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Abstract
Let F[X] be the polynomial ring in the variables X = {x1, x2, . . . , xn} over a field F.
An ideal I = 〈p1(x1), . . . , pn(xn)〉 generated by univariate polynomials {pi(xi)}ni=1
is a univariate ideal. Motivated by Alon’s Combinatorial Nullstellensatz we study
the complexity of univariate ideal membership: Given f ∈ F[X] by a circuit and
polynomials pi the problem is test if f ∈ I . We obtain the following results.

• Suppose f is a degree-d , rank-r polynomial given by an arithmetic circuit where
�i : 1 ≤ i ≤ r are linear forms in X. We give a deterministic time dO(r) ·poly(n)

division algorithm for evaluating the (unique) remainder polynomial f (X)mod I

at any point �a ∈ F
n. This yields a randomized nO(r) algorithm for minimum

vertex cover in graphs with rank-r adjacency matrices. It also yields a new nO(r)

algorithm for evaluating the permanent of a n×n matrix of rank r , over any field
F.

• Let f be over rationals with deg(f ) = k treated as fixed parameter. When the
ideal I = 〈

x
e1
1 , . . . , x

en
n

〉
, we can test ideal membership in randomizedO∗((2e)k).

On the other hand, if each pi has all distinct rational roots we can check if f ∈
I in randomized O∗(nk/2) time, improving on the brute-force

(
n + k

k

)
-time

search.
• If I = 〈p1(x1), . . . , pk(xk)〉, with k as fixed parameter, then ideal membership

testing is W[2]-hard. The problem is MINI[1]-hard in the special case when I =〈
x

e1
1 , . . . , x

ek

k

〉
.
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1 Introduction

Let X = {x1, x2, . . . , xn} be a set of n commuting variables and F be a field which
is either the field Q of rationals or a finite field throughout this paper. Let R = F[X]
be the ring of multivariate polynomials over the variables in X with coefficients from
the field F. A subring I ⊆ R is an ideal if I absorbs multiplications by elements of
R. That is, I · R ⊆ I .

Computationally, an ideal I ⊂ R is given by a set of generator polynomials : I =
〈f1, f2, . . . , f�〉. In other words, I is the smallest ideal containing the polynomials
fi, 1 ≤ i ≤ �. Given f ∈ R and I = 〈f1, . . . , f�〉, the Ideal Membership problem is
to decide whether f ∈ I or not. In general, the problem is notoriously intractable. It
is EXPSPACE-complete even if f and the generators fi, i ∈ [�] are given explicitly
as sums of monomials [26]. Nevertheless, special cases of ideal membership problem
have played important roles in several results in arithmetic complexity. For example,
the polynomial identity testing algorithm for depth three ��� circuits with bounded
top fan-in; the structure theorem for���(k, d) identities use ideal membership very
crucially [8, 18, 29].

In this paper, our study of ideal membership is motivated by Alon’s Combinatorial
Nullstellensatz [1], and we recall one of its formulations.

Theorem 1.1 [1] Let F be any field, and f (X) ∈ F[X]. Define polynomials
gi(xi) = ∏

s∈Si
(xi − s) for non-empty subsets Si, 1 ≤ i ≤ n of F. If f vanishes on

all the common zeros of g1, . . . , gn, then there are polynomials h1, . . . , hn satisfying
deg(hi) ≤ deg(f ) − deg(gi) such that f = ∑n

i=1 higi .

It can be restated in terms of ideal membership: Let f (X) ∈ F[X] be a given poly-
nomial, and I = 〈g1(x1), g2(x2), . . . , gn(xn)〉 be an ideal generated by univariate
polynomials gi without repeated roots. LetZ(gi) denote the zero set of gi, 1 ≤ i ≤ n.
By Theorem 1.1, if f 
∈ I then there is a �α = (α1, . . . , αn) ∈ Z(g1) × · · · × Z(gn)

such that f (�α) 
= 0. Of course, if f ∈ I then f |Z(g1)×···×Z(gn) = 0.
Ideals I generated by univariate polynomials are called univariate ideals. For any

univariate ideal I and any polynomial f , by repeated application of the division algo-
rithm, we can write f (X) = ∑n

i=1 hi(X)gi(xi) + R(X) where R is unique and
for each i ∈ [n] : degxi

(R) < deg(gi(xi)). Since the remainder is unique, it is
convenient to write R = f mod I . By Alon’s theorem, if f 
∈ I then there is a
�α ∈ Z(g1) × · · · × Z(gn) such that R(�α) 
= 0.

Univariate ideal membership is further motivated by its connection with two well-
studied problems. Computing the permanent of a n × n matrix over any field F can
be cast in terms of univariate ideal membership. Given a matrix A = (ai,j )1≤i,j≤n ∈
F

n×n, consider the product of linear forms PA(X) = ∏n
i=1

(∑n
j=1 aij xj

)
. The

following observation is well known.

Fact 1.2 The permanent of the matrix A is given by the coefficient of the
monomial x1x2 · · · xn in PA. In other words, the remainder of the polynomial
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PA(x1, x2, . . . , xn) modulo the univariate ideal
〈
x2
1 , . . . , x

2
n

〉
is precisely Perm(A) ·

x1x2 · · · xn.

It follows immediately that the remainder PA mod
〈
x2
1 , . . . , x

2
n

〉
evaluates to

Perm(A) at the point �1 ∈ F
n.

Next, we briefly mention the connection of univariate ideal membership with
the multilinear monomial detection problem, a benchmark problem that is useful in
designing fast parameterized algorithms for a host of problems [21–23, 33].

Notice that, given an arithmetic circuit C computing a polynomial f ∈ F[X] of
degree k, checking if f has a non-zero multilinear monomial of degree k is equivalent
to checking if fmod

〈
x2
1 , . . . , x

2
n

〉
is non-zero. Moreover, the constrained multilinear

detection problem studied in [10, 22] can also be viewed as a problem of deciding
membership in a univariate ideal.

However, even for univariate ideals, the ideal membership problem is hard
in general. As an application of Theorem 1.1, Alon and Tarsi [1, 2] show that
checking k-colorability of a graph G is polynomial-time equivalent to checking
if the corresponding graph polynomial fG = ∏

ij∈E,i<j (xi − xj ) is in the ideal
〈
xk
1 − 1, . . . , xk

n − 1
〉
. Hence, univariate ideal membership is coNP-hard when the

polynomials have distinct roots. We show that Univariate Ideal Membership over Q,
in general, is in the third level of the counting hierarchy. For the lower bound, we
note that checking if a product of n linear forms is in the ideal

〈
x2
1 , x

2
2 , . . . , x

2
n

〉
is

as hard as checking if the integer permanent is zero, which is C=P-hard. Univariate
Ideal Membership over finite fields of characteristic k is quite tightly classified: the
upper bound of coR · ModkP nearly matches with the ModkP hardness.

1.1 Our Results

In this paper, we study univariate ideal membership problem for different parameters
of the input polynomial f and the univariate ideal I . The first parameter we consider
is the rank of f . This notion has found applications, for example, in algorithms for
depth-3 polynomial identity testing [29].

Definition 1.3 We say f ∈ F[X] is a rank r polynomial if f ∈ F[�1, �2, . . . , �r ] for
linear forms �j : 1 ≤ j ≤ r .

We give two different algorithms for checking if a rank-r polynomial f is in a
univariate ideal I . The first one is essentially an iterative division procedure. It eval-
uates the remainder polynomial f mod I at a given point �α ∈ F

n in deterministic
time O∗(dO(r)). Using this evaluation procedure, we can test if the remainder poly-
nomial f mod I is nonzero by evaluating it at a randomly chosen point �α over F or a
suitable extension field. The second algorithm is structural. It expresses the remain-
der polynomial f mod I as an O∗(dO(r)) sum of d-products of linear forms. By the
Polynomial Identity Lemma [14, 31, 34], we can check if it is nonzero by evaluation
at a randomly chosen point �α. We formally state the theorem.
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Theorem 1.4 Let C be a polynomial-size arithmetic circuit computing a poly-
nomial f in F[�1, �2, . . . , �r ], where �1, �2, . . . , �r are given linear forms in
{x1, x2, . . . , xn}. Let I = 〈p1, . . . , pn〉 be a univariate ideal generated by pi(xi) ∈
F[xi], 1 ≤ i ≤ n.

1. Given �α ∈ F
n, we can evaluate the remainder f mod I at the point �α in

deterministic time dO(r)poly(n), where d = max{deg(f ), deg(pi) : 1 ≤ i ≤ n}.
2. In deterministic time dO(r)poly(n) we can express the remainder f mod I as an

O∗(dO(r))-sum of d-products of linear forms.

Using either of these algorithms, we can decide in randomized O∗(dO(r)) time if
f is in I .

We can check if f ∈ I by evaluating the remainder f mod I at a randomly chosen
point �α, which can be done using any of the above algorithms.

We apply the previous result to obtain an efficient algorithm for minimum vertex
cover in low rank graphs. A graphG is said to be of rank r if the rank of the adjacency
matrix AG is of rank r . Graphs of low rank were studied by Lovasz and Kotlov [4,
20] in the context of graph coloring.

Theorem 1.5 Given a graph G = (V , E) on n vertices such that the rank of the
adjacency matrix AG is at most r , and a parameter k, there is a randomized nO(r)

algorithm to decide if the graph G has vertex cover of size k or not.

Theorem 1.4 also yields an nO(r) algorithm to compute the permanent of rank-r
matrices over any field. Barvinok had given [9] an algorithm of same running time for
the permanent of low rank matrices (overQ) using apolar bilinear forms. By Fact 1.2,
if matrix A is rank r then PA is a rank-r polynomial, and for the univariate ideal I =〈
x2
1 , . . . , x

2
n

〉
computing PA mod I at the point �1 yields the permanent. Theorem 1.4

works more generally for all univariate ideals. In particular, the ideal in the proof
of Theorem 1.5 is generated by polynomials that are not powers of variables. Thus,
Theorem 1.4 can potentially have more algorithmic consequences than the technique
in [9].

If k is the degree of the input polynomial and the ideal is given by the powers of
variables as generators, we have a randomized FPT algorithm for the problem.

Theorem 1.6 Given an arithmetic circuit C computing a polynomial f (X) ∈ Q[X]
of degree k and integers e1, e2, . . . , en, there is a randomized algorithm to decide
whether f ∈ 〈

x
e1
1 , x

e2
2 , . . . , x

en
n

〉
in O∗((2e)k) time.

The above result generalizes the algorithm for multilinear monomial detection
[23] (there the ideal of interest is I = 〈

x2
1 , x

2
2 , . . . , x

2
n

〉
). Brand et al. have given

the first FPT algorithm for degree-k multilinear monomial detection in arithmetic
circuits [11]. Multilinear monomial detection can also be done, with the same running
time, using the Hadamard product [5] of the given polynomial with the elementary
symmetric polynomial (and in a different approach using apolar bilinear forms [27]).
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When the number of generators in the univariate ideal is treated as fixed parameter,
ideal membership is W[2]-hard.

Theorem 1.7 Given a polynomial f (X) ∈ F[X] by an arithmetic circuit
C and univariate polynomials p1(x1), p2(x2), . . . , pk(xk), checking if f 
∈
〈p1(x1), p2(x2), . . . , pk(xk)〉 isW[2]-hard with k as the parameter.

Theorem 1.7 is shown by an efficient reduction from parameterized the dominat-
ing set problem to ideal membership parameterized by number of generators. To find
an dominating set of size k, the reduction produces an ideal with k univariates and
the polynomial created from the graph has k variables.

Unlike Theorem 1.6, even checking if f is in the ideal 〈x1e1 , x2
e2 , . . . , xk

ek 〉
remains intractable in the parameterized sense.

Theorem 1.8 Let C be a polynomial-size arithmetic circuit computing a polynomial
f ∈ F[X]. Let I = 〈x1e1 , x2

e2 , . . . , xk
ek 〉 be the given ideal where e1, . . . , ek are

given in unary, checking if f 
∈ I isMINI[1]-hard with k as parameter.

The k−LIN-EQ problem, which asks if there is a �x ∈ {0, 1}n satisfying A�x = �b,
whereA ∈ F

k×n and �b ∈ F
k , is reducible to the complement of univariate ideal mem-

bership for an ideal of the form I = 〈x1e1 , x2
e2, . . . , xk

ek 〉. We then show k−LIN-EQ

is hard for the parameterized complexity class MINI[1] by reducing the miniature
version of 1 − in − 3POSITIVE3 − SAT to it.

As already mentioned, the result of Alon and Tarsi [1, 2] shows that the member-
ship of fG in

〈
xk
1 − 1, . . . , xk

n − 1
〉
is coNP-hard and the proof crucially uses the fact

that the roots of the generator polynomials are all distinct. This naturally raises the
question if univariate ideal membership is in coNP when each generator polynomial
has distinct roots. We show univariate ideal membership is in coNP over rationals
when all the generator polynomials have distinct roots. We show that overQ univari-
ate ideal membership, in general, is in the third level of the counting hierarchy. This
upper bound is reasonably tight, as checking if a product of n linear forms is in the
ideal

〈
x2
1 , x

2
2 , . . . , x

2
n

〉
is as hard as checking if the integer permanent is zero, which

is C=P-hard.

Theorem 1.9 Let f ∈ Q[X] be a polynomial of degree at most d given by a black-
box. Let I = 〈p1(x1), . . . , pn(xn)〉 be an ideal given explicitly by a set of univariate
polynomials p1, p2, . . . , pn as generators of maximum degree bounded by d. Let
L be the bit-size upper bound for any coefficient in f, p1, p2, . . . , pn. Moreover,
assume that pis have distinct roots over C. Then there is a non-deterministic algo-
rithm running in time poly(n, d, L) that decides the non-membership of f in the ideal
I .

Remark 1.10 The distinct roots case discussed in Theorem 1.9 is in stark contrast
to the complexity of testing membership of PA(X) in the ideal

〈
x2
1 , . . . , x

2
n

〉
. That

problem is equivalent to checking if Perm(A) is nonzero for a rational matrix A,
which is hard for the exact counting class C=P. Hence it cannot be in coNP unless the
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polynomial-time hierarchy collapses. We do not have an analogue of Theorem 1.9
over finite fields.

Recall from Alon’s Nullstellensatz that if f 
∈ I , then there is always a point
�α ∈ Z(p1)× . . .×Z(pn) such that f (�α) 
= 0. Notice that in general the roots αi ∈ C

and in the standard Turing Machine model the NP machine can not guess the roots
directly with only finite precision. But we are able to prove that the NP machine can
guess a corresponding tuple of root approximations �̃α ∈ Q

n, using only polynomial
bits of precision and still can decide the non-membership. The main technical idea is
to compute efficiently a parameter M (only from the input parameters) such that

|f ( �̃α)| ≤ M if f ∈ I, and

|f ( �̃α)| ≥ 2M if f 
∈ I .

The NP machine decides the non-membership according to the final value of
|f ( �̃α)|.

In this connection, we note that Koiran has considered the weak version of Hilbert
Nullstellensatz (HN) problem [19]. The input is a set of multivariate polynomials
f1, f2, . . . , fm ∈ Z[X] and the problem is to decide whether 1 ∈ 〈f1, . . . , fm〉. The
result of Koiran shows that HN ∈ AM (under GRH), and it is an outstanding open
problem problem to decide whether HN ∈ NP.

Organization In Section 2 we present some background material. In Section 3 we
show that, in general, univariate ideal membership is in the counting hierarchy. We
prove Theorems 1.4 and 1.5 in Section 4. In Section 5, we explore the parameterized
complexity of univariate ideal membership. In the first subsection, we prove Theo-
rem 1.6, and in the second subsection we prove Theorems 1.7 and 1.8. Finally, in
Section 7, we prove Theorem 1.9.

2 Preliminaries

We recall some basic definitions and results that are background material.

2.1 Basics of Ideal Membership

Let F[X] be the ring of polynomials F[x1, x2, . . . , xn]. Let I ⊆ F[X] be an ideal
given by a set of generators I = 〈g1, . . . , g�〉. Then for any polynomial f ∈ F[X], it
is a member of the ideal if and only if f = ∑�

i=1 higi where ∀i : hi ∈ F[X]. Dividing
f by the gi by applying the standard division algorithm does not work in general to
check if f ∈ I . Indeed, the remainder is not even uniquely defined. However, if the
leading monomials of the generators are already pairwise relatively prime, then we
can apply the division algorithm to compute the unique remainder.
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Theorem 2.1 (See [12], Theorem 3, proposition 4, pp.101) Let I be a polynomial
ideal given by a basis G = {g1, g2, · · · , gs} such that all pairs i 
= j LM(gi) and
LM(gj ) are relatively prime. Then G is a Gröbner basis for I .

In particular, if the ideal I is a univariate ideal given by I = 〈p1(x1), . . . , pn(xn)〉,
we can apply the division algorithm to compute the unique remainder f mod I . To
bound the run time of this procedure we note the following: Let p̄ denote the ordered
list {p1, p2, . . . , pn}. Let Divide(f ; p̄) be the procedure that divides f by p1 to
obtain remainder f1, then divides f1 by p2 to obtain remainder f2, and so on to obtain
the final remainder fn after dividing by pn. We note the following time bound for
Divide(f ; p̄).

Fact 2.2 (See [32], Section 6, pp.5-12) Let f ∈ F[X] be given by a size s

arithmetic circuit and pi(xi) ∈ F[xi] be given univariate polynomials. The run-
ning time of Divide(f ; p̄) is bounded by O(s · ∏n

i=1(di + 1)O(1)), where di =
max{degxi

(f ), deg(pi(xi))}.

2.2 Some Bounds Concerning Roots of Univariate Polynomials

The following folklore lemma gives a bound on the absolute value of any root of a
univariate polynomial in terms of the degree and the coefficients.

Lemma 2.3 For any root α of a univariate degree-d polynomial f (x) =∑d
i=0 aix

i ∈ Q[x] one of the following bounds hold:
|a0|

∑d
i=1 |ai |

≤ |α| < 1 or 1 ≤ |α| ≤ d · maxi |ai |
|ad | .

Proof Since α is a root of f , we have 0 = f (α) = ∑d
i=0 aiα

i = 0. Hence,
∑d

i=1 aiα
i = −a0. By triangle inequality

d∑

i=1

|ai ||α|i ≥ |a0|.

Since f is degree d, ad 
= 0. We consider two cases. First, suppose |α| < 1. Then,
by the above inequality, |α|·(∑d

i=1 |ai |) ≥ |a0|. Hence, |α| ≥ |a0|∑d
i=1 |ai | . Next, suppose

|α| ≥ 1. Since −adαd = ∑d−1
i=0 aiα

i , by triangle inequality |ad ||α|d ≤ |α|d−1 ·
(
∑d−1

i=0 |ai |). Hence, |α| ≤
∑d−1

i=0 |ai |
|ad | ≤ d · maxi |ai ||ad | . This completes the proof.

The next lemma, due to Mahler [25], lower bounds the distance between any two
distinct roots of a univariate polynomial in terms of its degree and the size of its
coefficients.

Lemma 2.4 (Mahler [25]) Let g(x) = ∑d
i=0 aix

i ∈ Q[x] and 2−L ≤ |ai | ≤ 2L (if
ai 
= 0). Let α, β are two distinct roots of g. Then |α − β| ≥ 1

2O(dL) .
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Given a univariate polynomial f and a point β that is far from the roots of f , the
following lemma lower bounds |f (β)|. The following lemma states that any univari-
ate polynomial can not get a very small value (in absolute sense) on any point which
is far from every root.

Lemma 2.5 Let f = ∑d
i=1 aix

i be a univariate degree-d polynomial with 2−L ≤
|ai | ≤ 2L (if ai 
= 0). Let α̃ be a point such that |α̃ − βi | ≥ δ for every root βi of f .
Then

|f (α̃)| ≥ 2−Lδd .

Proof Since deg(f ) = d, ad 
= 0. We can write f (α̃) = ad

∏d
i=1(α̃ − βi). Since

|α̃ − βi | ≥ δ, |f (α̃)| = |ad | ∏d
i=1 |α̃ − βi | ≥ 2−Lδd .

2.3 Parameterized Complexity Classes

We recall some standard definitions from parameterized complexity [13, ch.1,pp. 7-
14]. For a parameterized problem the input instances are pairs (x, k), where x is the
actual input and k is a fixed parameter. The parameterized problem is in the class
FPT (for fixed parameter tractable) if the problem has an algorithm with run time
f (k)|(x, k)|O(1) for some computable function f .

A parameterized reduction [13, def. 13.1] between two parameterized decision
problems P1 and P2 is a many-one reduction such that on input instance (x, k) of P1
the reduction maps it to an instance (x′, k′) of P2 in time f (k)|(x, k)|O(1), for some
computable f , such that (x, k) is a “yes” instance of P1 if and only if (x′, k′) is a
“yes” instance of P2, and k′ ≤ f (k).

A parameterized problem is said to be in the class XP if it has an algorithm with
run time |x|f (k) for some computable function f .

For the purpose of this paper, it suffices to note that a parameterized problem L

is in the class W[1] if there is a parameterized reduction from L to some standard
W[1]-complete problem like, e.g., the k-Independent set problem andL is in the class
W[2] if there is a parameterized reduction from L to some standard W[2]-complete
problem like, e.g., the k-dominating set problem (more details can be found in, e.g,
[13, def. 13.16]).

The complexity class MINI[1] consists of parameterized problems that are minia-
ture versions of NP problems: For L ∈ NP, its miniature version mini(L) has
instances of the form (0n, x), where |x| ≤ k log n, k is the fixed parameter, and x is
an instance of L. Showing mini(L) to be MINI[1]-hard under parameterized reduc-
tions is evidence of its parameterized intractability, for it cannot be in FPT assuming
the Exponential Time Hypothesis [15].

2.4 Multivariate Polynomials

We recall the definition of Hadamard product of two polynomials.
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Definition 2.6 Given two polynomials f, g ∈ F[X], their Hadamard product is
defined as

f ◦ g =
∑

m

[m]f · [m]g · m.

We will use a scaled variant of the Hadamard Product [7].

Definition 2.7 [7] Given two polynomials f, g ∈ F[X], their scaled Hadamard
Product f ◦s g, is defined as

f ◦s g =
∑

mm! · [m]f · [m]g · m,

where m = x
e1
i1

x
e2
i2

. . . x
er

ir
and m! = e1! · e2! · · · er ! abusing the notation.

Remark 2.8 If either f or g is multilinear, notice that their scaled Hadamard product
coincides with their Hadamard product.

The elementary symmetric polynomial of degree k over n variables
{x1, x2, . . . , xn} is defined as:

Sn,k(x1, x2, . . . , xn) =
∑

T ⊆[n],|T |=k

∏

i∈T

xi .

Notice that, Sn,k contains all the degree k multilinear terms.

3 A Complexity-Theoretic Upper Bound

We show that over Q univariate ideal membership is in the counting hierarchy. Over
finite fields of characteristic k, the problem is in the randomized complexity class
coR · ModkP.

Let � be a finite alphabet (of size at least 2). The class #P consists of functions
h : �∗ → N defined by an NP machine M such that for all x ∈ �∗

h(x) = accM(x),

where accM(x) is the number of accepting paths of M on input x. A language L ⊆
�∗ is in the counting complexity class C=P if there is an NP machine M such that
for all x ∈ �∗ x ∈ L if and only if accM(x) = rejM(x). For A ⊆ �∗ the relativized
class CA=P is defined as above for an NP

A (oracle) machine M . For i ≥ 2, a language
L is in the ith level of the exact counting hierarchy, denoted CHi , if L ∈ C=PA for
some A ∈ CHi−1.

Theorem 3.1

1. Univariate ideal membership over Q is in the third level of the counting
hierarchy.

2. Univariate ideal membership over a finite field of characteristic k is in coR ·
ModkP.
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Proof For the first part, let f ∈ Q[X] be given as input by a degree d arithmetic
circuit and pi(xi) ∈ Q[xi], i ∈ [n] be the generators of the ideal I . By clear-
ing denominators, we can assume that both f and the pi have integer coefficients.
Writing f as an integer linear combination of monomials we have

f =
∑

m:deg(m)≤d

αmm,

where αm ∈ Z is the integer coefficient of monomial m (note that each αm is polyno-
mial size in binary). As the generators pi are univariate we can express the remainder
polynomial

f mod I =
∑

m:deg(m)≤d

αm(mmod I ).

In particular, let m = x
e1
1 · x

e2
2 · · · xen

n and rm,i(xi) = x
ei

i modpi(xi). Then, we
have mmod I = ∏n

i=1 rm,i(xi), where deg(rm,i) < deg(pi) for each i. Thus, the
remainder polynomial

f mod I =
∑

m:deg(m)≤d

αm

n∏

i=1

rm,i(xi).

In order to check if f mod I is nonzero, noting that the degree of the remainder
also is bounded by d, by Alon’s Nullstellensatz it suffices to check if there is a point
�a = (a1, a2, . . . , an) in the n-dimensional grid [d + 1]n where f mod I does not
vanish.

We will be using the simple fact that we can compute in P#P the coefficient of any
monomial of degree at most d in f .

LetL = {(f, {pi}i∈[n], �a) | f ∈ Z[X], pi(xi) ∈ Z[X], �a ∈ [d+1]n f mod I (�a) 
=
0}. Checking if f /∈ I is clearly in NPL: we guess the point �a and verify that
(f, I, �a) ∈ L by querying the oracle. We now show that L is in CH2 and that com-
pletes the proof of the first part. To do so, we define an oracle NP machine M as
follows:

• M guesses the monomials of degree at most d along its computation paths (each
path corresponds to a unique monomial).

• On the computational path that guesses monomial m, M uses a #P oracle to
compute its (integer) coefficient αm in the polynomial f .

• Compute the remainder polynomialmmod I = ∏n
i=1 rm,i(xi). This computation

path contributes αm

∏n
i=1 rm,i(xi) to the overall remainder.

• Compute val(m) = αm

∏n
i=1 rm,i(ai). If val(m) is negative then M produces

|val(m)| many rejecting paths. Otherwise, M produces |val(m)| many accepting
paths.

Notice that the overall remainder is f mod I = ∑
m αm

∏n
i=1 rm,i(xi). Clearly,

f mod I (�a) = 0 if and only if the number of accepting paths equals the number of
rejecting paths. Hence, L ∈ C=P#P. Since P#P ⊆ coNPC=P, it follows that L ∈ CH2.

For the second part, the proof is along the same lines using the additional facts that
ModkPModkP = ModkP for prime k, and NP ⊆ coR · ModkP by the Valiant-Vazirani
lemma.
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Remark 3.2 It is interesting to note that we have the lower bound (of C=P for F = Q

and ModkP for char(F) = k, k > 2) for the simple case of checking if a product of
linear forms is in the ideal

〈
x2
1 , x

2
2 , . . . , x

2
n

〉
, by virtue of the hardness of checking if

the permanent is zero (over Q and char(F) 
= 2). We now observe a hardness result
over char(F) = 2 for the same ideal. Consider a graph G = (V , E). For each vertex
v ∈ V define the monomial star(v) = yv

∏
v∈e xe, where xe and yv are edge and

vertex variables. Now, we define the polynomial

P =
n∏

u=1

(1 + t · star(u)),

where t is a new variable. Writing P = ∑n
d=0 Pd · td , consider the polynomial

Pn/2 (for which we can find a small circuit from P ). Then Pn/2mod
〈{x2

e | e ∈ E}〉 is
nonzero if and only if G has an independent set of size n/2. This holds over all fields
F including F2.

4 Ideal Membership for Low Rank Polynomials

We first recall the notion rank of a polynomial in F[X].

Definition 4.1 A polynomial f (X) ∈ F[X] is a rank-r polynomial if there
are linear forms �1, �2, . . . , �r in the variables X and an r-variate polynomial
g(z1, z2, . . . , zr ) ∈ F[z1, z2 . . . , zr ] such that

f (X) = g(�1, �2, . . . , �r ).

For an (unspecified) fixed parameter r , we refer to rank-r polynomials as low rank
polynomials.

In this section we prove Theorem 1.4: Let f (X)F[X] be a rank-r degree d poly-
nomial given by an r-variate arithmetic circuit C and linear forms �i, i ∈ [r] such
that f = C(�1, �2, . . . , �r ), along with a univariate ideal I , and a point �α ∈ F

n as
inputs. We give a deterministic O∗(dO(r)) time algorithm to evaluate the remainder
polynomial f mod I at �α where d is the degree of the polynomial f . As corollary,
this yields an O∗(dO(r))-time randomized algorithm for testing if f is in the ideal I .

Remark 4.2 Kayal [17] has shown a randomized polynomial-time algorithm for test-
ing if a given polynomial f (X) ∈ F[X] is of a given rank r and, if so, to compute the
linear forms �1, �2, . . . , �r and the polynomial g such that f (X) = g(�1, �2, . . . , �r ).
Combined with Theorem 1.4, we can obtain a randomized O∗(dO(r)) time algorithm
with f and I given as input, with the promise that f has rank r .

We present two different algorithms as proofs for Theorem 1.4. The first is essen-
tially a division algorithm. The second gives a circuit construction for the remainder
polynomial f mod I . Both algorithms have O∗(dO(r)) running time.
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4.1 A Division Algorithm

Given �α ∈ F
n, a univariate ideal I = 〈p1(x1), . . . , pn(xn)〉, and a rank r polyno-

mial f (�1, . . . , �r ) we show how to efficiently evaluate the remainder polynomial
f (�1, . . . , �r )mod I at �α using a recursive procedure REM(f (�1, . . . , �r ), I, �α).
We introduce the following notation. For S ⊆ [n], let IS denote the ideal
〈pi(xi) : i ∈ [S]〉 generated by the polynomials pi(xi), i ∈ S.

Let g ∈ F[X] be an n-variate polynomial. For an n × n invertible matrix T over
F, we define the polynomial

T (g(X)) = g(T (x1), T (x2), . . . , T (xn)),

where T (xi) = ∑n
j=1 Tij xj , i ∈ [n].

The following lemma shows how to remove the redundant variables from a
low rank polynomial. Let �1, �2, . . . , �r be homogeneous linear forms in X =
{x1, x2, . . . , xn}, f be an r-variate degree-d polynomial over F, and consider
f (�1, �2, . . . , �r ). For an n × n invertible matrix T over F, let T (f ) denote the
polynomial

T (f )(X) = f (T (�1), T (�2), . . . , T (�r )),

where T (xi) = ∑n
j=1 Tij xj , i ∈ [n], and each T (�j ), j ∈ [r] is defined by linearity.

Lemma 4.3 Given as input a polynomial f (�1, . . . , �r ) where �1, . . . , �r are given
homogeneous linear forms in F[X], there is an invertible matrix T ∈ F

n×n such that
T (xi) = xi, 1 ≤ i ≤ r and T (f ) is defined on the 2r variables x1, x2, . . . , x2r .

Proof Write each linear form �i in two parts: �i = �i,1 + �i,2, where �i,1 is the
part over variables x1, . . . , xr and �i,2 is over variables xr+1, . . . , xn. W.l.o.g, assume
that {�i,2}r ′

i=1 is a maximum linearly independent subset of linear forms in {�i,2}ri=1.
Let T be the invertible linear map that fixes x1, . . . , xr , maps the independent linear
forms {�i,2}r ′

i=1 to variables xr+1, . . . , xr+r ′ , and suitably extended to the remaining
variables to form an invertible map. Clearly, T can be computed in polynomial time,
given the �i . This completes the proof.

The following lemma shows that evaluating the remainder of a polynomial f

modulo a univariate ideal I = 〈p1(x1), . . . , pn(xn)〉 at a point in F
n can be done

incrementally, by computing and evaluating the remainder modulo the smaller ideals
I[�], 1 ≤ � ≤ n.

Lemma 4.4 Let f (X) ∈ F[X] and I = 〈p1(x1), . . . , pn(xn)〉 be a
univariate ideal. Let R(X) be the unique remainder f mod I . Let �α ∈
F

r , r ≤ n and Rr(X) = f mod I[r]. Then R(α1, . . . , αr , xr+1, . . . , xn) =
Rr(α1, . . . , αr , xr+1, . . . , xn)mod I[n]\[r].
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Proof By uniqueness of remainders modulo univariate ideals, it follows that R(X) =
Rr(X)mod I[n]\[r]. Since the ideal I[n]\[r] does not involve x1, x2, . . . , xr , substitut-
ing xi = αi, 1 ≤ i ≤ r we have

R(α1, α2, . . . , αr , xr+1, . . . , xn) = Rr(α1, α2, . . . , αr , xr+1, . . . , xn)mod I[n]\[r].

The next lemma is crucial for the proof of Theorem 1.4.

Lemma 4.5 Let f ∈ F[X], and T : Fn → F
n be an invertible linear transformation

fixing x1, . . . , xr and mapping xr+1, . . . , xn to linearly independent linear forms over
xr+1, . . . , xn. Write R = f mod I[r] and R′ = T (f )mod I[r]. Then R′ = T (R).

Proof Let f = ∑r
i=1 hi(X)·pi(xi)+R(X) and T (f ) = ∑r

i=1 h′
i (X)·pi(xi)+R′(X).

Note that for both remainder polynomials R and R′, we have degxi
R < degxi

(pi)

and degxi
R′ < deg(pi) for 1 ≤ i ≤ r . Now, as T is invertible and it fixes x1, . . . , xr ,

we can write f = ∑r
i=1 T −1(h′

i (X)) · pi(xi) + T −1(R′(X)). As T fixes each xi, i ∈
[r] it follows that degxi

(T −1(R′(X))) < deg(pi(xi)) for 1 ≤ i ≤ r . Combining the
two expressions for f , we obtain that

(R − T −1(R′)) = 0mod I[r]
which forces R = T −1(R′) by the degree bounds on xi, i ∈ [r].

Proof of Theorem 1.4 We now describe the algorithm, prove its correctness and ana-
lyze its running time. The input to the algorithm is an arithmetic circuit computing the
r-variate degree-d polynomial f , the linear forms �1, �2, . . . , �r , and the univariate
polynomials pi(xi), i ∈ [n]. Let the positive integer L bound the encoding lengths of
the coefficients of the linear forms and polynomials pi as well as any scalar inputs to
the circuit defining f .

The algorithm can be seen as a recursive procedure REM: the initial call to it is
REM(f (�1, . . . , �r ), I[n], �α).

Step 1. As the first step, we apply the invertible linear transformation obtained
in Lemma 4.3 to f and obtain the polynomial T (f ) over the variables
x1, . . . , xr , xr+1, . . . , xr+r ′ where r ′ ≤ r .1

Step 2. The polynomial T (f ) can be explicitly computed as a linear combi-
nation of degree d monomials in variables x1, x2, . . . , xr+r ′ in time
poly(L, s, n, dO(r)).

Step 3. Then we compute the remainder polynomial f ′(x1, . . . , xr+r ′) =
T (f )mod I[r] by applying the division algorithm: it essentially amounts to
replacing xe

i by xe
i modpi(xi) when e ≥ deg(pi(xi)) for any xe

i occurring
in a monomial of T (f ).

1We use f to denote f (�1, . . . , �r ).
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Step 4. Next we compute the polynomial g(xr+1, . . . , xr+r ′) = f ′(α1, . . . ,

αr , xr+1, . . . , xr+r ′). By Lemma 4.3, we have T −1(xr+i ) = �i,2 for 1 ≤
i ≤ r ′. Hence, T −1(f ′) = g(�1,2, �2,2, . . . , �r ′,2).

Step 5. We next consider the polynomial g(�1,2, �2,2, . . . , �r ′,2) and recursively
compute REM(g(�1,2, . . . , �r ′,2), I[n]\[r], �α′) where �α′ = (αr+1, . . . , αn).

Correctness Let R(X) = f mod I[n] be the unique remainder polynomial. Let
Rr(X) = f mod I[r]. Then, by Lemma 4.4, we know that Rr mod I[n]\[r] = R, and
that it suffices to show g(�1,2, . . . , �r ′,2) = Rr(α1, . . . , αr , xr+1, . . . , xn) as that
would imply

REM(g(�1,2, . . . , �r ′,2), I[n]\[r], �α′) = REM(f (�1, . . . , �r , I[n], �α) = R(α1, α2, . . . , αn),

showing the correctness of the recursion.
Let R′(x1, . . . , xr , xr+1, . . . , xn) = T (f )mod I[r]. By Lemma 4.5 we have

R′ = T (Rr) and hence Rr = T −1(R′)(x1, . . . , xr , T
−1(xr+1), . . . , T

−1(xn)). By
definition of the linear map T , and substituting xi = αi, i ∈ [r], we have

g(�1,2, . . . , �r ′,2) = T −1(R′)(α1, . . . , αr , T
−1(xr+1), . . . , T

−1(xr+r ′))

= Rr(α1, . . . , αr , xr+1, . . . , xn).

Running Time In order to bound the running time of the above algorithm, we need
to bound the total number of scalar arithmetic operations and the size of the scalars
involved in the computations. We will bound the total number of arithmetic opera-
tions by poly(L, s, n, dO(r)), where L bounds the encoding lengths of the scalars in
the input and s is the size the input circuit for f .

First consider the case when F is a finite field. In that case, we can let L bound
encodings of all elements of F. We only need to bound the size of the polynomial
g(�1,2, . . . , �r ′,2) and analyze the total number of operations.

Firstly, the polynomial T (f ) can be explicitly computed from the input arith-
metic circuit deterministically in time poly(L, s, n, dO(r)), because it has at most(

d + 2r
2r

)
many monomials (as the number of variables is r + r ′ ≤ 2r).

Next, notice that the polynomial g(xr+1, . . . , xr+r ′) can also be written as a linear

combination of at most

(
d + 2r
2r

)
many degree-d monomials in xr+1, . . . , xr+r ′ .

Thus, the polynomial g(�1,2, �2,2, . . . , �r ′,2) can be seen as a ��� circuit. In other

words, it is a sum of at most

(
d + 2r
2r

)
products of the linear forms �i,2, and the

products are at most d-fold.
Further, notice that the number of divisions (by the univariate polynomials

pi(xi), i ∈ [r]) performed in Step 3 is r per monomial of T (f ). Since T (f ) has

at most

(
d + 2r
2r

)
monomials the number of univariate polynomial divisions, and

hence number of scalar operations, is bounded by poly(L, s, n, dO(r)). All other steps
require poly(s, n, d, L) operations.
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Now, in each recursive application the number of generators in the ideal is reduced
by at least one, and there is only one recursive call made.

Thus, the overall number of scalar (i.e., F) operations involved in the algorithm is
bounded by poly(L, s, n, dO(r)).

The above analysis bounding the total number of operations also applies for
F = Q. For Q, we additionally need to bound the sizes of the numbers during the
computation.

Bit-size Growth Over Q It suffices to argue that the size of coefficients in the
polynomial g(�1,2, �2,2, . . . , �r ′,2) increase by a fixed additive value bounded by
poly(n, d, L). As the total number of recursive calls is at most n, this would
polynomially bound all scalars involved in the entire computation.

Let L̃ bound the coefficients of polynomial f (z1, z2, . . . , zr ). As 2L̃ ≤ 2Ld ·(
d + r

r

)
, we have L̃ ≤ dL + r log(r + d).

We will show that the
∑∏∑

circuit that we use for g in the next recursive step
has coefficients of bit size at most L̃ + poly(n, d, L).

For h ∈ Q[X], let c(h) denote the maximum coefficient (in absolute value) of a
nonzero monomial of h. By direct expansion

|c(f (�1, . . . , �r ))| ≤ 2L̃+poly(n,d,L).

Also the matrix T of Lemma 4.3, and its inverse, require poly(n, L) size entries.
Therefore, c(T (f (�1, . . . , �r )) ≤ 2L̃+poly(n,d,L). Next, the algorithm expands

T (f ) explicitly as a sum of dO(r) monomials. Dividing T (f ) by the polynomials
p1(x1), . . . , pr(xr ) one by one, and substituting x1 = α1, . . . , xr = αr giving us the
remainder polynomial g(xr+1, . . . , xr+r ′). Each such division involves computing a
remainder polynomial of the form xe

i modpi(xi) for some e ≤ d, which does not
involve intermediate computations. Each such remainder xe

i modpi(xi) obtained has
poly(n, d, L) size coefficients and degree at most deg(pi) − 1. Putting it together, it
follows that |c(g)| ≤ 2L̃+poly(n,d,L).

Now the algorithm passes the dO(r) size ��� circuit g(�1,2, . . . , �r ′,2) (We
note that T −1(xr+1) = �1,2, . . . , T

−1(xr+r ′) = �r ′,2), univariates pr+1(xr+1), . . . ,

pn(xn) and the point (αr+1, . . . , αn) for the next recursive call.
In the recursive call REM(g(�1,2, . . . , �r ′,2), I[n]\[r], �α′), notice that the only

change in the input size is in the size of g (which, as shown above, is of O∗(dO(r))

size with L + poly(n, d, L) size coefficients).
As there are at most n recursive calls overall, all coefficients involved at interme-

diate stages are bounded by poly(n, d, L) for a fixed polynomial p.

Remark 4.6 Given a rank r polynomial f (�1, . . . , �r ) and a univariate ideal I =
〈p1(x1), . . . , pn(xn)〉, we can decide the membership of f in I by testing if the
remainder polynomial f mod I is identically zero by evaluating it at a randomly
chosen α over F or a suitable extension field [14, 31, 34]. Hence, univariate
ideal membership of degree-d rank-r polynomials can be decided in randomized
dO(r) · poly(n) time where d = max{deg(f ), deg(pi) : 1 ≤ i ≤ n} by Theorem 1.4.
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As mentioned in Section 1, an application of our result yields an nO(r) time algo-
rithm for computing the permanent of rank-r matrices over Q or any finite field.
Barvinok [9], via a different method, had obtained an nO(r) time algorithm for this
problem over Q.

Corollary 4.7

• There is an nO(r) time algorithm to compute the permanent of n × n matrices of
rank at most r over the field of rationals or any finite field.

• For finite fields F the algorithm has running time bounded by O∗(|F|O(r2)).
In particular, over constant size fields this is an FPT algorithm for computing
Perm(A) (with r as fixed parameter).

Proof The nO(r) time algorithm is a direct application of the algorithm of Theo-
rem 1.4 to the product of linear forms polynomial and univariate ideal described in
Fact 1.2.

For the second part, suppose F is a finite field of size ps , where char(F) = p (a
prime). Let A ∈ F

n×n be a rank r matrix and let �i = ∑n
j=1 aij xj , 1 ≤ i ≤ n.

Then there are exactly N = |F|r − 1 many distinct nonzero F-linear forms spanned
by �i, i ∈ [n]. We denote them by �′

1, �
′
2, . . . , �

′
N . Then the product

∏n
i=1 �i can be

expressed as

n∏

i=1

�i =
N∏

j=1

�′dj

j ,

where d1 + d2 + · · · + dN = n is the degree of the product. Therefore, by Fact 1.2
we have

Perm(A) =
N∏

j=1

�′dj

j mod
〈
x2
1 , x

2
2 , . . . , x

2
n

〉
.

Now, suppose dj ≥ p for some j . Let �′
j = ∑n

k=1 αjkxk . Then writing dj =
pqj + rj , rj < p we have

�′dj

j =
(

n∑

k=1

αjkxk

)pqj +rj

= (

n∑

k=1

α
p
jkx

p
k )qj (̇

n∑

k=1

αjkxk)
rj

= 0mod
〈
x2
1 , x

2
2 , . . . , x

2
n

〉
.

The last equality holds because x
p
k = 0mod x2

k for any p ≥ 2. Consequently, if
n > (p−1)(̇|F|r −1) then dj ≥ p for some j , and by Fact 1.2 we have Perm(A) = 0.

For n ≤ (p − 1)|̇F|r the nO(r)-time algorithm is an O∗(pr |̇F|O(r2)) time algorithm,
which completes the proof.
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4.2 Small Circuit for the Remainder Polynomial

The first algorithm is based on repeated division and partial evaluation. As such, it
does not directly yield a small circuit for f mod I .

We now show that f mod I has an arithmetic circuit of size O∗(dO(r)), where
d = deg(f ). The circuit has a nice form: it is a dO(r)-sum of products of univari-
ate polynomials, each of degree at most d. Moreover, this circuit can be constructed
in time O∗(dO(r)) from the input f and I . This also yields another proof of Theo-
rem 1.4, since evaluation of the circuit obtained at a given scalar point can be done
in O∗(dO(r)) time.

Some notation for the sequel: For q ∈ F[t1, t2, . . . , tr , X], let [td11 t
d2
2 · · · tdr

r ](q)

denote the coefficient of t
d1
1 t

d2
2 · · · tdr

r in q, noting that [td11 t
d2
2 · · · tdr

r ](f ) ∈ F[X].
Now, we can write f = g(�1, �2, . . . , �r ) as a sum of dO(r) d-products of the

r linear forms. Thus, it suffices to give a small circuit, of the above form, for a
remainder �

d1
1 �

d2
2 · · · �dr

r mod I , where I = 〈p1(x1), p2(x2), . . . , pn(xn)〉. A +-gate
summing up all these remainder circuits would be a circuit of the claimed form for
f mod I .

We first consider a single power �d mod I , where � = ∑n
i=1 aixi is a homoge-

neous linear form in F[X]. By the multinomial theorem
(

n∑

i=1

aixi t

)d

=
∑

j1+j2+···+jn=d

(
d

j1, j2, . . . , jn

) n∏

i=1

(aixi t)
ji .

For fields F of characteristic zero, we can write:
(

n∑

i=1

aixi

)d

= d![td ]
⎛

⎝
n∏

i=1

⎛

⎝
d∑

j=0

1

j ! (aixi t)
j

⎞

⎠

⎞

⎠ . (1)

Equation 1 is combinatorially verified by noting that the term
∏n

i=1(aixi t)
ji , for

j1 + j2 + . . . jn = d occurs precisely

(
d

j1, j2, . . . , jn

)
times on the right side,

matching the multinomial expansion of the left side. This identity was first used in
arithmetic circuit complexity by Saxena [28],2 and has found many applications.

Remark 4.8 Observe that, the right hand side expression of (1) can be viewed as
a univariate polynomial in t of degree nd. Therefore, by interpolation, we can find
α1, . . . , αnd+1 ∈ F (or a suitable extension field of F) and β1, . . . , βnd+1 ∈ F such
that, (

n∑

i=1

aixi

)d

=
nd+1∑

�=1

β�

⎛

⎝
n∏

i=1

⎛

⎝
d∑

j=0

1

j ! (aixiα�)
j

⎞

⎠

⎞

⎠ . (2)

Therefore, a power of a linear form can be expressed as a small sum of product of
univariates.

2Shown [28] using the identity e
∑

i yi = ∏
i eyi , and taylor series expansion for eyi .
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This can be generalized to the finite fields setting [16]. We give a self-contained
description of this, as it is required for the circuit construction for f mod I . First, for
char(F) = p, (1) only holds for d < p, as each k! occurring in it is invertible in Fp

precisely if d < p. To obtain a suitable form of the equation for d ≥ p, we first write
d = ∑s

k=0 ekp
k , for s ≤ logp(d) − 1 and each ek < p. Since char(F) = p for each

k ≤ s, letting a
pk

i = ak,i ∈ F we have:

(
n∑

i=1

aixi t

)ekp
k

=
(

n∑

i=1

ak,ix
pk

i tp
k

)ek

.

Combined with (1) we get for 0 ≤ k ≤ s:

�ekp
k =

[
tekp

k
](

n∑

i=1

ak,ix
pk

i tp
k

)ek

=(ek)!
[
tekp

k
]
⎛

⎝
n∏

i=1

⎛

⎝
ek∑

j=0

1

j !
(
ak,ix

pk

i tp
k
)j

⎞

⎠

⎞

⎠ .

As d = ∑s
k=0 ekp

k , multiplying over all k gives

�d =
s∏

k=0

[
tekp

k
] (

n∑

i=1

ak,ix
pk

i tp
k

)ek

=
s∏

k=0

(ek)!
[
tekp

k
]
⎛

⎝
n∏

i=1

⎛

⎝
ek∑

j=0

1

j !
(
ak,ix

pk

i tp
k
)j

⎞

⎠

⎞

⎠

Let t0, t1, . . . , ts be new variables. Replacing tp
k
by tk for each 0 ≤ k ≤ s in the

above equations we get:

�d = [
t
e0
0 t

e1
1 . . . tes

s

] s∏

k=0

(ek)!
⎛

⎝
n∏

i=1

⎛

⎝
ek∑

j=0

1

j !
(
ak,ix

pk

i tk

)j

⎞

⎠

⎞

⎠ . (3)

Thus, �d = [te00 t
e1
1 . . . t

es
s ]Q�,d , where Q�,d is a product of the sn many polynomi-

als as above (each of which is a bivariate polynomial in xi, tk, i ∈ [n], k ∈ [s]). This
equation generalizes to express the product �d1

1 · �
d2
2 · · · �dr

r in the following form:

�
d1
1 · �

d2
2 · · · �dr

r = [
t
ν1
1 t

ν2
2 . . . t

νD

D

] D∏

k=1

n∏

i=1

qk,i , (4)

where D = (s + 1)r , and νk < p for each k ∈ [D] such that dj =∑
k=(s+1)(j−1)+1 (s + 1)jνkp

k−(s+1)(j−1)−1, j ∈ [r]. It is obtained simply by apply-

ing (3) to each �
dj

j with a different set of s + 1 many variables ti and multiplying
these equations for 1 ≤ j ≤ r . We note that each qk,i ∈ F[xi, tk] is a polynomial of
individual variable degree at most d = ∑r

j=1 dj , as is clear from (3). The next claim
will complete the proof of Theorem 1.4.
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Claim 4.9 �
d1
1 · �

d2
2 · · · �dr

r mod I has an arithmetic circuit which is a dO(r)-sum of
products of univariate polynomials, where each univariate polynomial in xi involved
in a product has degree at most deg(pi(xi)) − 1.

For the proof, we first consider the following subexpression in (4)

[
t
ν1
1 t

ν2
2 . . . t

νD

D

] D∏

k=1

qk,i ,

which we will evaluate modulo pi(xi). Note that the number of monomials of the
form

∏D
k=1 t

μk

k , μk ≤ νk < p is bounded by pD = (ps+1)r = dO(r). Thus, in

O∗(dO(r)) time we can expand the product
∏D

k=1 qk,i by multiplying out the polyno-
mials, one by one, from left to right. After each multiplication, we replace xa

i by its
remainder xa

i modpi and drop any term with a factor t
p
k , k ∈ [D]. This will result in

a polynomial expression of the form

Qi =
∑

μ̄

rμ̄(xi)

D∏

k=1

t
μk

k ,

where the sum runs over the dO(r) many tuples μ̄ = (μ1, μ2, . . . , μk) such that μk ≤
νk for each k. Thus, each rμ̄(xi) is a univariate in xi of degree at most deg(pi) − 1.
We can now evaluate the product Q1Q2 · · · Qn modulo the ideal

〈
t
p

1 , t
p

2 , . . . , t
p
D

〉
by

multiplying out adjacent pairs and dropping any terms with a factor t
p
k , k ∈ [D].

This will given an expression for Q1Q2 · · · Qn modulo
〈
t
p

1 , t
p

2 , . . . , t
p
D

〉
of the form

∑
μ̄ Rμ̄

∏D
k=1 t

μk

k , where each Rμ̄ is a dO(r)-sum of products of n univariate poly-

nomials (and in each product the ith is a polynomial in xi of degree deg(pi) − 1).

Finally, we note that Rν̄ is the desired polynomial expression for
∏r

j=1 �
dj

j mod I ,
completing the proof of the claim.

4.3 Vertex Cover Detection in Low Rank Graphs

In the Vertex Cover problem, the input instances are pairs (G, k), where G = (V , E)

is a graph and k is an integer. The problem is to decide whether or not G has a vertex
cover of size k. This is a classical NP-complete problem.

A graph G is said to be of rank r if the rank of the adjacency matrix AG is of rank
r . Graphs of low rank were studied by Lovasz and Kotlov [4, 20]. As an application
of Theorem 1.4, we obtain an nO(r) time algorithm to compute a minimum vertex
cover in an n-vertex graph of rank r .

Remark 4.10 A pair of vertices x, y in a graph G are twins if they have identical
neighborhoods in G. Lovasz and Kotlov [4] have shown that a rank r graph G that is
twin-free has at most O(2r/2) vertices. Clearly, a minimal vertex cover S of G does
not contain twins. Therefore, in order to search for a minimum vertex cover for G,
it suffices to search for it in a maximal twin-free subgraph H of G, which is easy to
find in poly(n) time. Now, H will have at most O(2r/2) vertices as its rank is also
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bounded by r . A brute-force search for the minimum vertex cover in V (H) yields an
O∗(22r/2

) algorithm. For n that is double exponential in r , this brute-force search is
faster than the nO(r) algorithm of this section.

Proof of Theorem 1.5 We give a polynomial-time reduction from Vertex Cover to
Univariate Ideal Membership. Let (G, k) be a Vertex Cover instance. Let I =〈
x2
1 − x1, x

2
2 − x2, . . . , x

2
n − xn

〉
and

f =

(
n

2

)

∏

s=1

(�xAG�xT − s) ·
n−k−1∏

t=0

(
n∑

i=1

xi − t

)

,

where AG is the adjacency matrix of the graph G and �x = (x1, x2, . . . , xn) is row-
vector.

Claim 4.11 The rank of the polynomial f is at most r + 1.

Proof We note that AG is symmetric since it encodes an undirected graph. Let Q be
an invertible n × n matrix that diagonalizes AG. So we have QAGQT = D where D

is a diagonal matrix with only the first r diagonal elements being non-zero. Let �y =
(y1, y2, . . . , yn) be another row-vector of variables. Now, we show the effect of the
transform �x �→ �yQ on the polynomial �xAG�xT . Clearly, �yQAGQT �yT = �yD�yT and
since there are only r non-zero entries on the diagonal, the polynomial �yD�yT is over

the variables y1, y2, . . . , yr . Thus g = ∏

(
n

2

)

s=1 (�xAG�xT − s) is a rank r polynomial.

Also h = ∏n−k−1
t=0 (

∑n
i=1 xi − t) is a rank 1 polynomial as there is only one linear

form
∑n

i=1 xi . Since f = gh, we conclude that f is a rank r + 1 polynomial.

Now the proof of Theorem 1.5 follows from the next claim.

Claim 4.12 The graph G has a Vertex Cover of size k if and only if f 
∈ I .

Proof First, observe that the set of common zeroes of the generators of the ideal I is
the set {0, 1}n. Let S be a vertex cover in G such that |S| ≤ k. We will exhibit a point
�α ∈ {0, 1}n such that f (�α) 
= 0. This will imply that f 
∈ I . Identify the vertices
of G with {1, 2, . . . , n}. Define �α(i) = 0 if and only if i ∈ S. Since �xAG�xT =∑

(i,j)∈EG
xixj and S is a vertex cover for G, it is clear that �xAG�xT (�α) = 0. Also

(
∑n

i=1 xi)(�α) ≥ n − k. Then clearly f (�α) 
= 0.
For the other direction, suppose that f 
∈ I . Then by Theorem 1.1, there exists

�α ∈ {0, 1}n such that f (�α) 
= 0. Define the set S ⊆ [n] as follows. Include i ∈ S

if and only if �α(i) = 0. Since f (�α) 
= 0, and the range of values that �xAG�xT can
take is {0, 1, . . . , |E|}, it must be the case that �xAG�xT (�α) = 0. It implies that the
set S is a vertex cover for G. Moreover,

∏n−k−1
t=0 (

∑n
i=1 xi − t)(�α) 
= 0 implies that

|S| ≤ k.
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The degree of the polynomial f is bounded by n2 + n and from Claim 4.12 we
know that f mod I is a non-zero polynomial if and only if G has a vertex cover of
size k. By the Polynomial Identity lemma [14, 31, 34], (f mod I )( �β) is non-zero with
high probability when �β is chosen randomly from a small domain. Now, we need to
just compute (f mod I )( �β) where f is a rank r + 1 polynomial with �i = (�xQ−1)i
for each 1 ≤ i ≤ r and �r+1 = ∑n

i=1 xi which can be performed in (n, k)O(r) time
using Theorem 1.4.

5 Univariate Ideal Membership Parameterized by Degree

In this section, we consider the degree of the input polynomial as the fixed param-
eter. Consider I = 〈{pi(xi)}ni=1

〉
be a univariate ideal and f ∈ F[X] be a degree k

polynomial given by an arithmetic circuit. Clearly, there is a simple O∗(nO(k)) algo-

rithm for it: we can write f = ∑
m αmm as a linear combination of

(
n + k

k

)
many

monomials m. We can then compute the remainder f mod I = ∑
m αm(mmod I ) as

a linear combination of monomials.
We first prove Theorem 1.6 showing a randomized O∗((2e)k) time algorithm for

the special case where F = Q and the ideal I = 〈
x

e1
1 , x

e2
2 , . . . , x

en
n

〉
.

5.1 Proof of Theorem 1.6

Proof The main step is the following reduction of checking if f ∈ I (where f is
degree-k and I = 〈

x
e1
1 , x

e2
2 , . . . , x

en
n

〉
) to the problem of checking if the polynomial

f ◦s g is identically zero, where g is chosen as a polynomial weakly equivalent3 to the
elementary symmetric polynomial. The claimed algorithm then follows by applying
a recent result of [7].

Recall that Sm,� denotes the elementary symmetric polynomial of degree �

over m variables. Set m = ∑n
i=1(ei − 1) and define Sm,� on the m variables

z1,1, . . . , z1,e1−1, . . . , zn,1, . . . , zn,en−1. Now, for 0 ≤ � ≤ k define g�(X) as the
polynomial obtained from Sm,� by replacing each zi,j by xi, 1 ≤ i ≤ n.

Claim 5.1 Given integers e1, e2, . . . , en, and a homogeneous polynomial f (X) of
degree k, f ∈ 〈

x
e1
1 , x

e2
2 , . . . , x

en
n

〉
if and only if f ◦s g� ≡ 0 for 0 ≤ � ≤ k.

Proof Clearly f 
∈ 〈
x

e1
1 , x

e2
2 , . . . , x

en
n

〉
if and only if f has a nonzero degree � mono-

mial M = x
f1
1 x

f2
2 . . . x

fn
n , for some � ≤ k, such that fi < ei for each 1 ≤ i ≤ n.

Hence, the scaled Hadamard product polynomial f ◦s g� is not identically zero for
some � ≤ k if and only if f 
∈ 〈

x
e1
1 , x

e2
2 , . . . , x

en
n

〉
.

3Polynomials f, g ∈ F[X] are weakly equivalent if for each monomial m, [m]f = 0 if and only if
[m]g = 0.
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The proof now follows from the recent work of [7] as explained below:
For checking if f ◦s g� (as defined in Lemma 5.1) is identically zero, it suffices

to check for some polynomial g̃� weakly equivalent to g� that f ◦s g̃� is identi-
cally zero. By color coding [3], we can construct a homogeneous depth-three circuit
of size ekpoly(n) that computes a polynomial weakly equivalent to Sn,k with high
probability (see [7] for details). Replacing each zi,j by xi, 1 ≤ i ≤ n, we obtain
a homogeneous depth-three circuit of the same size for a polynomial g̃� weakly
equivalent to g defined in Lemma 5.1.

Now, it is shown in [7] that we can compute the scaled Hadamard product of
a circuit of size s1 with a degree-k homogeneous depth three circuit of size s2 in
deterministic O∗(2k · s1s2) time. Therefore, f ◦s g� can be computed in O∗((2e)k)
time. We can check if f ◦s g� is identically zero by evaluating at a randomly chosen
point [14, 31, 34]. Overall, this gives a randomized O∗((2e)k) time algorithm.

Remark 5.2

1. The above proof fails for char(F) < k because f ◦s g might vanish because the
scaling factor m! for each monomial might be divisible by char(F).

2. Over rationals, we can apply a recent work [27] to obtain an O∗(4.08k) time
algorithm to test identity of scaled Hadamard product with elementary symmet-
ric polynomial. This improves the algorithm of Theorem 1.6 to a randomized
O∗(4.08k) algorithm.

We now consider deciding the membership for the general case of univariate ideal.
We first make the following observation.

Observation 5.3 Let I = 〈{pi(xi)}ni=1

〉
be a univariate ideal and f ∈ F[X] be a

degree k polynomial of Waring rank r . Then f can be expressed as an r-sum of kth

powers of linear forms i.e. f = ∑r
i=1 �k for some affine linear forms �i . Then, there

is a deterministic poly(r, k, n) algorithm to decide whether f ∈ I .

The proof follows easily from (2) that allows us to write f as a small sum of
product of univariates.

Remark 5.4 As an application, motivated by the permanent lemma [1, Lemma 8.1],
consider the following constrained linear inequations problem: given A ∈ F

k×n,
(b1, b2, . . . , bk)

T ∈ F
k , and a family of subsets S1, S2, . . . , Sn of the field F the

problem is to find an assignment �x = �a ∈ S1 × S2 × · · · × Sn such that
∑

j aij xj 
=
bi, 1 ≤ i ≤ k. We define the degree-k polynomial

f =
k∏

i=1

⎛

⎝
n∑

j=1

aij xj − bj

⎞

⎠ .

Clearly, a solution to the above inequation system exists if and only if there exists
�a ∈ S1 × · · · Sn such that f (�a) is non-zero. By the Combinatorial Nullstellensatz [1]
(Theorem 1.1), it can be expressed as a univariate ideal membership problem. As
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f is a product of k linear forms, its the Waring rank is bounded by O∗(2k). By
Observation 5.3, we obtain a deterministicO∗(2k) algorithm to solve this constrained
inequation system.

For degree-k, n-variate polynomials f , we do not have an algorithm with run-

ning time better than O∗
((

n + k

k

))
for univariate ideal membership in general.

However, if each generator polynomial pi has distinct roots we obtain a faster
algorithm.

Theorem 5.5 Let I = 〈p1(x1), . . . , pn(xn)〉 be a univariate ideal given explicitly
by a set of univariate polynomials p1, . . . , pn such that for each i ∈ [n], pi(xi) has
distinct roots over Q. Given a polynomial f (X) ∈ C[X] of degree k and I as input,
we can decide whether f ∈ I or not in randomized O∗(nk/2) time.
Proof W.l.o.g. we can assume the degree of each pi is at most k. Otherwise, we can
drop pi from I . For i ∈ [n], let Si ⊂ Q be the set of all roots of pi . By Alon’s
Combinatorial Nullstellensatz (Theorem 1.1), Theorem 5.4 can be restated as the
following.

Claim 5.6 Given a polynomial f (X) ∈ C[X] of degree k and S1, . . . , Sn such that
for each i ∈ [n], Si ⊂ C as inputs, we can decide whether S1 × · · · × Sn contains a
nonzero of f in in randomized O∗(nk/2) time.

For a degree-k polynomial f ∈ F[X] let

f̃ = xk
n+1 · f

(
x1

xn+1
,

x2

xn+1
, . . . ,

xn

xn+1

)
,

be its homogenization. Thus, f̃ is homogeneous of degree k and f̃ (x1, x2, . . . ,

xn, 1) = f (x1, . . . , xn). Clearly, f is nonzero on the n-dimensional grid S1×· · ·×Sn

if and only if f̃ is nonzero on the n+1 -dimensional grid S1 ×· · ·×Sn ×{1}. Hence,
without loss of generality we can assume f is homogeneous degree k.

Observation 5.7 For a homogeneous polynomial f of degree k,

f ◦s (a1x1 + . . . + anxn)
k |�1= k! · f (a1, . . . , an).

We need to decide whether there exists a point �a ∈ S1 × · · · × Sn such that
f (�a) 
= 0.

For each (a1, . . . , an) ∈ S1 × . . . × Sn, by (2) we can write,

1

k! · (a1x1 + . . . + anxn)
k =

nk+1∑

�=1

β� ·
n∏

i=1

pi(aiα�xi).

where α1, . . . , αn ∈ Q are some distinct points, β� ∈ Q, and each pi is univariate.
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Now, we define the “grid” polynomial

g =
nk+1∑

�=1

β� ·
n∏

i=1

⎛

⎝
∑

ai∈Si

ξi,ai
pi(aiα�xi)

⎞

⎠ (5)

=
∑

(a1,...,an)∈S1×...×Sn

n∏

i=1

ξi,ai

(
nk+1∑

�=1

β� ·
n∏

i=1

pi(aiα�xi)

)

, (6)

where ξi,ai
, i ∈ [n], ai ∈ Si are new variables. Hence,

f ◦s g |�1 =
∑

(a1,...,an)∈S1×...×Sn

n∏

i=1

ξi,ai
f ◦s

(
nk+1∑

�=1

β� ·
n∏

i=1

pi(aiα�xi)

)

|�1 (7)

=
∑

(a1,...,an)∈S1×...×Sn

n∏

i=1

ξi,ai
f (a1, a2, . . . , an) (8)

Thus, f ◦s g |�1 is a nonzero polynomial (in the ξi,ai
variables) of degree n iff

f ◦s (a1x1 + · · · anxn)
k is nonzero for some (a1, . . . , an) ∈ S1 × . . . Sn. By the

Polynomial Identity Lemma [14, 31, 34], we can independently randomly assign
values for the ξi,ai

variables from [n2], and the evaluation is nonzero with probability
at least 1 − 1/n iff f nonzero on a grid point in S1 × · · · × Sn. Furthermore, from
(7) we note that we can clear the denominators of all the β� and the polynomials
pi(aiαixi) and the polynomial f (given by input circuit) and take out a common
factor 1

D
(where D is a polynomially many bits long integer) to write (7) as

f ◦s g |�1=
1

D

∑

(a1,...,an)∈S1×...×Sn

n∏

i=1

ξi,ai
f̂ ◦s

(
nk+1∑

�=1

γ� ·
n∏

i=1

p̂i(aiα�xi)

)

|�1,

where f̂ and p̂i(aiα�xi) have integer coefficients. Thus, when f ◦s g |�1 is nonzero at
a choice of the ξi,ai

then it is of absolute value at least 1/D.
Therefore, after randomly choosing ξi,ai

∈R [n2], it is clear from (5) that the
problem reduces to efficiently computing the scaled Hadamard product f ◦s h |�1
evaluated at �1, where h = ∏n

i=1 qi(xi) and each qi is of degree k. We now show that
f ◦s h |�1 can be computed in O∗(nk/2) time which suffices to detect if f ◦s g |�1 is
nonzero in O∗(nk/2) time.

Claim 5.8 f ◦s
∏n

i=1 qi(xi) |�1 can be computed in O∗(nk/2) time.

Notice that the above claim completes the proof, because the summation over �

has nk + 1 terms. Let β = max�{|β�|}. Then the overall error in f ◦s g |�1 is bounded
by the precision error of the claim multiplied by (nk+1)β which can be made smaller
than 1/D by choosing the precision error of the claim.

We now prove the claim.We need approximations because we will need to approx-
imately compute the roots of the univariate polynomials qi . LetRi denote the nonzero
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roots of qi . Then we can write

∏

i

qi =
n∏

i=1

x
μi

i

n∏

i=1

∏

−β∈Ri

(xi + β)νi,β ,

where νi,β is the multiplicity of root −β in qi . If
∑

i μi > k then clearly f ◦s
∏

i qi =
0. Otherwise, let

∑
i μi = s and let r = k − s. Let

∏
i

∏
β∈Ri

βνi,β = �. Write∏n
i=1

∏
−β∈Ri

(xi +β)νi,β as �
∏n

i=1
∏

−β∈Ri
(xi/β +1)νi,β . Let m = ∑

i deg(qi)− s

and consider the elementary symmetric polynomial Sm,r in variables y1, y2, . . . , ym.
By Lee’s result [24], Sm,r can be expressed as O∗(mr/2) sum of powers of linear
forms. In the polynomial Sm,r we replace the m variables y1, y2, . . . , ym by the m

nonzero roots (of the form xi/β, as explained above) of
∏

j qj . Let the product of

the resulting polynomial (which is still a O∗(mr/2)-sum of r-power of linear forms)
with � · ∏n

i=1 x
μi

i be denoted by Q. Clearly, f ◦s
∏

i qi = f ◦s Q. Since Q is a
sum of power of linear forms using Observation 5.7, we can evaluate f ◦s Q |�1 with
O∗(nk/2) arithmetic operations.

Now, replacing each root β by a rational approximation β ′ such that |β − β ′| ≤
1/2L for a suitably chosen polynomial bit number L, the overall error in the approx-
imation to f ◦s Q |�1 will be bounded. It can be made smaller than ε by choosing L

suitably large. We can use any efficient root approximation algorithm for univariate
polynomials to find all such root approximations β ′.

This completes the proof of the claim and the theorem.

Remark 5.9 Observe that Claim 5.8 can be restated as follows: given univariate poly-
nomials pi(xi), 1 ≤ i ≤ n, the Waring rank of the degree-k part of their product∏n

i=1 pi(xi) is bounded by O∗(nk/2). Then the proof of Theorem 5.4 follows as an
application of Observation 5.3.

6 Univariate Ideal Membership Parameterized by Number
of Generators

In this section, we consider the univariate ideal membership parameterized on the
number of generators of the univariate ideal. More precisely, we consider univariate
ideal membership for input f (X) by a circuit of size s and univariate ideal I =
〈p1(x1), . . . , pk(xk)〉 (with k as fixed parameter).

We show that the nonmembership problem is W[2]-hard by giving an efficient
reduction from the k-dominating set problem which is W[2]-complete [13].

Moreover, in contrast to the problem parameterized by deg(f ), even for the special
case of the ideal I = 〈

x
e1
1 , x

e2
2 , . . . , x

ek

k

〉
we show the problem remains hard. We are

able to show it is MINI[1]-hard. Hence, even in this special case the problem cannot
have an algorithm of run time O∗(so(k)) assuming the exponential time hypothesis.
On the other hand, the problem has an easy O∗(sk) time randomized algorithm.

Proof of Theorem 1.7 Let (G, k) be an instance of the k-dominating set problem,
where G = (V , E) is an n-vertex graph and the fixed parameter k is the size of the
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independent set. Let V (G) = {1, 2, . . . , n}. For 1 ≤ i ≤ k, we define polynomials

pi(xi) =
n∏

j=1

(xi − j).

The W[2]-hardness proof is an application of Alon’s Combinatorial Nullstellen-
satz (Theorem 1.1): By definition, for each pi its zero set is Z(pi) = [n]. Therefore,
a polynomial g ∈ Q[x1, x2, . . . , xk] is in the ideal 〈p1, p2, . . . , pk〉 if and only if g

is zero on every point in the k-dimensional grid [n] × [n] × · · · × [n].
For each u ∈ V , let Nu = {u} ∪ {v ∈ V | uv ∈ E} denote its closed neighborhood

in G. Define polynomials qu, u ∈ V

qu =
k∑

i=1

∏

v∈Nu

(xi − v)2.

Notice that qu is nonzero at a grid point xi = vi, 1 ≤ i ≤ k if and only if there is
a vi ∈ Nu. That is, qu is nonzero at (v1, v2, . . . , vk) if and only if some vi dominates
u. Now, letting

qG(x1, x2, . . . , xk) =
n∏

u=1

qu,

it follows that qG is nonzero at a grid point xi = vi, 1 ≤ i ≤ k if and only if
{v1, v2, . . . , vk} is a dominating set for G.

Hence, by Theorem 1.1 we have the following claim which completes the proof.

Claim 6.1 The polynomial qG is not in the univariate ideal 〈p1, p2, . . . , pn〉 if and
only if the graph G has a dominating set of size k.

6.1 Proof of Theorem 1.8

We first relate our univariate ideal membership problem with a linear
algebraic problem k−LIN-EQ. It turns that k−LIN-EQ problem is more
amenable to the MINI[1]-hardness proof. Finally we show a reduction from
MINI − 1 − in − 3POSITIVE3 − SAT to k−LIN-EQ to complete the proof.

Definition 6.2 (k-LIN-EQ) Input: Integers k, n in unary, a k × n matrix A with all
the entries given in unary and a k dimensional vector �b with all entries in unary.

Parameter: k.
Question: Does there exist an �x ∈ {0, 1}n such that A�x = �b?
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Lemma 6.3 There is a parameterized reduction from k−LIN-EQ to the univariate
ideal membership problem when the ideal is given by the powers of variables as
generators.

Proof We introduce 2k variables x1, x2, . . . , xk, y1, y2, . . . , yk where two variables
will be used for each row. For each i ∈ [n], let μi = ∑n

j=1 aij . For each column
ci = (a1i , a2i , . . . , aki) we construct the polynomial Pi = (y1

a1i y2
a2i . . . yk

aki +
x1

a1i x2
a2i . . . xk

aki ). We let PA = ∏n
i=1 Pi and we choose the ideal to be

〈xb1+1
1 , y

μ1−b1+1
1 , . . . , x

bk+1
k , y

μk−bk+1
1 〉. Notice that PA has a small arithmetic

circuit which is polynomial time computable.

Claim 6.4 An instance (A, �b) is an YES instance for k−LIN-EQ iff PA 
∈〈
x

b1+1
1 , y

μ1−b1+1
1 , . . . , x

bk+1
k , y

μk−bk+1
k

〉
.

Proof of Claim Suppose (A, �b) is an YES instance. Then there is an �x ∈ {0, 1}n
such that A�x = �b. Define S := {i ∈ [n] : �xi = 1} where xi is the ith co-
ordinate of �x. Think of the monomial where x1

a1i x2
a2i . . . xk

aki is picked from Pi

for each i ∈ S and y1
a1i y2

a2i . . . yk
aki is picked from reaming Pj ’s where j ∈ S̄.

This gives us the monomial x
b1
1 y

μ1−b1
1 . . . x

bk

k y
μk−bk

1 in the polynomial PA. Thus

PA 
∈
〈
x

b1+1
1 , y

μ1−b1+1
1 , . . . , x

bk+1
k , y

μk−bk+1
k

〉
.

Now we show the other direction. Now suppose PA 
∈〈
x

b1+1
1 , y

μ1−b1+1
1 , . . . , x

bk+1
k , y

μk−bk+1
k

〉
. Let S := {i ∈ [n] : x1

a1ix2
a2i . . . xk

aki

is picked from Pi}. There must be a monomial x1
c1x2

c2 . . . xk
cky1

d1y2
d2 . . . yk

dk in PA

such that for each i,
∑

j∈S aij = ci ≤ bi ,
∑

j 
∈S aij = di ≤ (μi − bi). As,
μi = ∑

j∈S aij + ∑
i 
∈S aij , we get bi ≤ ∑

j∈S aij . Hence,
∑

j∈S aij = bi for each

i. Define �x ∈ {0, 1}n where �xi = 1 if i ∈ S else �xi = 0. This shows (A, �b) is an YES
instance.

Before we prove the MINI[1]-hardness of k−LIN-EQ, we show that the following
problem is MINI[1]-hard.

Definition 6.5 MINI − 1 − in − 3POSITIVE3 − SAT
Input: Integers k, n in unary, a 3-SAT instance E consisting of only positive literals

where E has at most k log n variables and at most k log n clauses.
Parameter: k.
Question: Does there exist a satisfiable assignment for E such that every clause

has exactly one iteral?

Claim 6.6 MINI − 1 − in − 3POSITIVE3 − SAT is MINI[1]-hard.

To prove the claim we only need to observe that the standard Schaefer
Reduction [30] from 3-SAT to 1 − in − 3POSITIVE3 − SAT is in fact a linear
size reduction, that directly gives us an FPT reduction from MINI−3SAT to
MINI − 1 − in − 3POSITIVE3 − SAT.
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Proof of Theorem 1.8 Given a MINI − 1 − in − 3POSITIVE3 − SAT instance E ,
order the variables v1, . . . , vk log n and the clauses C1, . . . , Ck log n. Construct the fol-
lowing k log n × k log n matrix M where the rows are indexed by the clauses and the
columns are indexed by the variables. M[i][j ] is set to 1 if vj appears in Ci , other-
wise set it to 0. Make M a 2k log n × n matrix by adding an all zero row between
every rows and appending all zero columns at the end. Now, define �e as a 2k log n

dimensional vector where ith co-ordinate of e, ei = 1 when i is odd and ei = 0 when
i is even. We want to find �y ∈ {0, 1}n such that M �y = �e.

However this is not an instance of k−LIN-EQ. To make it so, we observe that M

is a bit matrix and �e is a bit vector, hence we can modify them to a k × n matrix A

and k dimensional vector �b in the following way. For each column j , think of the
ith consecutive 2 log n bits as the binary expansion of a single entry, call it N and
set A[i][j ] to N . Similarly, we modify �e to a k dimensional vector �b by considering
2 log n bits as a binary expansion of a single entry. Now the proof follows from the
following claim.

Claim 6.7 E is an YES instance for MINI − 1 − in − 3POSITIVE3 − SAT if and
only if there exists an �x ∈ {0, 1}n such that A�x = �b.

Proof Suppose there is such a satisfiable assignment for E . Define S := {j ∈
[k log n] | vj = TRUE}. Define �z ∈ {0, 1}n such that zj = 1 where j ∈ S else zj =
0. For each i, as Ci contains exactly one iteral, hence e2i+1 = ∑n

j=1 M[i][j ] ·zj = 1
and e2i = 0. Therefore �z is a solution for M �y = �e. As every integer has a unique
binary expansion, hence �z is also a solution for A�x = �b.

Now we prove the other direction. Suppose A�z = �b for some �z ∈ {0, 1}n.
From the construction of the matrix M , it is sufficient to show that �z is a satisfy-
ing assignment for M �y = �e. First we note that the numbers A[i][j ], b[i] in their
binary expansion have bits 1 in the odd location and 0 in the even locations. Let
A[i][j ] = ∑2 log n

t=1 aijt2t−1 and b[i] = ∑2 log n

t=1 et2t−1. Since A�z = �b we have∑n
j=1 A[i][j ] · zj = b[i]. This shows that

n∑

j=1

A[i][j ] · zj =
n∑

j=1

⎛

⎝
2 log n∑

t=1

aijt2
t−1

⎞

⎠ · zj =
2 log n∑

t=1

⎛

⎝
n∑

j=1

aijt · zj

⎞

⎠ 2t−1.

Since E is a 3-CNF formula we have (
∑n

j=1 aijt · zj ) ∈ {0, 1, 2, 3}. Now we
compare (

∑n
j=1 aijt · zj ) with the binary expansion of b[i]. When t is odd the bit et

is 1 and so there must be a 1 in the corresponding bit of (
∑n

j=1 aijt · zj ). This shows
that (

∑n
j=1 aijt · zj ) 
= 0 when t is odd. Now if (

∑n
j=1 aijt · zj ) ∈ {2, 3} for any

odd t then the term 2t+1 will be produced and this will not match the expansion of
b[i] as the et+1 = 0. Thus by the uniqueness of binary expansion we conclude that
(
∑n

j=1 aijt · zj ) = 1 if t is odd and 0 otherwise. Thus M �y = �e has a solution with
yi = zi .
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7 Non-deterministic Algorithm for Univariate Ideal Membership

In this section we prove Theorem 1.9. Given a polynomial f (X) ∈ Q[X] and a
univariate ideal I = 〈p1(x1), . . . , pn(xn)〉 where the generators are p1, . . . , pn have
no repeated roots, we show that deciding nonmembership of f in I is in NP. By
Theorem 1.1, it suffices to check in NP if there is a grid point (α1, α2, . . . , αn) in the
n-dimensional grid Z(p1) × Z(p2) × · · · × Z(pn) where f does not vanish. Since
the roots of pi could be irrational (even complex), it is not immediately clear how to
guess a polynomial size witness for such a grid point and efficiently verify. However,
we show that for the NP machine it suffices to guess a grid point �α approximately,
upto polynomially many bits of precision. Recall that

f (X) =
n∑

i=1

hi(X) pi(xi) + R(X),

where the remainder R is unique and degxi
(R) < deg(pi) for all i. For a polynomial

g ∈ F[X], let |c(g)| denote be the maximum coefficient (in absolute value) of a
monomial in g. We obtain simple estimates for the coefficients of the polynomials
h1, . . . , hn, R in terms of n, deg(f ), and the coefficients of f and the pi .

Lemma 7.1 Let 2−L ≤ |c(f )|, |c(pi)| ≤ 2L. Then 2−poly(L,n,d) ≤ |c(hi)|, |c(R)| ≤
2poly(L,n,d) where d is the degree upper bound for f , and {pi : 1 ≤ i ≤ n}.

Proof Write f as a linear combination of at most

(
d + n

n

)
many monomi-

als f = ∑
m αmm. Each monomial m occurring in it is of the form m =

x
e1
1 x

e2
2 . . . x

en
n ,

∑
i ei ≤ d. By univariate division, we can write each m as:

m =
n∏

i=1

(hm,ipi + rm,i),

where hm,i, rm,i ∈ Q[xi] such that xei = hm,ipi + rm,i , and deg(rm,i) <

deg(pi). Moreover, by the properties of univariate polynomial division, the abso-
lute value of the coefficients of each hm,i and rm,i lie in an interval of the form
[2−poly(L,n,d), 2poly(L,n,d)]. We note that R = ∑

m

∏n
i=1 rm,i , and each hi is a

2poly(n,d) sum of n-fold products of the hm,i and the pi . Therefore, the coeffi-
cients of R and of each hi , in absolute value, also lie in an interval of the form
[2−poly(L,n,d), 2poly(L,n,d)], as claimed.

Let �α = (α1, . . . , αn) ∈ C
n be such that pi(αi) = 0, 1 ≤ i ≤ n. By Lemma 2.3,

2−L̂ ≤ |αi | ≤ 2L̂ where L̂ = poly(L, d). For each i, let α̃i ∈ Q[i] be an ε-
approximation of αi . That is, |αi − α̃i | ≤ ε. Let α̃ = (α̃1, . . . , α̃n). Then we can
bound the absolute value of pi(α̃i) and

∑n
i=1 hi(α̃)pi(α̃).

Observation 7.2

• For 1 ≤ i ≤ n we have that |pi(α̃i)| ≤ ε · 2(dL)c .
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• | ∑n
i=1 hi(α̃)pi(α̃)| ≤ ε2(ndL)c .

Here c > 0 is a constant that is independent of ε.

Proof Let pi(xi) = c · ∏d
j=1(xi − βi,j ). Without loss of generality, suppose α̃i

ε-approximates βi,1 for each i. Then

|pi(α̃i)| ≤ ε · |c| ·
d∏

j=2

|α̃i − βi,j |

≤ ε · |c| ·
d∏

j=2

(|βi,1 − βi,j | + ε)

≤ ε · 2poly(d,L),

where the last inequality follows from the bound on the distance between the roots of
a univariate polynomial shown in Lemma 2.3. For the second part, note that |α̃i | ≤
|αi | + 1 ≤ 2L̃+1 by Lemma 2.3. Each hi has at most

(
n + d

d

)
monomials, and, by

Lemma 7.1, the coefficients of each hi is bounded by 2poly(n,d,L). Putting it together,
|hi(α̃)| ≤ 2poly(n,d,L) for all i. Hence, by the first part, | ∑n

i=1 hi(α̃)pi(α̃)| ≤
ε2(ndL)O(1)

.

We now prove Theorem 1.9.

Proof If f is not in the ideal I then, by Theorem 1.1, there exists a grid point �α =
(α1, . . . , αn) ∈ Z(p1) × . . . × Z(pn) such that R(�α) 
= 0.

The NPMachine guesses an ε-approximation �̃α = (α̃1, . . . , α̃n) of �α, where ε will
be chosen later in the analysis. Using the circuit (or black-box) for f , we obtain the
value for f ( �̃α).

Next, we show that the value |f ( �̃α)| distinguishes between the cases f ∈ I and
f 
∈ I .

Case 1 f ∈ I |f (α̃)| = | ∑n
i=1 hi( �̃α)pi(α̃i)| ≤ ε · 2(ndL)c by Observation 7.2. We

can verify this from the value returned by the circuit (or black-box) for f . Note: the
inequality may be satisfied even for a α̃ that is not an ε-approximation of �α. However,
the analysis and choice of ε will guarantee correctness.

Case 2 f 
∈ I We have f (α̃) = ∑n
i=1 hi(α̃)pi(α̃) + R(α̃). Hence,

|f (α̃) − R(α̃)| ≤ ε2(ndL)c .

Our aim is to show that |f (α̃)| ≥ 2ε2(ndL)c . We have from above that |f (α̃)| ≥
R(α̃) − ε2(ndL)c .

By triangle inequality, |R(α̃)| ≥ |R(�α)| − |R(α̃) − R(�α)|. We now show a lower
bound on |R(�α)| and an upper bound for |R(α̃) − R(�α)|.

Claim 7.3 |R(�α)| ≥ 1
2(ndL)c1

for some constant c1.
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Proof Let R̂(xn) = R(α1, . . . , αn−1, xn) = a · ∏d ′
j=1(xn − βj ), where a is some

nonzero scalar and d ′ ≤ d. Note that αn is not a zero for R̂(xn). Consider the poly-
nomial Q(xn) = pn(xn)R̂(xn). The set {αn, β1, . . . , βd ′ } are roots of Q(xn) and
αn 
= βj : 1 ≤ j ≤ d ′. By the root separation bound of Lemma 2.4 for |αn − βj |, it
follows that |R̂(αn)| ≥ 1

2(ndL)c1
for some c1 > 0.

Claim 7.4 |R( �̃α) − R(�α)| ≤ ε2(ndL)c2 for some constant c2.

Proof Define R0( �̃α) = R(�α) and Ri( �̃α) = R(α̃1, . . . , α̃i , αi+1, . . . , αn). By triangle
inequality, |R(�α) − R( �̃α)| ≤ ∑n

i=1 |Ri−1( �̃α) − Ri( �̃α)|. Writing explicitly, we have
Ri−1( �̃α) − Ri( �̃α) = ∑

�e c�eα̃e1
1 . . . α̃

ei−1
i−1 (α

ei

i − α̃
ei

i )α
ei+1
i . . . α

en
n . Now, the bounds

|αi | ≤ 2(ndL)O(1)
, and |αi − α̃i | ≤ ε, combined with the number of summands being

bounded by
(
d+n
d

)
implies by triangle inequality that |R( �̃α)−R(�α)| ≤ ε ·2(ndL)c2 for

some constant c2 > 0 (independent of ε).

Combined with the inequalities in Claims 7.3 and 7.4, we have |f ( �̃α)| ≥ 1
2(ndL)c1

−
ε · (

2(ndL)c2 + 2(ndL)c
)
.

To make the calculation precise, let 3M = 1
2(ndL)c1

and choose ε such that

ε · (2(ndL)c2 + 2(ndL)c ) ≤ M . We note that the number M can be efficiently
pre-computed from the input.

Summarizing the test, notice that f ∈ I implies that there is a guessed point α̃ of
polynomial size such that |f (α̃)| ≤ M . On the other hand, as argued in Case 2 above,
if f /∈ I then for any guessed point α̃ we have |f (α̃)| ≥ 2M .
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