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Abstract
The isomorphism problem for groups, when the groups are given by their Cayley
tables is a well-studied problem. This problem has been studied for various restricted
classes of groups. Kavitha gave a linear time isomorphism algorithm for abelian
groups (JCSS 2007). Although there are isomorphism algorithms for certain non-
abelian group classes represented by their Cayley tables, the complexities of those
algorithms are usually super-linear. In this paper, we design linear and nearly linear
time isomorphism algorithms for some nonabelian groups. More precisely,

– We design a linear-time algorithm to factor Hamiltonian groups. This allows us to
obtain an O(n) algorithm for the isomorphism problem of Hamiltonian groups,
where n is the order of the groups.

– We design a nearly linear time algorithm to find a maximal abelian direct factor
of an input group. As a byproduct we obtain an Õ(n) isomorphism for groups
that can be decomposed as a direct product of a nonabelian group of bounded
order and an abelian group, where n is the order of the groups.

– We observe that testing normality, computing the center of a group, finding a
logarithmic sized generating set, computing quotient groups for groups given by
their Cayley table could be done in linear or nearly linear time.
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1 Introduction

Two groups (G, ·) and (H, ×) are said to be isomorphic if there exists a bijective
function f : G −→ H , which is a homomorphism i.e. ∀a, b ∈ G, f (a · b) =
f (a) × f (b). The decision version of this problem is to check whether two input
groups (G, ·) and (H, ×) are isomorphic or not. There are multiple ways in which a
group can be given as the input. Two of commonly used methods are by a generating
set and by the Cayley table. The complexity of the group isomorphism problem varies
with the input representation. In this paper we assume that input groups are given by
their Cayley tables unless stated otherwise explicitly. Given two elements a and b,
the Cayley table can return the product a · b in constant time. The inputs are assumed
to be Cayley tables of groups and not just any arbitrary data1.

It is not known whether the group isomorphism problem (GrISO) is in P. If it is
NP-complete then polynomial hierarchy collapses at the second level [4]. Tarjan(see
e.g., [16]) gave an nlog n+O(1) algorithm for GrISO. While this still remains the best
upper bound for the general group isomorphism problem, progress has been made
for restricted classes of groups. For solvable groups, Arvind and Torán showed that
the problem is in NP ∩ co-NP under a reasonable complexity theoretic assumption
[1]. Rosenbaum and Wagner gave a n1/2(log n)+O(1) algorithm for the isomorphism
problem of p-groups [20] and Rosenbaum gave an n1/2(log n)+O(log n/ log log n) time
algorithm for solvable groups [19].

The isomorphism problem for various restricted classes of groups has been stud-
ied in the past [1–3, 9, 10, 17, 23, 24]. Efficient polynomial-time algorithms for the
isomorphism problem of abelian groups were designed by Savage [21], and Vikas
[24]. Kavitha gave a remarkable linear time algorithm for the isomorphism prob-
lem of abelian groups [23]. Kavitha’s paper also provides us with a useful tool for
computing the orders of all the elements in any group in linear time.

Polynomial time algorithms have been designed for some classes of non-abelian
groups. For example, Le Gall designed an efficient algorithm for groups consisting
of a semidirect product of a finite abelian group with a cyclic group of coprime
order [8]. Later, Qiao, Sarma, and Tang gave a polynomial time algorithm for the
isomorphism problem of groups with normal Hall subgroups [17]. Babai, Codenotti
and Qiao gave a polynomial-time algorithm for the class of groups with no normal
abelian subgroups [3]. To the best of our knowledge the runtime of these algorithms
are superquadratic.

1For the design of subquadratic deterministic algorithms for group theoretic problems where the groups
are given by their Cayley table it is standard to assume that the inputs are indeed Cayley tables of groups
and not just some arbitrary data [6, 13, 23, 24] (See the Model of Computation in Section 2).
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Our goal in this paper is to design linear or nearly linear time algorithm for some
nontrivial classes of nonabelian groups.

The isomorphism problem of nilpotent class 2 groups2 is not known to be in
polynomial-time. A nonabelian group is Hamiltonian if all of its subgroups are nor-
mal. These groups are nilpotent class 2 groups. We design an O(n) algorithm for the
recognition and the isomorphism problem of the Hamiltonian groups where n is the
order of the input groups.

A Hamiltonian group is a direct product of the quaternion group Q8 and an
abelian group with certain structure [5]. This motivates us to study the class of groups
that can be decomposed as a direct product of any arbitrary nonabelian group of
bounded order and an abelian group without any specific structure. We design an
Õ(n) algorithm for the recognition and the isomorphism problem of such groups.

Kayal and Nezhmetdinov gave an algorithm to factorize an input group into a
direct product of indecomposable factors [14]. We note that this group factoriza-
tion algorithm combined with any of the polynomial-time isomorphism algorithms
for abelian group gives us a polynomial-time isomorphism test for the group classes
considered in this paper. However, direct application of the result by Kayal and
Nezhmetdinov only gives us superquadratic isomorphism algorithms. One of the con-
tributions of this paper is to use the structure of the input groups to tweak and bypass
some of the computation heavy steps of the algorithm by Kayal et al [14]. We note
that Wilson gave an algorithm to find the direct factors of permutation groups in poly-
nomial time [26] and of groups given by their Cayley table in time O(n2 logO(1)(n))

[25], where n is the order of the group.
The main results of this paper are stated below.

Theorem 1 There exists anO(n) algorithm for the recognition and the isomorphism
problem of Hamiltonian groups where n is the order of the input groups.

Theorem 2 There exists an Õ(n) algorithm for the recognition and the isomor-
phism problem of groups that can be decomposed as a direct product of a nonabelian
group of bounded order and an abelian group where n is the order of the input
groups.

Many of our algorithms use the fact that a group of order n has a generating set
of size log n. In fact computing small generating set, testing if a given subgroup is
normal, computing the center of a group, computing the subgroup generated by a
subset of elements of a given group, computing quotient subgroups etc., sometimes
come as the building blocks of many of the group theoretic algorithms [11, 22]. We
observe that many of these algorithms can be implemented in nearly linear-time and
or in linear-time for groups given by their Cayley tables. These results may be of
independent interest.

2A group G is nilpotent class 2 if G/Z(G) is abelian.
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2 Preliminaries

In this section, we describe some of the group-theoretic definitions and background
used in the paper. For more details see [6, 12, 15, 23]. For a group G, the number of
elements in G or the order of G is denoted by |G|. Let x ∈ G be an element of group
G, then ordG(x) denotes the order of the element x in G, which is the smallest power
i of x such that xi = e, where e is the identity element of the group G. A group G is
abelian or commutative if ab = ba for all a, b ∈ G. A subgroup A ≤ G is said to be
normal in G, denoted by A � G, if gAg−1 = A for all g ∈ G.

For a subset S ⊆ G, 〈S〉 denotes the subgroup generated by the set S. For a
subgroup A ≤ G, the centralizer of A, denoted CG(A), is the set {g ∈ G | ag =
ga, ∀a ∈ A}. The center Z(G) of group G is the subgroup with elements {g ∈ G |
ga = ag, ∀a ∈ G}. Note that for a subgroup A ≤ G, Z(A) denotes the subgroup
with elements {a ∈ A|ab = ba, ∀b ∈ A}.

Given H ≤ G, the normal closure of H in G is the smallest normal subgroup of G

containing H and is denoted by 〈HG〉. The commutator subgroup [G, G] of a group
G is the subgroup 〈{xyx−1y−1 | ∀x, y ∈ G}〉. Similarly [H, K] = 〈{hkh−1k−1 |
h ∈ H, k ∈ K}〉.

Let G be a finite group and A, B be subgroups of G. Then G is a direct product
of A and B, denoted G = A × B, if 1) A � G and B � G, 2) |G| = |A||B|,
3) A ∩ B = {e}. We say that a group G is decomposable if there exist nontrivial
subgroups A and B such that G = A×B and indecomposable otherwise. We say that
a subgroup A of G is a direct factor (or factor) of G if there exists another subgroup
B of G such that G = A×B and we will call B a direct complement (or complement)
of A.

If pk is the highest power of a prime p dividing the order of the group G, then
a subgroup of G of order pk is called a Sylow p-subgroup of G. By Sylow theorem
such a subgroup always exists. A group G is nilpotent if and only if it is the direct
product of its Sylow subgroups.

The fundamental theorem for finitely generated abelian groups implies that a finite
group G can be decomposed as a direct product G = G1 × G2 × . . . × Gt , where
each Gi is a cyclic group of order pj for some prime p and integer j ≥ 1. If ai

generates the cyclic group Gi for i = 1, 2, 3, . . . , t then the elements a1, a2, . . . , at

are called a basis of G. An elementary abelian p-group is an abelian group in which
every nontrivial element has order p. Chen and Fu [6], and Karagiorgos and Poulakis
[13] gave linear time algorithms for finding a basis of abelian groups.

Theorem 3 (Remak-Krull-Schmidt, see e.g., [12]) Let G be a finite group. If G =
G1×G2× . . .×Gs and G = H1×H2× . . .×Ht with each Gi , Hj indecomposable,
then s = t and after reindexing Gi

∼= Hi for every i, and for any r < t , G =
G1 × . . . × Gr × Hr+1 × . . . × Ht .

A Remak-Krull-Schmidt decomposition of a group G is a decomposition such that
each direct factor of group G is indecomposable. The following lemma establishes a
relationship between two different decompositions of a group G in which one of the
factors is same.
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Lemma 1 ([14]) For a group G, suppose that G = K × H . Then for a K ′ � G,
G = K ′ × H if and only if K ′ = {αϕ(α) | α ∈ K}, where ϕ : K −→ Z(H) is a
homomorphism.

Proof Let ϕ : K −→ Z(H) be a homomorphism and K ′ = {αϕ(α) | α ∈ K}. We
need to to prove that G = K ′ × H .

First we note that for all k ∈ K and h ∈ H we have kh = hk. It is also easy to see
that gh = hg for all g ∈ G and h ∈ Z(H). We use these facts multiple times in this
proof.

Let a = αϕ(α) and b = α1ϕ(α1) be two elements in K ′. It is easy to see that
ab−1 ∈ K ′. This proves that K ′ is a subgroup.

As G = K × H , any g ∈ G could be written as g = kh where k ∈ K and h ∈ H .
For arbitrary element c = αϕ(α) ∈ K ′, we have

gcg−1 = (kh)(αϕ(α))(k−1h−1)

= (kαk−1)ϕ(α)

= (kαk−1)(ϕ(k)ϕ(α)ϕ(k−1))

= (kαk−1)ϕ(kαk−1)

The third equality follows by noting that ϕ(k) and ϕ(α) are in Z(H) and commute
with each other.

Now we prove that K ′ ∩ H = {e}. Assume that c = αϕ(α) ∈ K ′ also belongs to
H . Since c ∈ H and G = K × H , the K component of c must be e. That is α = e

and therefore ϕ(α) = e. Thus c = e and hence K ′ ∩H = {e}. By using the definition
of direct product we get, G = H × K ′, as required.

For the other direction we need to prove that if G = K ′ × H then K ′ = {αϕ(α) |
α ∈ K}, where ϕ : K −→ Z(H) is a homomorphism.

Claim For any k in K , there exists unique k′ ∈ K ′ and h ∈ Z(H) such that k′ = kh.

Proof of the Claim We can write k = k′h′ as G = K ′ × H . So, k′ = kh′−1. Setting
h = h′−1 we get k′ = kh. Since h = k−1k′ and element h1 ∈ H commutes with
elements in K as well as elements in K ′, we infer that h ∈ Z(H).

Assume that k′ = kh1 and k′′ = kh2 where k ∈ K and h1, h2 ∈ Z(H) ⊆ H . This
implies k′h−1

1 = k′′h−1
2 = k. Since G = K ′ × H this is only possible when k′ = k′′

and h1 = h2.

Let k ∈ K . By the claim we know there are unique k′ ∈ K ′ and h ∈ Z(H) such
that k′ = kh. This allows us to define a map ϕ : K −→ Z(H) by the rule ϕ(k) = h.
Thus, k′ = kϕ(k). Note that if kϕ(k) = k1ϕ(k1) then we must have k = k1 as
G = K × H . Then, as |K| = |K ′| we must have K ′ = {αϕ(α) | α ∈ K}.

It just remains to show that ϕ is a homomorphism. Let k, k1 ∈ K and let k′ = kh

and k′′ = k1h1 be the elements given according to the above claim. Then ϕ(k) = h

and ϕ(k1) = h1. We note that k′k′′ = kk1hh1, with kk1 ∈ K and hh1 ∈ Z(H). So,
ϕ(kk1) = hh1.
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Model of Computation Our model of computation is same as that of many of the
algorithms for groups given by Cayley table (e.g., [6, 23]). It is a RAM model where
random access can be done in constant time. Each register and memory unit can store
O(log |G|) bits. The arithmetic, logic and comparison operations on O(log |G|) bits
take constant time. Unless stated otherwise we assume that the elements of the group
are encoded as 1, 2, . . . , |G|. The Cayley table of a group with n elements could be
viewed is as a 2-dimensional array with n rows and n columns. Given two elements
i and j , the (i, j)th entry of the table is the product of i and j . The Cayley table can
return the product in constant time.

Given an n × n square matrix, it needs �(n2) time for any randomized algo-
rithm just to check if the matrix corresponds to a Cayley table of a group [18].
Thus, for the design of subquadratic algorithms (i.e., an algorithm with runtime
o(|G|2)) for group theoretic problems it is necessary to assume that the inputs are
indeed Cayley tables of groups and not just some arbitrary data. This is a reason-
able and standard assumption which is implicitly or explicitly made by several papers
e.g., [6, 13, 23, 24].

2.1 Previous Results

Apart from the results by Kayal and Nezhmetdinov, which we discuss in detail
in Section 5, we also use results by Chen and Fu, Karagiorgos and Poulakis, and
Kavitha. We summarize these results below.

The first result is due to Chen and Fu [6] (page 4116), and Karagiorgos and
Poulakis [13] (page 540)

Theorem 4 ([6, 13]) There is an O(|G|) algorithm for computing a basis of an
abelian group G given by its Cayley table.

Next we list the results proved by Kavitha [23] (page 987,993,995)

Theorem 5 [23]

1. There is an algorithm to compute the order of all the elements in any group G

given by it Cayley table in time O(|G|).
2. There is an algorithm to check if an input group G is abelian in time O(|G|).
3. There is an algorithm to test if two abelian groupsG andH given by their Cayley

tables are isomorphic in time O(|G|).

Organization of the paper In Section 3, we discuss some basic algorithms for groups
given by their Cayley tables. In Section 4 we give algorithms to compute quotient
groups in linear time. In Section 5 we discuss some nearly linear-time algorithms for
finding complements of certain groups. This results are then used in Section 6 and
Section 7. The main results of this article i.e., Theorem 1 is proved in Section 6 and
Theorem 2 in Section 7.
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3 Nearly Linear Time Algorithms

We say that a group theoretic algorithm is nearly linear-time if it has runtime
O(|G| logO(1) |G|). We hide the logarithmic factor by using the notation Õ(|G|). We
list some useful nearly linear-time algorithms for group theoretic problems for groups
given by their Cayley tables in the next lemma. The ideas behind these results are
either known as folklores or directly follows from easy observations. We also note
that Seress [22] has listed a rich library of nearly linear time algorithms in the con-
text of permutation groups. However, the exponent in the logarithmic factor in those
algorithms is usually more than one.

Lemma 2 1. Given S ⊆ G, one can compute the elements of the subgroup 〈S〉 in
O(|G| log |G|) time.

2. Finding an O(log |G|) sized generating set can be done in O(|G| log |G|)
time.

3. For a group G the center Z(G) can be computed in O(|G| log |G|) time.
4. Given A ≤ G, one can check whether A � G in O(|G| log |G|) time.
5. Given two subgroups A and B of G, one can check whether G = A × B in

O(|G| log |G|) time.

Proof We present proofs for the statements 1 and 2. The proofs for the other
statements are easy and we just sketch the proofs.

Consider a directed graph X = (V , E), where V = G and E = {(g, gs)|g ∈
G, s ∈ S}. Let H = 〈S〉. Finding H amounts to computing the set R of ver-
tices reachable from the identity element e ∈ G. Notice that R induces a regular
directed subgraph with |H ||S| edges. This subgraph is also a strongly connected
component of X. Note that the group structure implies that the strongly con-
nected components and weakly connected components are same for the graph X.
An algorithm similar to depth first search from the vertex corresponding to e can
find R in time O(|H ||S|). This proves 1) if |S| ≤ log |G|. We use similar ideas
as in the proof of 2 to handle the case when |S| > log |G|. Hence, we first
prove 2).

For 2, we pick an element a ∈ G \ {e} and set S1 = {a}. The algorithm keeps
on computing sets S1, S2, . . . in stages as follows. At the ith stage we have the set
Si . If we discover G = 〈Si〉 we stop the algorithm and output Si . Otherwise we pick
g ∈ G \ 〈Si〉 and let Si+1 = Si ∪ {g}. Note that 2|〈Si〉| ≤ |〈Si+1〉| as 〈Si+1〉 contains
the disjoint cosets 〈Si〉 and 〈Si〉g. Thus, if the last set is Sr , then r ≤ log |G|. Let
〈Si〉 = Hi and ni = |Hi |. Computing Hi via finding a suitable strongly connected
component in a graph as mentioned above takes time O(|Hi ||Si |) = O(i|Hi |). Fur-
thermore, we note that nr = |G| and ni ≤ nr/2r−i . Thus, computing all the His
together takes O(|G| log |G|) time.

Finding an element g ∈ G \ 〈Si〉 takes time O(|G|) and this too happens at most
log |G| times. Thus, the runtime of the algorithm is O(|G| log |G|). The pseudocode
to compute an O(log |G|) sized generating set is given below.
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To complete the proof of 1, we modify the algorithm for finding a logarithmic
sized generating set by setting S1 = {a} for any a ∈ S and then picking the new
elements g from S \ 〈Si〉 instead of G \ 〈Si〉.

For 3 compute a generating set S of G of size O(log |G|) and then select g as a
member of Z(G) if gs = sg for all s ∈ S.

To show 4 compute a generating set S of G of size O(log |G|) and for each g ∈ S

and check whether As ⊆ sA for each s ∈ S.
For the last statement 5we need to check ifA, B � G,A∩B is identity, and |G| =

|A||B|. The last two conditions take time O(|G|) to check and the first condition
needs O(|G| log |G|) time.

4 Algorithms in Quotient Groups

Suppose we have the list of elements of a group G and a black-box for the group
multiplication. Let N be a normal subgroup of G (also given as a list or array). In this
section we show how to construct the quotient structure G/N in linear-time. More
precisely, we describe a linear-time algorithm to build a data structure that can serve
as a black-box to compute multiplications in G/N . Once we have the data structure,
a multiplication query in G/N can be processed in constant time with just one query
to the black-box for G.

Many of the algorithms for groups given by their Cayley table work in the same
running time if the algorithm has access to the list of group elements and a group
multiplication black-box. As a consequence of this quotient black-box construction
we can see that the algorithms by Kavitha [23], Chen and Fu [6], and Karagiorgos
and Poulakis [13] still run in linear-time in quotient groups.

Suppose the list of elements of a group G and a normal subgroup N of G are
given along with a black-box for G. We construct lists Li for i = 1, . . . , |G/N |,
each containing the elements of different cosets of N in G in Algorithm 2. We
also compute the minimum elements mi (in the input order) of the list Li for
each i.
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Run-Time Analysis of Algorithm 2 In the algorithm flag[g] = 1 line 6 indicates that
we have already processed the coset containing g and no further action is required.
If f lag[g] = 0 then the algorithm spends O(|G/N |) time within the “if” condition.
But in the process it also discovers all the elements of the coset Ng for which the “if”
condition will not be executed in future. This shows that the run-time of Algorithm 2
is O(|G|).

It is easy to see that in linear-time we can compute an array S of size G and
indexed by the elements of G such that S[g] = i, where Li is the list produced by
by Algorithm 2 containing the elements of Ng. The Algorithm 3 given below is the
pseudocode for computing the array S.

The data structure for the quotient group G/N consists of the lists Li’s, the
sequence m1, m2, . . . , m|G/N | and the array S along with an access to the black-box
for G. The elements of G/N will be, as usual, 1, 2, . . . , |G/N |. The element i cor-
responds to the list Li , which in turn corresponds to one of the cosets of N in G. If
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we need to compute the product of i and j , we first compute m = mi ∗ mj using
the multiplication black-box for G and then return S[m]. By construction S[m] is the
index of the list containing the coset elements of the coset Nm.

We notice that any bounded number of repeated quotient construction can be done
in linear-time using the above method.

5 Algorithms for Finding Complements

Given a group G and a normal subgroup D of G, a complement of D in G is a
subgroup B such that G = D × B. It is important to note that a complement of a
subgroup may or may not exist, and even if a complement exists it may not be unique.
Kayal and Nezhmetdinov [14] gave an algorithm for finding a complement of a given
normal subgroup D of G. Their algorithm is divided into two cases: G/D is abelian
and G/D is nonabelian.

Algorithm 4 given below finds a complement of a subgroup D of a group G when
G/D is abelian. The algorithm is from [14] (page 591)

A careful analysis of the complement finding algorithm given above shows that
it takes Õ(|G|) time to find a complement of the subgroup D in G (if it exists).
Note that step 3 in Algorithm 4 can be done in linear-time using a basis finding
algorithm [6, 13] combined with results from Section 4. Similarly, in step 4 of the
Algorithm 4 the orders can be computed in linear-time using the results from [23]
but again combined with results from Section 4 in a quotient structure. The step 5 of
above algorithm can be performed in Õ(|G|) time (see Lemma 2)

The result for the first case can be stated as follows.

Theorem 6 ([14]) There is an algorithm to check if a complement of a normal sub-
group D of a group G exists in Õ(|G|) time, when G/D is abelian. The algorithm
also returns a complement if it exists.
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In the second case when G/D is nonabelian, it is not clear how to make the
algorithm by Kayal and Nezhmetdinov [14] run in nearly linear-time in general. For-
tunately, for the purpose of this paper, as we would see in comming paragraph that,
we only need to deal with the subcase when D is a subgroup of the center Z(G) of
G. During its execution the algorithm in [14] computes a quotient group which can
be done in linear-time using results in Section 4.

The following complement finding algorithm for the case when G/D is non-
abelian is from [14]. In our case D ≤ Z(G), which allows us to modify the original
algorithm.

The Algorithm 5 computes a group T = 〈{aga−1g−1 | a ∈ CG(D), g ∈ G}〉. We
will verify in the later part that, all other steps in the algorithm can be made to run in
Õ(|G|) time without the assumption D ≤ Z(G). It is the computation of T where we
use a different approach using the fact that D ≤ Z(G) to obtain the desired nearly
linear runtime. We first mention an easy observation.

Observation 1 If D ≤ Z(G) then CG(D) = G.

From Observation 1, it is immediate that T = 〈{aga−1g−1 | a ∈ G, g ∈ G}〉
which is nothing else but the commutator subgroup [G, G] of G. Lemma 3 gives us
a way to compute T efficiently.

Lemma 3 (see e.g., [15]) If G = 〈S〉 then [G, G] = 〈[S, S]〉G, where S is a
generating set of G and [S, S] = {aga−1g−1 | a, g ∈ S}.

We can compute a generating set S of sizeO(log |G|) of G in timeO(|G| log |G|)
by Lemma 2. Again by Lemma 2 we can compute an O(log |G|) sized generating
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set for the group 〈[S, S]〉 in O(|G| log |G|) time. Let us denote this set by Tgen.
Algorithm 6 given below computes a generating set for [G, G] (see [15]).

Runtime Analysis of Algorithm 6 Each time a new generator is added to Tgen the
order of the group K = 〈Tgen〉 is at least doubled, which implies that the number of
iterations of the while loop is O(log |G|). We maintain the group K as an array AK

indexed by the group elements g ∈ G such that AK [g] = 1 if and only if g ∈ K .
Thus, for any a ∈ S and b ∈ Tgen, we can check if a−1ba /∈ K in O(1) time. It takes
O(|G| log |G|) time to compute the group 〈Tgen〉. Now it is easy to verify that the
overall runtime of Algorithm 6 is O(|G|(log |G|)3). �

It is important to note that the inverse of an element a ∈ G can be found inO(|G|)
time (step 4). However since the number of iterations is only O(log |G|), we would
need to compute the inverse of O(log |G|) many elements, which implies that the
overall runtime to find inverses is O(|G| log |G|).

For the sake of completeness we make some more remarks. Computing G̃ can be
done in O(|G|) time as discussed in Section 4. D̃ can also be computed in O(|G|)
time. It is easy to see that Step 7 of the above algorithm can be done in Õ(|G|) time
with the techniques discussed in the Section 4 along with algorithms by Kavitha in
[23], and Chen and Fu in [6] or Karagiorgos and Poulakis in [13].

Summarising the above discussion we obtain:

Theorem 7 There exists an algorithm to find a complement of a subgroup D of the
center Z(G) of a groups G in time Õ(|G|) whenever a complement exists.

6 Hamiltonian Group Recognition and Isomorphism

A Hamiltonian group is a nonabelian group all of whose subgroups are normal. Since
every subgroup of such a group is normal, it follows that there is a unique Sylow
subgroup of any fixed order. In this section we consider the following problem.

HAMILTONIAN GROUP RECOGNITION

Input : Given a group (G, ·) by its Cayley table.
Find : Is G a Hamiltonian group?

The following structure theorem is one of the main ingredients for our result.
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Theorem 8 ([5, page 114]) Let G be a Hamiltonian group. Then
- G is the quaternion group Q8; or,
- G is the direct product of Q8 and B, or of Q8 and A, or of Q8, B and A, where A

is an abelian group of odd order and B is an elementary 2-group. Moreover, every
such direct product is a Hamiltonian group.

We recall that the quaternion group Q8 is a nonabelian group with eight elements
and it is generated by two elements a and b with the conditions a4 = 1, a2 = (ab)2 =
b2 (see e.g., [5]). An elementary 2-group is isomorphic to Zk

2 for some k. Thus, from
Theorem 8 we can see that the Sylow 2-subgroup of a Hamiltonian group is Q8 ×Z

k
2

for some nonnegative integer k and the other Sylow subgroups are all abelian. The
theorem also implies that Hamiltonian groups are nilpotent. The Sylow decompo-
sition can be computed in O(|G|) time using methods3 described in [6]. Next we
decompose the Sylow 2-subgroup using Algorithm 7. If we find that the Sylow 2-
subgroup is not of the form Q8 × Z

k
2 for some k, then we can immediately conclude

that the input group is not Hamiltonian. Otherwise, we can use the techniques devel-
oped by Kavitha [23] to test if the odd order Sylow subgroups are abelian. If that
is the case then we know that the input group is Hamiltonian. Moreover, since the
odd order Sylow subgroups are abelian, Theorem 4 give us a Remak-Krull-Schmidt
decomposition of the odd order Sylow subgroups. The decomposition of the Sylow
2-subgroup obtained from Algorithm 7 along with the decomposition of the odd
order abelian Sylow subgroups gives us a Remak-Krull-Schmidt decomposition of
the input Hamiltonian group.

Given a Sylow 2-subgroup as input, Algorithm 7 checks if it is Hamiltonian and
also returns a Remak-Krull-Schmidt decomposition isomorphic to Q8 × Z

k
2 if the

input is indeed Hamiltonian. We use the next lemma in the algorithm.

Lemma 4 Any two non-commutating elements in a Hamiltonian 2-group generate a
quaternion group which is also a direct factor.

Proof Let G be a Hamiltonian 2-group and let g, g′ ∈ G be two non-commutating
elements. To show that 〈g, g′〉 ∼= Q8 it is enough to show that g4 = 1, g2 = (gg′)2 =
g′2. As G is a Hamiltonian 2-group, G = Q8 × Z

k
2 for some k. Thus, we can write

g = (a1, b1) and g′ = (a2, b2), where a1, a2 ∈ Q8 and b1, b2 ∈ Z
k
2. It is easy to

verify that g4 = 1, g2 = (gg′)2 = g′2. Nowwe prove that 〈g, g′〉 is also a factor ofG.
Set a homomorphism ϕ : Q8 −→ Z

k
2 that maps the generators a1 and a2 of Q8 to b1

and b2 respectively and let C = {αϕ(α) | α ∈ Q8}. Now using Lemma 1, we can see
that G = C ×Z

k
2. Next we prove that C = 〈g, g′〉. Notice that |C| = |Q8|. Thus it is

enough to prove that 〈g, g′〉 ⊆ C. For this we note that generators g = a1ϕ(a1) ∈ C

and g′ = a2ϕ(a2) ∈ C. This completes the proof.

3We can compute the Sylow decomposition in O(|G|) without using the result given [6], if G is Hamil-
tonian 2-group. Note that in a Hamiltonian 2-group order of each non-trivial element will be either 2 or
4.

509Theory of Computing Systems (2021) 65:497–514



A Hamiltonian 2-group may have multiple quaternion subgroups. Lemma 4 states
that every quaternion subgroup of a Hamiltonian 2-group is also a direct factor of
the Hamitlonian 2-group. This allows us to design an algorithm to find a quaternion
factor in O(|G|) time as given in the pseudocode below.

We now prove the correctness of the algorithm and give the run-time analysis.
Checking whether G ∼= Q8 or not can be done in O(1) time. From now on, we
assume that G � Q8. In a Hamiltonian 2-group, all non-central elements are of order
4 and constitutes the set P . Since we are interested in elements of order 4, P can be
computed in linear-time even without using results in [23].

Since the picked element g ∈ P (Line 6) is non-central, there must exist an ele-
ment g′ ∈ P such that gg′ �= g′g. If no such pair is found in P then G is not a
Hamiltonian 2-group. Otherwise by Lemma 4, 〈g, g′〉 ∼= Q8 and will also be direct
factor of G. Thus, if the check 〈g, g′〉 ∼= Q8 fails we conclude that G is not a
Hamiltonian 2-group.

Using Kavitha’s result given in [23], we can test whether C is abelian in time
O(|G|) (Line 10). If C is abelian and all the elements of C have order 2, then
we conclude that C is an elementary abelian 2-group and the algorithm returns the
complement C.

Finally we argue that we can also compute a complement of 〈g, g′〉 in timeO(|G|)
in Line 9. We can use the result of Theorem 6 to find a complement. However, a
direct application of Theorem 6 would only give us an Õ(|G|) upper bound. Below
we show that the structure of Hamiltonian group could be used to get an O(|G|)
upper bound.
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The major time consuming computation tasks inside the complement finding algo-
rithm of Theorem 6 are computing the quotient group G/〈g, g′〉, computing the
center and testing normality (see [14]).

Since 〈g, g′〉 is the quaternian group of order 8, testing its normality in time
O(|G|) is trivial. We can compute G/〈g, g′〉 in O(|G|) time using techniques dis-
cussed in Section 4. If G is a Hamiltonian 2-group, then G/〈g, g′〉 will be an abelian
group. The task of checking whetherG/〈g, g′〉 is abelian can be performed inO(|G|)
time using the algorithm described in [23]. If G is a Hamiltonian 2-group, then the
center of the group G consists of all order 2 elements along with the identity. One
can find all these elements in O(|G|) time. If the original group is not a Hamiltonian
2-group then the final test (Line 5, Algorithm 4), which is to confirm if we have actu-
ally computed a valid decomposition will identify any error that might have occurred
in the computation of the center. This final test can be performed in time O(|G|)
exploiting the structure of Hamiltonian 2-groups as described below.

Let g1, g2, . . . , gt are elements in the center of the group G such that ordG(gi) =
ordG/〈g,g′〉(gi), ∀i ∈ [t]. We now show that checking G = 〈g, g′〉 × 〈g1〉 × 〈g2〉 ×
. . . × 〈gt 〉 can be performed in O(|G|) time. It is easy to verify that the second and
third condition of direct product (see preliminary) can be checked in O(|G|) time.
The first condition of direct product which is to check whether 〈g, g′〉 and each 〈gi〉,
i ∈ [t] is normal or not normal in G. Checking whether 〈g, g′〉 � G can be done in
O(|G|) time as order of subgroup 〈g, g′〉 is eight. Note that if G is a Hamiltonian
2-group then G = 〈g, g′, g1, . . . , gt 〉 (see Theorem 8). To check 〈gi〉, is normal in
G can be performed in O(|G|) time (see Lemma 2) as we have an O(log |G|) sized
generating set of G. Failing in any of the checks will imply that the input group is not
a Hamilotinian 2-group. These observations shows that Theorem 6 can be modified
to find a complement of 〈g, g′〉 in G in O(|G|) time.

Once we have the Remak-Krull-Schmidt decompositions of two Hamiltonian
groups the isomorphism test is trivial.

Theorem 9 There exists an algorithm that given two Hamiltonian groups G and H

tests if they are isomorphic in time O(|G|).

7 Groups with a Bounded Nonabelian Direct Factor

Taking motivation from Hamiltonian groups, which are direct product of the non-
abelian quaternion group Q8 and an abelian group, we study the recognition and the
isomorphism problem of a more general class of groups which can be decomposed
as a direct product of a nonabelian group of bounded order and an abelian group. For
a fixed d , let Gd = {G | G = A × B, where |A| ≤ d and B is abelian}. It is easy to
see that the isomorphism problem for groups in Gd can be solved in linear-time once
we have a decomposition of each of the input groups as a direct product of a small
nonabelian group with no cyclic factor and an abelian group.

In this section we show that given a nonabelian group G, it can be decomposed as
a direct factor of a nonabelian group with no cyclic factor and an abelian group in
nearly linear-time. We note that for this algorithm we do not need any upper bound
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on the order of the nonabelian factor. The idea is to keep on peeling off direct cyclic
factors from the given group as long as possible. Each time we factor out a cyclic
group, the order of the other factor decreases by at least half. Thus, the process of
factoring out cyclic groups can happen for at most log |G| iterations. Next we define
the CYCLIC FACTOR problem below.

CYCLIC FACTOR

Input : A group (G, ·) given by its Cayley table.
Find : A cyclic factor 〈b〉 and H � G (if they exist) such that G = H × 〈b〉.

We show that the CYCLIC FACTOR problem can be solved in Õ(|G|) time.
From this result and the above discussion we can immediately obtain the following
theorem.

Theorem 10 There is an algorithm that takes the Cayley table of a nonabelian group
G as input and in time Õ(|G|) returns two groups A and B, such that G = A × B

where A is a nonabelian group with no cyclic factor and B is abelian.

In the rest of the section we focus on the CYCLIC FACTOR problem. The following
lemma helps us to solve the problem.

Lemma 5 If G has a cyclic factor then for any basis {b1, b2, . . . , b�} of Z(G), there
is i ∈ [�] such that 〈bi〉 is a factor of G.

Proof Let G = A×B, where A is nonabelian with no cyclic factor and B is abelian.
Notice that Z(G) = Z(A) × B = B × Z(A). Let B = 〈c1〉 × . . . × 〈ck〉 and
Z(A) = 〈d1〉 × . . . × 〈dr〉 be a basis decomposition of B and Z(A). This gives a
basis decomposition of Z(G) as Z(G) = 〈c1〉 × . . . × 〈ck〉 × 〈d1〉 × . . . × 〈dr 〉. Let
b1, . . . , bk, bk+1, . . . , bk+r be an another basis of Z(G), where bis are ordered to
satisfy the following conditions from Remak-Krull-Schmidt theorem:

1. 〈bi〉 ∼= 〈ci〉, ∀i ∈ [k] and 〈bk+j 〉 ∼= 〈dj 〉, ∀j ∈ [r], and
2. Z(G) = Bp × 〈d1〉 × . . . × 〈dr〉 = Bp × Z(A)

where Bp = 〈b1〉 × . . . × 〈bk〉. Therefore, we have Z(G) = B × Z(A) = Bp ×
Z(A). By Lemma 1, we have Bp = {αϕ(α) | α ∈ B} for some homomorphism
ϕ : B −→ Z(Z(A)) = Z(A).

Thus, we have G = A × B = B × A and Bp = {αϕ(α)|α ∈ B} for the homomor-
phism ϕ : B −→ Z(A). In this setting another application of Lemma 1 shows that
G = Bp × A = A × Bp.

It is clear that for some i ∈ [k] the subgroup 〈bi〉 is a factor of G.

The above lemma immediately suggests an algorithm to solve the CYCLIC FAC-
TOR problem for a given group G. The pseudocode of the algorithm for the CYCLIC

FACTOR problem is given below. The algorithm can be used recursively to find all
the cyclic factors of the group G.
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We now discuss the runtime of the algorithm. We can use Kavitha’s result to check
if G is abelian in linear-time [23]. If G is abelian, then cyclic factors of G can be
found inO(|G|) time using results from [6]. Let us assume that input group G is non-
abelian. We can compute the center of a group in nearly linear-time using Lemma 2.
Thus, step 4 of the algorithm takes O(|G| log |G|) time.

Since Z(G) is abelian we can use Theorem 4 for step 5 of the algorithm. Notice
that the number of basis elements of Z(G) is at most log |G|. Thus, the maximum
number of iterations in step 9 is at most log |G|. In general, we do not know how to
compute a complement of a subgroup in nearly linear time. However, the fact that
each 〈bi〉 is a subgroup of the center of the group allows us to use Theorem 7. Thus,
the runtime of step 9 as well as the whole algorithm is Õ(|G|).
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