
https://doi.org/10.1007/s00224-021-10035-y

Computationally Efficient Approach
to Implementation of the Chinese Remainder
Theorem Algorithm in Minimally Redundant
Residue Number System

Mikhail Selianinau1

Accepted: 25 January 2021
© The Author(s) 2021

Abstract
In this paper, we deal with the critical problem of performing non-modular operations
in the Residue Number System (RNS). The Chinese Remainder Theorem (CRT) is
widely used in many modern computer applications. Throughout the article, an effi-
cient approach for implementing the CRT algorithm is described. The structure of
the rank of an RNS number, a principal positional characteristic of the residue code,
is investigated. It is shown that the rank of a number can be represented by a sum of
an inexact rank and a two-valued correction to it. We propose a new variant of min-
imally redundant RNS, which provides low computational complexity for the rank
calculation, and its effectiveness analyzed concerning conventional non-redundant
RNS. Owing to the extension of the residue code, by adding the excess residue mod-
ulo 2, the complexity of the rank calculation goes down from O k2 to O (k) with
respect to required modular addition operations and lookup tables, where k equals
the number of non-redundant RNS moduli.

Keywords Residue number system · Chinese remainder theorem · Non-modular
operations · Rank of a number · Mixed-radix representation

1 Introduction

At present, the field of high-performance computing is developing extremely rapidly.
That leads to qualitatively new requirements imposed on numerical methods and
computing algorithms. Practically, all the well-known approaches to the development

Mikhail Selianinau
m.selianinau@ujd.edu.pl

1 Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland

/ Published online: 20 April 2021

Theory of Computing Systems (2021) 65:1117–1140

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10035-y&domain=pdf
http://orcid.org/0000-0001-5669-701X
mailto: m.selianinau@ujd.edu.pl


of high-performance computing have one trait in common, that essence consists in
the application of certain parallel forms of data representation and processing.

One of the most promising avenues to significantly improve the performance and
reliability of computing facilities is the implementation of non-conventional methods
of number representation, as well as corresponding variants of computer arithmetic.
Within the framework of this approach, the non-positional number systems with a
parallel structure, in particular, the RNS, occupy a place of special importance [3, 5,
18–20, 27, 28].

Since its inception in the mid-1950s till the present day, the RNS has attracted the
continuous attention of researchers in computer technology, communications, numer-
ical methods, cryptography, and other fields. An RNS, whose ideological roots date
back to the standard topics of number theory, has natural internal parallelism. The
main advantage of an RNS is a unique ability to decompose the large word-length
numbers up into the set of independent short word-length residues, which can be pro-
cessed in parallel. The carry-free property and speed-up provided by the parallelism
of RNS allows carrying out the sequences of modular operations quickly and easily.

Thus, it becomes possible to parallelize the computations at the level of arithmetic
operations, which is fundamentally crucial for modern high-performance computing
systems. Unlike traditional weighted number systems (WNS), an RNS provides an
entirely different approach for increasing the speed and reliability of digital infor-
mation processing, as well as obtaining new and more advanced computational
structures. In this regard, RNS arithmetic is the cornerstone of many modern algo-
rithms of parallel computer algebra, as well as it is in demand in many fundamental
applications of science and technology.

Due to the inherent code parallelism, an RNS possesses a few essential advantages
over the conventional number system in the field of high-speed computing. A broad
class of fast algorithms can be implemented based on modular arithmetic in areas
such as digital signal and image processing, distributed information and communi-
cation systems, computer networks, information security systems, cloud computing,
etc. [19, 20, 27, 30]. Moreover, these RNS algorithms can effectively be applied
even to processor platforms functioning according to the conventional information-
processing approach based on the weighted binary number system. The parallel and
carry-free RNS arithmetic corresponds with high-performance modern embedded
systems requirements [19].

However, the numerical solution of a wide range of science and technology
problems is often required to perform complicated and heterogeneous processes of
computation. In RNS, this results in the need to carry out a set of so-called non-
modular operations, such as magnitude comparison, sign determination, overflow
detection, general division, scaling, residue-to-binary conversion, etc. The problem of
effective implementation of non-modular operations is constantly receiving consid-
erable attention after the formalization of the processing principles in RNS arithmetic
[3, 5, 18–20].

To perform in RNS the non-modular operations, it is not enough to take into
account only the individual residues of the modular code. Furthermore, it is neces-
sary to estimate the value of the total number, which, in general, is hampered by the
non-positional nature of RNS.

1118 Theory of Computing Systems (2021) 65:1117–1140



Unfortunately, up until now, the underlying unresolved problem for creating a
high-speed RNS arithmetic consists of the computational complexity of non-modular
operations. Precisely because of the lack of fast algorithms of non-modular oper-
ations, the use of RNS is useful in cases only when the modular addition and
multiplication operations make up the bulk of required amounts of computation, and
the number of non-modular operations is relatively small. This circumstance restricts
the scope of practical applications of RNS to a narrow class of specific tasks, for
example, digital filtering, fast Fourier transform, cryptographic transformations, etc.

Therefore, the design of high-performance algorithms for non-modular operations
is an urgent problem at the current stage of RNS arithmetic development and its appli-
cation in computer sciences. To solve this problem is necessary to design efficient
approaches and methods for the fast weighted representation of RNS numbers by
their residue codes. That will make it possible for the extensive use of RNS arithmetic
for high-speed computing in many priority areas of science and technology.

2 The Basic Principles of RNS Arithmetic

The abstract algebra and number theory are formed the theoretical basis of residue
arithmetic [6, 11].

In the conventional non-redundant RNS with the set {m1, m2, . . . , mk} of k pair-
wise relatively prime odd moduli (mi > 2, i = 1, 2, ..., k), the integer number X ∈
ZMk

is represented by an ordered set of residues (χ1, χ2, . . . , χk) that is generally
called a residue (modular) code, where ZMk

= {0, 1, . . . ,Mk − 1}, Mk = k
i=1 mi ,

χi = |X|mi
(i = 1, 2, . . . , k); |Y |m denotes the least non-negative residue of the

integer Y modulo m, i.e., |Y |m ∈ Zm = {0, 1, . . . , m − 1}.
As is known, the main fundamental advantage of RNS arithmetic as compared

with the arithmetic of WNS consists of the performance of addition, subtraction and
multiplication operations in parallel at the level of small word-length residues. In
other words, these operations decompose into independent components with respect
to basic moduli m1, m2, . . . , mk . The modular operation ◦ ∈ {+, −, ×} on the inte-
gers A = (α1, α2, . . . , αk) and B = (β1, β2, . . . , βk) (αi = |A|mi

, βi = |B|mi
, i =

1, 2, . . . , k) is carried out independently for each of the RNS moduli, i.e., by the rule

A ◦ B = (α1, α2, . . . , αk) ◦ β1, β2, . . . , βk

= |α1 ◦ β1|m1
, |α2 ◦ β2|m2

, . . . , |αk ◦ βk|mk
.

The efficiency of RNS arithmetic is primarily determined by the complexity and
performance of non-modular procedures, which are used as essential elementary pro-
cedures for implementing more complex computational algorithms. The fundamental
principles of designing high-speed variants of RNS arithmetic consist in carrying out
the following crucial conditions imposed on non-modular operations: parallelism,
high modularity, and simplicity of pipelining at the level of small word-length residue
operations.

1119Theory of Computing Systems (2021) 65:1117–1140



The root problem in RNS arithmetic is that the integer value of the number
X = (χ1, χ2, . . . , χk) depends on all its residues together. In the RNS, its evalua-
tion underlies all non-modular operations. As is known, for performing non-modular
operations, the so-called positional characteristics of the residue code are used [3, 5,
18–20]. In general, all these characteristics depend on part or all residues of the num-
ber X. They can be defined as a specific mathematical function that, by some method
or other, allows estimation of the positional value of X. It is quite clear that the com-
putational complexity of the applied positional characteristics eventually determines
the efficiency of RNS arithmetic constructed on their basis.

The traditional implementations of non-modular operations in RNS arithmetic
are based on the reverse conversion from residues back to an integer. There are
two canonical techniques: the straightforward conversion method based on the CRT
algorithm, and the conversion of the residue code to a weighted representation in
Mixed-Radix System (MRS) [2, 12, 18–20, 31]. In general, all other conversion
methods are variants of these two main methods.

At the same time, in recent years, the CRT has been intensively studied with
its applications in high-performance computing. That led to the development of
a sufficiently wide class of specific methods based on the calculation of posi-
tional characteristics of RNS numbers, which support effective implementations
of non-modular operations. Some of the generally accepted characteristics are the
core function, rank function, interval index, parity, diagonal function, and quotient
function [1, 3–5, 7–10, 15–17, 19, 21, 22, 24].

Nevertheless, in conventional non-redundant RNS, the calculation of all these
characteristics is complicated and quite time-consuming. That is why the non-
modular operations limit the applications of RNS arithmetic and restrict its general
usage.

3 The Rank of an RNS Number

As is known, in the case of pairwise relatively prime moduli m1, m2, . . . , mk the
system of simultaneous linear congruences

⎧
⎪⎪⎨

⎪⎪⎩

X ≡ χ1 (mod m1),

X ≡ χ2 (mod m2),

. . .

X ≡ χk (mod mk)

has a unique solution that is the residue class moduloMk specified by the congruence

X ≡
k

i=1

Mi,kμi,kχi (mod Mk), (1)

where Mi,k = Mk/mi , μi,k = M−1
i,k

mi

(i = 1, 2, . . . , k); Y−1
m

denotes the

multiplicative inverse of the integer Y modulo m.
In essence, the equation (1) represents the CRT [14, 20, 26].

1120 Theory of Computing Systems (2021) 65:1117–1140



In the RNS with the set m1, m2, . . . , mk of k pairwise relatively prime moduli it
is possible to represent at most Mk integers. Therefore, the set ZMk

usually used as a
dynamic range of the RNS.

Thus, modular coding is defined as a mapping ϕRNS : ZMk
→ Zm1 × Zm2 ×· · ·×

Zmk
that assigns the residue code (χ1, χ2, . . . , χk) to each X ∈ ZMk

. At the same
time, regarding the decoding mapping ϕ−1

RNS : Zm1 × Zm2 ×· · ·× Zmk
→ ZMk

based
on the relationship (1), the following rule is valid:

X =
k

i=1

Mi,kμi,kχi

Mk

=
k

i=1

Biχi

Mk

X ∈ ZMk
, (2)

where the integer numbers B1, B2, . . . , Bk are the basic primitive constants in the
given RNS; Bi = Mi,kμi,k , i = 1, 2, . . . , k [3].

As can be seen, the reverse conversion from RNS to WNS by using the straight-
forward application of (2) requires O (k) of large word-lengths addition operations
modulo Mk , which is the product of all moduli m1, m2, . . . , mk . If we assume that
the processing of such long L-bit numbers (L = log2 Mk ) is comparable in time
with k operations on the small residues, then the complexity of this method is equal
to O k2 Because of this fact, a given approach is practically unacceptable for
high-speed computing, especially in cryptographic applications.

Here and further x denotes the smallest integer greater than or equal to x.
To circumvent the problem of slow addition operations modulo Mk , the equa-

tion (2) can be written as an exact integer equality

X =
k

i=1

Biχi − r (X) Mk, (3)

where r (X) is a non-negative integer called the true rank of the number X [3, 5].
From (3) it follows that the upper bound of r (X) depends on weighting factors

μ1,k, μ2,k, . . . , μk,k and it is a rather large value for moduli-sets {m1, m2, . . . , mk}
suitable for practical application.

By using Euclid’s Division Lemma, we have

μi,kχi = μi,kχi mi
+ μi,kχi

mi

mi = χi,k + μi,kχi

mi

mi, (4)

where χi,k is a normalized residue modulo mi :

χi,k = μi,kχi mi
= M−1

i,k χi
mi

(i = 1, 2, . . . , k) , (5)

x denotes the largest integer less than or equal to x.
Substituting (4) into (2) and taking into consideration (5), we have

X =
k

i=1

Mi,kχi,k + Mk

k

i=1

μi,kχi

mi
Mk

1121Theory of Computing Systems (2021) 65:1117–1140



that is equivalent to

X =
k

i=1

Mi,kχi,k

Mk

=
k

i=1

Mi,k M−1
i,k χi

mi
Mk

. (6)

Similarly to (3), according to (6), the number X can also be written as

X =
k

i=1

Mi,kχi,k − ρk (X) Mk, (7)

where the integer ρk (X) is the normalized rank (or, briefly, rank) of the number X.
Equation (7) is called the rank form (or CRT-form) of the number X. In

essence, the rank ρk (X) is the CRT reconstruction coefficient that is indicated how
many times the RNS dynamic range exceeded when converting the residue code
(χ1, χ2, . . . , χk) of the number X to its integer value according to (7).

Let us now estimate the upper bound of the rank ρk (X). Dividing (7) by Mk with
taking the integer part of both sides of the obtained equality and taking into account
the fact that X/Mk = 0, we have

ρk (X) = 1

Mk

k

i=1

Mi,kχi,k =
k

i=1

χi,k

mi

. (8)

Hence, owing to χi,k ∈ Zmi (i = 1, 2, . . . , k) we get the following estimation

0 ≤ ρk (X) ≤
k

i=1

mi − 1

mi

= k + −
k

i=1

1

mi

= k −
k

i=1

1

mi

= k − 1

Mk

k

i=1

Mi,k . (9)

Let us consider the number Y = (γ1, γ2, . . . , γk), where γi = Mi,k mi
, i =

1, 2, . . . , k. Then, according to (7), we have

Y =
k

i=1

Mi,kγi,k − ρk (Y )Mk =
k

i=1

Mi,k − ρk (Y )Mk

because of γi,k = M−1
i,k γi

mi

= M−1
i,k Mi,k

mi

= 1.

Thus,
k

i=1

Mi,k = Y + ρk (Y )Mk .

Therefore, because 0 < Y < Mk , we have

1

Mk

k

i=1

Mi,k = 1

Mk

(Y + ρk (Y )Mk) = ρk (Y ) + Y

Mk

= ρk (Y ) + 1.

1122 Theory of Computing Systems (2021) 65:1117–1140



Since ρk (Y ) ≥ 0, regardless of the selected moduli-set {m1, m2, . . . , mk}, then,
according to (9), the following estimation is valid

0 ≤ ρk (X) ≤ k − 1 − ρk (Y ) ≤ k − 1.

Hence, ρk (X) ∈ Zk = {0, 1, . . . , k − 1}.
The summands Mi,kχi,k in the equation (6) have smaller values than Mi,kμi,kχi in

(2) (i = 1, 2, . . . , k), so ρk (X) is significantly less than r (X). Therefore, the CRT-
form (7) in comparison with (3) is a more suitable basis for performing the non-
modular operations in RNS arithmetic.

The structure of the rank characteristic and the methods of its calculation in
the non-redundant RNS were studied in detail in [3, 5]. At the same time, the
main drawback of known approaches is the difficulty in the calculation of the rank
and straightforward implementation of the CRT. Consequently, these algorithms are
not suitable for designing efficient variants of RNS arithmetic, especially for large
word-length numbers.

4 A Novel Method for Calculating the Rank in Non-redundant RNS

In the RNS, the rank ρk (X) is a positional characteristic of the residue code of pri-
mary importance since on its basis all non-modular operations can be implemented.
Therefore, the development of effective methods and algorithms for calculating the
rank ρk (X) occupies an essential place in the practice of applying RNS to construct
high-performance modular computational structures.

Knowledge of the rank ρk (X) allows estimation of the integer value of the RNS-
number X. It is quite clear that the level of complexity of rank calculation ultimately
determines the efficiency of modular arithmetic constructed on its basis.

From the relationship for the CRT-form (7) of the number X it follows that

Xk = X + ρk (X) Mk, (10)

where

Xk =
k

i=1

Mi,kχi,k . (11)

We will call this number the CRT-number of X.
Then, by using the following notations: Mk−1 = k−1

i=1 mi and Mi,k−1 =
Mk−1/mi (i = 1, 2, . . . , k − 1), as well as taking into account thatMi,k = Mk/mi =
Mk−1mk/mi = Mi,k−1mk and Mk,k = Mk/mk = Mk−1, we can write the
CRT-number Xk (see (11)) as

Xk =
k−1

i=1

Mi,kχi,k + Mk,kχk,k =
k−1

i=1

Mi,k−1mkχi,k + Mk−1χk,k . (12)

1123Theory of Computing Systems (2021) 65:1117–1140



The number mkχi,k in equation (12), according to Euclid’s Division Lemma, can
be represented as

mkχi,k = mkχi,k mi
+ mkχi,k

mi

mi = χi,k−1 + mkχi,k

mi

mi, (13)

taking into account that

mkχi,k mi
= mk M−1

i,k χi
mi mi

= mkM
−1
i,k χi

mi

= M−1
i,k−1χi

mi

= χi,k−1.

Thus,

Xk =
k−1

i=1

Mi,k−1χi,k−1 + Mk−1

k−1

i=1

mkχi,k

mi

+ Mk−1χk,k .

Finally, we have

Xk = Xk−1 + Mk−1Sk (X) , (14)

where

Xk−1 =
k−1

i=1

Mi,k−1χi,k−1, (15)

Sk (X) =
k

i=1

Ri,k (χi), (16)

Ri,k (χi) = mkχi,k

mi

(i = 1, 2, . . . , k) . (17)

Remark 1 Taking into account (13), we have

Ri,k (χi) = mkχi,k − χi,k−1

mi

.

As far as Ri,k (χi) ∈ Zmk
, we can then obtain a residue modulo mk on both sides of

this equality. Hence, it then follows that

Ri,k (χi) = mkχi,k − χi,k−1

mi mk

= −χi,k−1

mi mk

= −
M−1

i,k−1χi
mi

mi

mk

(18)

for i = 1, 2, . . . , k − 1. At the same time, according to (17),

Rk,k (χk) = χk,k = M−1
k,kχk

mk

= M−1
k−1χk

mk

. (19)

1124 Theory of Computing Systems (2021) 65:1117–1140



Similarly, as described above for the number Xk (see (14)–(16)), the numbers Xi

(i = k − 1, k − 2, . . . , 1) can be written as

Xk−1 = Xk−2 + Mk−2Sk−1 (X) ,

Xk−2 = Xk−3 + Mk−3Sk−2 (X) ,

. . .

X2 = X1 + M1S2 (X) ,

X1 = M0S1 (X) ,

where M0 = 1, S1 (X) = χ1.
Finally, the CRT-number Xk can be represented as

Xk =
k

l=1

Ml−1Sl (X), (20)

where Ml−1 = l−1
i=1 mi .

The integer Sl (X) for l = 2, 3, . . . , k using Euclid’s Division Lemma can be
written as

Sl (X) = Rl (X) + mlQl (X) . (21)

At the same time,

Rl (X) = |Sl (X)|ml
=

l

i=1

Ri,l(χi)

ml

, (22)

Ql (X) = 1

ml

Sl (X) = 1

ml

l

i=1

Ri,l(χi) , (23)

where

Ri,l (χi) = −
M−1

i,l−1χi
mi

mi

ml

(i l) , (24)

Rl,l (χl) = χl,l = M−1
l−1χl

ml

, (25)

Mi,l−1 = Ml−1/mi .
It is evident that Ql (X) is equal to the number of overflows that occurred when

calculating the sum Rl (X) of l residues R1,l (χ1) , R2,l (χ2) , . . . , Rl,l (χl) modulo
ml (l = 2, 3, . . . , k).

1125Theory of Computing Systems (2021) 65:1117–1140



It can be noted that R1 (X) = χ1 and Q1 (X) = 0 since S1 (X) = χ1.
Taking into account (20) and (21), we have

Xk =
k

l=1

Ml−1 (Rl (X) + mlQl (X))

=
k

l=1

Ml−1Rl (X) +
k

l=1

MlQl (X)

=
k

l=1

Ml−1Rl (X) +
k−1

l=1

MlQl (X) + MkQk (X) .

Thus,

Xk = X
(R)
k + X

(Q)
k−1 + MkQk (X) , (26)

where

X
(R)
k =

k

l=1

Ml−1Rl (X), (27)

X
(Q)
k−1 =

k−1

l=1

MlQl (X). (28)

As is known, in the MRS based on the moduli-set {m1, m2, . . . , mk} the inte-
ger X ∈ ZMk

is represented by the k-tuple xk, xk−1, . . . , x1 of mixed-radix digits,
resulting in

X = x1 + x2M1 + · · · + xkMk−1 =
k

i=1

xiMi−1,

where xi ∈ Zmi
= {0, 1, . . . , mi − 1}, i = 1, 2, . . . , k [18–20].

As follows from equation (27), the number X
(R)
k is represented by the k-tuple

x
(R)
k , x

(R)
k−1, . . . , x

(R)
1 of mixed-radix digits x

(R)
l = Rl (X), Rl (X) ∈ Zml

, l =
1, 2, . . . , k. It is evident that X(R)

k < Mk .

As for the number X
(Q)
k−1 (see (28)), it can be written as

X
(Q)
k−1 =

k

l=2

Ml−1Ql−1 (X) =
k

l=1

Ml−1Ql (X),

where Q1 (X) = 0, Q2 (X) = Q1 (X) = 0, Ql (X) = Ql−1 (X) (l = 3, 4, . . . , k).

1126 Theory of Computing Systems (2021) 65:1117–1140



At the same time, as follows from (23) in the case when the subscript l is
substituted by l − 1,

Ql (X) = Ql−1 (X) = 1

ml−1

l−1

i=1

Ri,l−1(χi) < l − 1

because of the residue Ri,l−1(χi) ≤ ml−1 − 1 (l = 3, 4, . . . , k).
Thus, Ql (X) ∈ Zl−1 = {0, 1, . . . , l − 2}. Hence, X

(Q)
k−1 can be considered

as a mixed-radix number x
(Q)
k , x

(Q)
k−1, . . . , x

(Q)
1 x

(Q)
1 = x

(Q)
2 = 0; x

(Q)
l = Ql−1

(X) , l = 3, 4, . . . , k in the case if x
(Q)
l ∈ Zml

. Therefore, the following condition

must be met: Zl−1 ⊆ Zml
for all l. This leads to inequality

ml ≥ l − 1 (l = 1, 2, . . . , k) .

If the moduli-set {m1, m2, . . . , mk} is chosen according to this condition, which
as a rule always holds for the RNS used in practical applications, then X

(Q)
k−1 ∈ ZMk

,

that is X
(Q)
k−1 < Mk .

Thus,
0 ≤ X

(R)
k + X

(Q)
k−1 ≤ 2 (Mk − 1) . (29)

According to Euclid’s Division Lemma,

X
(R)
k + X

(Q)
k−1 = X

(R)
k + X

(Q)
k−1

Mk

+ Mk

X
(R)
k + X

(Q)
k−1

Mk

.

Therefore, from (26) we have

Xk = X
(R)
k + X

(Q)
k−1

Mk

+ Mk Qk (X) + X
(R)
k + X

(Q)
k−1

Mk

. (30)

From equation (30), according to (10), it follows that

X = X
(R)
k + X

(Q)
k−1

Mk

, (31)

ρk (X) = ρk (X) + Δk (X) , (32)

where
ρk (X) = Qk (X) , (33)

Δk (X) = X
(R)
k + X

(Q)
k−1

Mk

. (34)

Taking into account (29), we have that Δk (X) ≤ 1, that is Δk (X) ∈ Z2 = {0, 1}.
We will call the integers ρk (X) and Δk (X) the inexact rank and the rank

correction, respectively.
The reasons stated above allow us to formulate the following theorem.

Theorem 1 (About the rank of an RNS number) Let an arbitrary RNS be
defined as an ordered set of k pairwise relatively prime odd moduli m1, m2, . . . , mk

1127Theory of Computing Systems (2021) 65:1117–1140



(ml ≥ l − 1, l = 1, 2, . . . , k, k ≥ 2). Then the rank ρk (X) of the integer
X = (χ1, χ2, . . . , χk) X ∈ ZMk

can be computed as follows:

ρk (X) = ρk (X) + Δk (X) ,

where

ρk (X) = 1

mk

k

i=1

Ri,k(χi)

and

Ri,k(χi) =

⎢⎢⎢⎢
⎣

mk M−1
i,k χi

mi

mi

⎥⎥⎥⎥
⎦ = −

M−1
i,k−1χi

mi

mi

mk

(i k) ,

Rk,k(χk) = χk,k = M−1
k−1χk

mk

,

the correction Δk (X) is a two-valued number that only takes on the values 0 or 1.

As it follows from Theorem 1, the inexact rank ρk (X) ∈ Zk is equal to the number
of overflows, which occur when computing the sum of k residues R1,k(χ1), R2,k(χ2),
. . . , Rk,k(χk) with respect to the kth modulus mk . Thus, the inexact rank ρk (X) can
be computed quickly and easily.

A different situation takes place in the case of the rank correction Δk (X) as far
as the calculation of its value has a more massive computational complexity than the
estimation of the inexact rank ρk (X).

As follows from the equations (29) and (34), the rank correction Δk (X) is, in
essence, an overflow flag

Δk (X) =

⎧
⎪⎨

⎪⎩

0, if X
(R)
k + X

(Q)
k−1 < Mk

1, if X
(R)
k + X

(Q)
k−1 ≥ Mk .

(35)

To get Δk (X), one must first calculate the k-tuple mixed-radix representations

x
(R)
k , x

(R)
k−1, . . . , x

(R)
1 and x

(Q)
k , x

(Q)
k−1, . . . , x

(Q)
1 of the integers X

(R)
k and X

(Q)
k−1,

respectively. The digits x
(R)
l and x

(Q)
l (l = 2, 3, . . . , k) are calculated by taking the

sum of l residues R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl) modulo ml according to (22)–(25),
followed by the necessity to determine whether the sum of two MRS-numbers X

(R)
k

and X
(Q)
k−1 overruns the RNS dynamic range ZMk

.
To illustrate the calculation of the rank in conventional non-redundant RNS based

on the mentioned above, we present a first numerical example.

Example 1 Let us consider an RNS with the moduli m1 = 5, m2 = 7, m3 = 9 and
m4 = 11. Suppose we wish to calculate the rank ρk (X) of the number X = 2 having
the residue code (χ1, χ2, χ3, χ4) = (2, 2, 2, 2).

1128 Theory of Computing Systems (2021) 65:1117–1140



The primitive constants in the given RNS are

M4 = 3465, M3 = 315, M2 = 35, M1 = 5, M0 = 1.

M1,4 = 693, M2,4 = 495, M3,4 = 385, M4,4 = M3 = 315,

M−1
1,4 5

= 693−1

5
= 2, M−1

2,4 7
= 495−1

7
= 3,

M−1
3,4 9

= 385−1

9
= 4, M−1

4,4 11
= 315−1

11
= 8,

5−1

11
= 9, 7−1

11
= 8, 9−1

11
= 5, M−1

3 11
= 315−1

11
= 8.

M1,3 = 63, M2,3 = 45, M3,3 = M2 = 35,

M−1
1,3 5

= 63−1

5
= 2, M−1

2,3 7
= 45−1

7
= 5, M−1

3,3 9
= 35−1

9
= 8,

5−1

9
= 2, 7−1

9
= 4; M−1

2 9
= 35−1

9
= 8.

M1,2 = 7, M2,2 = M1 = 5,

M−1
1,2 5

= 7−1

5
= 3, M−1

2,2 7
= 5−1

7
= 3.

M1,1 = 1.

First, according to (24) and (25), we calculate the residue R1,1(χ1) and the sets of
residues R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl) (l = 2, 3, 4):

R1,1 (χ1) = 2;
R1,2 (χ1) = |− |1 · 2|7 · 3|7 = 1,

R2,2 (χ2) = |3 · 2|7 = 6.

R1,3 (χ1) = − |3 · 2|5 · 2 9 = 7,

R2,3 (χ2) = |− |3 · 2|7 · 4|9 = 3,

R3,3 (χ3) = |8 · 2|9 = 7.

R1,4 (χ1) = − |2 · 2|5 · 9 11 = 8,

R2,4 (χ2) = |− |5 · 2|7 · 8|11 = 9,

R3,4 (χ3) = − |8 · 2|9 · 5 11 = 9,

R4,4 (χ4) = |8 · 2|11 = 5.

Thus, as a result, we have

R1,1 (χ1) 2 ,

R1,2 (χ1) , R2,2 (χ2) 1, 6 ,

R1,3 (χ1) , R2,3 (χ2) , R3,3 (χ3) 7, 3, 7 ,

R1,4 (χ1) , R2,4 (χ2) , R3,4 (χ3) , R4,4 (χ4) 8, 9, 9, 5 .

Further, we compute the sum of the corresponding set of residues modulo ml and
the number of occurred overflows according to (22) and (23) for l = 2, 3, 4. Taking

1129Theory of Computing Systems (2021) 65:1117–1140



into account that R1 (X) = R1,1(χ1) and Q1 (X) = 0, we have

R1 (X) = 2,

R2 (X) = |1 + 6|7 = |7|7 = 0,

R3 (X) = |7 + 3 + 7|9 = |17|9 = 8,

R4 (X) = |8 + 9 + 9 + 5|11 = |31|11 = 9

and

Q1 (X) = 0,

Q2 (X) = (1 + 6)/7 = 7/7 = 1;
Q3 (X) = (7 + 3 + 7)/9 = 17/9 = 1;
Q4 (X) = (8 + 9 + 9 + 5)/11 = 31/11 = 2.

Therefore, according to the equations (26)–(28), we obtain the inexact rank

ρ4 (X) = Q4 (X) = 2

as well as the MRS-integers

X
(R)
4 9, 8, 0, 2

and

X
(Q)
3 1, 1, 0, 0 .

Then, by taking the sum of the numbers X
(R)
4 and X

(Q)
3 in the MRS, we get the

positional mixed-radix representation of the number X:

X = |X4|M4
= X

(R)
4 + X

(Q)
3

M4
0, 0, 0, 2

as well as the correction Δ4 (X) = 1 (see (35)).
Finally, we have

ρ4 (X) = ρ4 (X) + Δ4 (X) = 2 + 1 = 3.

To verify the obtained result, taking into account that the normalized residues
χl,4 (l = 1, 2, 3, 4) (see (5)) in the CRT-form (7) take on the following values

χ1,4 = M−1
1,4χ1

5
= |2 · 2|5 = 4,

χ2,4 = M−1
2,4χ2

7
= |3 · 2|7 = 6,

χ3,4 = M−1
3,4χ3

9
= |4 · 2|9 = 8;

χ4,4 = M−1
3 χ4

11
= |8 · 2|11 = 5

1130 Theory of Computing Systems (2021) 65:1117–1140



we find

X =
4

i=1

Mi,4χi,4 − ρ4 (X) M4

= 693 · 4 + 495 · 6 + 385 · 8 + 315 · 5 − 3 · 3465
= 10397 − 10395 = 2.

Equations (21)–(28) show that the calculation of the rank ρk (X) in the conven-
tional non-redundant RNS is reduced to a summation of the sets of small residues
with respect to the moduli m1, m2, . . . , mk . These calculations can be implemented
within the framework of tabular computing structures. Also, along with the calcula-
tion of the rank ρk (X), we obtain the positional representation of the numberX in the
MRS. Thus, the computational complexity of calculating the correction Δk (X) (and,
hence, the rank ρk (X)) coincides with the computational complexity of converting
the residue code into the MRS representation.

From the above, it follows that the main computational cost is the calculation of the
rank correction Δk (X). As follows from the equations (21)–(34), during the calcu-
lation of Δk (X) we can perform the independent and concurrent summations of the
sets of residues R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl) with respect to the corresponding
modulus ml (l = 2, 3, . . . , k).

Now let us evaluate the computational costs of the rank calculation. The
number of required single one-input lookup tables to store the set of residues
R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl) (see (24) and (25)) is equal to nLUT (l) = l, while
the bit length of recorded constants is log2 ml (l = 2, 3, . . . , k). It should be noted
that nLUT (1) = 0 since in the case of the modulus m1 we have S1 (X) = χ1. Then,
the total number of required lookup tables

NLUT =
k

l=2

nLUT (l) = k2 + k − 2

2
. (36)

The summation of the set of residues R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl) modulo
ml along with the counting of the number of occurred overflows requires nMO (l) =
l−1 modular operations (l = 2, 3, . . . , k). Taking into account that x(Q)

1 = x
(Q)
2 = 0,

the summation of MRS-numbers X
(R)
k and X

(Q)
k−1 along with the detection of over-

flow flag Δk (X) (see (35)) and the final correction of inexact rank ρk (X) requires
2 (k − 2) modular addition operations. Hence, the total number of required modular
operations

NMO =
k

l=2

nMO (l) + 2 (k − 2) = k2 + 5k − 10

2
. (37)

Therefore, the process of calculating the rank ρk (X) requiresO(k2)modular oper-
ations so that it can become computationally expensive for large values of k. Thus,
for effective implementation of non-modular operations based on the CRT, one needs
to speed up and optimize the calculation of the rank correction Δk (X).

1131Theory of Computing Systems (2021) 65:1117–1140



5 The Relationship Between the Rank Correction and the Parity
of an RNS Number

The fact that Δk (X) ∈ {0, 1} (see Theorem 1) allows us to consider it as the residue
modulo 2.

According to the CRT-form (7), taking into account (32), we have

X =
k

i=1

Mi,kχi,k − (ρk (X) + Δk (X)) Mk = X − Δk (X) Mk, (38)

where

X =
k

i=1

Mi,kχi,k − ρk (X) Mk . (39)

Since the RNS moduli m1, m2, . . . , mk are relatively prime odd integers, then
|mi |2 = 1 (i = 1, 2, . . . , k), and correspondingly, |Mk|2 = 1. Therefore,

|X|2 = X − Δk (X) Mk 2 = X 2 − Δk (X) 2
. (40)

Thus, for the rank correction Δk (X) the following equality is true

Δk (X) = X 2 − |X|2 2
. (41)

Hence, the calculation of the rank correction Δk (X) ∈ {0, 1} can be reduced to a
parity comparison of the numbers X and X, that is:

Δk (X) =
⎧
⎨

⎩

0, if |X|2 = |X|2,

1, if |X|2 = |X|2.
(42)

Taking into account the fact that |Mi,k|2 = 1 (i = 1, 2, . . . , k), the calculation of
the parity of a number X according to (39) is reduced to performing trivial operations
modulo 2, such as

X 2 =
k

i=1

χi,k 2 − |ρk (X)|2
2

=
k

i=1

χ
(0)
i,k − ρ

(0)
k

2

, (43)

where

χ
(0)
i,k = χi,k 2 = M−1

i,k−1χi
mi 2

(44)

and
ρ

(0)
k = |ρk (X)|2 (45)

are the least-significant bits of the binary representation of the normalized residue
χi,k (i = 1, 2, . . . , k) and the inexact rank ρk (X), respectively.

As follows from Theorem 1, the inexact rank ρk (X), and hence, its parity ρ
(0)
k

is calculated quickly during the summation of corresponding residues modulo mk .
Thus, the calculation of the parity of the number X according to (43) does not cause
difficulties.

Regarding the parity check of the number X, this operation in RNS arithmetic
refers to complicated non-modular operations requiring high computational costs. In

1132 Theory of Computing Systems (2021) 65:1117–1140



conventional non-redundant RNS, the computational complexity of this operation is
comparable to the computational complexity of RNS to MRS conversion.

Therefore, for fast calculation of the correctionΔk (X) according to (42), the com-
plexity of computing parity |X|2 can be overcome by adding the redundant residue
modulo 2 into conventional non-redundant residue code (χ1, χ2, . . . , χk) of the num-
ber X. Thus, the case in question is the use of redundant RNS, in which only one
extra bit is added to the primary residue code.

6 Fast Calculation of the Rank in Minimally Redundant RNS

As is known, the use of code redundancy often allows improving the arithmetic and
other properties of numerical systems, including an RNS. In the first place, the redun-
dant RNS are of interest concerning error checking and failure recovery properties
[18–20]. On the other hand, the use of RNS representations with redundant residues
is an established method that allows gaining speed and cost benefits when performing
various non-modular operations [13, 23, 25, 29].

The proposed redundant residue coding assumes the extension of the modular code
(χ1, χ2, . . . , χk) of the number X in the conventional non-redundant RNS with the
k-moduli set {m1, m2, . . . , mk} and the dynamic range ZMk

by the redundant residue
χ0 = |X|m0

with respect to the extra modulus m0 = 2, i.e., by adding the parity of
the number X to its residue representation. Thus, in the redundant RNS the number
X ∈ ZMk

is represented by its redundant residue code (χ0, χ1, . . . , χk).
This modular code is, of course, minimally redundant since the total code length

increases by only one bit. The redundancy is estimated by the following index

RRRNS = 1 − log2 Mk

log2 (m0Mk)
= 1

1 + log2 Mk

. (46)

From (46), it follows that the code redundancy decreases as the number k of RNS
moduli, and, consequently, the dynamic range ZMk

increases.
In this case, the main advantage of minimally redundant RNS in comparison with

non-redundant RNS consists of a significantly simplified calculation of the rank
correction Δk (X) and, accordingly, the rank ρk (X). That leads in turn to optimiza-
tion and speed-up of non-modular operations in terms of the CRT. The following
statement reveals the essence of such an approach.

Theorem 2 (About the rank of a number in minimally redundant RNS) Let a
minimally redundant RNS be defined by an ordered set of k pairwise relatively prime
odd moduli m1, m2, . . . , mk and excess modulus m0, (m0 = 2; ml ≥ l − 1, l =
1, 2, . . . , k; k ≥ 2). Then the rank ρk (X) of the integer X = (χ0, χ1, . . . , χk) from
the dynamic range ZMk

can be computed as follows:

ρk (X) = ρk (X) + δk (X) , (47)

where ρk (X) is calculated according to Theorem 1,

δk (X) = |χ0 + χ0|2 , (48)

1133Theory of Computing Systems (2021) 65:1117–1140



while

χ0 =
k

i=1

χ
(0)
i,k + ρ

(0)
k

2

,

χ
(0)
i,k and ρ

(0)
k are calculated according to (44) and (45), respectively.

The proof of this theorem follows directly from equations (38)–(45), taking into
account the fact that |a − b|2 = |a + b|2 (a, b ∈ Z).

Following Theorem 2, the transition from non-redundant to minimally redundant
modular coding allows replacing in (32) the rank correction Δk (X) requiring time-
consuming calculations by a trivially calculated two-value attribute δk (X) ∈ {0, 1}.

At the same time, as can be easily seen, the calculations according to (47) are
reduced to a set of quickly implemented modular operations modulo mk (the calcu-
lation of the inexact rank ρk (X)) and modulo m0 (the calculation of the correction
δk (X)). Also, as follows from the equation (48), the calculation of ρk (X) can be
performed in parallel with the calculation of the value

δ0 = χ0 +
k

i=1

χ
(0)
i,k

2

,

whose correction by using ρ
(0)
k in the final stage of the calculation gives us the

resulting value of δk (X).
Thus, in the minimally redundant RNS the calculation of the rank ρk (X) is carried

out exceptionally merely within the scope of the modular computational process,
which can be easily implemented, for example, by using high-performance lookup-
table methods in Tk = log2 k modular clock cycles.

Because of the use of minimum-redundancy residue code, the complexity of cal-
culating the rank ρk (X) is significantly reduced in comparison with non-redundant
analogs. First of all, this is due to the need to perform the modular addition oper-
ations only with respect to the one kth modulus mk instead of the k-moduli set
{m1, m2, . . . , mk} in the case of conventional non-redundant RNS. Therefore, the
computational complexity decreases from O k2 to O (k) modular operations.

Accordingly, the number of required lookup tables to store the sets of residues is
also reduced from O k2 to O (k).

The corresponding costs for calculating the rank ρk (X) in minimally redundant
RNS are

N
(R)
LUT = k (49)

lookup tables and
N

(R)
MO = k (50)

modular addition operations, including the correction of the inexact rank ρk (X) by
two-valued correction δk (X).

Here it is assumed that to the ith lookup table one records a pair of residues

Ri,k (χi) , χ
(0)
i,k , which calculated according to equations (18), (19), and (44),

Ri,k (χi) ∈ Zmk
, χ(0)

i,k ∈ Z2 (i = 1, 2, . . . , k). Thus, the bit-width of the used lookup
tables is l = log2 mk + 1.

1134 Theory of Computing Systems (2021) 65:1117–1140



As can be seen, the use of minimally redundant RNS results in a significant reduc-
tion of computational costs both in terms of required modular addition operations
and lookup tables relative to the non-redundant RNS. The reduction factors of the
computational complexity of calculating the rank ρk (X) in minimally redundant
RNS compared to conventional non-redundant RNS are represented by the following
fractions

CLUT = NLUT

N
(R)
LUT

= k2 + k − 2

2k
(51)

for the number of required lookup tables (see (36) and (49)), and

CMO = NMO

N
(R)
MO

= k2 + 5k − 10

2k
(52)

for the number of modular addition operations (see (37) and (50)).
Equations (51) and (52) show that the reduction factors CLUT and CMO

increase with the number k of non-redundant moduli m1, m2, . . . , mk asymptotically
approaching the threshold k/2.

For example, take the number k of non-redundant RNS moduli as a multiple of 5:

k = 5, 10, 15, 20, 25, 30.

Then for the reduction factors (51) and (52), we have the following values depending
on the number of modules k, respectively:

CLUT = 2.8, 5.4, 7.93, 10.45, 12.96, 15.47

and

CMO = 4.0, 7.0, 9.67, 12.25, 14.8, 17.33.

Thus, the proposed approach for the rank calculation in minimally redundant RNS
with the length k of primary residue code from 5 to 30 digits compared to conven-
tional non-redundant RNS allows us to reduce the computational costs by 2.8 – 15.47
times in terms of lookup table memory and by 4.0 – 17.33 times in terms of required
modular addition operations.

Below we give the numerical examples, which demonstrate the calculation of the
integer value of the number X = (χ1, χ2, . . . , χk) based on the CRT-form (7) in the
proposed minimally redundant RNS.

Let us consider the RNS with the moduli m1 = 5, m2 = 7, m3 = 9, and m4 = 11
from Example 1, taking into account the excess modulus m0 = 2.

Example 2 Suppose we wish to calculate the rank ρk (X) of the number X = 2
having the minimally redundant residue code (0, 2, 2, 2, 2).

1135Theory of Computing Systems (2021) 65:1117–1140



First, the residues Ri,4 (χi) and χ
(0)
i,4 (i = 1, 2, 3, 4) are calculated according to

(18), (19), and (44), respectively. As a result, we have

R1,4 (χ1) = − |2 · 2|5 · 9 11 = 8,

R2,4 (χ2) = |− |5 · 2|7 · 8|11 = 9,

R3,4 (χ3) = − |8 · 2|9 · 5 11 = 9,

R4,4 (χ4) = |2 · 8|11 = 5

and

χ
(0)
1,4 = |2 · 2|5 2 = 0,

χ
(0)
2,4 = ||3 · 2|7|2 = 0,

χ
(0)
3,4 = |4 · 2|9 2 = 0,

χ
(0)
4,4 = ||8 · 2|11|2 = 1.

It can be noted that the normalized residues χl,4 (l = 1, 2, 3, 4) (see (5)) take on
the values 4, 6, 8, 5, respectively.

Further, we find the number of occurred overflows when summing the residues of
the set R1,4 (χ1) , R2,4 (χ2) , R3,4 (χ3) , R4,4 (χ4) 8, 9, 9, 5 modulo m4 = 11,
i.e., we calculate the inexact rank

ρ4 (X) = (8 + 9 + 9 + 5)/11 = 31/11 = 2.

Therefore,
ρ

(0)
4 = |ρ4 (X)|2 = 0.

Then, taking into account the fact that χ0 = 0, according to (48), we calculate
two-valued correction

δ4 (X) = |0 + (0 + 0 + 0 + 1) + 0|2 = |1|2 = 1.

As a result, we get the rank

ρ4 (X) = ρ4 (X) + δ4 (X) = 2 + 1 = 3.

To verify the obtained result, using the CRT-form (7), by analogy with Example 1,
we find

X =
4

i=1

Mi,4χi,4 − ρ4 (X) M4

= 693 · 4 + 495 · 6 + 385 · 8 + 315 · 5 − 3 · 3465
= 10397 − 10395 = 2.

Example 3 Suppose we wish to calculate the rank ρk (X) of the number X =
M4 − 2 = 3463, which is represented by the minimum-redundancy residue code
(1, 3, 5, 7, 9).

1136 Theory of Computing Systems (2021) 65:1117–1140



Similar to Example 2, we compute

R1,4 (χ1) = − |2 · 3|5 · 9 11 = 2,

R2,4 (χ2) = |− |5 · 5|7 · 8|11 = 1,

R3,4 (χ3) = − |8 · 7|9 · 5 11 = 1,

R4,4 (χ4) = |9 · 8|11 = 6

and

χ
(0)
1,4 = |2 · 3|5 2 = 1,

χ
(0)
2,4 = ||3 · 5|7|2 = 1,

χ
(0)
3,4 = |4 · 7|9 2 = 1,

χ
(0)
4,4 = ||8 · 9|11|2 = 0.

As can be seen, the normalized residues χl,4 (l = 1, 2, 3, 4) (see (5)) take on the
values 1, 1, 1, 6, respectively.

We find the inexact rank ρ4 (X) by counting the occurred overflows when
summing the residues of the set R1,4 (χ1) , R2,4 χ2), R3,4(χ3 , R4,4 (χ4)

2, 1, 1, 6 modulo m4 = 11, i.e.,

ρ4 (X) = (2 + 1 + 1 + 6)/11 = 10/11 = 0.

Hence,
ρ

(0)
4 = |ρ4 (X)|2 = 0.

Since χ0 = 1, it follows from (48) that the correction

δ4 (X) = |1 + (1 + 1 + 1 + 0) + 0|2 = |4|2 = 0.

Thus, in this case
ρ4 (X) = ρ4 (X) = 0.

To verify the obtained value, according to (7), we get

X =
4

i=1

Mi,4χi,4 − ρ4 (X) M4

= 693 · 1 + 495 · 1 + 385 · 1 + 315 · 6 − 0 · 3465
= 3463.

As it follows from Example 2 and Example 3, the use of minimally redundant
RNS allows us to significantly optimize the calculation of the rank ρk (X), and cor-
respondingly, the execution of non-modular procedures based on the use of the CRT.
First of all, it caused by the utmost simplicity of forming the two-value characteristic
δk (X), as well as the modular structure of the basic equation for calculating the inex-
act rank ρk (X) (see Theorem 1). This circumstance allows us to radically simplify
the calculation of the rank ρk (X) and, consequently, to construct faster and optimal
in cost variants of RNS arithmetic.

1137Theory of Computing Systems (2021) 65:1117–1140



Therefore, the proposed version of minimally redundant RNS takes priority com-
pared to non-redundant RNS concerning the optimization of the implementation of
non-modular procedures on the base of the CRT algorithm.

7 Conclusions

In this paper, we have shown that the use of minimum-redundancy residue code can
allow the construction of efficient RNS implementations based on the CRT due to
optimizing the calculation of the rank ρk (X), a principal positional characteristic in
RNS arithmetic.

We investigated the structure of the rank ρk (X) and proposed a novel method for
calculating the correction Δk (X) to the inexact rank ρk (X). This method is based
on the fact that the correction Δk (X) is a two-value number (Δk (X) ∈ {0, 1}) in
the case when the RNS moduli m1, m2, . . . , mk are chosen according to the rule of
Theorem 1. That allows us to reduce the computational complexity of calculating the
rank ρk (X) from O k2 to O (k) owing to introducing the minimum redundancy of
the residue code by adding the redundant residue modulo m0 = 2, which, in essence,
is the parity of the RNS number X.

The reduction factors of the computational complexity of the rank calculation in
minimally redundant RNS compared to non-redundant RNS increase with the num-
ber k of RNS moduli asymptotically approaching the threshold k/2. For example, the
use of minimally redundant RNS with the length k of primary residue code from 5 to
30 digits enables us to reduce the computational costs by 2.8–15.47 times in terms of
lookup table memory and by 4.0 – 17.33 times in terms of required modular addition
operations.

Therefore, the proposed minimally redundant RNS takes priority in the field of
rapid calculations, especially in the case of the large RNS dynamic range, for exam-
ple, for implementing various complicated algorithms of digital signal processing
and cryptography. Thus, the examined approach to implementation of the CRT algo-
rithm in minimally redundant RNS coincides with the vector of the development of
modern methods and algorithms of high-performance and high-accuracy computing.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Abtahi, M.: Core function of an RNS number with no ambiguity. Comput. Math. Appl. 50(3–4),
459–470 (2005)

1138 Theory of Computing Systems (2021) 65:1117–1140

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2. Akkal, M., Siy, P.: A new mixed radix conversion algorithm MRC-II. J. Syst. Archit. 53(9), 577–586
(2007)

3. Akushskii, I.Y., Juditskii, D.I.: Machine Arithmetic in Residue Classes. Sov. Radio, Moscow
(1968)

4. Akushskii, I.Y., Burcev V.M., Pak, I.T.: A new positional characteristic of non-positional codes and its
application. In: Coding Theory and the Optimization of Complex Systems. Nauka, Alma-Ata (1977)

5. Amerbayev, V.M.: Theoretical Foundations of Machine Arithmetic. Nauka, Alma-Ata (1976)
6. Burton, D.M.: Elementary Number Theory. Allyn and Bacon, Boston (1980)
7. Dimauro, G., Impedovo, S., Pirlo, G.: A new magnitude function for fast numbers comparison in the

residue number system. Microprocess. Microprogr. 35(1–5), 97–104 (1992)
8. Dimauro, G., Impedovo, S., Pirlo, G., Salzo, A.: RNS architectures for the implementation of the

‘diagonal function’. Inf. Process. Lett. 73(5–6), 189–198 (2000)
9. Dimauro, G., Impedovo, S., Modugno, R., et al.: Residue-to-binary conversion by the quotient

function. IEEE Trans. Circ. Syst. II Analog and Digital Signal Process. 50(8), 488–493 (2003)
10. Gonnella, J.: The application of core functions to residue number system. IEEE Trans. Signal Process.

39(1), 69–75 (1991)
11. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University

Press, Ely House, London (2008)
12. Huang, C.H.: Fully parallel mixed-radix conversion algorithm for residue number applications. IEEE

Trans. Comput. 32(4), 398–402 (1983)
13. Jenkins, W.K., Etzel, M.H.: Special properties of complement codes for redundant residue number

system. Proc. IEEE 69(1), 132–133 (1981)
14. Knuth, D.E.: The art of computer programming, 3rd edn. In: Seminumerical Algorithms, vol. 2.

Addison-Wesley Longman Publishing Co., Boston (1997)
15. Kolyada, A.A., Selyaninov, M.Y.: Generation of integral characteristics of symmetric-range residue

codes. Cybern. Syst. Anal. 22(4), 431–437 (1986)
16. Kong, Y., Asif, S., Khan, M.A.U.: Modular multiplication using the core function in the residue

number system. Appl. Algebra Eng. Commun. Comput. 27(1), 1–16 (2016)
17. Miller, D., Altschul, R.E., King, J.R., Polky, J.N.: Analysis of the residue class core function of

Akushskii, Burcev, and Pak. In: Residue Number System Arithmetic: Modern Applications in Digital
Signal Processing, pp. 390–401. IEEE Press, Piscataway (1986)

18. Mohan, P.V.A.: Residue Number Systems. Theory and Applications. Springer, Cham (2016)
19. Molahosseini, A., Sousa, L., Chang, C.H.: Embedded Systems Design with Special Arithmetic and

Number Systems. Springer, Cham (2017)
20. Omondi, A.R., Premkumar, B.: Residue Number Systems: Theory and Implementation. Imperial

College Press, London (2007)
21. Pirlo, G., Impedovo, D.: A new class of monotone functions of the residue number system. Int. J.

Math. Models Meth. Appl. Sci. 7(9), 802–809 (2013)
22. Rao, T.R.N., Trehan, A.K.: Binary logic for residue arithmetic using magnitude index. IEEE Trans.

Comput. 19(8), 752–757 (1970)
23. Sengupta, A., Natarajan, B.: Redundant residue number system based space-time block codes. Phys.

Commun. 12, 1–15 (2014)
24. Shenoy, M.A.P., Kumaresan, R.: A fast and accurate RNS scaling technique for high speed signal

processing. IEEE Trans. Acoust. Speech Signal Process. 37(6), 929–937 (1989)
25. Shenoy, A.P., Kumaresan, R.: Fast base extension using a redundant modulus in RNS. IEEE Trans.

Comput. 38(2), 292–297 (1989)
26. Shoup, V. A Computational Introduction to Number Theory and Algebra, 2nd edn. Cambridge

University Press, Cambridge (2005)
27. Soderstrand, M.A., Jenkins, W.K., Jullien, G.A., Taylor, F.J.: Residue Number System Arithmetic:

Modern Applications in Digital Signal Processing. IEEE Press, Piscataway (1986)
28. Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Application to Computer Technology. McGraw-

Hill, New York (1967)
29. Tai, L.C., Chen, C.F.: Technical note. Overflow detection in a redundant residue number system. IEE

Proc. E-Comput. Digit. Tech. 131(3), 97–98 (1984)

1139Theory of Computing Systems (2021) 65:1117–1140



30. Tchernykh, A., Babenko, M., Chervyakov, N., et al.: AC-RRNS: anti-collusion secured data sharing
scheme for cloud storage. Int. J. Approx. Reason. 102, 60–73 (2018)

31. Yassine, H.M., Moore, W.R.: Improved mixed-radix conversion for residue number architectures. IEE
Proc. G - Circ. Dev. Syst. 138(1), 120–124 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1140 Theory of Computing Systems (2021) 65:1117–1140


	Computationally Efficient Approach to Implementation of the Chinese Remainder Theorem Algorithm in Minimally Redundant Residue Number System
	Abstract
	Introduction
	The Basic Principles of RNS Arithmetic
	The Rank of an RNS Number
	A Novel Method for Calculating the Rank in Non-redundant RNS
	The Relationship Between the Rank Correction and the Parity of an RNS Number
	Fast Calculation of the Rank in Minimally Redundant RNS
	Conclusions
	References


