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Abstract
We show that any nondeterministic read-once branching program that decides a satis-
fiable Tseitin formula based on an n×n grid graph has size at least 2�(n). Then using
the Excluded Grid Theorem by Robertson and Seymour we show that for an arbitrary
graph G(V, E) any nondeterministic read-once branching program that computes a
satisfiable Tseitin formula based on G has size at least 2�(tw(G)δ) for all δ < 1/36,
where tw(G) is the treewidth ofG (for planar graphs and some other classes of graphs
the statement holds for δ = 1). We apply the mentioned results to the analysis of the
complexity of derivations in the proof system OBDD(∧, reordering) and show that
any OBDD(∧, reordering)-refutation of an unsatisfiable Tseitin formula based on a
graph G has size at least 2�(tw(G)δ). We also show an upper bound O(|E|2pw(G)) on
the size of OBDD representations of a satisfiable Tseitin formula based on G and an
upper bound O(|E||V |2pw(G) + |TSG,c|2) on the size of OBDD(∧)-refutation of an
unsatisifable Tseitin formula TSG,c, where pw(G) is the pathwidth of G.
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1 Introduction

This paper continues the study of representation of satisfiable Tseitin formulas by
read-once branching programs.

A Tseitin formula TSG,c [21] is defined for every undirected graph G(V, E) and
a labeling function c : V → {0, 1}. We introduce a propositional variable for every
edge of G. The Tseitin formula TSG,c represents a linear system over the field GF(2)
that for every vertex v ∈ V states that the sum of all edges adjacent to v equals c(v).
It is well known that a Tseitin formula is satisfiable if and only if the sum of values
of the labeling function for all vertices in every connected component is even [22].

In 2017 Itsykson et al. [14] showed that any OBDD representing satisfiable Tseitin
formulas based on d-regular expanders on n vertices has size at least 2�(n). Then
Glinskih and Itsykson [10] extended this lower bound to nondeterministic read-once
branching programs (1-NBP).

In this paper we consider an n×n grid and study the complexity of representation
of Tseitin formulas based on it by read-once branching programs. In Theorem 3.1 we
prove that any 1-NBP computing a satisfiable Tseitin formula based on an n×n grid
has size 2�(n). Although an n×n grid graph has some edge-expansion properties, we
could not prove the lower bound based only on these properties; our proof requires
careful analysis and we use the geometric properties of the grid.

As an important corollary we establish a connection between the complexity of
1-NBP representation of a satisfiable Tseitin formula and the treewidth of the under-
lying graph. The treewidth is one of the most important structural measures of a graph
and it is one of the main parametrizations for computational graph problems. Theo-
rem 4.1 states that any 1-NBP computing a satisfiable Tseitin formula TSG,c has size
at least 2�(tw(G)δ) for all δ < 1/36, where tw(G) denotes the treewidth of the graph
G. The proof is based on the Excluded Grid Theorem by Robertson and Seymour
[20]: there is a function g such that if a graph G has the treewidth at least g(t), then
G contains a grid of size t × t as a minor. Recent results of Chekuri and Chuzhoy
[4] and [5] give a polynomial upper bound on the function g. Hence we know that
every graph G has a t × t grid as a minor, where t = �(tw(G)δ) for all δ < 1/36.
For several classes of graphs it is possible to improve the value of δ, for example,
for planar graphs δ = 1 [12, 19]. Thus Theorem 4.1 is followed by Lemma 4.3 stat-
ing that if H is a minor of G, then for every S and for every 1-NBP of size S that
computes a satisfiable Tseitin formula TSG,c there is an 1-NBP that computes a sat-
isfiable Tseitin formula TSH,c′ of size at most S. This lemma is proved separately for
every operation: an edge deletion, a vertex deletion and an edge contraction. We use
the non-determinism in the case of an edge contraction: we replace nodes labelled
with contracted edges by guessing nodes.

In Theorem 6.1 we show that for every satisfiable Tseitin formula based on a graph
G(V, E) has an OBDD of size O(|E|2pw(G)), where pw(G) is the pathwidth of G

(note that the pathwidth differs from the treewidth by at most a logarithmic factor:
tw(G) ≤ pw(G) ≤ O(tw(G) log |V |)). Since the pathwidth of an n×n grid is O(n),
our upper and lower bounds for grids match up to a constant in the exponent.

There are several known approaches to defining the treewidth of CNF formulas.
Ferrara, Pan and Vardi [7] considered a graph on variables of a CNF formula where

614 Theory of Computing Systems (2021) 65:613–633



two variables are connected iff they share a common clause. They proved that if
a graph associated with CNF formula has the treewidth t , then the formula has an
OBDD of size nO(t) (it is very similar to Theorem 6.1 but it uses another notion of
the treewidth). Razgon [18] showed that this bound is tight and there is a family of
CNF formulas with the treewidth at most k that requires 1-NBP of size n�(k). In the
case of a Tseitin formula TSG,c, the associated graph is the edge-graph of G, where
the vertices are the edges of G and two edges are connected iff they are incident to
the same vertex of G. For example, if G is a star on n + 1 vertices (a star is a tree
and, hence, it has the treewidth 1), then the edge-graph is the complete graph Kn−1
and it has the treewidth n − 2.

Applications to proof complexity The interest of the study of Tseitin formulas comes
from the propositional proof complexity; unsatisfiable Tseitin formulas are one of
the basic examples of hard formulas for many proof systems.

The study of representations of satisfiable Tseitin formulas by read-once branch-
ing program was motivated by the study of proof systems based on OBDDs
introduced by Atserias, Kolaitis and Vardi [2]. Itsykson et al. [14] studied the
proof system OBDD(∧, reordering); a proof of unsatisfiability of a CNF formula
ϕ in this proof system is a sequence of OBDDs: D1, D2, . . . , Ds such that Ds

is a constant false OBDD and for all i ∈ [s], Di either represents a clause of
ϕ, or represents the conjunction of Dk ∧ D�, where k, � < i and Di, Dk and
D� use the same order, or represents the same function as D� but using another
order, where � < i. The paper [14] gives an exponential lower bound on size of
OBDD(∧, reordering)-refutations of unsatisfiable Tseitin formulas based on constant
degree expanders. The lower bound proof is organized as follows: for any refuta-
tion of Tseitin formula TSG,c of size S it is possible to construct an OBDD of size
at most S2 representing a satisfiable Tseitin formula TSG′,c′ , where G′ is a graph
obtained from G by the deletion of several edges. Thus it is sufficient to prove
lower bound on the size of OBDD representation of TSG′,c′ . We adapt this approach
and show in Theorem 5.3 that our results imply that any OBDD(∧, reordering)-
refutation of an unsatisfiable Tseitin formula TSG,c has size at least 2�(tw(G)δ),
where δ is a constant as above. In particular we get a lower bound 2�(n) on the
complexity of OBDD(∧, reordering)-refutations of Tseitin formulas based on the
n × n grid.

In Corollary 6.3 we show that every unsatisfiable Tseitin formula based on a graph
G(V, E) has an OBDD(∧)-refutation of size O(|E||V |2pw(G) + |TSG,c|2), where
OBDD(∧) is a subsystem of OBDD(∧, reordering) that do not use the reoredering
rule.

The recent paper by Buss et al. [3] shows that OBDD(∧) cannot be polynomially
simulated by Resolution and even by Cutting Planes. The paper shows that any Res-
olution proof of Tseitin formula based on the complete graph on log n vertices Klog n

has size at least 2�(log2 n), while it has an OBDD(∧)-refutation of polynomial size. It
is well known that the size of the shortest regular Resolution proof of any unsatisfi-
able CNF formula φ equals the size of the minimal read-once branching program for
the following search problem Searchφ : given an assignment of variables of φ, find
a clause that is refuted by this assignment [16, 17]. Our upper bound implies that a
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satisfiable TSKlog n,c can be computed by an OBDD of size poly(n). Thus we have
that computing of SearchTSKlog n,c

for an unsatisfiable TSKlog n,c is superpolynomially
harder than computing of a satisfiable TSKlog n,c′ for read-once branching programs.

Tseitin formulas based on the grid graphs were studied in proof complexity. The
first superpolynomial lower bound for regular resolution was proved for grid graphs
in 1968 by Tseitin [21]. In 1987 Urquhart proved a lower bound for Tseitin formulas
based on expanders in unrestricted Resolution [22] but tight lower bounds for grids
were proved by Dantchev and Riis only in 2001 [6]. In the recent paper [13] Håstad
proved lower bound on Bounded depth Frege refutations for Tseitin formulas based
on n × n grid graphs that implies that polynomial size Frege proofs of such formulas
should use formulas with almost logarithmic depth.

The treewidth was also studied in the context of resolution refutations of Tseitin
formulas. Alekhnovich and Razborov [1] considered a hypergraph that corresponds
to every CNF formula, where variables are vertices and clauses as sets of variables
form hyperedges. For Tseitin formulas the branch-width of this hypergraph is up
to a constant factor equal to the Resolution width [1]. For constant degree graphs
the treewidth is equal to the branch-width of the hypergraph up to a multiplicative
constant. Galesi, Talebanfard and Torán in the recent paper [9] consider cop-robber
games on graphs that are very similar to games characterising the treewidth, they
used such games in an analysis of the complexity parameters of resolution refutations
of Tseitin formulas.

Galesi et al. [8] very recently extended Håstad argument for all graphs also using
the Excluded Grid Theorem: there is a constant K such that any unsatisfiable TSG,c

requires proofs of size 2tw(G)�(1/d)
in depth-d Frege systems for d <

K log n
log log n

. Further-
more, this result is tight up to a multiplicative constant in the top exponent: TSG,c has

a depth-d Frege proof of size 2tw(G)O(1/d)
poly(|TSG,c|) for all d . Together with our

results it implies that complexities of derivation of Tseitin formulas in constant-depth
Frege and in OBDD(∧, reordering) are quasi-polynomially related.

The short version of the paper was presented at CSR-2019 [11]. The full version
in comparison to the short one contains proofs of Lemma 4.2, Theorem 5.3, Theo-
rem 6.1 and the full proof of Theorem 5.1. The full version also contains an upper
bound for the proof system OBDD(∧) (Corollary 6.3).

2 Preliminaries

Branching programs A deterministic branching program (BP) is a form of represen-
tation of Boolean functions. A Boolean function f (x1, x2, . . . , xn) is represented by
a directed acyclic graph with exactly one source and two sinks. All nodes except sinks
are labeled with a variable; every internal node has exactly two outgoing edges: one
is labeled with 1 and the other is labeled with 0. One of the sinks is labeled with 1
and the other is labeled with 0. The value of the function for given values of variables
is evaluated as follows: we start a path from the source such that for every node on its
path we go along the edge that is labeled with the value of the corresponding variable.
This path will end in a sink. The label of this sink is the value of the function.
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A nondeterministic branching program (NBP) differs from a deterministic in the
way that we also allow guessing nodes that are unlabeled and have two outgoing unla-
beled edges. So nondeterministic branching program may have three types of nodes:
guessing nodes, nodes labeled with a variable (we call them just labeled nodes) and
two sinks; the source is either a guessing node or a labeled node. The result of a
function represented by a nondeterministic branching program for given values of
variables equals 1, if there exists at least one path from the source to the sink labeled
with 1 such that for every node labeled with a variable on its path we go along an edge
that is labeled with the value of the corresponding variable (for guessing nodes we
are allowed to choose any of two outgoing edges). Note that deterministic branching
programs constitute a special case of nondeterministic branching programs.

A deterministic or nondeterministic branching program is (syntactic) read-k (k-
BP or k-NBP) if every path from the source to a sink contains at most k occurrences
of each variable.

Let π be a permutation of the set {1, . . . , n} (an order). A π -ordered binary deci-
sion diagram is a 1-BP such that on every path from the source to a sink variable xπ(i)

can not appear before xπ(j) if i > j . An ordered binary decision diagram (OBDD) is
a π -ordered binary decision diagram for some π .

Lemma 2.1 (Wegener [23]) Assume that Boolean functions f1 and f2 have π -
ordered OBDDs of sizes k1 and k2 respectively, then 1) f1 ∧ f2 has a π -ordered
OBDD of size at most k1k2; 2) for any partial assignment ρ, f1|ρ has a π -ordered
OBDD of size at most k1.

Tseitin formulas LetG(V, E) be an undirected graph without loops but possibly with
multiple edges, c : V → {0, 1} be a labeling function that matches every vertex
with a Boolean value. We associate every edge e ∈ E with a propositional variable
xe. A Tseitin formula TSG,c based on a graph G and a labeling function c is the
conjunction of the following parity conditions: for every vertex v the sum of vari-
ables xe for all edges e that are incident to v equals c(v) modulo 2. More formally:
∧

v∈V

(
∑

e is incident to v

xe = c(v) mod 2

)

.

Usually, Tseitin formulas are written in the CNF. If the maximal degree of a graph
is upper bounded by a constant d , then a sum modulo 2 can be written as a d-CNF of
size at most 2d−1, hence the size of CNF representation of TSG,c is at most 2d−1|V |.

We will use the following criterion of the satisfiability of Tseitin formulas:

Lemma 2.2 (Urquhart [22]) A Tseitin formula TSG,c is satisfiable if and only if for
every connected component of the graph G the sum of values of the function c for
all of the vertices is even. I.e., for every connected component U the following holds:∑

v∈U

c(v) = 0 mod 2.

Remark 2.3 Note that an assignment of a value to a variable xe := α transforms
Tseitin formula TSG,c to a Tseitin formula TSG′,c′ , where graph G′ is obtained from
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the graph G by deleting the edge e, c′ equals c in every vertex except two vertices
that are incident to edge e. On these two vertices the values of c and c′ differ by α.

Lemma 2.4 (Glinskih and Itsykson [10], Lemma 2) If a graph G(V, E) consists
of k connected components, then a satisfiable Tseitin formula TSG,f has exactly
2|E|−|V |+k satisfying assignments.

Proof sketch Consider a spanning forest F(V, EF ) of G. F contains exactly |V | − k

edges. Consider an arbitrary partial assignment of variables {xe | e ∈ E \ EF }; this
assignment can be uniquely extended to a satisfying assignment of TSG,f . Hence,
TSG,f has exactly 2|E|−|V |+k satisfying assignments.

For a graph G(V, E) let kG(l) be the maximal number of connected components
that can be obtained from G by the deletion of l edges. The following lower bound
on the size of 1-NBP for satisfiable Tseitin formula is known; we prove it for the sake
of completeness.

Lemma 2.5 (Glinskih and Itsykson [10], Corollary 20) For every connected graph
G(V, E) and arbitrary 1 ≤ m ≤ |E| any 1-NBP evaluating a satisfiable Tseitin
formula TSG,c has size at least 2|V |−kG(m)−kG(|E|−m)+1.

Proof Let D be a minimal 1-NBP evaluating TSG,c. Consider a node v of D. Since
D is minimal, there exists a path p1 from the source of D to v and a path p2 from v to
the 1-sink. Let ρ1 and ρ2 be partial assignments corresponding to p1 and p2. Let ρ1
substitute values to l variables; since ρ1ρ2 satisfies TSG,c, then ρ2 substitute values to
|E|− l variables. Remark 2.3 implies that the formula TSG,c|ρ2 obtained from TSG,c

by the assignment ρ2 is a Tseitin formula TSG′′,c′′ , where G′′ can be obtained from
G by removing |E|− l edges corresponding to ρ2. The formula TSG′′,c′′ is satisfiable
since it is satisfied by ρ1. Consider an arbitrary path q1 from the source to v and
denote the corresponding partial assignment by σ1. Since the path q1p2 is accepting
in D, then the assignment σ1ρ2 satisfies TSG,c, hence σ1 satisfies TSG′′,c′′ . Thus the
number of different partial assignments corresponding to paths from the source to v is
at most the number of satisfying assignments of TSG′′,c′′ ; the latter equals 2l−|V |+�G′′

by Lemma 2.4, where �H denotes the number of connected components in the graph
H . By the definition of kG, 2l−|V |+�G′′ ≤ 2l−|V |+kG(|E|−l).

Similarly, Remark 2.3 implies that the formula TSG,c|ρ1 is a Tseitin formula
TSG′,c′ , where G′ can be obtained from G by removing l edges corresponding ρ1.
And TSG′,c′ is satisfiable since it is satisfied by ρ2. Consider an arbitrary path q2
from v to 1-sink and denote the corresponding partial assignment by σ2. Since p1q2
is an accepting path in D, then ρ1σ2 satisfies TSG,c, hence σ2 satisfies TSG′,c′ . Thus,
the number of different partial assignments corresponding to paths from v to 1-sink
is at most the number of satisfying assignments of TSG′,c′ that by Lemma 2.4 equals
2|E|−l−|V |+�G′

and does not exceed 2|E|−l−|V |+kG(l).
So we get that the number of different satisfying assignments of TSG,c corre-

sponding to accepting paths passing through v is at most 2|E|+kG(|E|−l)+kG(l)−2|V |.
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Since G is connected, by Lemma 2.4, TSG,c has exactly 2|E|−|V |+1 satisfying
assignments. For every such assignment there is a corresponding accepting path in
D. For every such accepting path p we mark a node v such that there are exactly m

labelled edges between the source and v along p. We have shown above that every
node was marked at most 2|E|+kG(|E|−m)+kG(m)−2|V | times. Hence, there are at least
2|V |−kG(|E|−m)−kG(m)+1 different marked nodes in D.

Lemma 2.6 Let G be an undirected graph, c and c′ be such that Tseitin formulas
TSG,c and TSG,c′ are satisfiable. Then sizes of minimum-size 1-NBPs (1-BPs and
OBDDs) for TSG,c and TSG,c′ are equal.

Proof We will show that the first Tseitin formula can be obtained from the second
by the changing some variables by their negations and, hence a branching pro-
gram for the first Tseitin formula can be obtained from a branching program for the
second Tsetin formula just by changing labels of outgoing edges for some nodes.
Consider one connected component U of G. By Lemma 2.2 for the both Tseitin for-
mulas the sum of labels that correspond to this component is even:

∑
v∈U c(u) =∑

v∈U c′(u) = 0. Consider a set of vertices U ′ = {v ∈ U | c(u) �= c′(u)}, the size of
U ′ is even. Assume that U = {u1, u2, . . . , u2k}. For every i ∈ [k] we consider a path
from u2i−1 to u2i and change signs to the opposite of variables corresponding to the
edges of this path in the second Tseitin formula. Such operation for u2i−1 and u2i
corresponds to changing of the value of the labeling function in vertices u2i−1 and
u2i , labels for other vertices do not change since we change the signs for two edges.
Applying this transformation for all connected components we transform the second
Tseitin formula to the first.

Treewidth, pathwidth and minors A tree decomposition of an undirected graph
G(V, E) is a tree T = (VT , ET ) such that every vertex u ∈ VT corresponds to a set
Xu ⊆ V and it satisfies the following properties: 1. The union of Xu for u ∈ VT

equals V . 2. For every edge (a, b) ∈ E there exists u ∈ VT such that a, b ∈ Xu. 3. If
a vertex a ∈ V is in the sets Xu and Xv for some u, v ∈ VT , then it is also in Xw for
all w on the path between u and v in T .

If a tree T is a path, then this representation is a path decomposition. The width
of a tree decomposition is the maximum |Xu| for u ∈ VT minus one. A treewidth of
a graph G is the minimal value of the width among all tree decompositions of the
graph G. We denote it as tw(G). The pathwidth of a graph G is the minimal value of
the width among all path decompositions of a graph G. We denote it as pw(G).

Lemma 2.7 (Korach and Solel [15]) For every graph G on n vertices pw(G) =
O(log(n) · tw(G)).

A minor of an undirected graph G is a graph that can be obtained from a graph G

by a sequence of edge contractions, edge deletions and vertex deletions.

Theorem 2.8 (Chuzhoy [5]) For every constant δ < 1/36 every graph G contains a
t × t grid as a minor, where t = �(tw(G)δ).

619Theory of Computing Systems (2021) 65:613–633



3 Lower Bound for Grids

In this section we prove the following Theorem.

Theorem 3.1 Let Tn be an n × n grid graph. Then if a Tseitin formula TSTn,c is
satisfiable, then every 1-NBP that computes TSTn,c has size at least 2�(n).

Proof Let us fix an orientation of the grid Tn such that all edges will be either hori-
zontal or vertical. We assume that all vertices have coordinates such that horizontal
coordinates increase from left to right and vertical coordinates increase from bottom
to top.

Tn contains (n + 1)2 vertices and 2n(n + 1) edges. In order to prove this theorem
we use Lemma 2.5 for l = n(n + 1) (so l is the half of the number of edges). So we
have to prove that if we delete half of the edges of Tn, then the resulting graph will

have at most (n+1)2

2 − ε · n connected components for some constant ε > 0. Hence,
by Lemma 2.5, every 1-NBP for TSTn,c has size at least 22εn+1.

We call a subgraph of Tn optimal if it contains l edges and has the maximal number
of connected components. The plan of the proof is the following. At first we show that
there exists an optimal subgraph H that has one connected component that contains
all edges and all other connected components are isolated vertices. Then we estimate
the number of connected components of H .

Lemma 3.2 There is an optimal subgraph of Tn that has exactly one connected
component with at least two vertices.

Proof Consider all optimal subgraphs of Tn. Choose among them a subgraph H that
contains a connected componentM with the maximal number of edges. IfM contains
all edges of H , then the lemma is proved. Further we assume that not all edges are in
M .

Consider the properties of the chosen graph H .
1. All the edges of the grid Tn between vertices of M are in M . Indeed, otherwise

we can delete an edge from another connected component and add it to M . After this
operation the number of connected components does not decrease, but the number
of edges in M is strictly increased. This is a contradiction since M has the maximal
number of edges among all the optimal subgraphs.

2. Every connected component, except M , is edge-biconnected (i.e. it is impossi-
ble to increase the number of connected components by the deletion of an edge from
it). Indeed, assume that for some connected component except M it is possible to
delete an edge from it such that the number of connected component increases. Then
we delete this edge and add an edge of the grid that connects M with a vertex out of
M . In this case the number of connected components is not changed but the number
of edges in the maximal component would be increased. This is a contradiction.

3. There is no vertex v of Tn such that it is not in M but there are at least two
edges between v and vertices of M in Tn. Proof by contradiction; assume that such a
vertex exists. Consider a connected component K that differs from M and has edges.

620 Theory of Computing Systems (2021) 65:613–633



Let u be the leftmost vertex among the set of vertices in K with the minimal vertical
coordinate. There are no edges going left or down from the vertex u in the graph H .
Since the connected componentK has edges, there is at least one edge that is incident
to u. By the previous property, K is edge-biconnected, hence, u has precisely two
incident edges. Let us delete two edges incident to u from K and add two edges that
connect v and M . The number of connected components doesn’t decrease, but the
number of edges in the maximal component increases. This is a contradiction.

4. Every 1 × 1 square of the grid Tn contains 0, 1 or 4 edges from M . A 1 × 1
square cannot contain exactly 3 edges because it contradicts the property 1. Let an
1 × 1 square contains exactly 2 edges from M . If these are two incident edges, then
we get a contradiction with the property 3 or the property 1. If these are two opposite
edges, then we get a contradiction with the property 1.

5. For every u, v ∈ M , the minimal rectangle of the grid that contains both u and
v (with all interior edges) is a subgraph of M (one of the sides of the rectangle could
be of zero length, in that case it is just a line of the grid). It can be easily shown by
the induction on the length of the shortest path between u and v using the property 4.

6. M is a rectangle of the grid with all edges of this rectangle. Consider the max-
imal rectangle of the grid that is fully contained (with all edges) in M . If there are
vertices inM that are not in this rectangle, then we could increase this rectangle using
the property 5.

So M is a rectangle of the grid. We say that M can be moved one step to the left
(right, down or up) if all left (right, down or up) neighbours of the left (right, down or
up) border of M are isolated vertices in H . Such a move doesn’t change the number
of connected components and the number of edges in them. Consider some connected
component K that differs from M and contains edges. We move M one step closer
to K in the way of decreasing the distance between them while it is possible. By
the distance we understand the minimal L1-distance between two vertices from M

and K . After some step it is not possible anymore; it means that M has a neighbour
v from another connected component that consist of more than one vertex. W.l.o.g.
assume that v is above M .

Let M be a rectangle x × y, where x, y are non-negative integers. That means that
every horizontal line of M contains x + 1 vertices. We call neighbours of M that
are above M as upper neighbours of M . Assume that among upper neighbours of M

there are m vertices that are in some connected component that consists of more than
one vertex. Let these m vertices be in k connected components. Assume that there
are r edges of the graph H between x +1 upper neighbours of M (see an example on
the left part of Fig. 1). Since every edge between upper neighbours of M decreases
the number of connected components, the following inequality holds k ≤ m − r .
Obviously, r ≤ x.

Consider the following modification of the graph H : we move the rectangle M

one step up and add edges down from r vertices on the bottom border of M (see
example on the right part of Fig. 1). The number of edges after this transformation is
not changed since r edges overlapped and we added r edges. Now we estimate the
number of connected components. On the bottom border we add (x + 1) − r new
connected components. On the upper border (x + 1) − m + k connected components
disappeared (were merged to one). Finally, the number of connected components
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Fig. 1 Example: x = 6, y = 4, r = 3, k = 3,m = 7

increased by m − k − r , that is at least zero since k ≤ m − r . But the number of
edges in the maximal connected component increases, this contradicts the choice of
the graph H . So we get a contradiction with the assumption that there are more than
one connected components with at least one edge.

So we may assume that there is an optimal graph H that has one connected com-
ponent M with at least two vertices and t isolated vertices. Notice that M is not
necessary a rectangle now (in Lemma 3.2 we only show that it has to be a rectan-
gle under the assumption that the statement of the lemma is wrong). We are going to
estimate kTn(l) = t + 1 from the above.

For every connected component K we define a set of spines that go out of it. We
assume that Tn is a part of the infinite grid. An edge e of the infinite grid is a spine of
K if it connects a vertex u from K with a vertex out of K and u is the right or bottom
endpoint of e (see Fig. 2). Note that spines can go outside of the square Tn if u is on

Fig. 2 Spines
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the upper or left border of Tn. If a component is an isolated vertex, then it has exactly
two spines.

The same edge cannot be a spine for two different connected components since
we choose only the edges that go up or to the left from the component. Let h be the
total number of all spines for all of the connected components of H . Every spine is
either an edge of the square Tn that is not in H or is among 2(n + 1) edges that go
outside the square Tn. Hence, 2(n + 1) + n(n + 1) ≥ h.

Let X be the number of spines of the connected component M , then we get that
h = 2t + X. Using the previous inequality we estimate t as follows: t ≤ (n + 1)(n +
2)/2−X/2 = (n+1)2/2+(n+1−X)/2. Hence, we need to show that X ≥ (1+ε)n

for some constant ε.
Consider the minimal grid rectangle that contains M . Assume it has size (a −1)×

(b − 1), where a, b are natural numbers. Then there are spines of M in every of a

vertical lines and in every of b horizontal lines. Then we get that X ≥ a+b ≥ 2
√

ab.
On the other hand, the component M contains exactly n(n + 1) edges, they need to
be embedded into a rectangle (a − 1) × (b − 1) that contains a(b − 1) + b(a − 1)
edges. Then we can estimate 2ab > a(b − 1) + b(a − 1) ≥ n(n + 1) and we get
X ≥ √

2n(n + 1) >
√
2n.

Using the upper bound on t , the number of connected components can be esti-
mated as: kTn(l) = t + 1 ≤ (n + 1)2/2− (

√
2− 1)n + 3

2 . Then by Lemma 2.5, every

1-NBP for a satisfiable Tseitin formula TSTn,c has size at least 22(
√
2−1)n−2.

4 Treewidth

The main goal of this section is to prove the following theorem.

Theorem 4.1 Let TSG,c be a satisfiable Tseitin formula. Then every 1-NBP for

TSG,c has size at least 2�
(
tw(G)δ

)

for all δ < 1/36.

Lemma 4.2 Let D be a 1-NBP computing a Boolean function f : {0, 1}n → {0, 1}.
If we change every node in D labeled with the variable x1 by a guessing node
and remove all labels of all its outgoing edges, then we obtain a valid 1-NBP that
computes ∃x1f (x1, x2, . . . , xn).

Proof For every path from the source to a sink in D′ every variable occurs at most
once, so D′ is a valid 1-NBP. Consider an assignment τ to the variables x2, . . . , xn.
Let us consider a path in D′ from the source to the sink labeled with 1 that is con-
sistent with τ . Consider the same path in D, it also finishes in the sink labeled
with 1. Then there exists an assignment τ ′ that satisfies f and τ ′ extends τ on a
value of the variable x1. Now consider a satisfying assignment σ of the function
∃x1f (x1, x2, . . . , xn). For some value of x1 there exists a path from the source to the
sink labeled with 1 in the branching program D that is consistent with this value and
with σ . The copy of this path in the branching D′ is consistent with σ and reaches
the sink labeled with 1.
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Lemma 4.3 Let H be a minor of an undirected graph G and Tseitin formulas TSG,c

and T sH,c′ be satisfiable. Then for every S and every 1-NBP of size S that computes
TSG,c, there is a 1-NBP that computes TSH,c′ of size at most S.

Proof It suffices to prove the statement of the lemma for the case whenH is obtained
from G by the application of one operation. Let us consider all types of operations
separately.

1. H is obtained from G by the deletion of an edge e. Let σ be a satisfying assign-
ment of TSG,c. We apply the partial assignment xe := σ(xe) to TSG,c and get the
satisfiable formula TSH,c′′ . It is well known that the application of a substitution does
not increase size of the 1-NBP. By Lemma 2.6, sizes of the minimal 1-NBPs for
TSH,c′′ and TSH,c′ are equal.

2. H is obtained from G by the deletion of a vertex v. Since all the variables of
Tseitin formulas are associated with edges, this case can be considered as a sequence
of edge deletions.

3. A graph H(VH , EH ) is obtained from a graph G(V, E) by the contraction of
an edge e = (u, v). Let us define a labeling function c′′ : VH → {0, 1} as follows:
for all the vertices that differ from the joined vertex {u, v} it has the same value as in
the labeling function c and c′′({u, v}) = (c(u) + c(v)) mod 2. By the construction,
every connected component U of H corresponds to a connected component U ′ of G

with the same sum (over F2) of the labeling functions:
∑

w∈U c′′(w) = ∑
w∈U ′ c(w).

Hence, by Lemma 2.2, TSH,c′′ is satisfiable.

Claim 4.3.1 Formulas TSH,c′′ and ∃xeTSG,c define the same function.

Proof Formulas TSH,c′′ and ∃xeTSG,c depended on the same set of variables X =
{xl | l ∈ E \ {e}}, since H is obtained from G by the contraction of the edge e.
Consider some assignment of these variables σ : X → {0, 1}. Assume that σ satisfies
TSH,c′′ . Consider an assignment σ ′ : X ∪ {xe} → {0, 1} such that for every x ∈ X,
σ ′(x) = σ(x) and σ ′(xe) = ∑

t∈Eu
σ (xt ) + c(u) mod 2, where Eu is a set of edges

that are incident to the vertex u in G except for the edge e. We need to check that
σ ′ satisfies TSG,c. All conditions that are not related to vertices u and v are satisfied
automatically, because they do not contain the edge e. The condition in the vertex u

is satisfied because of the choice of the value of the variable xe in σ ′. Let Ev be a
set of edges that are incident to the vertex v in G except for the edge e. To check the
condition in the vertex v we should compute σ ′(xe)+∑

t∈Ev
σ (xt ). By the definition

of the value σ ′(xe) we get that the sum equals
∑

t∈Eu∪Ev
σ (xt ) + c(u) that is equal

to c(v), because σ satisfies the condition in the vertex {u, v} in the formula TSH,c′′ .
Now let σ be an assignment that satisfies ∃xeTSG,c. σ can be extended to an

assignment σ ′ that satisfies TSG,c. Let us check that σ satisfies TSH,c′′ . We should
check the condition only for the vertex {u, v}: ∑

t∈Eu∪Ev
σ (xt ) = (

∑
t∈Eu

σ (xt ) +
σ ′(xe)) + (

∑
t∈Ev

σ (xt ) + σ ′(xe)) = c(u) + c(v).

By Lemma 4.2, the minimal size of a 1-NBP for ∃xeTSG,c (that is by Claim 4.3.1
equivalent to TSH,c′′) is at most the minimal size of a 1-NBP for TSG,c. By
Lemma 2.6, minimal sizes of 1-NBPs for TSH,c′′ and for TSH,c′ are equal.
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Proof of Theorem 4.1 By Theorem 2.8, the graph G contains a t × t grid graph
as a minor, where t = �(tw(G)δ). The theorem follows from Theorem 3.1 and
Lemma 4.3.

5 Lower Bound in the Proof SystemOBDD(∧, reordering)
In this section we show that any refutation of an unsatisfiable Tseitin formula TSG,c

in the proof system OBDD(∧, reordering) has size at least 2�
(
tw(G)δ

)

for all δ <

1/36.
If F is a formula in CNF, we say that a sequence D1, D2, . . . , Dt of OBDDs is an

OBDD(∧, reordering)-refutation of F if Dt is an OBDD that represents the constant
false function, and for all 1 ≤ i ≤ t , Di is an OBDD that represents a clause of F

or can be obtained from the previous Dj ’s by one of the following inference rules:
(conjunction or join) Di is an OBDD with order π , that represents Dk ∧ Dl for
1 ≤ l, k < i, where Dk, Dl have the same order π ; (reordering) Di computes the
same function as Dj with j < i (note that Di and Dj may have different orders).
The size of an OBDD(∧, reordering)-refutation is the total size of all OBDDs in it.
An OBDD(∧)-refutation is a partial case of OBDD(∧, reordering)-refutation that do
not use reordering rules.

We say that a graphH is t-good ifH is connected and every OBDD-representation
of any satisfiable Tseitin formula TSH,c has size at least t . The following theorem
can be proved using ideas from [14]:

Theorem 5.1 [cf. [14]] LetG(V, E) be a connected graph and degrees of all vertices
ofG be bounded by a constant. Assume that the graphG has the following properties:
1) if we delete any vertex from G, we get a t-good graph; 2) for every two vertices u

and v of G there is a path p between them such that if we delete all vertices from p,
we get a t-good graph. And if we delete from G vertices u and v and the edges of the
path p, we also get a connected graph.

Then any OBDD(∧, reordering)-refutation of an unsatisfiable Tseitin formula
TSG,c has size at least �(

√
t).

We start with the idea of the proof. We consider the last step of the
OBDD(∧, reordering)-refutation: the conjunction of OBDDs F1 and F2 is the identi-
cally false function but both F1 and F2 are satisfiable. Both and F2 are conjunctions
of several clauses of TSG,c. We will show that for any order π either F1 or F2 has
large π−OBDD representation. We do not care about applications of the reordering
rule, we only use that F1 and F2 has the same order.

SinceG remains connected after removing of any single vertex, F1 and F2 together
contain all clauses of TSG,c. Assume that there are two nonadjacent vertices u and v

such that F1 does not contain a clauseCu that corresponds to the vertex u and F2 does
not contain a clause Cv that corresponds to v (if this assumption is false, the proof is
rather straightforward). We consider two partial assignments ρ1 and ρ2 that are both
defined on the edges adjacent to u and v and on the edges of the path p between u
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and v. The assignments ρ1 and ρ2 assign opposite values to edges of the path p and
are consistent on all other edges. The assignment ρ1 satisfies Cv and refutes Cu and
ρ2 satisfies Cu and refutes Cv .

By the construction F1|ρ1 ∧ F2|ρ2 is almost a satisfiable Tseitin formula based on
the graph that is obtained from G by deletion of the vertices u and v and all edges
from the path p. However, it is also possible that this formula does not contain some
clauses for the vertices from p. Thus we make additional partial assignment τ that
substitute values from a satisfying assignment for all remaining edges for vertices
from p. (F1|ρ1 ∧ F2|ρ2)|τ is satisfiable Tseitin formula based on the graph that is
obtained from G by deletion of all vertices from the path p. The size of an OBDD
representation of such a formula is at least t by the condition of the theorem. Hence
by Lemma 2.1 we get that either F1 or F2 has size at least �(

√
t) in the given order.

Proof of Theorem 5.1 Consider the last step of the proof: conjunction of OBDDs F1
and F2 is the identically false function but F1 and F2 are satisfiable. Both F1 and F2
are conjunctions of several clauses of TSG,c. Every clause of TSG,c is either in F1 or
in F2 since otherwise F1 ∧ F2 is satisfiable by Lemma 5.2. Our goal is to prove that
either F1 or F2 has size at least

√
t .

Lemma 5.2 Suppose � denotes the formula that can be obtained from TSG,c by
removing one arbitrary clause. Then � is satisfiable and everyOBDD representation
of � has size at least t .

Proof Assume that TSG,c = � ∧ C, whereC is a clause that corresponds to the parity
condition for a vertex v. LetH be the result of the removing of the vertex v fromG.H is
t-good and, hence, the graphH is connected. Consider an assignment σ to all variables
of the clause C that falsifies C. Let �′ = �|σ . Since σ falsifies C, it satisfies all the
other clauses in the parity condition for the vertex v. SinceH is connected, the assign-
ment σ changes the total parity of the labeling function of this component to be even.
Thus, �′ corresponds to a satisfiable Tseitin formula based on H ; hence, the size of
every OBDD for �′ is at least t . �′ is the result of the assignment applied to �, hence
by Lemma 2.1 the size of every OBDD representing � is at least t .

We consider two cases:

1. There exist two non-adjacent vertices u and v from G such that F1 does not
include some clause Cv that corresponds to the vertex v and F2 does not include
some clause Cu for the vertex u.

Consider a path p from v to u that exists by the property 2 from the conditions
of the theorem. Let ev be the first edge of p and eu be the last edge (ev �= eu

since u and v are non-adjacent). Consider two assignments ρ1 and ρ2 with the
same support: all edges that are incident to vertices u and v and all edges from
the path p. Assignments ρ1 and ρ2 are consistent on edges that are out of p: all
edges that are adjacent to u or v but not in p have values that do not satisfy Cu

andCv (this is possible since u and v are non-adjacent). ρ1 substitutes zeros to all
edges fromp except eu and ev , and substitutes a value to ev that does not satisfyCv ,
and a value to eu that satisfiesCu. ρ2 substitutes ones to all edges fromp except eu
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and ev , and substitutes a value to ev that satisfiesCv , and a value to eu that does not
satisfy Cu. So edges from p have different values in ρ1 and ρ2; ρ1 satisfies u and
refutes v and ρ2 refutes u and satisfies v.

Consider the graph G′ that can be obtained from G by removing u, v and all
edges from the path p. The graph G′ is connected by the property 2 from the
conditions of the theorem.

Let c′ be a labeling function of the result of the assignment ρ1 applied to
TSG,c and c′′ be a restriction of c′ on V \ {u, v}. Note that ρ2 corresponds to the
same c′′ since ρ1 and ρ2 identically change the value of the labelling function
for all vertices except u and v. We claim that TSG′,c′′ is Indeed if we make a
assignment ρ1 to TSG,c the vertex v would be refuted, the vertex u would be
would be satisfied, all other vertices are marked according c′. Thus the sum of
values of c′′ is even and TSG′,c′′ is satisfiable since G′ is connected.

We consider the conjunction F1|ρ1 ∧ F2|ρ2 . Any satisfying assignment of
TSG′,c′′ satisfies both F1|ρ1 and F2|ρ2 , hence F1|ρ1 ∧F2|ρ2 is satisfiable. Suppose
we represent F1|ρ1 ∧F2|ρ2 as a conjunction of clauses. For every vertex w that is
not in p, the union of clauses of F1 and F2 contains all clauses that correspond
to the equation at the vertex w, assignments ρ1 and ρ2 are consistent for all vari-
ables from this equation, hence F1|ρ1 ∧F2|ρ2 contains all clauses that correspond
to the equation of the vertex w in formula TSG′,c′′ . Consider a partial assignment
τ that substitutes values to edges of that are incident to vertices of p accord-
ing some satisfying assignment of TSG′,c′′ . If we delete all vertices of the path
p from G′ we get a graph G′′ that is connected by the property 2 of conditions
of the theorem. Since τ is consistent with a satisfying assignment of TSG′,c′′ ,
TSG′,c′′ , then the application of the assignment τ converts TSG′,c′′ to a satisfiable
Tseitin formula TSG′′,c′′′ . And TSG′′,c′′′ coincides with (F1|ρ1 ∧ F2|ρ2)|τ .

Size of any OBDD representation of the formula TSG′′,c′′′ is at least t since
G′′ is t-good. Then any OBDD representing (F1|ρ1 ∧ F2|ρ2)|τ has size at least t ,
hence by Lemma 2.1 any OBDD representing F1|ρ1 ∧ F2|ρ2) has size at least t .
Thus, by Lemma 2.1 for every given order of variables π either F1|ρ1 or F2|ρ2
has size of the minimal π−OBDD at least

√
t . Hence, the minimal π−OBDD

for F1 or F2 has size at least
√

t .
2. In the second case there are no such non-adjacent vertices. Since F1 is not iden-

tically false, there exists a vertex u such that F1 does not include a clause that
corresponds to a vertex u and by the assumption F2 does not include clauses
only for the vertex u and its neighbours. Hence, TSG,c = F2 ∧ ∧

i∈I Ci , where
for all i ∈ I , Ci is a clause corresponding u or a neighbour of u that is not
included in F2. Notice that I �= ∅; let us fix i0 ∈ I . Then, F2 ∧ ∧

i∈I\{i0} Ci

obtained from TSG,c by removing of Ci0 , hence, by Lemmas 5.2, the size of any
OBDD representation of F2 ∧ ∧

i∈I\{i0} Ci is �(t). Since G is a constant-degree
graph,

∧
i∈I Ci depends on a constant number of variables. Hence

∧
i∈I\{i0} Ci

can be represented as an OBDD of size O(1) for any order of variables. Thus,
by Lemma 2.1, any OBDD representation of F2 has size at least �(t).

Theorem 5.1 is used in the proof of the main result of this section:
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Theorem 5.3 Let G be a connected graph and TSG,c be an unsatisfiable formula.

Then every OBDD(∧, reordering)-refutation of TSG,c has size at least 2�
(
tw(G)δ

)

for
all δ < 1/36. For planar graphs the lower bound holds and for δ = 1.

We will need the following lemmas.

Lemma 5.4 Let φ be an unsatisfiable CNF formula that has a refutation in the proof
system OBDD(∧, reordering) of size S. Let ρ be a partial assignment of values of the
formula φ. Then φ|ρ has an OBDD(∧, reordering)-refutation of size at most S.

Proof Let D1, D2, . . . , Ds be a refutation of the formula φ, then
D1|ρ, D2|ρ, . . . , Ds |ρ is a refutation of the formula φ|ρ , where Di |ρ is a result of an
assignment ρ to OBDD Di . By Lemma 2.1, the application of an assignment does
not increase the size of OBDD.

Lemma 5.5 Let G(V, E) be a connected graph and G′(V ′, E′) be a connected sub-
graph of G with E′ �= ∅ that is obtained from G by the deletion of some vertices and
edges. For every unsatisfiable Tseitin formula TSG,c there exists an assignment ρ on
variables E \ E′, such that ρ does not falsify any clause of TSG,c.

Proof We substitute one-by-one values of variables that correspond to edges from
E \ E′ (and correspondingly modify the Tseitin formula) and we maintain the fol-
lowing invariant while deleting edges of G: a Tseitin formula corresponding to every
connected component that doesn’t contain vertices from V ′ is satisfiable. The invari-
ant holds at the beginning, since the graph G′ is connected and thus there are no
such connected components. Recall that an edge of a graph is a bridge if removing
of this edge from the graph increases the number of connected components. Suppose
we assign an edge e, if e is from an unsatisfiable connected component (i.e. a part
of Tseitin formula corresponding to this component is unsatisfiable) and it is not a
bridge of G, then we assign it with the value 0, after this transformation the com-
ponent stays unsatisfiable. If e is a bridge of an unsatisfiable component, then we
assign it with a value such that the new connected component that is obtained after
the deletion of e and that does not contain vertices from V ′ would be satisfiable (such
value exists by Lemma 2.2). If e is from a satisfiable connected component, then we
assign a value from the satisfying assignment of this connected component. In the
end the invariant implies that the resulting assignment does not falsify any clause of
TSG,c.

Proof of Theorem 5.3 By Theorem 2.8 the graph G contains a s × s grid minor H ,
where s = �

(
tw(G)δ

)
. Consider a process of obtaining the minor H from the graph

G such that this process contains the minimal possible number of operations of edge
contractions. Since operations of edge and vertex deletions and edge contractions
commute, we denote by G′ a graph that is obtained from G after the application of
all edge and vertex deletions. Then H can be obtained from G′ by the application of
only edge contractions. We assume that if during a step of edge contractions we get
parallel edges, then all of them except one should be deleted.
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In Lemmas 5.6, 5.7, 5.8 and 5.9 we verify that G′ satisfies the conditions of
Theorem 5.1. And then we conclude the proof by the application of Lemmas 5.5
and 5.4.

Lemma 5.6 All vertices in the graph G′ have a degree at most 4.

Proof Note that after the application of an edge contraction the degree of a vertex
cannot decrease, since otherwise it is possible to replace an edge contraction by a
vertex deletion. Since all vertices in H have degrees at most 4, it must also be true
for G′.

Lemma 5.7 After the deletion of any vertex from the graph G′ we get a connected
graph.

Proof Suppose that we delete a vertex v from the graph G′ and get a graph with
at least two connected components K1 and K2. We know that we can obtain the
s × s grid H from the graph G′ by several edge contractions. Suppose the vertex v

is transformed to the vertex v′ of H after the application of these edge contractions.
Since H remains connected after the deletion of the vertex v′, it is not possible that
some vertex a ∈ K1 and some vertex b ∈ K2 are transformed to vertices a′ and b′
from H − v′. Indeed, H − v′ is connected, hence there is a path in H connecting
a′ and b′ that does not contain v′, hence there is a path in G′ connecting a and
b that does not contain v; this is a contradiction since a and b are from different
connected components of G′ −v. Thus for some i ∈ {1, 2} the component Ki is fully
transformed to the vertex v′. It means that we could just delete all vertices of Ki and
do not contract anything, it decreases the number of contractions and contradicts the
choice of the graph G′.

Consider the s×s grid squareH and for every two vertices u and v ofH we define
a path p′

u,v between them. If at least one of u and v is not on the border of the square
H , then p′

u,v consists of two straight-line parts, one of whose is horizontal and the
other is vertical. If u and v belong to the border of H , then p′

u,v is the shortest path
between u and v that only passes through vertices on the border. In both cases it can
be easily verified that the s × s graph remains connected after the deletion of vertices
u and v and edges of p′

u,v , and also after the deletion of all vertices of p′
u,v . Notice

the following property: if two vertices of p′
u,v are connected by and edge of the grid,

then they are consequent in the path p′
u,v .

Consider two arbitrary vertices u and v of the graph G′, suppose that after the
application of edge contractions they are transformed to the vertices u′ and v′ (u′ and
v′ might coincide) of the s × s grid H . Let pu,v be a path between u and v in the
graph G′ that is transformed to p′

u′,v′ . If u = v, we assume that pu,u is a path with
the only one vertex u.

Lemma 5.8 For every two vertices u, v of the graph G′ if we delete u and v and
edges of pu,v fromG′ we obtain a connected graph. And if we delete all of the vertices
of pu,v we also obtain a connected graph.
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Proof At first we note that it is impossible that G′ has two adjacent vertices a and
b out of the path pu,v such that a and b are transformed to different pair of dis-
tinct vertices a′ and b′ of path p′

u′,v′ . Indeed, since we do not delete edges, a′ and
b′ are connected by an edge in H , hence a′ and b′ are two consecutive vertices of
p′

u′,v′ . Since pu,v is transformed to p′
u,v , there are vertices s and t from pu,v that

are transformed to a′ and b′. Vertices s and t are connected by edges of pu,v , hence
there is an edge of pu,v that is transformed to an edge between a′ and b′. The edge
between a and b is also transformed to an edge between a′ and b′. This is a contra-
diction, since we get two edges between a′ and b′ that come from different edges
of G′, hence one of them should be deleted but we assume that there are no more
deletions.

We claim that the graph G′ remains connected if we delete from it vertices u, v

and edges of the path pu,v . Proof by contradiction. Suppose that after the deletion
we will get a graph with at least two connected components K1 and K2. Since H

remains connected after deletions of vertices u′, v′ and edges of the path p′
u′,v′ , then

it is not possible that some vertices a ∈ K1 and b ∈ K2 are transformed to vertices
a′, b′ from H − {v′, u′}, because they are connected in H − {v′, u′} and thus there
is a path between them that does not go through vertices u, v and edges of the path
pu,v in the initial graph G′. Thus, for some i ∈ {1, 2} every vertex of the component
Ki is transformed to v′ or to u′. We have already shown that it is impossible that
some vertices from Ki are transformed to v′ and some to u′ (otherwise there are two
adjacent vertices with such property). Hence we may just delete all vertices from Ki

and do not contract anything and this decreases the number of contractions. And we
get a contradiction with the choice of the graph G′.

By similar arguments the graph G′ remains connected if we delete from it all
vertices of pu,v .

Lemma 5.9 For every two vertices u, v of the graph G′ the graph that is obtained
from G′ by the deletion of all vertices of pu,v contains a �s/3� × �s/3� grid as a
minor.

Proof Consider some vertices u and v of the the s × s square. We show that if we
delete all vertices of the path p′

u,v from the s × s square, then there is a sub-square
of the size �s/3� × �s/3� that does not contain any deleted edge or vertex. Indeed,
there are 9 squares of the size �s/3� × �s/3� that are fully contained in the square
s × s and do not have common 1 × 1 squares. If the path goes only by the bor-
der of the square then it does not touch the central square �s/3� × �s/3�. In the
other case the path has two straight segments (may be of the zero length): vertical
and horizontal. It is easy to see that such paths can have common vertices with at
most 8 chosen squares, hence there is at least one �s/3� × �s/3� square that is not
touched.

Suppose we deleted the path pu,v between two vertices u and v from the graph G′.
We find in the square H a square T�s/3� of the size �s/3� × �s/3� such that it does
not intersect with vertices u′, v′ and vertices of the path p′

u′,v′ . Let U be the set of
vertices of the graph G′ that is contracted to vertices of T�s/3�. The set of vertices U

does not intersect with u, v and vertices of the path pu,v , since in the other case the
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square T�s/3� would also intersect u′, v′ or p′. Thus T�s/3� is a minor of a subgraph
G′ that is induced by vertices from U , and, hence, a minor of the graph G′.

Let K be a graph obtained from G′ by the deletion of a vertex u or by the deletion
of vertices from a path pu,v for some u, v. Lemmas 5.9 and 4.3 imply that size of
1-NBP for satisfiable Tseitin formula TSK,c is at least the minimal size of 1-NBP
for a satisfiable Tseitin formula TST�s/3�,c′ that by Theorem 3.1 is at least 2�(s). and
Lemmas 5.6, 5.7, 5.8 we get that G′ satisfies the condition of Theorem 5.1 for t =
2�(s).

By Lemma 5.5, there exists an assignment ρ of variables corresponding to edges of
G that are not inG′ that does not falsify clauses of the formula TSG,c. The application
of ρ to the formula TSG,c transforms it to the formula TSG′,c′ (other clauses are
satisfied). By Theorem 5.1 the size of every OBDD(∧, reordering)-refutation of the
formula TSG,c is 2�(s). Then by Lemma 5.4 the size of every OBDD(∧, reordering)-
refutation of the of the formula TSG,c is 2�(s).

6 Upper Bounds

In this section we prove upper bounds on the size of OBDD for satisfiable Tseitin
formulas and on the size of OBDD(∧) refutations of unsatisfiable Tseitin formulas.

Theorem 6.1 Let F be a conjunction of several parity conditions of a Tseitin formula
TSG,c based on a graph G(V, E). Then F can be represented as an OBDD of size
|E|2pw(G)+1 + 2.

Proof Consider a path decomposition of the graph G: X1, X2, . . . , Xs such that
|Xi | ≤ pw(G) + 1 for i ∈ [s]. We split the set of edges into disjoint (maybe empty)
parts: E1, E2, . . . , Es . E1 is a set of edges between vertices X1, if i > 1, then Ei is a
set of edges between vertices in Xi that did not appear earlier (it is enough to require
that no one of these edges is between vertices from Xi−1, since a vertex can not dis-
appear and then appear again). Since every edge occurs in at least one Xi , every edge
will be in some set Ej .

We fix some order of edges in which the first are edges from E1, then edges from
E2, . . . and in the end there are edges from Es . Let ei be ith edge in this order.

Let D be the minimal OBDD using the order xe1, xe2 , . . . , xe|E| computing F such
that every path from the root to 1-sink contains all variables. Let us estimate the
number of nodes in D on the distance l from the source of D for all l ∈ [|E|].
Every node of D computes some Boolean function. Since D is minimal, all nodes
on the distance l from the sink compute pairwise different functions. We will esti-
mate the number of different functions that can be obtained from F by the restriction
of variables xe1 , xe2, . . . , xel

. One of such functions can be identically zero; we esti-
mate the number of all other functions. Consider a partial assignment ρ to variables
xe1 , xe2, . . . , xel

such that F |ρ is not identically zero. Assume that el ∈ Ej . Consider
a vertex v ∈ V \ Xj and assume that v ∈ Xi . If i < j , then all incident edges of
v are among e1, e2, . . . , el , hence the parity condition in the vertex v is either not
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included in F or is satisfied by ρ. If i > j , then edges e1, e2, . . . , el are not incident
to v. Thus, different functions F |ρ may vary only in parities of sum of assigned inci-
dent edges for vertices from Xj . Since |Xj | ≤ pw(G) + 1, the number of different
functions corresponding to nodes of D on the distance l (except is at most 2pw(G)+1.
There are |E| possible values of l and we also have the source and 0-sink, thus the
size of D is at most |E|2pw(G)+1 + 2.

Corollary 6.2 Any satisfiable Tseitin formula based on a graph G(V, E) can be
represented as OBDD of size O(|E||V |O(tw(G))).

Proof Follows from Theorem 6.1 and Lemma 2.7.

Corollary 6.3 If TSG,c is an unsatisfiable Tseitin formula based on a graph
G(V, E), then it has an OBDD(∧)-refutation of size O(|E||V |2pw(G) + |TSG,c|2).
Proof We chose the order π on variables of TSG,c constructed in Theorem 6.1. All
OBDDs in the refutation will have order π . At first we derive an OBDDs repre-
senting parity condition for all vertices of G. In order to do this we consequentially
join OBDDs representing clauses for the corresponding parity vertex v has degree k,
then the parity condition for v is represented in TSG,c by 2k−1 clauses. The of sev-
eral of these clauses is a function of k variables, hence it can be represented by an
OBDD of size O(2k) in order π . Thus the derivation of OBDD for the parity condi-
tion of the vertex v has size O(22k). If G has n vertices v1, v2, . . . , vn with degrees
k1, k2, . . . , kn, then TSG,c has size at least �(

∑n
i=1 2

ki ). Hence, the derivation of
OBDDs for all parity conditions has size O(

∑n
i=1 2

2ki ) = O(|TSG,c|2).
Then we consequentially apply the join rule to parity conditions and finally get

the constant false OBDD representing TSG,c. All OBDDs in this part of derivation
have size at most O(|E|2pw(G)+1) by Theorem 6.1. Thus the total refutation has size
O(|E||V |2pw(G) + |TSG,c|2).

7 Further Research

1. It is interesting to improve the lower bound on the size of 1−BP for Tseitin for-
mulas based on arbitrary we conjecture that it should be 2�(tw(G)). Is it possible
to extract a tree decomposition from 1−BP directly?

2. Results of [8] implies lower bound 2tw(G)�(1)
on the size of constant-depth Frege

refutations of TSG,c. Can it be improved for resolution (resolution is a partial
case of constant-depth Frege)?
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