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Abstract
We study the problem of exploration by a mobile entity (agent) of a class of dynamic
networks, namely constantly connected dynamic graphs. This problem has already
been studied in the case where the agent knows the dynamics of the graph and the
underlying graph is a ring of n vertices (Ilcinkas and Wade 2018). In this paper, we
consider the same problem and we suppose that the underlying graph is a cactus graph
(a connected graph in which any two simple cycles have at most one vertex in com-
mon). We propose an algorithm that allows the agent to explore these dynamic graphs
in at most O(n

log n
log log n

) time units. We show that the lower bound of the algorithm is

Ω(n
log n

(log log n)2
) time units (for infinitely many n).

Keywords Exploration · Dynamic graphs · Mobile agent · Connectivity over time

1 Introduction

The exploration of a graph by a (physical or software) mobile agent consists of visit-
ing at least once each of the vertices of the graph, starting from a given vertex of the
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graph. In practice, many concrete systems can be modeled by graphs. This is what
makes the use of graphs very versatile. For example, graphs can be used to model
pipeline systems, underground tunnels, roads networks, etc. In this case, the explo-
ration is performed by a mobile robot. Graphs can also be used to model more abstract
environments such as computer networks. In this case, the mobile entities used to
explore these environments are software agents, that is to say a program running in
these environments.

This fundamental problem in distributed computing by mobile agents has been
extensively studied since the seminal paper by Claude Shannon [25]. However, the
majority of the work concerns static graphs, while new generations of interconnected
environments tend to be extremely dynamic. To take into account the dynamism of
these extreme environments, for a decade, researchers have begun to model these
dynamic environments with dynamic graphs. Several models have been developed.
The interested reader may find in [7] a comprehensive overview of the different
models and studies of dynamic graphs (see also [21, 22]).

One of the first developed models, and also one of the most classical, is the model
of evolving graphs [14]. For simplicity, given a static graph G, called underlying
graph, an evolving graph G based on G is a (possibly infinite) sequence of (span-
ning but not necessarily connected) subgraphs of G (see Section 2 for the precise
definitions). This model is particularly suited for modeling synchronous dynamic
networks.

In this paper, we study the problem of exploration of dynamic graphs consid-
ering the model of constantly connected evolving graphs. An evolving graph G =
(G1, G2, . . . ) is called constantly connected if each graph Gi which composes it
is connected. This class of graphs was used in [24] to study the problem of infor-
mation dissemination. In 2010, Kuhn, Lynch and Oshman [20] generalize this class
of dynamic graphs by introducing the notion of T -interval-connectivity. Roughly
speaking, given an integer T ≥ 1, a dynamic graph is T -interval-connected if for
any window of T time units, there is a connected spanning subgraph that is stable
throughout the period. (The notion of constant connectivity is equivalent to the notion
of 1-interval-connectivity.) This new concept, which captures the connection stabil-
ity over time, allows to derive interesting results: the T -interval-connectivity allows
a savings of a factor about Θ(T ) on the number of messages necessary and sufficient
to achieve a complete exchange of information between all vertices [11, 20].

During these last few years, several studies consider constantly connected dynamic
graphs where the underlying graph of the dynamic graph is a ring of n vertices. The
problem of exploration with termination by a mobile agent is considered in [9, 17,
19]. If the dynamics of the graph is known, [19] shows that a single agent can solve
the problem, and 2n − 3 time units are necessary and sufficient. If the dynamics is
not known in advance, [9] shows that two agents knowing an upper bound N on the
number of vertices can solve the problem, and (3N − 6) time units are sufficient if
all agents are active at each time step, and O(N2) moves are sufficient if a subset
of the agents might be active at each time step. The case when the agent has partial
information about network changes is considered in [17]. More precisely, the authors
study the exploration time for a single agent which knows the dynamics of the graph
for the next S steps in its H -hop neighborhood, for given parameters S and H .
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The problem of perpetual exploration is considered in [5, 15]. In [5], the authors
consider that all agents are active at each time step and show that to solve the problem,
one agent is sufficient in the rings of size two1, two agents are sufficient in the rings
of size three, and three agents are sufficient for all other rings. In [15] the authors
consider time varying graphs whose topology is arbitrary and unknown to the agents
and investigates the number of agents that are necessary and sufficient to explore
such graphs. In addition to the problem of exploration, the problem of dispersion of a
team of agents [3], gathering [10] and patrolling by a team of agents [8] are studied,
considering constantly connected dynamic graphs based on the ring.

Besides, several papers focus on the complexity of computing the optimal explo-
ration time of a dynamic graph given as (a centralized) input, in a similar manner
as in the Traveling Salesman Problem for static graphs. In the dynamic case, the
problem is called Temporal Graph Exploration Problem [4, 12, 23] or Dynamic Map
Visitation Problem [1, 2]. In [2], the case of several agents is considered, while [4,
12, 23] and most of [1] consider the case of a single agent. The problem is shown to
be NP-complete, even when the underlying graph has pathwidth 2 and at each time
step, the current graph is connected [4]. In the other papers, several polynomial-time
algorithms are given, either exact algorithms for specific graph classes, or approxi-
mation algorithms for the general cases. In particular, [1] gives anO(n2) algorithm to
compute the optimal exploration time of a given 1-interval-connected dynamic graph
based on the n-vertex ring. Inapproximability results for the general case are given
in [12, 23].

It turns out that the problem of exploration is much more complex in dynamic
graphs than in static graphs. Indeed, let us consider for example the scenario where
the dynamic graph is known. The worst-case exploration time of n-vertex static
graphs is clearly in Θ(n) (worst case 2n − 3). On the other hand, the worst-
case exploration time of n-vertex (1-interval-connected) dynamic graphs remains
largely unknown. In [12] the authors give a worst-case lower bound in Ω(n2)

for general graphs and Ω(n log n) for degree-bounded graphs. An upper bound in

O(d log d · n2

log n
) for degree-bounded graphs is given in [13].

The goal of this paper is to extend the results obtained in [19] to larger families
of underlying graphs. Unfortunately, the problem turns out to be much more difficult
than it seems (see [16] for a variant of the problem in dynamic tori). We will see that
proving that any dynamic graph based on a tree of cycles (a cactus) can be explored
in time O(n) is already a challenging problem.

Our results. We will first give two exploration methods that are efficient for explor-
ing a very large set of constantly connected dynamic graphs based on a cactus, when
the agent knows the dynamics of the graph. We will then combine these two explo-
ration methods.We show that the combination of the twomethods yields an algorithm
that explores all constantly connected dynamic graphs based on a cactus of n vertices
in O(n

log n
log log n

) time units, and we derive a lower bound of Ω(n
log n

(log log n)2
) time units

for the algorithm (for infinitely many n).

1In [5], the authors define a ring of size two as a two-node path if the graph is simple, or as two nodes
linked by two bidirectional edges otherwise.
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Fig. 1 Example of a cactus

2 Preliminaries

This section provides precise definitions of the concepts and models discussed infor-
mally earlier. We also give some previous results from the literature on the problem
studied in this paper.

Definition 1 (Dynamic graph) A dynamic graph is a pair G = (V , E), where V is a
static set of n vertices, and E is a function which maps every integer i ≥ 0 to a set
E(i) of undirected edges on V .

Definition 2 (Underlying graph) Given a dynamic graph G = (V , E), the static graph
G = (V ,

⋃∞
i=0 E(i)) is called the underlying graph of G. Conversely, the dynamic

graph G is said to be based on the static graph G.

In this paper, we consider dynamic graphs based on a cactus of size n. We also
assume that the agent knows the dynamics of the graph, that is to say, the times of
appearance and disappearance of the edges of the dynamic graph.

Definition 3 (Constant connectivity) A dynamic graph is called constantly con-
nected if, for any integer i, the static graph Gi = (V , E(i)) is connected.

Definition 4 (Cactus) A cactus is a simple graph G = (V , E) in which two
connected cycles have at most one vertex in common (see Fig. 1).

A mobile entity, called agent, operates on these dynamic graphs. The agent can
traverse at most one edge per time unit. It may also stay at the current vertex (typically
to wait for an incident edge to appear). We say that an agent explores the dynamic
graph if and only if it visits all the vertices.

In this article, we will use the following results from the literature.

Theorem 1 Ilcinkas andWade [19] For every integers n ≥ 3 and t ≥ 0, and for every
constantly connected dynamic graph based on a ring with n vertices, there exists a
vertex v(t) such that an agent starting at time t on v(t) and going in the clockwise2

2The actual definition of the “clockwise” direction does not really matter as long as it is any fixed direction.
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direction for n − 1 time units will never be blocked by a missing edge, and thus will
explore all vertices within those n − 1 time units.

Sketch of proof Consider n virtual agents placed on the n vertices (one agent on each
vertex). Make all agents move in the clockwise direction for n − 1 time units from
time t . Since at most one edge is removed at a time, it holds that, at each time, at most
one such virtual agent is blocked at this time without having been blocked before.
Thus, one of the n virtual agents is never blocked during the n−1 time units, and the
starting vertex of this agent is the vertex v(t) we are looking for.

Theorem 2 Kuhn et al. [20] For every constantly connected dynamic graph on n

vertices, at most n − 1 time units are sufficient for an agent to go from any vertex to
any other vertex in the graph, when the agent knows the dynamics of the graph.

Sketch of proof Let u be some arbitrary vertex of the dynamic graph. For any integer
i ≥ 0, let Vi be the set of vertices reachable from u in at most i time units. We
have that Vi � Vi+1 until Vi contains all the vertices. Indeed, before all vertices are
reachable, there exists a vertex not in Vi which is neighbor of a vertex in Vi , because
the dynamic graph is constantly connected.

Theorem 3 Ilcinkas and Wade [19] For every integer n ≥ 3 and for every constantly
connected dynamic graph based on a ring with n vertices, there exists an agent (algo-
rithm), EXPLORE-RING, exploring this dynamic graph in time at most 2n − 2 time
units. (The agent knows the dynamics of the graph).

Sketch of proof The algorithm proceeds as follows. Go to vertex v(n−1), whose exis-
tence is guaranteed by Theorem 1. This can be done in at most n − 1 time units, by
Theorem 2. At time n − 1, go clockwise during n − 1 time units to fully explore the
ring, thanks to the properties of v(n−1).

In this paper, we will only consider asymptotic exploration times. Since explo-
ration of an n-vertex dynamic graph requires at least n−1 edge traversals, Theorem 2
implies that requiring the agent to return to the starting vertex can at most double the
exploration time. Therefore we will in fact study in this paper the exploration with
return problem.

To give a simpler analysis of our algorithms, we consider the tree representation
of a cactus given in [6]. For any given cactus, the set of all vertices V is partitioned
into three subsets of vertices. Call C-vertices the vertices of degree 2 that belong to
one and only one cycle, G-vertices the vertices that do not belong to any cycle, and
H-vertices the other vertices (which belong to at least one cycle and have a degree at
least 3), which we also call attachment vertices.
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A subtree is a connected set consisting of H -vertices and G-vertices. A subtree
is called maximal if the sets of H -vertices and G-vertices that it consists of can-
not be extended. A graft is a maximal subtree that does not contain two H -vertices
belonging to the same cycle. Finally, a block is a graft or a cycle.

It is not difficult to see that a cactus is formed by a set of blocks attached via
H -vertices (see Fig. 2.(a)).

If we add an edge between the blocks and the H -vertices, we obtain the tree TG =
(VG, EG) such that each element of VG is a block or an H -vertex. Figure 2.(b) gives
the tree representation of the cactus shown in Figs. 1 and 2.(a). We say that a cactus
is rooted if the tree that represents it is rooted.

Given that constantly connected dynamic graphs based on trees (or grafts) are
static and thus easy to explore, in this paper we consider cactuses that only consist
of cycles and H -vertices. These cactuses will be called plump cactuses. Blocks are
then always cycles, and we will use the term cycle in the sequel. In the following, we
will assume that the cactus is rooted at the cycle where the agent starts exploration.
If the agent starts on an H -vertex, one of the cycles attached to the H -vertex will be
the root cycle.

In this paper, we use the classical formalism of static trees. We will talk about
degree, child, parent, height or depth of a cycle. Instead of subtree, we will rather use
the term sub-cactus of a cactus C to denote a cactus C′ corresponding to a subtree in
the rooted tree representation of C.

3 Chain Method

In this section, we give a simple algorithm inspired by DFS to explore con-
stantly connected dynamic graphs based on a plump cactus of n vertices. The
principle of the algorithm is very simple. If the agent enters a cycle it has not
visited yet, it visits it using the algorithm EXPLORE-RING for exploring dynamic
graphs based on the ring (see Theorem 3), then passes to the attachment ver-
tex of its closest unexplored child and explores it recursively. If all its children
have already been explored and there is a cycle not yet explored, then it goes to
its parent.
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(a) (b)

Fig. 2 Tree representation of a cactus

Theorem 4 For any integer n ≥ 3, and for any constantly connected dynamic graph
based on a plump cactus of n vertices, there is an agent, executing the algorithm
CHAIN-METHOD, able to explore this dynamic graph in at most

∑k
i=1(di +2)(ni −1)

time units, where ni is the size of the cycle i, di its degree, and k the number of cycles
of the cactus.

Proof An agent executing the algorithm CHAIN-METHOD pays on each cycle Rni
of

the cactus at most 2ni − 2 time units to explore it (see Theorem 3). To switch to the
attachment vertex of a child or the parent (if it has one), ni−1 time units are sufficient
(see Theorem 2). As the degree of a cycle is equal to the number of its incident edges,
then on each cycleRni

of the cactus, the agent pays at most (di+2)(ni−1) time units.
The cactus is composed of k cycles, hence the agent pays at most

∑k
i=1(di+2)(ni−1)

time units to explore the dynamic graph.

Note that if the degree of each cycle is constant, then the time to explore the
dynamic graph using the CHAIN-METHOD is in O(n), where n is the size of the
cactus. Figure 3 presents a plump cactus of size n in which exploration using the
CHAIN-METHOD takes time Ω(n2). Indeed, any algorithm exploring this graph has
to explore the Ω(n) attached cycles of length 3. However, when the CHAIN-METHOD

is used, the order of visit of these cycles is fixed and the adversary may choose the
dynamicity of the graph such that going from one attached cycle to the next takes
time Ω(n). Hence the overall exploration time is Ω(n2).

4 Star Method

As we have seen in the previous section, the algorithm CHAIN-METHOD is not effec-
tive for exploring constantly connected dynamic graphs based on cactuses with cycles
of large degree, because the order of visit of the sub-cactuses is fixed, which makes
the algorithm spend a lot of time to go from one sub-cactus to the next. On the con-
trary, the algorithm STAR-METHOD presented in this section focuses on reducing
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Fig. 3 Difficult graph for the
CHAIN-METHOD

these transit times on the root cycle (the cycle where the exploration starts) to the
minimum. The idea is to visit the sub-cactuses while exploring the root cycle. Note
that directly using the algorithm EXPLORE-RING on the root cycle does not work,
because when returning to the attachment vertex after exploring a sub-cactus, the
agent cannot continue the exploration according to the algorithm EXPLORE-RING on
the root cycle, as the dynamicity has changed on this cycle. To avoid this issue, the
algorithm STAR-METHOD uses the algorithm EXPLORE-RING on a carefully chosen
virtual dynamic cycle that takes into account both the dynamics of the root cycle and
the time needed to recursively explore the sub-cactuses.

Theorem 5 For any integer n ≥ 3, and for any constantly connected dynamic
graph based on a plump cactus C of n vertices, there is an agent, executing
the algorithm STAR-METHOD, able to explore this dynamic graph in at most
fS(C) = 3(nr − 1) time units if C is an nr -vertex cycle, or fS(C) = 3(nr −
1) + ∑�

i=1 fS(Ci) + max1≤i≤� fS(Ci) time units otherwise, where nr is the size
of the root cycle, � ≥ 1 is the number of sub-cactuses attached to the root cycle,
and fS(Ci) is the recursive exploration cost of the sub-cactus Ci using the same
algorithm.

Proof Let C be a plump cactus, with n vertices, and let G be a constantly connected
dynamic graph based on C. We prove the theorem by induction on the tree structure
of the cactus. If C consists of a single ring (base case), then the algorithm STAR-
METHOD simply applies the algorithm EXPLORE-RING and returns to the starting
vertex, which proves the theorem in this case. Otherwise let nr be the size of the
root cycle, and let C1, C2, . . . , C� be the sub-cactuses attached to this root cycle.
Moreover, for a proof by induction, we assume that the theorem holds for these sub-
cactuses.
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Let fS be the recursive function defined in the statement of the theorem. The
algorithm STAR-METHOD proceeds as follows. First, we introduce the following
transformation of G into another dynamic graph G′, based on a ring Rn′ of size n′.
The dynamic graph G′ is constructed as follows. We retain the root cycle of C and
the dynamics of the graph G on this cycle. We replace every H -vertex of C with
two C-vertices linked by a sequence of static paths of length equal to the recursive
cost of exploring each subtree attached to the H -vertex. More precisely, the lengths
of the added paths are fS(Ci), for all the sub-cactuses Ci attached to the H -vertex.
Thus, we obtain a constantly connected dynamic graph based on a ring of size n′ (see
Fig. 4). The dynamic graph G′ is indeed constantly connected because we retain the
dynamicity of the subgraph of G based on the root cycle of C, which itself respects
the constant connectivity.

We use the fundamental properties behind EXPLORE-RING, namely Theorems 1
and 2, on respectively G′ and G, to obtain a traversal that efficiently explores the root
cycle and the sub-cactuses altogether. More precisely, if t is the time after nr −1 time
units elapsed, let v(t) be the vertex ofRn′ described in Theorem 1. If v(t) does not cor-
respond to a vertex of the root cycleC, then we set v as theH -vertex inC correspond-
ing to the static subpath containing v(t). Otherwise, v is simply the corresponding
vertex in C.

Now let Agent B be the virtual agent, starting from the previously defined vertex
v(t), that goes in the clockwise direction in G′ without being blocked for n′ − 1
time units (by Theorem 1). We define the Agent A following the STAR-METHOD as
follows.

First Agent A uses nr − 1 time units to reach the previously defined vertex v

on C. This is possible thanks to the property from Theorem 2. Now, whenever the
(virtual) Agent B stays on a subpath P corresponding to some sub-cactus Ci for at
least fS(Ci) consecutive time units, Agent A uses this time to recursively explore
the sub-cactus Ci . If, after completing this exploration, Agent B is still lying on P ,

Fig. 4 Correspondence between the dynamic graph based on C and the dynamic graph based on Rn′
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then Agent A simply waits on the attachment vertex. Whenever Agent B lies on the
part corresponding to the root cycle (that is outside of the added subpaths), Agent A
behaves exactly as Agent B.

This simulation of agentB on G takes at most n′−1 = (nr−1)+∑�
i=1 fS(Ci) time

units. By construction, the root cycle and all sub-cactuses are explored, except for
possibly one sub-cactus Ci , if the agent B starts (and ends) inside the static path cor-
responding to Ci . In this case, the agent A uses at most fS(Ci) ≤ max1≤j≤� fS(Cj )

additional time units to explore Ci . Finally, in any case, the agent returns to the start-
ing vertex, using at most nr − 1 time units. Overall, this can be done in fS(C) =
3(nr − 1) + ∑�

i=1 fS(Ci) +max1≤i≤� fS(Ci) time units, which concludes the proof
of the theorem.

If the height of the rooted tree of the cactus is constant, then the time to explore
the dynamic graph using the STAR-METHOD is O(n) time units, where n is the size
of the cactus. However, Fig. 5 presents a plump cactus of size n in which exploration
using the STAR-METHOD may take 2Ω(n)n time units for a specific choice of missing
edges at each time. Indeed, at each step of the induction, there is only one sub-cactus,
and its cost is paid twice, once in the sum, and once in the max (cf. the formula in
Theorem 5). The cycle of length n/2 to the right needs exploration time Ω(n). Then,
recursively, each additional cycle of size 4 on its left will introduce a multiplicative
factor of 2 in the recursive cost of the sub-cactus. As the number of cycles of size 4
is Ω(n), the overall exploration time is 2Ω(n)n.

5 MixedMethod

In a plump cactus C with a root cycle of size nr and with sub-cactuses C1, . . . , C�,
the recursive exploration time is fC(C) = 3(nr − 1) + ∑�

i=1 fC(Ci) + � · (nr −
1) for the algorithm CHAIN-METHOD, and fS(C) = 3(nr − 1) + ∑�

i=1 fS(Ci) +
max1≤i≤� fS(Ci) for the algorithm STAR-METHOD.

Because both methods presented above may have alone a large exploration
time, we introduce in this section a combination of both methods, that is to say,
on some sub-cactuses the agent will use the algorithm STAR-METHOD to explore
them, and on the remaining sub-cactuses it will use the algorithm CHAIN-METHOD.

Fig. 5 Difficult graph for the STAR-METHOD
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The algorithm MIXED-METHOD is recursively defined as follows, with a cost
function fM .

If the cactus is an n-vertex ring, then the agent uses the algorithm EXPLORE-
RING (which is in fact what both methods do), with a cost of at most fM(C) =
3(n − 1). Otherwise, let nr be the number of vertices of the root cycle, and let
C1, . . . , C� be its sub-cactuses, with � ≥ 1. Assume without loss of generality
that the sub-cactuses C1, . . . , C� are ranked in descending order of their explo-
ration cost fM(Ci). The agent uses the algorithm CHAIN-METHOD for the k first
sub-cactuses, and the algorithm STAR-METHOD for the other sub-cactuses, for a
well-chosen k.

More precisely, for each sub-cactus Ci , with 1 ≤ i ≤ k, the agent goes to the
attachment vertex of Ci in at most nr − 1 time units (Theorem 2), and explores Ci

recursively using the algorithm MIXED-METHOD. Then it explores altogether what
remains of the cactus (the root cycle and the cactuses Ci , for i > k) similarly as in the
algorithm STAR-METHOD. The only difference is that the recursive costs fM(Ci) are
used to construct the virtual ring instead of the costs fS(Ci). As a consequence, the
sub-cactuses are recursively explored using the algorithm MIXED-METHOD instead
of the algorithm STAR-METHOD.

The resulting cost is then
∑k

i=1

(
nr−1+fM(Ci)

)+(
3(nr−1)+∑�

i=k+1 fM(Ci)+
maxk+1≤i≤� fM(Ci)

)
. Using the fact that the costs fM(Ci) are decreasing, the pre-

ceding bound becomes 3(nr − 1) + ∑�
i=1 fM(Ci) + (

k · (nr − 1) + fM(Ck+1)
)
.3

The algorithm MIXED-METHOD chooses k such as to minimize the additional cost
k · (nr − 1) + fM(Ck+1). To summarize, the exploration cost of the algorithm
MIXED-METHOD is fM(C) = 3(nr − 1) + ∑�

i=1 fM(Ci) +min1≤k≤�(k · (nr − 1) +
fM(Ck+1)).

5.1 Upper Bound for the AlgorithmMIXED-METHOD

In this section, we give an upper bound on the complexity of the algorithm MIXED-
METHOD. The term k · (nr − 1) + fM(Ck+1) is a priori not monotone with respect
to k. Therefore, it is not clear how to handle the min in the formula defining the
function fM . To circumvent this issue, we study a variant of the algorithm MIXED-
METHOD which chooses k more consistently.

Theorem 6 An agent executing the algorithm MIXED-METHOD requires at most

O
(
n

log n
log log n

)
time units to explore any constantly connected dynamic graph based

on a plump cactus of n vertices.

Proof Fix an arbitrary constantly connected dynamic graph based on a plump cactus
C of n vertices. In order to study the exploration cost of the algorithm MIXED-
METHOD, we will discuss another algorithm, denoted EXPLORE-CACTUS, which

3To simplify the notation, we define fM(Ci) as 0 when i > �.
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is less efficient but easier to analyze. The upper bound obtained for this less effi-
cient algorithm will also give us a valid upper bound for the MIXED-METHOD. The
algorithm EXPLORE-CACTUS is defined as the algorithm MIXED-METHOD except
that the number k of sub-cactuses on which it uses the algorithm CHAIN-METHOD is
always min{�, 2c}, with c = log n

log log n
.

Therefore, the exploration cost fE(C) of the algorithm EXPLORE-CACTUS in a
plump cactus C having a root cycle of size nr and sub-cactuses C1, . . . , C� is at most
3(nr −1)+∑�

i=1 fE(Ci)+2c(nr −1)+fE(C2c+1). Among the first 2c sub-cactuses,
there are at least c sub-cactuses whose number of vertices is at most n/c, where n

is the total number of vertices in C. Also, all these sub-cactuses have a cost larger
than fE(C2c+1). It is therefore possible to charge the additional cost fE(C2c+1) to
these sub-cactuses. We obtain the upper bound fE(C) ≤ 3(nr −1)+∑�

i=1 fE(Ci)+
2c(nr − 1) + 1

c

∑
|Ci |≤ n

c
fE(Ci).

Differently speaking, there is a multiplicative factor 1 + 1
c
in front of fE(Ci) for

the sub-cactuses Ci such that |Ci | ≤ n
c
. Since the number of vertices is divided

by c, there can be at most logc n such factors stacking in a branch of the cactus.
Developing the recursive cost, we thus obtain a total exploration time of at most
n(1 + 1

c
)logc n(2c + 3). Using the fact that lim

c→+∞(1 + 1
c
)c = e, if we replace

c with its value, we obtain the claimed bound. This concludes the proof of the
theorem.

5.2 Lower Bound for the AlgorithmMIXED-METHOD

It turns out that the algorithm MIXED-METHOD does not explore all constantly con-
nected dynamic graphs based on a cactus of size n in O(n) time units. We have the
following theorem to prove it.

Theorem 7 For infinitely many n, there is a constantly connected dynamic graph
based on a plump cactus of n vertices such that the exploration of the dynamic graph

by an agent executing the algorithmMIXED-METHOD takes at least Ω
(
n

log n

(log log n)2

)

time units.

Proof Let d be the triple of a sufficiently large power of 2 and let h = 1
2d log d . We

construct a particular rooted plump cactus Cd for which the exploration cost fM(Cd)

of the algorithm MIXED-METHOD is large, namely in Ω(d · |Cd |).
To do so, we use the following transformation. Given an integer i ≥ 1 and a

cactus C, the cactus subi (C) is defined as the cactus C in which all edges have been
subdivided in i edges. Note that, in particular, sub1(C) = C.

We now define Cd via an inductive construction. More precisely, we define the
cactuses Cd,i , for 0 ≤ i ≤ h by induction on i. We denote by md,i , rd,i , and td,i , the
number of edges, the size of the root cycle, and the recursive cost fM(Cd,i), of the
cactus Cd,i .
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First, let Cd,0 be a ring of md,0 = rd,0 = (d + 3)/3 edges (which is an integer by
definition of h). The exploration cost of this cactus is td,0 = fM(Cd,0) = 3(rd,0 −
1) = d . For i ≥ 1, we define inductively Cd,i as a cactus with a root cycle of
size rd,i = td,i−1 + 1 on which are attached on d different vertices the cactuses
sub1(Cd,i−1), sub2(Cd,i−1), up to subd(Cd,i−1) (see Fig. 6). Finally, Cd is defined as
Cd,h.

The number of edges of Cd,i is md,i = rd,i + ∑d
j=1(j · md,i−1). Recall that the

algorithm MIXED-METHOD chooses the number k of sub-cactuses to explore with
the algorithm CHAIN-METHOD such as to minimize the additional cost k · (rd,i −
1) + fM(subd−k(Cd,i−1)). On one hand, we have rd,i − 1 = td,i−1 by definition.
On the other hand, the recursive exploration cost of each sub-cactus subj (Cd,i−1) is
j · td,i−1. Therefore, the additional cost does not depend on k and is always equal
to d · td,i−1. In other words, the cactus is constructed in such a way that all the
algorithms CHAIN-METHOD, STAR-METHOD, and MIXED-METHOD have the same
exploration cost. Therefore, the exploration cost fM(Cd,i) of Cd,i is td,i = 3(rd,i −
1) + ∑d

j=1(j · td,i−1) + d · td,i−1 = (3 + d(d + 1)/2 + d) · td,i−1 = ((d2 + 3d +
6)/2) · td,i−1.

To simplify the notation, we now remove the first index d . Also, let α = (d2 +
3d + 6)/2) and β = d(d + 1)/2. To summarize, we have

t0 = d

r0 = (d + 3)/3

m0 = (d + 3)/3

and, for 1 ≤ i ≤ h,

ti = α · ti−1

ri = ti−1 + 1

mi = ri + β · mi−1 .

Fig. 6 Inductive construction of the cactus Cd,i
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Solving the recurrences and setting γ = α/β, we obtain

th = αh · t0

rh = αh−1 · t0 + 1

mh = βh · m0 +
h∑

i=1

βh−i · ri

= βh · m0 +
h∑

i=1

(αi−1 · t0 + 1)βh−i

= βh · m0 + t0 ·
h−1∑

i=0

αiβh−1−i +
h−1∑

i=0

βh−1−i

= βh · m0 + βh − 1

β − 1
+ t0 · βh−1 · γ h − 1

γ − 1
.

We now prove that the last term is somehow predominant. Indeed, we have

βh · m0 + βh−1
β−1

t0 · βh−1 · γ h−1
γ−1

≤ 2β · m0

t0
· γ − 1

γ h − 1
≤ β · γ − 1

γ h − 1
.

Besides, we have

γ = d2 + 3d + 6

d2 + d
= 1 + 2d + 6

d(d + 1)
= 1 + 2

d
+ 4

d(d + 1)
.

Plugging the last equation into the previous one, we obtain

βh · m0 + βh−1
β−1

t0 · βh−1 · γ h−1
γ−1

≤ β ·
2
d

+ 4
d(d+1)

(1 + 2
d

+ 4
d(d+1) )

h − 1

≤ β ·
3
d

(
(1 + 2

d
)

d
2

) 2h
d − 1

≤ 3β

d
· 1

2logd − 1
≤ 2 ,

where the penultimate inequality uses the fact that limx→+∞(1 + 1/x)x = e and the
definition of h.
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We are now ready to derive a lower bound on the exploration time th.

th ≥ αh · t0

3t0 · βh−1 · γ h−1
γ−1

· mh ≥ α

3
· γ h−1 · γ − 1

γ h − 1
· mh

≥ α

3
· γ − 1

γ
· mh ≥ α

3d
· mh

≥ d

6
· mh .

It remains now to express d and mh as a function of the number n of vertices of
the cactus Cd .

2d ≤ βh ≤ 1

2
mh ≤ n ≤ mh ≤ β2h ≤ d6h

The inequality 2d ≤ n implies that log d ≤ log log n, while d6h = d3d log d ≥ n

allows to derive that 3d log2 d ≥ log n and thus that d ≥ 1
3

log n

(log log n)2
. Finally, we

obtain th ≥ 1
18n

log n

(log log n)2
, which concludes the proof of the theorem.

6 Conclusion

In this paper, we studied the time complexity for exploring constantly connected
dynamic graphs based on cactuses, under the assumption that the agent knows
the dynamics of the graph. We gave an exploration algorithm for dynamic graphs
that we called MIXED-METHOD, and we have shown that for exploring the whole
class of constantly connected dynamic graphs based on cactuses of n vertices, with
this algorithm, Ω(n

log n

(log log n)2
) time units are necessary (for infinitely many n), and

O(n
log n

log log n
) time units are sufficient. This study opens several perspectives.

In the short term, it would be interesting to find a new method in order to obtain
a better upper bound on the exploration time of dynamic graphs based on cactuses.
At a second stage, an interesting question to investigate would be if T -interval-
connectivity (for T > 1) allows to save a significant factor in the exploration time of
the cactuses. A natural further objective is to extend the family of underlying graphs.
Note that the families of underlying graphs considered so far (rings and cactuses)
have the property that at most one edge can be absent at a given time in every bi-
connected component. Studying families of underlying graphs that do not possess
this property seems to be a challenging problem.

A further perspective is to consider the exploration problem of dynamic graphs
using more than one agent, assuming standard models of communication between
the agents. The objective would be to study whether dynamic graph exploration can
be performed more efficiently by using more than one agent.
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