-negative)
payment.

Observe that this class of mechanisms is not fully general for a risk-neutral
buyer, but, since allocations are deterministic, DA mechanisms are equivalent to
fully deterministic mechanisms for a risk-neutral buyer. We observe that a seller
with knowledge of w can use a DA mechanism to extract more revenue from a
RDUT buyer than would be possible to extract from a risk-neutral buyer via any
mechanism, i.e. REV(w,D, Cda) > REV(I,D). In fact, the gap between the two
is unbounded. This is possible because an optimistic buyer is willing to gamble
that she will not have to make a payment. Our main positive result for DA mech-
anisms is that, if the weighting function is (α, 0)-limited, DREV(I,D) is an α

approximation to REV(w,D, Cda); therefore max{SREV,BREV} is a 6α approxi-
mation to REV(w,D, Cda), for all distribution D. As a special case of this result,
we get that the seller can use randomized payments to extract extra revenue only
from optimistic buyers; if w(x) ≤ x for all x, i.e. α = 1, there is no loss in the
approximation.

4.3 The Class CB of Binary-Lottery Mechanisms

Finally, we consider a generalization of the mechanism format studied by [9]. They
showed that a menu of lotteries supported on only two outcomes—receive the item
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and pay, or pay nothing and receive nothing—were sufficient to extract the optimal
revenue if there is only a single item for sale and the buyer has a convex weighting
function. We consider an extension to multiple items which offers, for each subset of
items, a (potentially uncountable) menu of binary lotteries. Let Cb denote the follow-
ing class of auctions. Each M ∈ Cb contains binary lotteries for subsets S ⊆ [m]. A
lottery for a subset S is of the following format:

(XS, PS) =
{

(S, pS) with probability qS

(∅, 0) with probability 1 − qS .

That is, either get the subset S and pay pS (with probability qS), or get nothing and
pay nothing (with probability 1 − qS). Note that this does constitute a significant
restriction of the design space. However, this format is still quite flexible: consid-
ered as a direct-revelation mechanism, for each type we specify a subset of the
items, a probability of allocation, and a payment. Our main positive result for binary-
lottery mechanisms is that, if the weighting function is (0, β)-limited, REV(I,D) is
a β approximation to REV(w,D, Cb); combined with Theorem 1 this implies a 6β
approximation for max{SREV,BREV}.

5 Deterministic Price Mechanisms

We first investigate general deterministic price mechanisms. We show that the opti-
mal revenue of a deterministic price mechanism on independent items for a RDUT
buyer can be upper bounded by doubly exponential times the optimal risk-neutral
revenue of some items and the welfare on the distribution of the remaining items.

Theorem 2 Let w be a weighting function, D1 be an independent distribution over
m1 items, andD2 be an independent distribution over m2 items. LetD = D1×D2 be
an independent distribution over m items, where m = m1 + m2. Then, for a single,
additive bidder it holds that

REV(w,D, Cdp) ≤ 22
m1 (m− 1

2 logm1)REV(I,D1) + VAL (D2) .

Using standard techniques we get the following corollary.

Corollary 1 For a single, additive bidder and any independent item distribution D,
it holds that

REV(w,D, Cdp) ∈ O(2m2m

)max{SREV,BREV}.

Proof Let T1 and T2 be the random variables of the sum of value of items in D1
and D2 respectively. We use the notation for the indicator variable of an event
E. Notice that .
Each of these terms can be upper bounded using Theorem 2. For example, for the
first term we have:
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Notice that by posting a price of VAL (D2) = E[T2] for the grand bundle (of m1
items) in D1, we can make revenue . Therefore
BREV(D1). Thus

The symmetric bound holds for . Adding the two inequalities
and combining with the upper bound on the optimal risk-neutral revenue (Theorem 1)
we get the corollary.

Though this approximation is doubly exponential in the number of items, we do
get a constant approximation when the number of items is a constant. Notably, for
the case of two items, we get REV(w,D, Cdp) ≤ 17SREV; an improved analysis
can reduce this to a factor of 2. We leave it as an open problem whether a constant
approximation is possible for an arbitrary number of items.

Before we proceed with the proof of Theorem 2 we briefly comment on the tech-
nical obstacles that lead to this approximation factor. As we’ve mentioned in the
introduction, for a risk-neutral buyer, statements similar to Theorem 2 are known, for
example REV(D1 × D2) ≤ REV(D1) + VAL(D2) [3, 23]. The proof of this state-
ment is roughly as follows. For every v2 ∈ D2 construct an auction Mv2 for D1.
When the buyer reports some v1 ∈ D1, Mv2 copies the allocation (for the items in
D1) and payment rule of the optimal auction, M, for D1 × D2, and then slightly
adjusts the payments to cover for the lost value (i.e. expected value from the items in
D2 that should not be paid in Mv2 ). The result of this adjustment is that the utility
of reporting v1 in Mv2 is equal to the utility of reporting (v1, v2) in M, and there-
fore Mv2 is incentive compatible. Then, the optimal revenue for D1 is at least the
revenue Mv2 , which is equal to REV(D1 × D2) minus the reimbursement (which
is at most VAL(D2)). Unfortunately, such adjustments to the payment do not work
here. Replacing the (random) allocation of items in D2 with a deterministic pay-
ment gives different weighted expected value to different types, since different types
order outcomes differently. For example, a buyer with type t = (v1, v2, v3) such
that v3 > v1 + v2 prefers outcome {3} to outcome {1, 2}; the calculation of the
weighted expected utility depends on the order over outcomes, and therefore, because
of the IC constraints between types with different orders, we can’t naively replace
random outcomes with deterministic payments (or, more accurately, deterministic
reimbursements).

Our approximation factor depends on the number of all possible valid orderings
over outcomes. By valid ordering we mean that there exist types who order outcomes
of X in this ordering (for example, an ordering where outcome {1} is preferred to
{1, 2} is not valid) . A loose upper bound on the number of valid orderings is (2m)!;
in our proof we’re able to do much better. A couple of new additional ideas are
necessary in order to deal with the subtleties of our setting, but otherwise our proof
follows a similar structure to the one described above.

Proof of Theorem 2 LetM be the revenue optimal auction (in auction class Cdp) for
a buyer with weighting function w and value distribution D = D1 × D2; let X(v)

and p(v) be the allocation and payment rule of M. We use the notation for the
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indicator variable of an event E. For ease of notation we will write i ∈ [mj ] instead
of “item i in the support of Dj ”, and vi(j) for the value of an item j in the type
vi ∈ Di .7 We prove the theorem by giving an auction for selling m1 items to a risk-
neutral buyer whose values are drawn fromD1. Specifically, first sample v2 fromD2;
we construct a deterministic-price mechanism Mv2 = (Xv2 , pv2) that is incentive
compatible for a risk-neutral buyer, and then lower bound its revenue.

We would like to relate the revenueMv2 with the revenue ofM. As we’ve already
discussed though, the natural choice of copying the allocation for items i ∈ [m1] from
M and then adjusting the payments does not work, because the resulting auction is
not incentive compatible. In this proof we will restrict our attention to a certain subset
Rv2 of the support of D1, such that all types in Rv2 order outcomes the same way.
We then copy the decisions of M only in that region; when v1 /∈ Rv2 the buyer is
allocated her favorite menu item (from the ones designed for types in Rv2 ).

Use S1, . . . , S2m to denote the 2m distinct subsets of m items. A necessary condi-
tion for an ordering over items to be valid is inclusion partial order: if Si ⊂ Sj , then
Si is before Sj in the order. Brightwell and Tetali [4] have shown that there are at most

22
m1 (m1− 1

2 logm1−log e) ways to order the subsets of m1 items such that the orders sat-
isfy the inclusion partial order property. For each of those orderings, there are at most
(2m−2m2

2m1

)
/(2m2 !) 8 different ways to combine an ordering on subsets of m1 items and

an ordering on subsets of m2 items (that satisfy the inclusion partial order property)
to obtain an ordering on the subsets of their union that satisfies the inclusion par-

tial order property. Thus, there are at most N = 22
m1 (m1− 1

2 logm1−log e) · ( 2m

2m1

)
/(2m2 !)

different orderings of S1, . . . , S2m when v2 is fixed. Therefore we can partition the
support of D1 into regions R1, . . . , RN , such that in each region Ri , all types have
the same preference ordering over subsets of items.

Let Rv2 denote the region from which M extracts the most revenue (weighted by
the probability of being in the region). Assume wlog that the order of subsets in this
region is S1 ≤ S2 ≤ · · · ≤ S2m . For every v1 ∈ Rv2 , we want the risk-neutral buyer’s
utility of reporting v1 inMv2 to be the same as the RDUT buyer’s utility of reporting
(v1, v2) inM. The latter term is equal to

uw((v1, v2),M) = −p(v1, v2) +
∑

i∈[m1]
aiv1(i) +

∑

j∈[m2]
bjv2(j) , (4)

for some non-negative constants a1, . . . , am1 and b1, . . . , bm2 . Specifically, think
of X(v) as a vector in R

2m

≥0 where the i-th entry, denoted by X(v)[Si], is the
probability that the buyer gets exactly the set Si . Then ai = ∑

k∈[2m],Sk�i(
w(

∑2m

j≥k X(v1, v2)[Sj ]) − w(
∑2m

j>k X(v1, v2)[Sj ])
)
.

Each term in the sum is nonnegative (since the weighting function is non-
decreasing) and the sum of ais telescopes, that is

∑
k∈[2m]

(
w(

∑2m

j≥k X(v1, v2)[Sj ]) −
w(

∑2m

j>k X(v1, v2)[Sj ])
) = 1. Therefore we can conclude that all coefficients ai are

7vi ∈ Di is an mi dimensional vector.
8
( 2m

2m1

)
counts the number of complete orders with the order of all subsets of [m1] items fixed. Dividing by

(2m2 !) removes the orders in which the subsets of [m2] items are ordered incorrectly.
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in [0, 1], and since they add up to 1, we can think of them as probabilities. Similarly,
for the bj s.

Since Mv2 is designed for a risk-neutral buyer, we can think of Xv2(v1) as a
vector in R

m1≥0. The i-th entry of Xv2(v1) is the marginal probability that the buyer
gets item i ∈ [m1]. Now, for every v1 ∈ Rv2 , we set the allocation to be Xv2(v1) =
[
a1 . . . am1

]T , and the payment to be pv2(v1) = p(v1, v2) − ∑
j∈[m2] bjv2(j). It is

immediate that the utility of a risk-neutral buyer when reporting v1 ∈ Rv2 is exactly
the RHS of (4). SinceM is IC, we get that, inMv2 , if the (risk-neutral) buyer’s type
is in Rv2 , then she has no incentive to report a different type in Rv2 . Finally, for every
v1 ∈ Rv2 , set (Xv2(v1), p

v2(v1)) to be the best menu item among the ones already
added to Mv2 for types in Rv2 . Therefore, Mv2 is trivially IC for v1 /∈ Rv2 as well.
Intuitively, seen as a menu, our overall auctionMv2 copies (and adjusts) the menu of
M for types (v1, v2) where v1 ∈ Rv2 .

It remains to bound the revenue ofMv2 . The revenue ofMv2 is at least its revenue
in Rv2 :

Since the revenue of Mv2 cannot exceed the optimal revenue, we have

Finally, sum this inequality across the support of D2 to get
∑

v2∼D2

Pr[v2] · Ev1∼D1[p(v1, v2)|v2] ≤
∑

v2∼D2

Pr[v2] · (N · REV(D1) + VAL (D2|v2))

E[p(v1, v2)] ≤ N · REV(I,D1) + VAL (D2) .

Observing that N = 22
m1 (m1− 1

2 logm1−log e) · ( 2m

2m1

)
/(2m2 !) < 22

m1 (m− 1
2 logm1)

concludes the proof.

5.1 Nested Deterministic Price Mechanisms

Our main result is that the class of nested deterministic price mechanisms does not
offer the seller any means of exploiting the buyer’s risk attitude: the optimal revenue
within the class is equivalent to the optimal revenue obtainable from a risk-neutral
mechanism.

Theorem 3 Let w be an invertible weighting function and D be an independent
distribution supported in R

m
≥0. Then, for a single, additive bidder it holds that

REV(w,D, Cndp) = REV(I,D).
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Combining this result with Theorem 1 of [3] we get the following corollary.

Corollary 2 Let w be any invertible weighting function and D be any independent
distribution supported in Rm

≥0. Then, for a single, additive bidder it holds that

REV(w,D, Cndp) ≤ 6max{SREV(D),BREV(D)}.

We prove Theorem 3 in two lemmas. We start by showing that for any invertible
weighting function, there exists an NDP mechanism which recovers the optimal risk-
neutral revenue.

Lemma 5 Let w be an invertible weighting function and D be any distribution
supported in Rm

≥0. Then REV(w,D, Cndp) ≥ REV(I,D).

Proof Given a mechanism M such that REVM(I,D) = REV(I,D) (i.e. a revenue
optimal mechanism for a risk-neutral buyer), let X(v) and p(v) be the allocation and
payment rule (respectively) of M. Since this buyer is risk-neutral, p(v) ∈ R≥0 is
some deterministic payment, and we will assume that X(v), the random variable for
the allocation, is a monotone lottery (which is without loss of generality by Obser-

vation 1). We define a mechanism M̃ =
(
X̃(v), p̃(v)

)
such that REVM̃(w,D) =

REVM(I,D).
Fix v. Let S1, · · · , Sk be the support of X(v), where Si ⊂ Si+1 for i ∈ [k], and

let 1 − Fi = Pr [Si ⊆ X(v)]. Then a risk-neutral buyer’s utility when participating
in M is u(v,M) = ∑k

i=1 (v(Si) − v(Si−1)) (1 − Fi), where we take S0 = ∅. Let
1− F̃i = w−1(1−Fi), and define X̃(v) such that Pr[X̃(v) = Si] = F̃i+1 − F̃i . Also,
let p̃(v) = p(v). A risk-sensitive buyer with weighting function w and any valuation
v′ has weighted expected utility for the lottery (X̃(v), p̃(v)) equal to

uw(v′, X̃(v), p̃(v)) =
k∑

i=1

(
v′(Si) − v′(Si−1)

)
w(1 − F̃i) − p̃(v)

=
k∑

i=1

(
v′(Si) − v′(Si−1)

)
(1 − Fi) − p(v)

= u(v′, X(v), p(v))

The first equality follows because v′(S) is monotone in S and Si ⊆ Si+1. Because

this equality holds for every valuation v′,
(
X̃(v), p̃(v)

)
is an IC and IR mechanism

for a buyer with weighting function w, and furthermore obtains the same revenue
from that buyer asM obtains from a risk-neutral buyer.

Next, we show the converse: that we can construct a mechanism for a risk-neutral
buyer which obtains the same revenue as any DP mechanism for a buyer with
weighting function w.

634 Theory of Computing Systems (2022) 66:616–644



Theory of Computing Systems (2022) 66:616–644

Lemma 6 Letw be any weighting function andD any distribution supported inRm
≥0.

Then

REV(w,D, Cndp) ≤ REV(I,D).

Proof Consider a mechanism M ∈ Cndp. Let X(v) and p(v) be the allocation and
payment rule, respectively, of M, where X(v) is a random variable in ΔN(2[m]) and
p(v) ∈ R≥0. We construct a mechanism M̃ =

(
X̃(v), p̃(v)

)
for a risk-neutral buyer

such that REVM̃(I,D) = REVM(w,D).
Fix v. X(v) is a monotone lottery by definition of Cndp, so let S1, · · · , Sk be the

support of X(v), where Si ⊂ Si+1 for i ∈ [k], and let 1− Fi = Pr[Si ⊆ X(v)]. Then
the utility of an RDUT buyer is uw(v, X(v), p(v)) = ∑k

i=1 (v(Si) − v(Si−1)) w(1−
Fi), where we take S0 = ∅. Let 1 − F̃i = w(1 − Fi), and define X̃(v) such that
Pr[X̃(v) = Si] = F̃i+1 − F̃i . Lastly, let p̃(v) = p(v). A risk-neutral buyer with any
valuation v′ has expected utility for the lottery (X̃(v), p̃(v)) equal to

u(v′, X̃(v), p̃(v)) =
k∑

i=1

(
v′(Si) − v′(Si−1)

)
(1 − F̃i) − p̃(v)

=
k∑

i=1

(
v′(Si) − v′(Si−1)

)
w(1 − Fi) − p(v),

which is just uw(v′, X(v), p(v)). Because this equality holds for every valuation v′,(
X̃(v), p̃(v)

)
is an IC, IR mechanism for a buyer with weighting function w, and

furthermore obtains the same revenue from a buyer with weighting function w asM
obtains from a risk-neutral buyer.

Observe that the assumption of monotone lotteries was critical to the proof of
Lemma 6. If X(v) were an arbitrary distribution over subsets S ∈ 2[m], a buyer
with valuation v′ would order the outcomes differently from v. This would make
it impossible to define the unweighted probability of allocation in the mechanism
M̃ in a way that would be simultaneously consistent with the weighted probability
assigned to the outcome by all valuations v′.

Indeed a general deterministic-price mechanism (without the restriction to mono-
tone lotteries) could exploit this discrepancy to obtain more revenue than a risk-
neutral mechanism. That is, Lemma 6 does not hold for the class Cdp. We show such
an example below.

Lemma 7 There exists a two-item distribution D, and a weighting function w, such
that REV(w,D, Cdp) > REV(I,D).

Proof Let D1,D2 be independent and identical uniform distributions on {1, 3}.
The revenue optimal auction that sells the two items to a risk-neutral buyer is the
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deterministic auction that sells the bundle of two items at the price 4. So REV(I,D1×
D2) = 4 × 3

4 = 3. Consider the weighting function

w(p) =

⎧
⎪⎨

⎪⎩

0, p ≤ 1
2

4p − 2, 1
2 < p < 3

4

1, 3
4 ≤ p

.

Consider the auction M selling the two items in the following way: if the buyer
reports type (1, 1) she gets the first item with probability 1

2 and independently, gets
the second item with probability 1

2 , and the buyer pays 1 to the seller. Otherwise, the
buyer gets both items and pays 4. It is easy to see thatM is incentive compatible for
a buyer with weighting function w. Furthermore, REVM(w,D1 × D2) = 1 × 1

4 +
4 × 3

4 = 13
4 > 3.

6 Deterministic AllocationMechanisms

We now turn to deterministic allocation mechanisms which randomize the payment,
but which are restricted to offer only deterministic bundles and charge only positive
payments ex post. Unlike the examples of Section 3, these mechanisms cannot offer
a positive transfer in order to induce the buyer to pay more. Instead, the value of the
items received must induce the buyer to pay. How much revenue can the seller then
obtain?

As the next example shows, with randomized payments the seller can obtain
strictly more revenue from an RDUT buyer than from a risk-neutral buyer, even with
one item and a mechanism that always allocates the item.

Example 4 Let w(x) = x1/a for a ≥ 1; note that a buyer with such a weighting
function is strictly optimistic. Suppose there is one item available, and D = U [0, 1].
Consider the mechanism that offers the item for a randomized payment P which is
p w.p. 1 − q and 0 otherwise. For any value v for the item, the utility of the buyer is
v − p(1 − w(q)). In other words, the buyer purchases the item if v ≥ p(1 − w(q)).
The total expected revenue is thus

p(1 − q) (1 − F (p(1 − w(q)))) = p(1 − q) (1 − p(1 − w(q))) . (5)

Fix q; we will solve for the optimal p. By the first derivative test, we find that the
optimal price is pq = 1

2(1−w(q))
. Substituting this into (5), we have

REV(q) = 1 − q

4 (1 − w(q))
= 1 − q

4
(
1 − q1/a

) .

By L’Hôpital’s rule, limq→1 REV(q) = a
4 . Observing that REV(D) = maxx x ·

Pr[v ≥ x] = 1
4 , we see that the revenue approaches a · REV(D).

The main result of this section shows that Example 4 gives the largest possi-
ble gap between the revenue of a DA mechanism and the revenue obtainable via
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any deterministic mechanism from a risk-neutral buyer. Note that x1/a is an ( 1
a
, 1)-

limited weighting function. We show that no deterministic-allocation mechanism can
increase the seller’s revenue by a factor more than α−1 over the risk-neutral optimum
for any (α, 0)-limited weighting function. As a special case of this result, we get that
the seller can use randomized payments only to extract extra revenue from optimistic
buyers; for pessimistic buyers, the revenue extractable via DA mechanisms is equal
to the revenue obtainable via fully deterministic mechanisms.

Theorem 4 For a single, additive bidder, any (α, 0)-limited weighting function w

and any independent distribution D it holds that

REV(w,D, Cda) ≤ α−1DREV(D).

Combining Theorems 4 and 1 we get the following corollary.

Corollary 3 For a single, additive bidder, any (α, 0)-limited weighting func-
tion w and any independent distribution D, it holds that REV(w,D, Cda) ≤
6α−1 max{SREV,BREV}.

Before proving Theorem 4, we show that it is without loss of generality to assume
that the payment variables in a DA mechanism have a very simple form. Namely, we
show that it suffices to consider Bernoulli-distributed payments: with probability q

the payment is some positive p, and otherwise the payment is zero.

Lemma 8 Fix a distribution D and a continuous, (α, 0)-limited weighting function
w with α > 0. For every deterministic-allocation mechanism M with payments PS

with discrete support in [0, ∞), there exists a deterministic-allocation mechanism
M′ with binary payments P ′

S such that

REVM(w,D) ≤ REVM′(w,D).

Furthermore, when w(x) ≤ x for all x, P ′
S is a deterministic price.

Proof For this proof, it will be convenient to work with the dual of the weighting
function w†(x) = 1 − w(1 − x). The proof of the following claim can be found in
Appendix C.

Claim E [−X] = −Ew† [X]

Fix a set S with associated payment PS in M. M′ has the same allocation as M,
but different payments P ′

S , such that

Ew† [PS] = E
[
P ′

S

]
and (6)

E [PS] ≤ E
[
P ′

S

]
, (7)

that is, the expected payment to the seller (aka the revenue) is non-decreasing,
while the (weighted) expectation of the buyer’s payment is the same. To see why
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these equations imply the result, notice that for every set S and type v the utility of a
buyer satisfies

uw(v, S, PS) = E [v(S) − PS] = v(S) − Ew† [PS] = v(S) − E
[
P ′

S

] = u(v, S, P ′
S),

where the second equality follows from Lemma 1 (since the allocation is determin-
istic) and Claim 6, and the third equality follows from (6). Therefore the utility of
each menu item is the same, and thus for every type v the buyer will make the same
selection in M′ as in M.

Now we show that we can find prices P ′
S satisfying (6) and (7). For ease of nota-

tion, we consider a single set S and omit the subscripts. Let P be supported on
{p1, · · · , pk}, where Pr[P = pi] = qi for all i ∈ [k]. For some p ∈ R≥0 and
q ∈ [0, 1] to be specified, let P ′ = p w.p. q and 0 w.p. 1 − q. Let FP be the CDF of
P . Then the conditions become

pw†(q) =
∫ ∞

0
w† (1 − FP (z)) dz and pq ≥

∫ ∞

0
(1 − FP (z)) dz.

Let q = maxi∈[k] qi

w†(qi )
. Observe that if w(x) ≤ x for all x, we can take q = 1.

Set p = 1
w†(q)

∫ ∞
0 w† (1 − FP (z)) dz so that (6) is satisfied by definition. By our

choice of q, we have 1 − FP (z) ≤ q

w†(q)
w† (1 − FP (z)) for all z ∈ [0, ∞), and so

∫ ∞

0
(1 − FP (z)) dz ≤ q

w†(q)

∫ ∞

0
w† (1 − FP (z)) dz = pq.

Now we are ready to prove the main result.

Proof of Theorem 4 Let M be any deterministic-allocation mechanism. We define a
deterministic mechanism MI and show that REVM(w,D) ≤ α−1REVMI (I,D).
Thus, REV(w,D, Cda) ≤ α−1DREV(I,D) = α−1DREV(D).

For every S ⊆ [m], let PS be the corresponding payment variable in M. By
Lemma 8, we can assume PS is equal to pS with probability qS and 0 otherwise. In
MI , we add a corresponding menu item which allocates S with probability 1 and
always charges payment p′

S = pS(1−w(1−qS)). Every type v has utility v(S)−p′
S

for the menu item in MI that corresponds to S, which is equal to Ew [v(S) − PS],
the expected utility of type v for the menu item in M for the same set. Thus, a risk-
neutral buyer will purchase inMI the menu item corresponding to what a buyer with
weight function w will purchase in M.

It remains to show that p′
S is not too much smaller than E [P ] = pSqS . By

definition of (α, 0)-limited, w(1 − qS) ≤ α(1 − qS) + 1 − α. Therefore, p′
S =

pS(1 − w(1 − qS)) ≥ αqSpS .

7 Binary Lottery Mechanisms

In this section we study binary lottery mechanisms, the class Cb, as defined in
Section 4. Recall that mechanisms in this class are defined such that each menu item
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is a lottery which allocates some S ⊆ [m] with probability qS , and charges a payment
pS if and only if S is allocated. This class generalizes the binary lottery mechanisms
defined by [9] for the single item case. [9] showed that, as long as the buyer is suffi-
ciently pessimistic, the seller can extract nearly the entire expected value of the buyer
as revenue, regardless of the buyer’s value distribution.

Lemma 9 [9] For every ε > 0 and H > 1, if the buyer’s weighting function w is
invertible and satisfies w(1 − ε) ≤ 2−H/ε, there exists a mechanism that for any
value distribution D supported on [1, H ] obtains revenue at least 1−O(ε) times the
buyer’s expected value E[D].

Observe that under the same conditions we can extract the buyer’s full welfare by
running the mechanism of Lemma 9 for the grand bundle (which is a valid mechanism
for the class Cb). However, as we show next, the revenue is bounded for limited
weighting functions.

Theorem 5 For a single, additive bidder, any (0, β)-limited weighting function w

and any independent distribution D, it holds that

REV (w,D, Cb) ≤ β−1REV(D).

Proof Let M ∈ Cb be an optimal mechanism for the class Cb. We construct a
mechanism M̃ for a risk-neutral buyer in the following way. Fix v. Let X(v) and
P(v) be the allocation and payment that a buyer with type v receives in M. Since
this is a binary lottery, let X(v) be supported on Sv ⊆ [m], let pv ∈ R≥0 be the
payment, and let qv be the probability of allocation. Then the weighted expected
utility for this lottery of a buyer with weighting function w and any value v′ is
uw(v′, X(v), P (v)) = (v′(Sv) − pv)w(qv). Now, define the lottery (X̃(v), P̃ (v)) as

(X̃(v), P̃ (v)) =
{

(Sv, pv) w.p. w(qv)

(∅, 0) o.w.

Then the utility of a risk-neutral buyer with value v′ for the lottery X̃(v), P̃ (v) is also
(v′(Sv) − pv)w(qv), so that M̃ is IC and IR for a risk-neutral buyer. The respective
revenues are

REVM(w,D) =
∫

V

fD(v)pvqv dv and REVM̃(I,D) =
∫

V

fD(v)pvw(qv) dv,

and so, using the definition of (0, β)-limited,

REVM̃(I,D)

REVM(w,D)
≥ inf

w(q)

q
≥ β.

Rearranging, we have REVM(w,D) ≤ β−1REVM̃(I,D) ≤ β−1REV(I,D).

Again, combining with Theorem 1 we get the following corollary.
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Corollary 4 For a single, additive bidder, any (0, β)-limited weighting function w

and any independent distribution D, it holds that

REV (w,D, Cb) ≤ 6β−1 max{SREV,BREV}.

Appendix A: Full CPT Example

Example 5 [35] Consider the following game of chance. You roll a die once and
observe the result v = 1, . . . , 6. If v is even, you receive v; if v is odd, you pay
v. This defines a random variable X which takes values (−5, −3, −1, 2, 4, 6), each
with probability 1/6. Let X+ be the random variable which takes value 0 with proba-
bility 1/2, and 2, 4, 6, each with probability 1/6. Also, let X− be the random variable
which takes the value 0 with probability 1/2, and values−1, −3, −5, each with prob-
ability 1/6, correlated such that X+ + X− = X. Assuming that r = 0, the weighted
expectation of X+ is

E
[
X+] = 2·(w+(1/2)−w+(1/3))+4·(w+(1/3)−w+(1/6))+6·(w+(1/6)−w+(0)).

The intuition here is that the multiplier of value v is equal to the difference between
the weighted probabilities of the events “the outcome of the experiment is at least
as good as v” and “the outcome is strictly better than v”. Similarly, the weighted
expectation of X− is

E
[
X−] = (−1) ·(w−(1/2)−w−(1/3))+(−3) ·(w−(1/3)−w−(1/6))+(−5) ·(w−(1/6)−w−(0)),

where this time the multiplier of v is equal to the difference between the weighted
probabilities of the events “the outcome is at least as bad as v” and “the outcome is
strictly worse than v”. Finally, the weighted expectation of X is simply Ew [X] =
Ew+[X+] + Ew−[X−].

Appendix B: Optimal Max-MinMechanism

Theorem 6
max
M

min
w

REVM(w,D) = DREV(D)

Proof Define wo, the weighting function of a perfectly optimistic buyer, as the
following

wo(q) =
{
0 q = 0

1 0 < q ≤ 1
.

We first prove the following lemma.

Lemma 10 For every value distribution D, if the buyer’s weighting function is wo,
then there exists a deterministic mechanism that maximizes the seller’s revenue.
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Proof Consider an arbitrary mechanismM and a buyer with type v = (v1, . . . , vm).
Let L be a menu item in M. L defines a distribution over k outcomes: outcome
oi occurs with some probability qi , where some subset of items Si is allocated for
some payment pi . Without loss of generality we assume that outcomes are ordered
in increasing utility for the buyer. Then the expected utility of the buyer with type v

picking L is

Ewo [v,L] =
k−1∑

i=1

⎛

⎝
∑

j∈Si

vj − pj

⎞

⎠

⎛

⎝wo

⎛

⎝
k∑

j=i

qj

⎞

⎠ − wo

⎛

⎝
k∑

j=i+1

qj

⎞

⎠

⎞

⎠ +
⎛

⎝
∑

j∈Sk

vj − pk

⎞

⎠ wo(qk)

=
∑

j∈Sk

vj − pk,

i.e. the expect utility is the same as the highest utility of all the outcomes in L.
Let SL,v and pL,v be the subset of items and price in the favorite outcome of type v

in the menu item L inM. Now we construct a deterministic mechanismM′: for each
type v and menu item L in M, add to M′ the menu item L′

L,v
that deterministically

sells SL,v at a price pL,v .
It’s not hard to see that a buyer with type v and weighting function wo will

buy menu item L′
L,v

in M′ if she buys L in M. Therefore REVM(wo,D) =
REVM′(wo,D).

Let Mdet be the mechanism of Lemma 10. Subsequently, we get that

max
M

min
w

REVM(w,D) ≤ max
M

REVM(wo,D)

= REVMdet
(wo,D)

≤ max
M deterministic

REVM(wo,D)

= max
M deterministic

REVM(I,D)

= DREV(D)

The fourth equality holds since a prospect theory buyer has the same preferences as
a risk-neutral buyer in a deterministic mechanism. On the other hand:

DREV(D)= max
M deterministic

REVM(I,D)= max
M deterministic

min
w

REVM(w,D) ≤ max
M

min
w

REVM(w,D),

where the second equality holds since a prospect theory buyer has the same prefer-
ences as a risk-neutral buyer in a deterministic mechanism. The theorem follows.

Appendix C: Properties of Weighted Expectations

Proof of Lemma 1 We prove the statements for a discrete random variable Z over k

outcomes; the proof for continuous random variables is analogous. The i-th outcome
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inZ,Zi , occurs with probability pi , and without loss of generalityZi ≤ Zi+1. Notice
that for the random variable W = Z + c, the ordering remains the same.

E [Z + c] =
k−1∑

i=1

(Zi + c) ·
⎛

⎝w

⎛

⎝
k∑

j=i

pj

⎞

⎠ − w

⎛

⎝
k∑

j=i+1

pj

⎞

⎠

⎞

⎠ + (Zk + c)w(pk)

=
k−1∑

i=1

Zi ·
⎛

⎝w

⎛

⎝
k∑

j=i

pj

⎞

⎠ − w

⎛

⎝
k∑

j=i+1

pj

⎞

⎠

⎞

⎠ + Zkw(pk)

+
k−1∑

i=1

c ·
⎛

⎝w

⎛

⎝
k∑

j=i

pj

⎞

⎠ − w

⎛

⎝
k∑

j=i+1

pj

⎞

⎠

⎞

⎠ + cw(pk)

= E [Z] + c ·
⎛

⎝
k−1∑

i=1

w

⎛

⎝
k∑

j=i

pj

⎞

⎠ − w

⎛

⎝
k∑

j=i+1

pj

⎞

⎠ + w(pk)

⎞

⎠

= E [Z] + c · w

⎛

⎝
k∑

j=1

pj

⎞

⎠

= E [Z] + c.

Similarly,

E [cZ] =
k−1∑

i=1

(cZi) ·
⎛

⎝w

⎛

⎝
k∑

j=i

pj

⎞

⎠ − w

⎛

⎝
k∑

j=i+1

pj

⎞

⎠

⎞

⎠ + (cZk)w(pk)

= c ·
⎛

⎝
k−1∑

i=1

Zi ·
⎛

⎝w

⎛

⎝
k∑

j=i

pj

⎞

⎠ − w

⎛

⎝
k∑

j=i+1

pj

⎞

⎠

⎞

⎠ + Zkw(pk)

⎞

⎠

= c · E [Z] .

Proof of Claim 6

E [−X] = −
∫ 0

−∞
(1 − w(1 − F−X(z))) dz +

∫ ∞

0
w(1 − F−X(z))dz

= −
∫ ∞

0
(1 − w(FX(z))) dz +

∫ 0

−∞
w(FX(z))dz

= −Ew† [X]
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