
https://doi.org/10.1007/s00224-021-10048-7

Fixed-Parameter Algorithms for Unsplittable Flow Cover

Andrés Cristi1 Mathieu Mari2 Andreas Wiese1

Accepted: 17 May 2021 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021

Abstract
The Unsplittable Flow Cover problem (UFP-cover) models the well-studied general
caching problem and various natural resource allocation settings. We are given a
path with a demand on each edge and a set of tasks, each task being defined by a
subpath and a size. The goal is to select a subset of the tasks of minimum cardinality
such that on each edge the total size of the selected tasks using is at least the
demand of . There is a polynomial time 4-approximation for the problem (Bar-Noy
et al. STOC 2001) and also a QPTAS (Höhn et al. ICALP 2018). In this paper we
study fixed-parameter algorithms for the problem. We show that it is W[1]-hard but
it becomes FPT if we can slighly violate the edge demands (resource augmentation)
and also if there are at most different task sizes. Then we present a parameterized
approximation scheme (PAS), i.e., an algorithm with a running time of 1

that outputs a solution with at most 1 tasks or asserts that there is no solution
with at most tasks. In this algorithm we use a new trick that intuitively allows us to
pretend that we can select tasks from multiple times. We show that the other
two algorithms extend also to the weighted case of the problem, at the expense of
losing a factor of 1 in the cost of the selected tasks.

Keywords Unsplittable flow cover Fixed parameter algorithms
Approximation algorithms

This article belongs to the Topical Collection: Special Issue on Theoretical Aspects of Computer
Science (STACS 2020)
Guest Editors: Christophe Paul and Markus Bläser

Andrés Cristi
andres.cristi@ing.uchile.cl

Mathieu Mari
mathieu.mari@ens.fr

Andreas Wiese
awiese@dii.uchile.cl

1 Universidad de Chile, Santiago, Chile

2 École Normale Supérieure, Université PSL, Paris, France

Published online: 3 July 2021

Theory of Computing Systems (2023) 67:89–124

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10048-7&domain=pdf
https://orcid.org/0000-0002-1227-2092
https://orcid.org/0000-0003-3705-016X
mailto: andres.cristi@ing.uchile.cl
mailto: mathieu.mari@ens.fr
mailto: awiese@dii.uchile.cl

1 Introduction

In the Unsplittable Flow Cover problem (UFP-cover) we are given a path
where each edge has a demand , and a set of tasks where each task

has a start vertex and an end vertex , defining a path ,
and a size , and a cost . The goal is to select a subset of the tasks

of minimum cost that covers the demand of each edge,
i.e., such that for each edge where denotes the
set of tasks for which lies on . It is the natural covering version of the
well-studied Unsplittable Flow on a Path problem (UFP), see e.g., [9, 22, 23] and
references therein. In this paper we mainly focus on the unweighted case, i.e., when

1 for all , and we refer to the weighted case only if this stated explicitly.
UFP-cover is a generalization of the (unweighted) knapsack cover problem [11], and
it can model general caching in the fault model where we have a cache of fixed size
and receive requests for non-uniform size pages, the goal being to minimize the total
number of cache misses (see [1, 5, 16] and Appendix A). Caching and generaliza-
tions of it have been studied for several decades in computer science, see e.g., [1, 8,
21, 25]. Also, UFP-cover is motivated by many resource allocation settings in which
for instance the path specifies a time interval and the edge demands represent mini-
mum requirements for some resource like energy, bandwidth, or number of available
machines at each point in time.

UFP-cover is strongly NP-hard, since it generalizes general caching in the fault
model [16], and the best known polynomial time approximation algorithm for it is a
4-approximation [5] with no improvement in almost 20 years. However, the problem
admits a QPTAS for the case of quasi-polynomial input data [24] which suggests that
better polynomial time approximation ratios are possible.

In this paper, we study the problem for the first time under the angle of fixed
parameter tractability (FPT). We define our parameter to be the number of tasks in
the desired solution and seek algorithms with a running time of 1 for some
function , that either find a solution of size at most or state that there is no such
solution.1 We show that by allowing such a running time we can compute solutions
that are almost optimal.

1.1 Our Contribution

We prove that UFP-cover is W[1]-hard, which makes it unlikely to admit an FPT-
algorithm (see Section 6). In particular, this motivates studying FPT-approximation
algorithms or other relaxations of the problem. As a warm-up, we first show in
Section 2 that the problem becomes FPT when we assume that the number of dif-
ferent task sizes in the input is additionally bounded by a parameter. This algorithm
intuitively works as follows. We recursively guess the size of a task of the optimal
solution that contains the leftmost edge and add to the solution one such task with
rightmost endpoint.

1In the weighted case we look for a solution with at most tasks of minimum total cost.

90 Theory of Computing Systems (2023) 67:89–124

Theorem 1 There is an algorithm that solves UFP-cover in time ,
assuming that .

Then, in Section 3, we show that under slight resource augmentation the prob-
lem becomes FPT. We define an additional parameter 0 controlling the amount
of resource augmentation and we compute either a solution that is feasible if we
decrease the demand of each edge to 1 , or we assert that there is no solu-
tion of size for the original edge demands. Key to our result is to prove that due to
the resource augmentation we can assume that each edge is completely covered by
tasks whose size is comparable to or it is covered by at least one task whose size
is much larger than . Based on this we design an algorithm that intuitively sweeps
the path from left to right and on each uncovered edge we guess which of the two
cases applies. In the former case, we show that due to the resource augmentation we
can restrict ourselves to only many guesses for the missing tasks using . In
the latter case belongs to a subpath in which each edge is covered by a task that is
much larger than the demand of . We guess the number of tasks in this subpath and
select tasks to maximize the length of the latter. This yields a subproblem that we
solve recursively and we embed the recursion into a dynamic program.

Theorem 2 There is an algorithm for UFP-cover with running time
log 1

that either outputs a solution of size at most that is feasible if the edge capacities
are decreased by a factor 1 or asserts that there is no solution of size for the
original edge capacities.

We use the above algorithm to obtain in Section 4 a simple FPT-2-approximation
algorithm without resource augmentation.

Then, in Section 5, we present a parameterized approximation scheme (PAS) for
UFP-cover, i.e., an algorithm with a running time of 1 that outputs a
solution with at most 1 tasks or assert that there is no solution with at most
tasks. Notice that since the problem is 1 -hard and is parameterized by the size of
the solution, we cannot avoid the dependency on of the exponent of in the running
time (see Corollary 1). Our algorithm is based on a lemma developed for UFP in
which we have the same input as in UFP-cover but we want to maximize the weight
of the selected tasks and require that their total size is upper-bounded by on
each edge , i.e., . Informally, the mentioned lemma states that we
can remove a set from of negligible cardinality such that on each edge
we remove one of the largest tasks of using . This yields some slack that

we can use in order to afford inaccuracies in the computation. Translated to UFP-
cover, the natural correspondence would be a solution in which the tasks in
are not removed but selected twice. This is not allowed in UFP-cover. However, we
guess a set of tasks that intuitively yields as much slack as and whose
size is also negligible. If then we cannot add the tasks in to

to gain slack since some of them are already included in . Therefore, we
use the following simple but useful trick: we guess for which there are
2 2 options, select the tasks in , and recurse on the remaining

91Theory of Computing Systems (2023) 67:89–124

instance. Since the cardinality of is bounded by , the whole recursion tree has
a complexity of

3
which depends only on our parameter .

If then is a 1 -approximate solution with some
slack and we can use the slack in our computation. We compute a partition of into

intervals. Some of these intervals are dense, meaning that there are many tasks
from that start or end in them. We ensure that for each dense interval there is a
task in that covers the whole interval and whose size is at least a 1 -fraction
of the demand of each edge in the interval. Intuitively this is equivalent to decreasing
the demand on each edge by a factor of 1 1 . If we had only dense intervals
we could apply the FPT-algorithm for resource augmentation from above for the
remaining problem. On the other hand, if only few tasks start or end in an interval
we say that it is sparse. If all intervals are sparse, we devise a dynamic program that
processes them in the order of their amount of slack and guesses their tasks step by
step. We use the slack in order to be able to “forget” some of the previously guessed
tasks which yields a DP with only polynomially many cells. These guessing steps are
the main responsible for the 1 part of the running time, since at each iteration
we guess subsets of 1 many tasks.

Unfortunately, in an instance there can be dense and sparse intervals and our algo-
rithms above for the two special cases are completely incompatible. Therefore, we
identify a type of tasks in such that we can guess tasks that cover as much as
those in , while losing only a factor of 1 . Using some charging arguments,
we show that then we can split the remaining problem into two independent subin-
stances, one with only dense intervals and one with only sparse intervals which we
then solve with the algorithms mentioned above.

Theorem 3 There is a parameterized approximation scheme for UFP-cover.

Our algorithm under resource augmentation, the FPT-2-approximation and the
parameterized approximation scheme are presented in the unweighted case. We
explain in Section 3.2 how to extend the first two results to the weighted case, at the
expense of a factor of 1 in the approximation ratio.

1.2 Other RelatedWork

The study of parameterized approximation algorithms was initiated independently
by Cai and Huang [10], Chen, Grohe, and Grüber [14], and Downey, Fellows, and
McCartin [18]. Good surveys on the topic were given by Marx [27], and more
recently by Feldmann, Karthik C. S., Lee and Manurangsi [19]. Recently, the notion
of approximate kernels was introduced [26]. Independently, Bazgan [7] and Cesati
and Trevisan [12] established an interesting connection between approximation
algorithms and parameterized complexity by showing that EPTASs, i.e., 1 -
approximation algorithms with running time 1 , imply FPT algorithms for
the decision version. Hence aW[1]-hardness result for a problemmakes the existence
of an EPTAS for it unlikely.

92 Theory of Computing Systems (2023) 67:89–124

For the unweighted case of UFP (packing) a PAS is known [29]. Note that in the
FPT setting UFP is easier than UFP-cover since we can easily make the following
simplifying assumptions that we cannot make in UFP-cover. First, we can assume
that the input tasks are not too small: if there are input tasks whose size is smaller
than 1 times the capacity of any of the edges they use, then we can simply output
those tasks and we are done; if there are less than of such tasks, we can assume we
know exactly which of them selects by enumerating the 2 possible options,
and only large tasks remain. Second, the tasks are not too big since the size of a task
can be assumed to be at most the minimum capacity of an edge in its path. Third,
we can easily find a set of at most edges that together intersect the path of each
input task (i.e., a hitting set for the input task’s paths) unless a simple greedy algo-
rithm finds a solution of size [29]. The best known polynomial time approximation
algorithm for UFP has a ratio of 5 3 [23] and the problem admits a QPTAS [3, 6].

Recently, polynomial time approximation algorithms for special cases of UFP-
cover under resource augmentation were found: an algorithm computing a solution of
optimal cost if for each task and a 1 -approximation if the cost of each
task equals its “area”, i.e., the product of and the length of [17]. UFP-cover
is a special case of the general scheduling problem (GSP) on one machine in the
absence of release dates. The best known polynomial time result for GSP is a 4 -
approximation [15] and a QPTAS for quasi-polynomial bounded input data [2]. Also,
UFP-cover is a special case of the capacitated set cover problem, e.g., [4, 13].

2 Few Different Task Sizes

In this section, we show that UFP-cover is FPT when it is parameterized by
where is the number of different task sizes in the input. We are given two

parameters and and assume . We seek to compute a solution
with such that for each edge it holds that or

assert that there is no such solution. Partition the set into at most sets of tasks of
equal size denoted by .

Assume that there exists a solution with at most tasks that cover all
demands. Our algorithm sweeps the path from left to right and guesses the tasks in

step by step (in contrast to similar such algorithms it is not a dynamic pro-
gram). We maintain a set of previously selected tasks and a pointer indicating an
edge . We initialize the algorithm with being the leftmost edge of and .
For the sake of the analysis we also maintain a set that we initialize equal to

. Suppose that the pointer is at some edge . If the tasks in already cover
the demand of , i.e., , then we move the pointer to the edge on
the right of . Otherwise, contains at least one task . We guess its size
and add to the task in with rightmost endvertex. Then update

. Formally, when we say that we guess (or other quanti-
ties in this and the other algorithms in this paper) we mean that we enumerate all
possibilities for the respective quantity and continue the algorithm for each possible
value, maybe guessing other quantities later. At the very end, this yields one solution
for each (combined) possible outcome for all guesses of the algorithm. We reject a

93Theory of Computing Systems (2023) 67:89–124

solution if it is not feasible (i.e., does not cover the demand of all edges). Also, we
stop the algorithm if the quantities guessed so far imply that too many tasks will be
selected at the end, and we reject the so far computed solution immediately. At least
one solution must remain at the end since one set of guesses is always correct, and
we output one of the remaining solutions. In particular, we stop if since we
want to select more than tasks. Hence, the total number of possible guesses overall
is bounded by . Each of them yields a set . In case that the resulting set is
not a feasible solution we reject the guesses that lead to .

Otherwise, assume that at some point during the execution, all the previous
guesses were correct. Since we move the pointer when the current edge is covered
by all edges on the left of the pointer must be covered by the solution. Then the
choice of the task with the rightmost endpoint vertex ensures that for any edge
that is on the right of the current pointer (including), we have

. Indeed, for any task in whose path
contains , there exists a task in of the same size, that contains and with the
rightmost endpoint, so its path contains all edges on the right of covered by .

The total number of guesses is bounded by and for each guess we can
compute the right task to add to the solution in time . Hence, we obtain:

Theorem 4 There is an algorithm that solves UFP-cover in time ,
assuming that .

Extension to theWeighted Case Recall that in the weighted case each task has
a cost (besides its path and its size), and our objective is to minimize the
total cost of the solution .

We can easily adapt the previous algorithm to the case where the number of com-
binations of the size and the cost of a task in the input is bounded, and obtain the
following result:

Theorem 5 There is an algorithm that solves UFP-cover in time ,
assuming that .

Here the only difference is that we now partition the set into at most sets of
tasks of equal size and equal cost, and at each iteration of the algorithm we guess the
size and the cost of the next task from OPT not yet considered.

In Section 3.2, we explain how to obtain a FPT- 1 -approximation when the
number of sizes in the input is bounded by a parameter, but the number of costs is
arbitrary.

3 Resource Augmentation

In this section, we turn to the case where we have resource augmentation but the
number of different task sizes is arbitrary. As a consequence of Theorem 1, we first
show that UFP-cover with 1 resource augmentation, can be solved in time

94 Theory of Computing Systems (2023) 67:89–124

1 if the edge demands come in a polynomial range, i.e., when the max-
imum demand max over all edges is 1 . In Section 3.1 we generalize this
algorithm to arbitrary edge demands.

Given parameters and 0, we seek to compute a solution with
such that for each edge it holds that 1 or

assert that there is no solution with such that for each edge it holds
that .

The idea is to round the task sizes and then use our algorithm for bounded number
of task sizes. Let denote a solution with at most tasks. We partition the tasks
into groups such that sizes of the tasks from the same group differ by at most a factor
of 1 . For each we define the group 1 1

1 . For each we round the sizes of the tasks in to 1 , i.e., for each
we define its rounded size to be 1 (for convenience, we

allow rounded task sizes and edge demands to be fractional). As we show in the next
lemma, this rounding step is justified due to our resource augmentation. For a set of
tasks , we define .

Lemma 1 By decreasing the demand of each edge to 1 we can
assume for each that each task has a size of 1 , i.e., for
each edge it holds that .

Proof By the definition of , 1 for all tasks , so we get that for
any edge , 1

1
1

1 .

Note that w.l.o.g. we can assume that max for each task . (Otherwise
one could define a new instance where all tasks such that max have now
size max ; then, a set of tasks is feasible for the new sizes if and only if it is
feasible for the initial sizes). Assume now that the edge demands are in a polynomial
range. Hence, there are only log1 groups with . The optimal
solution contains tasks from at most of these groups. We guess the groups that

satisfy that in time
log1 1 log . Note that the

latter quantity is of the form 1 , since log
2
[28]. We

delete the tasks from all other groups. This yields an instance with at most different
(rounded) task sizes, and then we can apply Theorem 1 with . Hence, there is
an algorithm with running time 1 log

2 1 1 if the
edge demands are in a polynomial range.

3.1 Arbitrary Demands

We extend the above algorithm now to the case of arbitrary demands. We define the
rounded edge demands and task sizes exactly as above. We apply
a shifting step that intuitively partitions the groups above into supergroups such that
the sizes of two tasks in different supergroups differ by at least a factor of 2 .
In particular, one task from one supergroup will be larger than any tasks from

95Theory of Computing Systems (2023) 67:89–124

supergroups with smaller tasks together. We define to be the smallest integer such
that 1 1 2, i.e., 1 log . Let 0 ... be an offset to be
defined later. Intuitively, we remove an 1

1 -fraction of all groups and combine
the remaining groups into supergroups. With a shifting argument we ensure that no
task from is contained in a deleted group. Formally, we define a supergroup

1 1 1 1
1 for each integer . In particular, each supergroup

contains groups.

Lemma 2 There exists an offset 0 ... such that for each task there
is a supergroup such that .

Proof For each of the tasks there is exactly one value for such that
is not contained in any supergroup . Indeed, given , supergroups miss all the
tasks from groups such that mod 1 1 1
and the family 0 forms a partition of all possible remainders in the Euclidean
division by 1 . Then, since there are 1 options for by the pigeon hole
principle there is one value for such that each task is contained in some
supergroup .

The first step in our algorithm is to guess the value due to Lemma 2, for which
there are 1 options. Note that if the edge demands are not polynomially bounded
there can be up to groups, so we can no longer guess which groups contain
tasks from . Instead, for each edge we define a level to be the largest value
such that 1 1 1 . Note that 1 1

is a lower bound on the size of each task in . In the next lemma, using resource
augmentation we prove that for each edge it holds that the tasks in are
sufficient to cover the demand of or that in the edge is completely covered
by one task in a supergroup with .

Lemma 3 For each edge it holds that or that there is
a task 1 . In the latter case it holds that .

Proof Consider an edge and suppose that . We claim that
then . This holds since any tasks in 1

have a total demand of at most 1 1 1 1 1 1

1 1 1 1 . This implies that
. Since there must be a task

1 . Now suppose there is a task for some

1. This means that 1 1 and by the definition of , we
have that 1 1 .

In order to solve our problem, we define a set of subproblems that we solve via
dynamic programming. Let us denote . Each subproblem is

characterized by a subpath , and integers with 0 and 1 ...
logmax . A tuple represents the following subproblem: select a set

96 Theory of Computing Systems (2023) 67:89–124

of tasks with such that for each edge it holds that
. Note that the subproblem 1 corresponds to the original

problem that we want to solve. Moreover, since we are only interested in values for
which is non-empty, the number of DP-cells is polynomial in the input length.

Suppose we are given a subproblem and assume that we already solved
each subproblem of the form where , , and . Denote

by a feasible solution to the subproblem . Our algorithm sweeps the

path from left to right and guesses the tasks in step by step. We maintain
a pointer at some edge and a set of previously selected tasks. We initialize the
algorithm with being the leftmost edge of and . Suppose that the pointer
is at some edge . If the tasks in already cover the reduced demand of , i.e.,

, then we move the pointer to the edge on the right of . Otherwise,

in the edge must be covered by a task that is not in . We guess whether
1 or . Since we assumed that

is covered by a task in , Lemma 3 implies that one of these two cases applies.
Suppose we guessed that 1 . For any two edges 1 2

denote by 1 2 the subpath of starting with 1 and ending with 2 (including
1 and 2). Let be the rightmost edge on the right of such that for each edge

the set contains at least one task in 1 . Let denote the
number of tasks in 1 whose path intersects . We guess . Then
we determine the rightmost edge such that is a yes-instance, where

1 is the smallest integer such that . We add to the tasks in the
solution of and move the pointer to the edge on the right of .

Assume now that we guessed that . Recall that
consists of only non-empty groups . For each of these groups we guess

. Note that there are only 1
possible guesses. For each group we add to the tasks in
with rightmost endvertex. Then we move the pointer to the edge on the right of .

Like before, at each guessing step, we enumerate only guesses that ensure that we
do not select more than tasks altogether. Hence, the total number of possible guesses

overall is bounded by 2 1 log . We store in the cell the

set of minimum size that was found in the log guesses, assuming that one of

them has size at most . Therefore, for each cell , in time 1 log we
can compute a corresponding solution of size at most , if one such solution exists.
Finally, we output the solution in the cell 1 if it contains a feasible solution.
If it does not contain a feasible solution we output that there is no solution of size
for the original edge capacities .

In summary, our algorithm first guesses the value according to Lemma 2. Then,
it creates the dynamic programming table with one DP-cell for each tuple
where and the values and are integers with 0 and 1

logmax . It sorts the DP-cells such that the cell of a tuple appears
before the cell of a tuple if , , and . It considers the
cells in this order and for each cell it computes a solution for each of the

log possible guesses described above, and stores in the found solution

97Theory of Computing Systems (2023) 67:89–124

of minimum size, assuming that this solution has size at most . See Fig. 1 for an
illustration of the algorithm. Theorem 2 follows by proving that this algorithm is
correct and has the claimed running time.

Proof of Theorem 2 We prove by induction that, given a cell , if in

each edge is used by at least one task in and if the set of tasks

satisfies that , and satisfies the
reduced demands in , then the solution computed in the cell satisfies

all reduced demands in and has size at most .
Given a cell , we assume that this is true for any cell where

, and . Let be a solution as described above. Notice that
if does not satisfy the conditions above then there is nothing to prove. Let
be the computed solution for the cell .

We partition into consecutive sub-intervals 1 1 1

such that each is a maximal sub-interval containing edges where
1 . Let the intervals be the maximal sub-intervals containing all other

edges in . Notice that according to Lemma 3, for all edges in , the reduced

demand is entirely covered by tasks in , i.e. . Suppose
that the algorithm made guesses correctly according to this partition: if the demand
of the current edge is not covered, then if for some then it guesses that

1 and it guesses 1 for

, otherwise it guesses that .
Then, for each sub-interval we added to the solution of a cell ,

where 1 , the left endpoint of is on the right of

or identical to the left endpoint of and the right endpoint of is on the right of or

Fig. 1 Sketch of the execution of the dynamic program for arbitrary demands under resource augmenta-
tion. Here the algorithm is calculating the solution for the subproblem . Before reaching edge it
has selected only tasks from . At edge it guesses that all edges in are completely covered by
tasks in 1 (which are much larger), so it recurses in , guessing appropriate values for
and 1. Then it continues to the right of

98 Theory of Computing Systems (2023) 67:89–124

identical to the right endpoint of . Since is chosen maximally, no edge in is

covered by any task in 1 . This implies that all tasks in 1

intersect only one sub-interval . It follows, using the induction hypothesis for each
that the solution satisfies the reduced demand in each sub-interval

and

1 1

1 .

For all sub-intervals , it is possible that the same task is used to cover demands in
distinct sub-intervals. However, since the tasks are added from left to right and chosen
to maximize their rightmost endvertex, when the guesses are correct, it holds for
each edge in some that is contained in some set (in which case its demand
is covered by tasks in 1) or that .
Moreover,

.

When we combine both equations we get what we wanted to establish the induc-

tion, i.e., that .

3.2 Extension to theWeighted Case

We can convert the previous algorithm into a parameterized approximation scheme
(PAS) for the resource augmentation setting. Hence, for given and 0, our
algorithm finds in time 1 a solution with at most 1 tasks and
a cost 1 (recall that denotes the optimal solution
with at most tasks) such that 1 for all , or asserts that
there is no solution such that for all and .

The key change in the algorithm for resource augmentation is to round the costs
to powers of 1 (which loses a factor of 1 in the approximation ratio) and then
partition the tasks into groups according to their size and their cost, rather than
only based on their size.

For this we guess the most expensive task in . Let be this task. We
discard all tasks with . Then we round the cost of each task to
the next smaller power of 1 or even to zero if is very small compared to .
Formally, we define 1 log1 if and 0 if .
Let log1 denote the number of different task costs. The next lemma
implies that our rounding loses at most a factor of 1 .

99Theory of Computing Systems (2023) 67:89–124

Lemma 4 For any solution with , and such that for all
, it holds that 1 .

Proof Partition into and . Since
, we know that , since is a lower

bound for . By the definition of , 1 for all , so
1 . Finally, 1

, and we conclude noting that 1
1 1 .

We define for each a group 0 1 1 1

0 and additionally for each 0 we define 1
1 1 1 . For each we round the sizes of the tasks

in to 1 , i.e., for each we define its rounded size to be
1 . Then, we define a supergroup 1 1 1 1

1

for each integer and each , and redefine the notation .
Our PAS is analogous to the algorithm described in the previous subsection. We

run a dynamic program whose cells are defined by a tuple . This represents
the subproblem of selecting a set of tasks that minimizes such that

and for each edge . The recursion to fill the DP table
is almost identical. The only differences are that we select solutions that minimize
the (rounded) cost instead of simply finding a yes-instance, and that 1

contains up to non-empty groups instead of just as before.

Remark 1 Using the exact same rounding technique, we can convert the algorithm of
Section 2 into a PAS in the weighted setting for the case where the number of different
task sizes is bounded by (rather than the number of different combinations of task
size and cost), i.e., where .

4 FPT-2-Approximation Algorithm

We present an FPT-2-approximation algorithm without resource augmentation (for
arbitrary edge demands), i.e., an algorithm that runs in time 1 and finds
a solution of size at most 2 or asserts that there is no solution of size at most .
Suppose we are given an instance . First, we call the algorithm for resource
augmentation from Section 3 with 1. If this algorithm asserts that there is no
solution of size at most then we stop. Otherwise, let denote the found solution.
We guess . Note that there are only 2 possibilities for .
If then the solution covers each edge to an extent
of at least 3 2 , i.e., 3 2 . Therefore, we create
a new UFP-cover instance whose input tasks are identical with the tasks in and
in which the demand of each edge is changed to 3 2 . We invoke our
algorithm for the resource augmentation setting from Section 3 to where we look
for a solution of size at most 2 and we set 1 2. Let be the

100 Theory of Computing Systems (2023) 67:89–124

returned solution. It holds that 2 and covers each
edge to an extent of at least 3 2 1 1 2 . We output .

If then we generate a new instance in which the tasks in
are already taken, i.e., the demand of each edge is reduced to

and the set of input tasks consists of .
We recurse on where the parameter is set to . Observe that

is a solution to and if then
. The resulting recursion tree has depth at most with at most

2 children per node and hence it has at most 2
2
nodes in total. This yields the

following theorem.

Theorem 6 There is an algorithm for UFP-cover with a running time of 2
2 1

that either finds a solution of size at most 2 or asserts that there is no solution of
size .

Proof Assume that the recursive call yields a solution to . Then we return
. This leads to a 2-approximation: assume inductively that

2 . Then 2
2 .

Each node in the recursion tree requires a running time of 1 due to
Theorem 2. It remains to bound the size of the recursion tree given by the guesses of

. After every new guess, either , which terminates the
recursion, or the parameter is reduced in one unit. Then the depth of the recursion
tree is at most and on each new recursion there are only 2 possibilities, which in

total gives at most 2
2
nodes. The running time is then 2

2 log 1 , which is
2

2 1 because 1 2.

Remark 2 It is easy to verify that we can get an FPT- 2 -approximation algo-
rithm for the weighted case, if we use our PAS for the weighted case under resource
augmentation instead.

5 Parameterized Approximation Scheme

In this section, we present a PAS for UFP-cover. Given a parameter , we seek to
compute a solution of size at most 1 or assert that there is no solution of size at
most . The running time of our algorithm is

2 log 1 1
. Let denote

a solution with at most tasks and let 0 such that 1 .
First, we run the 4-approximation algorithm from [5] to obtain a solution . If

4 then and we stop. Intuitively, we will use later to guide our
computations. Similarly as before, we partition the tasks into groups such that tasks
from the same group have the same size, up to a factor 1 . Formally, for each
integer we define 1 1 1 and we say that a task
is of level if .

101Theory of Computing Systems (2023) 67:89–124

For each edge let 1 denote the 1 largest tasks in (breaking
ties in an arbitrary fixed way). Intuitively, we would like to select the tasks
due to the following lemma from [6, Lemma 3.1]. On a high level, is a set
of size that contains for every edge one of the 1 largest tasks that cover it in

.

Lemma 5 [6] For any 0, there is a set with
such that for each edge with 1 it holds that

1 , where is a universal constant that is independent of the
given instance.

The intuition is that if in we selected each task in twice, then we
would cover each edge to a larger extent than necessary, while increasing the num-
ber of selected tasks only by a factor 1 . This would yield some slack which
we would like to use in our computation.

Of course, we cannot select the tasks in twice. Instead, we run the follow-
ing algorithm that computes a set 1 2 3 with at most
tasks that gives us similar slack as on each edge. The reader may imagine
that 1 2 and that 3 are additional tasks that we select.

We initialize 1 . Let be the set of start and end vertices of the tasks in
. We partition according to the vertices in . Formally, we consider the partition

1 of such that for each 1 ... we have that 1

and and for each 2 ... 1 we have that . We say that

a task starts in an interval if is the leftmost interval that contains an edge of
and a task ends in an interval if is the rightmost interval that contains an

edge of . For each pair of intervals we guess whether there is a task from

that starts in and ends in . If yes, we add to 1 the largest input task
that starts in and ends in . Additionally, for each interval in which at least

one task from starts or ends we add to 1 the largest task such that
and define . Such a task exists since contains one such task.

Notice that, unlike the corresponding task in , the task added to 1 may
not necessarily start (or end) in . For each other intervals we define 0. See

Fig. 2 for an illustration of the construction of 1 . Let denote the set of values
such that there is an interval and a task with 1

2 4 (intuitively,

we will show later that we will not need tasks from sets with).
Next, we define a set 2 of additional slack tasks. Wemaintain a queue of

vertices that we call interesting and a set of tasks 2 . At the beginning, we initialize
2 and . In each iteration we extract an arbitrary vertex from
. Let be the set of vertices that were removed from the queue in an earlier

iteration. It is initialized . For each vertex let denote the set of input
tasks whose path uses , i.e., such that contains an edge incident to
. For each group with we guess whether there is a task in that

102 Theory of Computing Systems (2023) 67:89–124

Fig. 2 Construction of the set 1 . From bottom to top, the first rectangle represents a task from
that starts in an interval and ends in . The second task is the largest input task that starts in and
ends in . The third and fourth are the largest input tasks that respectively cover and

uses but that does not use any vertex in , i.e., we guess whether there is a task in
. If we guess such a task does not exist, we remove

from , add it to , and we move to the next vertex in . If we guess such a task
exists, we add to 2 the task with leftmost startvertex and the task with rightmost
endvertex from . For each added task, we add its start- and its
endvertex to if it has not been in before. Then we remove from and add it to

. The algorithm terminates once is empty. Let 2 be the resulting set. Figure 3

illustrates one iteration of the construction of 2 .

We prove some basic properties of the tasks in 1 2 .

Lemma 6 If the guesses are correct, the tasks in 1 2 fulfill the following
properties:

1. 1 2 ,

Fig. 3 One iteration of the construction of 2 . Vertices in are represented by black dots, and vertices
already in are represented by big crosses. In the current iteration, we consider vertex . Here,
there is a task (dashed rectangle) from that covers but no vertices in . Other rectangles
are the other input rectangles of the same rounded size that cover but no vertices in . We add to 2

the two rectangles with farthest endpoints (in gray)

103Theory of Computing Systems (2023) 67:89–124

2. for each interval in which at least one task from starts or ends, the
maximum demand of an edge is upper-bounded by 4 ,

3. log .

Proof 1. At the end of the construction of 1 , we have added, for each task in
that starts in and ends in : at most one task that starts in and

ends in ; at most one task that covers ; and at most one task that covers .

Then, 1 3 . By the construction of 2 , each task of is
guessed at most once (otherwise the second time this task would cover a vertex
in). Since at most two tasks are added in 2 after each correct guess, we

have that 2 2 . We conclude using Lemma 5 that 1 2

.
2. Property 2 follows since the size of the task selected for is at least as large

as the size of the largest task with and each task starts or
ends at a vertex in .

3. Since 4 , we have 8 and then the number of intervals is 8 . For
each interval , the tasks with size between 1

2 and 4 are contained in at
most log1 8 2 groups . Thus, 8 log1 8 2 log .

Let now be the set of start- and endvertices of tasks in 1 2 and let
0 1 be the partition into subpaths defined by the vertices in . In the
following, we partition intervals into three groups according to the number of tasks
from that start or end in them. Given an interval , let be the number of tasks
that start or end in . Let 5 5 be a constant defined due to the following
lemma. We say that is sparse if 1 , medium if 1 1 5 and
dense if 1 5. We will later make use of the fact that the number of tasks that
start or end in sparse and dense intervals are a factor 1 5 apart.

Lemma 7 There exists an integer 5 5 such that the number of tasks in
that start or end in a medium interval is at most 2 .

Proof Let be the number of tasks from that start or end in a medium inter-
val, for a given in 5 5 . Remark that for any two distinct in 5
1 1 , the corresponding sets of medium intervals are disjoints, so that each
task starts or ends in a medium interval for at most two values in this set. Therefore,

1
1 5 2 2 , and in particular there exists an integer in 5 5

such that 2 .

Algorithmically, we guess and for each interval we guess whether it is sparse,
medium, or dense. Note that there are in total 53 many guesses. We define now

some more tasks (in addition to 1 2) that will provide us with additional
slack. For each medium or dense interval we select the largest task such
that . Also, for each maximal set of contiguous sparse intervals 1

we select the largest task such that , if such a task

104 Theory of Computing Systems (2023) 67:89–124

exists. Let 3 denote the resulting set of tasks. We call 1 2 3 the

slack tasks. For each interval we denote by the slack in the interval given by ,
i.e., min . To summarize, we obtained the following properties
of our intervals and .

Lemma 8 The tasks and the intervals 0 1 ... have the following properties:

– 0 1 is a partition of into 1 intervals
– ,
– for each edge that is the leftmost or the rightmost edge of an interval we have

that there are at most 1 tasks such that 1 4 ,
– for each dense interval we have that 1

4 max ,
– for each maximal set of contiguous sparse intervals 1

we have that min is at least the size of the largest task
with , assuming that contains such a task .

Proof We first show that . In fact, note first that in 1 , if we guess

correctly, we do not add more tasks than 3 . Second, in 2 , if we guess
correctly, we add at most new tasks until the queue empties. Third, in

3 we add at most two tasks for each dense or medium interval, and the number of
such intervals is at most 2 . So in total we have at most tasks.

Now, consider an interval . If no tasks from start or end in , then we

must have added to 1 tasks that completely cover as large as tasks in
that completely cover , if they exist. Thus, by Lemma 5, there are at most 1 tasks
in , for all that are larger than . If some task from starts

or ends in then we added a task in 1 that completely covers , and thus

4 for all edges . And then in 2 we added a task that completely covers
of level equal or higher as each task in that covers the outermost edges of
, because the outermost vertices of must have been in in some iteration. Thus,

by Lemma 5, there are no more than 1 tasks in of size larger than 1
using the leftmost or the rightmost edges of .

By the definition of 3 , it contains for each dense or medium interval , a task
such that and of size as large as the task of maximum size of that uses

any edge of . Thus 1
4 max . We also added for each maximal

set of contiguous sparse intervals the largest task such that , and thus
max min .

If then is a solution of size 1 in which
each edge has some slack and hence we can use this slack algorithmically. We guess
whether . If not, we guess and recurse on a new instance
in which we assume that is already selected. Formally, this instance has
input task , each edge has demand

, and the parameter is . We will show later

that the resulting recursion tree has size
2
. In the sequel, we will assume that

105Theory of Computing Systems (2023) 67:89–124

and solve the remaining problem without any further recursion in
time 1 for some function .

5.1 Medium Intervals

We describe a routine that essentially allows us to reduce the problem to the case
where there are no medium intervals. From Lemma 7 we know that there are at most
2 tasks in that start or end in a medium interval. Therefore, for those tasks
we can afford to make mistakes that cost us a constant factor, i.e., we can select

instead of 2 of those tasks.
Let med be the set of tasks that start or end in a medium interval. Let
be a medium interval. In , the demand of the edges in is partially cov-

ered by tasks med that completely cross , i.e., such that .
We guess an estimate for the total size of such tasks, i.e., an estimate for

med . Formally, we guess 3 . The

corresponding estimate of is given by 3.

Lemma 9 We have that 0 ... 3 and for each edge it holds that

med 3 .

Proof We first show that 3 . Since has size and contains the largest
input task that crosses , no task in med that crosses can be larger than
. Thus we have , which implies the claimed bound. Next, for each edge

, we have

med 3

med med 3

.

This gives the bound of the lemma.

Since there are only intervals, there are only many guesses in total. We
construct an auxiliary instance on the same graph with input tasks med
and demand med max 3 0 for each in a medium
interval, and med 0 for each edge in a sparse or dense interval. We run the
4-approximation algorithm [5] on this instance, obtaining a set of tasks med med.

Lemma 10 In time 1 we can compute a set med med with med 4

med such that med
med for each edge .

For our remaining computation for each medium interval we define the demand
of each edge to be 3. Lemma 9 implies that any solution

for this changed instance yields a solution med with at most

106 Theory of Computing Systems (2023) 67:89–124

tasks for the original instance. In the sequel, denote by the optimal solution to
the new instance.

5.2 Heavy Vertices

Our strategy is to decouple the sparse and dense intervals. A key problem is that there
are tasks such that contains edges in sparse and in dense intervals.
Intuitively, our first step is therefore to guess some of them in an approximate way.

There are vertices that are used by many tasks in for some level
. Formally, we say that for a set of tasks a vertex is -heavy if
there are more than 1 1 tasks such that starts or ends in a sparse
or a medium interval. We are interested in vertices that are -heavy
for some . It turns out that we can compute a small number of levels for which this
can happen based on the slacks of the intervals .

Lemma 11 By losing half of the slack in each interval, we can assume that if
is -heavy for some 0, then 1 1

2 4 for some
interval .

Proof Let 1
2 min . This set covers in total a

very small demand that can be compensated by the slack. Precisely, we have that for
each edge , and for each interval , 2 2. Then, we
can simply “forget” these tasks, by covering the corresponding demand by half of the
slack, and then use the other half for the remaining computation. Any task from the
remaining instance has now size at least 1

2 for at least one interval . To prove

that for some it also holds that 1 4 , we take as the interval closest
to to the right or to the left such that 1 1

2 and at least 1 1 2 tasks
from use an edge of . W.l.o.g. assume is to the right of . Then,
the leftmost edge of is used by more than 1 tasks and then contains a

task of size at least 1 that covers that edge. When constructing 2 the start-

vetex of must have been an interesting vertex, so 2 contains a task that covers
of size at least 1 , so 1 .

Therefore, let denote the set of levels such that a vertex can be
-heavy according to Lemma 11, i.e., 1 1

2 4

. Intuitively, for each level and each -heavy vertex we
want to select a set of tasks that together cover as much as the tasks
in due to which is -heavy, i.e., the tasks in .

To this end, we do the following operation for each level . We perform
several iterations. We describe now one iteration and assume that is the
vertex that we processed in the previous iteration (at the first iteration is undefined
and let in this case). See Fig. 4 for a sketch of the strategy. Recall that is
the set of start- and endvertices of the tasks in 1 2 , so . We

107Theory of Computing Systems (2023) 67:89–124

Fig. 4 Sketch of the strategy to select tasks of level that cross a heavy vertex but not . For each pair
of intervals we guess the number of tasks from that start in and end in , and

select tasks accordingly. Then, from the unselected tasks of , we add the 2 2 longest

to the left and the 2 2 longest to the right to compensate the different sizes within
and the errors we made within each interval. Adding these extra tasks is not too costly because at least
1 1 tasks cross , and therefore, they are at most

guess the leftmost vertex on the right of that is -heavy. Let
. We want to compute a set that is not much

bigger than , i.e., 1 and that covers at least as

much on each edge as , i.e., . We initialize

. We consider each pair of intervals and such that all edges of are
on the left of (but might have as an endpoint) and all edges of are on the right
of (but might have as an endpoint) and such that or is sparse or medium. We

guess the number of tasks from that start in and end in
(and hence are contained in). If is sparse or medium (and hence then can

be anything), we add to the tasks from with rightmost endvertex
that start in and end in . If is dense (and hence then is sparse or medium)

we add to the tasks from with leftmost startvertex that start in and

end in . Note that . Intuitively, the tasks in cover each
edge of to a similar extent as the tasks in . We will show that the difference

is compensated by additionally adding the following tasks to : we add to the
2 2 tasks from with leftmost start vertex.

After this, we add to the 2 2 tasks from

with rightmost end vertex. Let denote the resulting set. We prove that it covers
as much as and that it is not much bigger than .

Lemma 12 For each edge in a dense or a sparse interval, we have that
. For each edge in a medium interval, we have

that med med . Also, it holds that
1 .

108 Theory of Computing Systems (2023) 67:89–124

Proof Let denote the set after the first phase of the procedure, that is before

adding the 2 2 tasks with leftmost startvertex. We assume
that our guesses are correct and then in particular .

Let be an edge on the left-hand (resp. right-hand) side of that lies in
an dense or sparse interval . The number of task from and that start
in some interval on the left-hand (resp. right-hand) side of , i.e. with
(resp.), is equal if we have guessed correctly. When is dense, since we
added some tasks with leftmost startvertex (resp. rightmost endvertex), the number
of tasks that start (resp. end) in and intersect is greater in than in .

It follows that . However, this might not be true when
is sparse. Fortunately, the number of such tasks from is bounded by 1 so

that 1 .

In all cases, the remaining uncovered demand due

to rounded sizes is at most 1 1 . This difference is
compensated by the 2 2 additional tasks with leftmost startvertex

(resp. rightmost endvertex) added in at the end of the procedure. Indeed, assume
first that all these tasks cover . The additional demand covered is then at least 1

2 2 1 1 . On the other hand, if

not all of them contain then it means that contains all the tasks in
that start or end in a sparse interval, and in particular so that

. When is in a medium interval the proof works
similarly, using additionally the estimation due to Lemma 9. Notice that thanks to
this lemma we do not need to cover using tasks from med and all other tasks
intersecting cross completely the medium interval. Finally, is not much bigger
than . Indeed,

2 2 2 2

1 4 .

The last inequality uses the fact that is heavy, so that 1 . That
concludes the proof.

We continue with the next iteration where now is defined to be the vertex
from above. We continue until in some iteration there is no vertex on the
right of that is -heavy. Let denote all vertices that at
some point were guessed as being the -heavy vertex above. Let

denote the set of computed tasks and define

.

Lemma 13 We have that for each edge in a dense
and a sparse interval, and med med for each edge
in a medium interval. Also, it holds that 1 .

109Theory of Computing Systems (2023) 67:89–124

Proof This follows directly from Lemma 12 applied to all and
that are pairwise disjoint.

Lemma 14 For computing the set there are at most possibilities for all
guesses overall. Given the correct guess we can compute the resulting set in time

1 .

Proof Denote an operation of guessing tasks for the pair of intervals , for

vertex and level by the tuple . Note that there are
2 1 possible operations, and that we can make at most operations

where 0 (otherwise we are adding too many tasks). Therefore, we have at

most
1

possibilities for all guesses. For each guess we can compute the
resulting set easily in time 1 by simply selecting the corresponding tasks.

It remains to compute a set of tasks such that is feasible. Intuitively,
should cover as much as on each edge. To this end, we decouple

the problem into one for the dense intervals and one for the sparse intervals.

5.3 Dense Intervals

Recall that for each dense interval we have that 1
4 max (see

Lemma 8). Hence, intuitively it suffices to compute a solution for that is feasible
under 1 1

4 -resource augmentation. So in order to compute a set of tasks that
cover the remaining demand in all dense intervals (after selecting) we could
apply the algorithm for resource augmentation from Section 3 directly as a black box.
However, there are also the sparse intervals and it might be that there are tasks

that are needed for a dense interval and for a sparse interval. We want
to split the remaining problem into two disjoint subproblems. To this end, let
denote the set of all tasks that start and end in a dense interval. We guess an estimate
for the demand that such tasks cover in the sparse intervals. Therefore, for each sparse

interval we guess a value such that
4

4 for

each edge (note that is identical for each edge
). Then essentially equals and we show that

the difference is compensated by our slack, even if we cover a bit less than units
on each edge .

Lemma 15 Let be a sparse interval. Then 0 4 2 4 4 4 and

1
1 1

4
2 for each .

Proof The inequality follows directly from
the definition of . Moreover, either 0 and the
statement is true, or is at least the size of the largest task that crosses . It implies

110 Theory of Computing Systems (2023) 67:89–124

that . Finally, it follows from the inequality
1 1

1 that

1

1 1
4

1

1 1
4

4

1

4 4

1

4 2
2 .

We generate now an auxiliary instance where in each sparse interval we reduce
the demand of each edge to (but do not change the demand on any edge
in a dense interval) and remove all input tasks such that does not contain an
edge of a dense interval. Also, for each remaining task we shorten its path to
a path such that is the longest path contained in that starts and ends
on a vertex in a dense interval. We apply the algorithm from Section 3 with 1 -
resource augmentation to this instance with 1 4 . We obtain a solution 1

such that for each edge in an interval , the solution 1 covers at least 2
when is dense and 2 when is sparse. Notice that according to Lemma 8,
we have 4 for each edge in a dense interval and for each edge lying
in a maximal set of contiguous sparse intervals that is completely crossed by at least
one input task.

Lemma 16 In time
2 log 1 we can compute a set 1 such that

– for each edge in a dense interval we have that 1 ,
– for each edge in a sparse interval we have that 1

2 .

Proof For each edge in a dense interval, either 1 cover all the demand or the
uncovered demand is at most 1

4
1
4 . Then, using the

fact that the slack is large enough, i.e. 1
4 (Lemma 8) and the fact that

covers at least as much as (Lemma 13), we have

1 2 1

1

1 1
4

1
1

4

1

4

.

For each edge in a sparse interval , we apply Lemma 15 observing that the
solution 1 covers at least 1

1 1
4

.

111Theory of Computing Systems (2023) 67:89–124

Due to Lemma 16 the set 1 covers the complete demand in each
dense interval and some portion of the demand in each sparse interval. Therefore, for
the remaining problem for each edge in a sparse interval we change its demand
to . Also, we remove all tasks in from the input, i.e., we work with
the input tasks . We claim that is a
solution to the residual instance.

Lemma 17 For each edge in a sparse interval we have that .

Proof Follows from the fact that is a lower bound on ,
for each edge in a sparse interval.

5.4 Sparse Intervals

Recall that in each sparse interval there are at most 1 tasks from that
start or end in (and hence the same is true for). Therefore, for
each sparse interval we can guess these tasks in time 1 . Unfortunately, there
can be up to sparse intervals, and therefore we cannot guess all these tasks
directly. However, note that each vertex is used by at most 1 1 tasks in

for each group . Using this, we devise a dynamic program (DP) that
processes the intervals in the order of their slacks and guesses step by step the at
most 1 tasks that start or end in each of them. In order to restrict the number of
DP-cells (and thus the running time) to a polynomial, we use the tasks in in order
to “forget” some previously guessed tasks, i.e., we argue that the forgotten tasks have
a total size that is at most the size of the slack due to . Let us define a constant

1 log1
6

2 and a constant 1 1 2 1. Formally,

each DP-cell is described by

– two intervals such that for each interval between and it holds
that max ,

– two sets of tasks and of size at most such that for each (resp.
) it holds that (resp.) and

2 (resp. 2) for each edge
(resp.), i.e., the tasks in (resp.) essentially cover the demand of
(resp.).

Such a cell represents the subproblem of selecting a set of tasks

such that the path of each task lies between and and does not use any edge
of and such that cover the demand for each edge between

and together with half of the slack, i.e., 2 .
Suppose we are given a cell and we want to compute a solu-

tion for it. Let denote the interval between and with

smallest slack (breaking ties arbitrarily). Let be the greatest integer such that
1 . Let . The intuition is that we guess the

112 Theory of Computing Systems (2023) 67:89–124

tasks in that use and when we recurse we forget all tasks that are not in
. We will show that our slack compensates the forgotten tasks. Therefore,

we can ensure that if we always guess all tasks from correctly then we will
have only subproblems where and . Formally,

we enumerate all sets of tasks such that there are at most tasks in
, for each , and the tasks in cover the demand of
together with half of the slack in , i.e., 2 for

each edge . For a fixed guess of we associate the solution
. We define

to be the solution of minimum size associated to one of the enumerated sets . For
DP-cells such that there is no interval between and we define

. See Fig. 5 for a sketch of the recursion. For convenience,
assume that we append two dummy intervals 1 and 1 on the left and on the
right of that are not used by any task and that have zero demand on each of their
edges. Also, we define them to have zero slack, i.e., 1 1 0. We output the
solution 1 1 .

In order to show that the above DP is correct, one key step is to argue that it is
unproblematic to neglect the tasks that are not in in each respective step.
This is shown in the following lemma.

Lemma 18 Let be two intervals such that for each interval between

and it holds that max . Let be the greatest integer such that

1 for all intervals between and . Then for each edge between

and it holds that 2 .

Fig. 5 Sketch of a recursive call of the DP to cover sparse intervals. The subproblem is defined by intervals
and , and sets of at most tasks and that cover them, and such that all intervals in between

have more slack than max . We find , an interval of smallest slack between and , guess the

at most tasks in needed to cover its demand, and recurse between and and between

and . Tasks that are too small (that are not in) can be forgotten because they are compensated
by the slack

113Theory of Computing Systems (2023) 67:89–124

Proof For each level , we have 3 1. This is because edge
must belong to a sparse interval , and all tasks in either use the

leftmost or the rightmost edge of , or start or end in . At most 2 1 tasks in
use the leftmost or rightmost edge of because there are no heavy

vertices, and only 1 tasks start or end in . Then,

3
1

1 1 3
1

1 1

3 1 1

1 log1 2 1 2 2 2.

This inequality together with Lemma 17 imply the inequality claimed.

Also, we need to show that when we enumerate the sets above, one candi-

date set consists of the tasks in that use but neither nor and that in
particular the latter set contains at most tasks.

Lemma 19 Let be a sparse interval and let be the greatest integer such that

1 . Then there are at most tasks in that use an edge
of .

Proof First, since is sparse, there are at most 1 tasks that start or
end in , but such that . Then, from Lemma 8 there are at most 1
tasks that cross , i.e. such that , that have size .
Therefore, the remaining tasks have a level between and

1, and are such that . Thus, they use both the leftmost edge and the
rightmost edge of , and then there are at most 1 1 tasks from each of these
levels. We conclude that 1 1 2 1.

Equipped with Lemmas 18 and 19 we can prove that the above DP is correct by
arguing that it will produce if it makes the corresponding guesses for each DP-
cell. Also, by construction the returned solution is feasible. This yields the following
lemma.

Lemma 20 There is an algorithm with a running time of 1 4
that computes a

set 2 with 2 and 2 2 for each
edge .

Proof Note first that if the algorithm returns a solution, it must be feasible by con-
struction. We argue inductively that it is feasible to guess the tasks in so the
solution must be such that 2 . Consider a cell , and

let and be the largest integers such that 1 and 1 .
Assume that and that

. Let be the interval between and

114 Theory of Computing Systems (2023) 67:89–124

with smallest , and let be the largest integer such that 1 .
From Lemma 19 we know that the set
contains at most tasks, and from Lemma 18 that, together with half the size of
the slack tasks, they cover the demand in the interval . So it is a feasible guess
for the algorithm to take

. Since by the definition of the cells

max , we have that max . Thus, we recover that

. The base case
is trivial, as no task intersects our dummy intervals.

We have many intervals, and many different subsets of of size at
most . Thus, there are only many DP cells. For solving each cell we guess
at most tasks, so we solve each cell in time . Thus, the algorithm terminates
in time 2 . Since 1 log1 1 1 1 4 ,

the algorithm takes time 1 4
.

It remains to argue that our computed sets med
1 2 together form

a feasible solution and do not contain too many tasks.

Lemma 21 We have that med
1 2 is a feasible solution to the

original input instance and med
1 2 1 .

Proof The feasibility follows directly from Lemmas 9, 13, 16, 17 and 20. First Lem-
mas 7 and 8 give us that med . From Lemma 13 we know that
1 . From Lemma 20 we know that 2

. Then, it is enough to prove that 1 .
Recall that 1 is obtained with our algorithm for instances with resource aug-

mentation, that outputs an optimal solution. So it is enough to show that there is a
solution for the problem in the dense intervals of size .

Let denote the subset of tasks of that intersect some dense interval.
Since each such task starts or ends in a sparse interval, the number of tasks in
intersecting some vertex in is at most 1 1 from each group . Then, for each

dense interval , let be the greatest integer such that 1 .

We consider now the subset of that contains all tasks for which there
is at least one dense interval such that its level is at least , where

1 log1
6

1 . Formally,

OPT dense, such that and .

We show that . Consider a dense interval with minimum
slack among all dense intervals and denote respectively and the leftmost and

the rightmost edge in . Consider now the subset
of tasks that intersect or . We know from Lemma 8 that the slask is such that there

115Theory of Computing Systems (2023) 67:89–124

are at most 2 tasks such that 1 4 , and recall that

from each group there are at most 2 1 tasks in . Therefore we have

2 1 2
1 2 2 2 log1

1 2
1 .

We know that 5 1, and log1 1 2 2 for small values of . It

follows that 21 4. We recursively apply the same analysis to the set

going to the next dense interval of minimum slack.
At the end this proved that 21 4 where is the number

of dense intervals. Moreover, is at most 2 5 since at least 1 5 tasks
from start or end in each dense interval. This finally implies that
42 .

Then, the set of remaining tasks only covers a tiny fraction of
each edge in a dense interval . Indeed, we have that all tasks in

have a level at most where is such that 1 . Moreover, at most

1 1 tasks from each group intersect . Then, using the very same argument as in
Lemma 18 we have that the demand covered is at most half of the slack for each edge:

2. There,
is a feasible solution for the auxiliary problem for dense intervals that we solve using
Theorem 2. It follows that the solution 1 returned by the resource augmentation
algorithm has size at most so that

1 2
med

1 2
med

1

1 .

This concludes the proof.

We complete the proof of Theorem 3 by bounding our overall running time.

Lemma 22 We can compute the sets med
1 2 in time

2 log

1 1
.

Proof First, to obtain the set of slack tasks we make guesses, because we
select at most tasks from 1 options. Then we guess which tasks are in

and recurse until the intersection is empty. The recursion tree has depth
at most because has size at most , so if we extract an element from
at each recursive call, is empty after calls. Each node has at most 2
childs, this is, for the guessing of and 2 for the subsets of . Therefore,
to obtain the definitive , we make in total at most

2
guesses. Selecting the

corresponding tasks takes time 1 . Then, assuming that the guesses are correct,

116 Theory of Computing Systems (2023) 67:89–124

1. we make new guesses and compute for each guess, a candidate set med in
time 1 (Lemma 10),

2. we make at most guesses and compute for each guess a candidate set
in time 1 (Lemma 14).

3. we compute a set 1 in time
2 log 1 (Lemma 16).

4. we compute a set 2 in time 1 4 1 1
(Lemma 20).

Thus, the overall running time of our algorithm is
2 log 1 1

.

6 W 1 -Hardness

In this section we prove that UFP-cover is 1 -hard if the parameter represents
the number of tasks in the optimal solution. Our proof goes along the lines of the
proof that UFP (packing) is 1 -hard for the same parameter as in [29].

Theorem 7 UFP-cover problem is 1 -hard when parameterized by the number of
tasks in the optimal solution.

An immediate consequence of this theorem is that the problem is unlikely to
admit parameterized approximation scheme (EPAS), i.e., an algorithm with run-
time 1 that computes a 1 -approximation. This is because in the
unweighted case, by setting 1 2 , we could obtain an optimal solution with
such an algorithm.

Corollary 1 There is no EPAS for the UFP-cover problem, unless 1 .

To prove the theorem we give a reduction from the -subset sum problem which
is 1 -hard [20]. Given a set of values 1 ... , a target value and an
integer , the goal is to choose exactly values from that sum up to exactly .

Suppose we are given an instance of -subset sum. First, we claim that we can
assume w.l.o.g. some properties of it.

Lemma 23 W.l.o.g. we can assume that there are values 1 ... , not necessarily
positive, such that for each and that 1 2 .

Proof Given an arbitrary instance specified by 1 ... , and , we define
a new equivalent instance defined via values 1 ... , , and . Let

1 . Then for each we define 2 and we set
2 . Then 2 and 2

for each .We define for each and then
for each . Then it holds that 1 1

2 . For any indices 1 ... it holds that 1 if and only if

1 1 2 2 .

117Theory of Computing Systems (2023) 67:89–124

We construct an instance of UFP-cover that admits a solution with 2 tasks if and
only if the given -subset sum is a yes-instance. Our UFP-cover instance has a path
with 2 vertices 0 1 ... 1. Denote the leftmost and the rightmost edge of
the path by and , respectively. We define . For all other
edges we define 2 . Assume that the values in are ordered
such that 1 2 Let . We introduce two tasks with

0, , , 1, and
2 . See Fig. 6 for a sketch.

In order to get some intuition about the constructed instance, we prove the follow-
ing lemma.

Lemma 24 Any feasible solution contains at least 2 tasks. Among them are tasks
covering and tasks covering . If a task covers then it does not cover
and vice versa.

Proof We have that and each task covering has a size for some
1 . Hence, any set of at most 1 tasks covering has a total size of at

most 1 1 1 2 . Therefore,
must be covered by at least tasks. Similarly, any set of at most 1 tasks

covering , corresponding to indices of the input values, has a total size of at most
2 2 1 1 min

1 1 and thus also must be covered by at least
tasks. The last statement follows from construction. Together this implies that any

feasible solution contains at least 2 tasks.

In the next lemma we show how to construct a solution with 2 tasks if the given
-subset sum instance is a yes-instance.

Lemma 25 If the given -subset sum instance is a yes-instance, then the constructed
UFP-cover instance has a solution with 2 tasks.

Proof Let be indices such that . Then for each we
select the tasks and . Let denote the resulting set of tasks. We verify that

Fig. 6 Sketch of the reduction used in order to prove Theorem 6. The sketch shows the tasks and
for only one index . The figure is essentially identical to a figure in [29], taken with consent of the author

118 Theory of Computing Systems (2023) 67:89–124

this yields a feasible solution. For the edge we have that the total demand of tasks
using it is

.

For the edge the total demand of the tasks using it is

2

2

.

Consider an edge with . For each index we have that or
covers . Hence, is covered by at least tasks in . Thus, their total size is at

least

min 2

min

1

2

.

Conversely, we show that if the UFP-cover instance has a solution with at most
2 tasks then the -subset sum instance is a yes-instance. Suppose we are given such
a solution for the UFP-cover instance. First, we establish that for each the
solution selects either both and or none of these two tasks.

Lemma 26 Given a solution to the UFP-cover instance with 2 tasks. Then
there is a solution with 2 tasks such that for each we have that either

or .

Proof First we observe that for each 1 ... 1 the edge 1 needs
to be covered by at least tasks in , since the total size of any set of 1 tasks

is at most max 1
2 . On the other hand, any set of tasks is sufficient to cover 1

119Theory of Computing Systems (2023) 67:89–124

since the size of any set of tasks is at least
2 which equals the demand of 1 . We

transform to a solution for which the claim of the lemma holds. First suppose
that there is a 1 ... 1 such that the edge 1 is used by at least

1 tasks in . Let be the smallest value in 1 ... 1 with this property.
Then there must be a task that starts on . The only such task is and
hence . However, tasks would suffice to cover 1 . We observe that

2 2 1 1 . Therefore, we replace
by 1 in and note that also after this change is a feasible solution. We do
this operation until for each the edge 1 is covered by exactly tasks
in . Let denote the resulting set.

Lemma 24 states that there are tasks in covering and tasks in covering
. The lemma also states that a task covering does not cover and vice versa.

Hence, there are exactly tasks in covering and exactly tasks in covering
. Therefore, if does not satisfy the claim of the lemma, then there must be an

index such that but . By construction, and the
edge 1 is used by exactly tasks in . However, the task is the only
input task whose start vertex is and . Therefore, the edge 1 is
used by at most 1 tasks in . However, as argued above, the total size of any
set of 1 tasks is less than 2 which equals the demand of 1 .
Hence, the demand of 1 is not completely covered, which implies that is
infeasible, which yields a contradiction.

Suppose we are given a solution to the UFP instance with 2 tasks which
satisfies the condition of Lemma 26. Let be the set of indices such that

. Note that Lemma 26 implies that .

Lemma 27 We have that .

Proof Let and denote the set of tasks in using and ,
respectively. Then . On the other hand, due to

Lemma 26 we have that 2 and hence

2 . Therefore .

Hence, we proved that the constructed UFP-cover instance has a solution with 2
tasks if and only if the -subset sum instance is a yes-instance. This implies that
UFP-cover is 1 -hard when parameterized by the number of tasks in the optimal
solution. This completes the proof of Theorem 6.

7 Conclusion and Open Questions

In this paper we presented a PAS for UFP-cover and showed that the problem is FPT
under resource augmentation or if additionally the number of different task sizes are
bounded by a parameter. It remains open whether the problem is FPT if only the
number of task sizes is bounded by a parameter, but not the number of tasks in the

120 Theory of Computing Systems (2023) 67:89–124

optimal solution. Also, we showed that UFP-cover is 1 -hard. Our 1 -hardness
proof is based on a reduction from the -subset sum problem, which can be solved
in pseudopolynomial time . Hence, it is open whether UFP-cover is FPT if
the input data are polynomially bounded. Our PAS can be simplified in this setting,
however, it crucially relies on the slack obtained by selecting additional tasks and
thus does not solve the problem optimally in this case.

Appendix A: Reduction fromGeneralized Caching in the Fault Model

A reduction from generalized caching in the fault model to UFP-cover was given
in [1, 5]. For completeness we present the reduction here using our notation. In the
fault model of general caching we are given a value that denotes the size of
the cache and we are given a set of pages . Each page has a (not necessarily
unit) size . Also we are given a set of requests where each request
is characterized by a time 0 and a page meaning that at time the
page has to be present in the cache. The goal is to decide at what times we bring
each page into the cache in order to minimize the total number of these transfers,
assuming that initially the cache is empty. We show here how to reduce this problem
to UFP-cover with unit weights.

Lemma 28 Given an instance of general caching in the fault model, in
polynomial time we can compute an instance of UFP-cover such that
for any solution to with cost , there is a solution to
with , and vice versa.

Proof W.l.o.g. we can restrict ourselves to solutions of where each page
enters the cache only when it is requested and leaves the cache only right after it
is requested, and to instances where each page is requested at least once and

. Thus, a solution is completely defined by deciding at each point in time
whether we evict the page that was just requested or whether we keep it in the cache
until it is requested again. We construct the path by defining one edge
for each time such that there is a request with , and ordering the edges
on the path by increasing values of . For defining the tasks , we initialize .
Then, for every page and every pair 1 2 of consecutive requests of
page , we add a task 1 2 to with size 1 2 . The subpath 1 2

is the one that starts in the right vertex of 1 and ends in the left vertex of 2 .
We define the demand of the edge to be
for every time . We also add an extra edge 0 at the left of with capacity 0

and we add a task with 0 and for each page
. The cost of these tasks is exactly the total cost of loading each page into the

cache once, i.e., the first time that the respective page is requested.
Given a solution to , we construct a solution for in the

following way. For every page and every pair of consecutive requests 1 2 of page
, we add 1 2 to if and only if page is evicted from (and therefore re-loaded

into) the cache between 1 and 2 . We also add to for all . It is clear that

121Theory of Computing Systems (2023) 67:89–124

is exactly the number of times a page is brought into the cache in the original
solution. We now check that is a feasible solution. Consider an edge .
Then is the sum of sizes of the pages that are in the cache at time that are
not requested exactly at time . The total size of all pages in the cache is at most , so

. Then, as

and we conclude that .

Also it holds by construction that 0 0 .
Let now be a feasible solution to . Of course for all .

This accounts for the first time each page is brought into the cache. We construct a
solution to as follows. For every page and every pair of consecutive
requests 1 2 of page we keep page in the cache between 1 and 2 if and
only if 1 2 . Thus, for each element in we have to bring a page into
the cache once, and then the cost of the solution is exactly . We have to check
that the size of the pages in the cache never exceeds in . In fact, note that the
total size of the pages in the cache at time is . But

, and therefore,

.

Funding Andrés Cristi Supported by CONICYT-PFCHA/Doctorado Nacional/2018-21180347. Andreas
Wiese Partially supported by FONDECYT Regular grants 1170223 and 1200173.

References

1. Albers, S., Arora, S., Khanna, S.: Page replacement for general caching problems. In: SODA, vol. 99,
pp. 31–40. Citeseer (1999)

2. Antoniadis, A., Hoeksma, R., Meißner, J., Verschae, J., Wiese, A.: A QPTAS for the general schedul-
ing problem with identical release dates. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl,
A. (eds.) 44th International Colloquium on Automata, Languages, and Programming (ICALP
2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 31:1–31:14,
Dagstuhl, Germany (2017). http://drops.dagstuhl.de/opus/volltexte/2017/7457 https://doi.org/10.
4230/LIPIcs.ICALP.2017.31 Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

3. Bansal, N., Chakrabarti, A., Epstein, Schieber, B.: A quasi-PTAS for unsplittable flow on line graphs.
In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC 2006),
pp. 721–729. ACM (2006)

4. Bansal, N., Krishnaswamy, R., Saha, B.: On capacitated set cover problems. In: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 38–49. Springer
(2011)

5. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A Unified Approach To Approx-
imating Resource Allocation and Scheduling, vol. 48, pp. 1069–1090. ACM, New York (2001).
https://doi.org/10.1145/502102.502107

122 Theory of Computing Systems (2023) 67:89–124

http://drops.dagstuhl.de/opus/volltexte/2017/7457
https://doi.org/10.4230/LIPIcs.ICALP.2017.31
https://doi.org/10.4230/LIPIcs.ICALP.2017.31
https://doi.org/10.1145/502102.502107

6. Batra, J., Garg, N., Kumar, A., Mömke, T., Wiese, A.: New approximation schemes for unsplittable
flow on a path. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), pp. 47–58 (2015). https://doi.org/10.1137/1.9781611973730.5

7. Bazgan, C.: Schémas d’approximation et Complexité Paramétrée, Rapport du stage (DEA) Technical
report Universitée Paris Sud (1995)

8. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer. IBM Syst. J. 5(2),
78–101 (1966)

9. Bonsma, P., Schulz, J., Wiese, A.: A constant-factor approximation algorithm for unsplittable flow on
paths. SIAM J. Comput. 43, 767–799 (2014)

10. Cai, L., Huang, X.: Fixed-parameter approximation: Conceptual framework and approximability
results. In: Proceedings of Parameterized and Exact Computation, Second International Workshop,
IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, pp. 96–108 (2006). https://doi.org/10.
1007/11847250 9

11. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated
network design and covering problems. In: Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2000), Society for Industrial and Applied Mathematics, pp. 106–115
(2000)

12. Cesati, M., Trevisan, L.: On the efficiency of polynomial time approximation schemes. Inf. Process.
Lett. 64(4), 165–171 (1997). https://doi.org/10.1016/S0020-0190(97)00164-6

13. Chakrabarty, D., Grant, E., Könemann, J.: On column-restricted and priority covering integer
programs. In: International Conference on Integer Programming and Combinatorial Optimization,
pp. 355–368. Springer (2010)

14. Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In: Proceedings of Parameter-
ized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland,
September 13-15, 2006, pp. 109–120 (2006). https://doi.org/10.1007/11847250 10

15. Cheung, M., Mestre, J., Shmoys, D.B., Verschae, J.: A primal-dual approximation algorithm for min-
sum single-machine scheduling problems. SIAM J. Discret. Math. 31(2), 825–838 (2017)

16. Chrobak, M., Woeginger, G., Makino, K., Xu, H.: Caching is hard, even in the fault model. In: ESA,
pp. 195–206 (2010)

17. Cristi, A., Wiese, A.: Better approximations for general caching and UFP-cover under resource
augmentation. Unpublished (2019)

18. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized approximation problems. In: Proceed-
ings of Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich,
Switzerland, September 13-15, 2006, pp. 121–129 (2006). https://doi.org/10.1007/11847250 11

19. Feldmann, A.E., Karthik, C.S., Lee, E., Manurangsi, P.: A survey on approximation in parame-
terized complexity hardness and algorithms. Algorithms 13(6), 146 (2020). https://doi.org/10.3390/
a13060146

20. Fellows, M.R., Koblitz, N.: Fixed-parameter complexity and cryptography. In: International Sympo-
sium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, pp. 121–131. Springer
(1993)

21. Franaszek, P.A., Wagner, T.J.: Some distribution-free aspects of paging algorithm performance. J
ACM 21(1), 31–39 (1974). https://doi.org/10.1145/321796.321800

22. Grandoni, F., Mömke, T., Andreas, W., Zhou, H.: To augment or not to augment: Solving unsplittable
flow on a path by creating slack. In: Proc. of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017) (2017). To appear

23. Grandoni, F., Mömke, T., Wiese, A., Zhou, H.: A (5/3+)-approximation for unsplittable flow on a
path: placing small tasks into boxes. In: Proceedings of the 50th Annual ACM Symposium on Theory
of Computing (STOC 2018), pp. 607–619. ACM (2018)

24. Höhn, W., Mestre, J., Wiese, A.: How unsplittable-flow-covering helps scheduling with job-dependent
cost functions. Algorithmica 80(4), 1191–1213 (2018)

25. Irani, S.: Page replacement with multi-size pages and applications to web caching. In: Proceedings of
the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 701–710. ACM (1997)

26. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization. In: Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pp. 224–237.
ACM (2017)

27. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008).
https://doi.org/10.1093/comjnl/bxm048

123Theory of Computing Systems (2023) 67:89–124

https://doi.org/10.1137/1.9781611973730.5
https://doi.org/10.1007/11847250_9
https://doi.org/10.1007/11847250_9
https://doi.org/10.1016/S0020-0190(97)00164-6
https://doi.org/10.1007/11847250_10
https://doi.org/10.1007/11847250_11
https://doi.org/10.3390/a13060146
https://doi.org/10.3390/a13060146
https://doi.org/10.1145/321796.321800
https://doi.org/10.1093/comjnl/bxm048

28. Sloper, C., Telle, J.A.: An overview of techniques for designing parameterized algorithms. Comput.
J. 51(1), 122–136 (2008)

29. Wiese, A.: A (1+epsilon)-approximation for unsplittable flow on a path in fixed-parameter running
time. In: 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017,
pp. 67:1–67:13 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

124 Theory of Computing Systems (2023) 67:89–124

	Fixed-Parameter Algorithms for Unsplittable Flow Cover
	Abstract
	Introduction
	Our Contribution
	Other Related Work

	Few Different Task Sizes
	Extension to the Weighted Case

	Resource Augmentation
	Arbitrary Demands
	Extension to the Weighted Case

	FPT-2-Approximation Algorithm
	Parameterized Approximation Scheme
	Medium Intervals
	Heavy Vertices
	Dense Intervals
	Sparse Intervals

	W[1]-Hardness
	Conclusion and Open Questions
	Appendix A A: Reduction from Generalized Caching in the Fault Model
	References

