
https://doi.org/10.1007/s00224-020-09996-3

Satisfiability Algorithm for Syntactic Read-k -times
Branching Programs

Atsuki Nagao1 ·Kazuhisa Seto2 · Junichi Teruyama3

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The satisfiability of a given branching program is to determine whether there exists
a consistent path from the root to 1-sink. In a syntactic read-k-times branching
program, each variable appears at most k times in any path from the root to a
sink. In a preliminary version of this paper, we provide a satisfiability algorithm
for syntactic read-k-times branching programs with n variables and m edges that

runs in time O
(

poly(n, mk2
) · 2(1−4−k−1)n

)
. In this paper, we improve the bounds

for k = 2. More precisely, we show that the satisfiability of syntactic read-twice
branching programs can be solved in time O

(
poly(n, m) · 25n/6

)
. Our algorithm is

based on the decomposition technique shown by Borodin, Razborov and Smolensky
[Computational Complexity, 1993].

Keywords Branching program · Read-k-times · Satisfiability ·
Moderately exponential time · Polynomial space

A preliminary version of this paper appeared in the Proceedings of the 28th International
Symposium on Algorithms and Computation (ISAAC 2017).
This work was supported in part by JSPS KAKENHI (18K11170, 18K18003) and JST CREST Grant
Number JPMJCR1402, Japan.

� Junichi Teruyama
junichi.teruyama@gmail.com

Atsuki Nagao
a-nagao@is.ocha.ac.jp

Kazuhisa Seto
seto@st.seikei.ac.jp

1 Ochanomizu University, Tokyo, Japan

2 Seikei University, Tokyo, Japan

3 University of Hyogo, Kobe, Japan

Published online: 27 July 2020

Theory of Computing Systems (2020) 64:1392–1407

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-020-09996-3&domain=pdf
mailto: junichi.teruyama@gmail.com
mailto: a-nagao@is.ocha.ac.jp
mailto: seto@st.seikei.ac.jp

1 Introduction

Branching programs (BPs) are well studied computation models in theory and prac-
tice. A BP is a directed acyclic graph with a unique root node and two sink nodes.
Each nonsink node is labeled using a variable, and the edges correspond to a vari-
able’s value of zero or one. Sink nodes are labeled either 0 or 1 depending on
the output value. A BP computes a Boolean function naturally: it follows the edge
corresponding to the input value from the root node to a sink node.

There exist two main restricted models, width-k and read-k-times BPs. A width-k
BP is a leveled BP and each level has at most k nodes. Barrington [2] showed that
any function in NC1 can be computed by width-5 BPs of polynomial length. Thus, it
is a challenge to prove super-polynomial lower bounds for width-5 BPs. Despite of
many efforts, such bounds are known for only width-2 BPs by Yao [20].

Read-k-times BPs have two models, semantic and syntactic. A read-k-times BP
is syntactic if each variable appears at most k times in any path. It is semantic
if each variable appears at most k times in any computational path. Beame, Saks,
and Thathachar [3] showed that polynomial-size semantic read-twice BP can com-
pute functions requiring exponential size on any syntactic read-k-times BP. Thus, the
semantic model is substantially stronger than the syntactic model. For the seman-
tic case, Jukna [12] proved an exponential lower bound for syntactic read-k-times
BPs over large domain D, where |D| = 23k+10. In case of read-once BPs, Cook,
Edmonds, Medabalimi, and Pitassi [7] proved exponential lower bounds for |D| = 3.

The syntactic model is well studied. Borodin, Razborov, and Smolensky [5] exhib-

ited an explicit function of the lower bound of exp
(
�

(
n

k34k

))
. Jukna [11] provided

an explicit function f such that nondeterministic read-once BPs of polynomial size
can compute ¬f (i.e., the negation of f); however, to compute f , nondeterminis-

tic read-k-times BPs require a size of exp
(
�

(√
n

k2k

))
. Thathachar [18] showed that

for any k, the computational power of read-(k + 1)-times BPs is strictly stronger
than that of read-k-times BPs. Sauerhoff [16] proved the exponential lower bound for
randomized read-k-times BPs with a two-sided error.

The satisfiability of BPs (BP SAT), given a BP, is to determine whether there exists
a consistent path from the root to 1-sink. Recently, BP SAT has become a signifi-
cant problem because of the connection between satisfiability algorithms and lower
bounds. Let C be a class of a circuit. Given a circuit in C, C-SAT is the determina-
tion of whether there exists an assignment to the input variables such that the circuit
outputs 1. Williams [19] showed that to obtain NEXP �⊆ C, it suffices to develop an
O

(
2n−ω(log n)

)
time algorithm for C-SAT. By combining Barrignton’s theorem [2], if

we would like to prove NEXP �⊆ NC1, it is sufficient to develop an O
(
2n−ω(log n)

)
time algorithm for width-5 BP SAT. In addition, the hardness of BP SAT implies the
hardness of the Edit Distance and Longest Common Sequence problem [1]. Thus,
the design of a fast algorithm for BP SAT is one of the important tasks in the field of
computational complexity.

We have another motivation for designing satisfiability algorithms. A technique
for proving a lower bound against a class of circuit C is deeply connected to the design
of an algorithm for C-SAT. For example, Paturi, Pudlák, and Zane [14] proposed

1393Theory of Computing Systems (2020) 64:1392–1407

the satisfiability coding lemma, and applied it to design a satisfiability algorithm
for CNF-SAT and to prove a lower bound for the parity function on depth-3 cir-
cuits. For AC0, Håstad’s switching lemma [8] helps us to prove an exponential lower
bounds on the parity function. Impagliazzo, Matthews, and Paturi [10], by extending
it, presented a satisfiability algorithm for AC0 and improved the correlation lower
bound of AC0 with parity. Santhanam [15] presented a moderately exponential time
algorithm for De Morgan formula SAT based on lower bound techniques by Sub-
botovskaya [17] and Håstad [9]. According to these results, we believe that any proof
technique for a lower bound is translated into designing a satisfiability algorithm.

In this paper, we consider the satisfiability of syntactic read-k-times BPs. There
exists no satisfiability algorithm for k ≥ 2 faster than a brute-force search, while
the technique of lower bound by Borodin, Razborov, and Smolensky [5] is known.
We present a moderately exponential time satisfiability algorithm based on the lower
bound technique for read-k-times BPs where k ≥ 2. As a result, we get the following
theorem.

Theorem 1 There exists a deterministic and polynomial space algorithm for a non-
deterministic and syntactic read-k-times BP SAT with n variables and m edges that

runs in time O
(

poly(n, mk2
) · 2(1−4−k−1)n

)
.

When k = 2, we improve the running time of our algorithm.

Theorem 2 There exists a deterministic and polynomial space algorithm for a non-
deterministic and syntactic read-twice BP SAT with n variables and m edges that
runs in time O

(
poly(n, m) · 25n/6

)
.

1.1 Our Techniques

Our satisfiability algorithm consists of two steps as follows: [Step 1: Decomposi-
tion] Given a syntactic read-k-times BP B of m edges, we obtain the representation
of a function computed by B as a disjunction of at most m2k2

decomposed func-
tions by using the decomposition algorithm proposed by Borodin, Razborov, and
Smolensky [5]. It is sufficient to check the satisfiability of each decomposed func-
tion in the running time of Theorem 1, because if one of these functions is satisfiable
then the input B is also satisfiable. Moreover, the property of the decomposition
algorithm states that each decomposed function is a conjunction of at most 2k2 func-
tions on small variable sets. Let us represent a conjunction of functions as a set of
functions F = {f1, f2, . . . , f�}, where � ≤ 2k2. [Step 2: Satisfiability Check-
ing] To check the satisfiability of F , we find if there is an assignment that all
functions fi are satisfied at the same time. Let (F1,F2) be a partition of F . In
addition, let X1 and X2 be sets of input variables appearing in only F1 and F2
respectively and X3 be a set of input variables appearing in both F1 and F2. If
X3 is an empty set, we can check the satisfiability of F1 and F2 independently in
time O(2|X1| + 2|X2|) by exhaustive search on each set X1 and X2. If both F1 and
F2 are satisfiable, we know that F is also satisfiable. Our algorithm assigns 0/1

1394 Theory of Computing Systems (2020) 64:1392–1407

value to the variables in X3 and then performs the exhaustive search on each set X1
and X2. Assuming that |X1| + |X2| + |X3| = n, we obtain the satisfiability of F
in time O(2|X3|(2|X1| + 2|X2|)) = O(2n−min{|X1|,|X2|}). Further, using probabilistic
method, we show that the existence of a partition (F1,F2) of F such that the value
min{|X1|, |X2|} is adequately large to imply the running time in Theorem 1. Thus,
we can save the running time of our satisfiability algorithm.

1.2 RelatedWork

For the SAT of some restricted BPs, polynomial or moderately exponential time algo-
rithms are known. An ordered binary decision diagram (OBDD) is a BP that has the
same order of variables in all paths from the root to any sink. By checking the reach-
ability from the root to 1-sink, the OBDD SAT can be solved in polynomial time.
A k-OBDD is a natural extension of an OBDD with k layers; all layers are OBDDs
with the same order of variables. Bollig, Sauerhoff, Sieling, and Wegener [4] pro-
vided a polynomial time algorithm that solves the k-OBDD SAT for any constant k.
A k-indexed binary decision diagram (k-IBDD) is the same as a k-OBDD, except that
an OBDD in each layer may have a different order of variables. A k-IBDD SAT is
known to be NP-complete when k ≥ 2 [4]. Nagao, Seto, and Teruyama [13] proposed
a satisfiability algorithm for any instances of k-IBDD SAT with cn edges, and its

running time is O
(
2(1−μk(c))n

)
, where μk(c) = �

(
1

(log c)2k−1−1

)
. Chen, Kabanets,

Kolokolova, Shaltiel, and Zuckerman [6] showed that general BP SAT with o(n2)

nodes can be determined in time O
(
2n−ω(log n)

)
.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2, we provide the
notation and definitions. In Section 3, we provide two algorithms. One is a decompo-
sition algorithm based on the technique in [5]. The other is a satisfiability algorithm
for a specific class of Boolean functions. In Section 4, we propose our satisfiability
algorithm for syntactic read-k-times BPs and improve this algorithm for k = 2 by
modifying the satisfiability algorithm of Section 3.

2 Preliminaries

For a positive integer n, we denote by [n] a set of integers {1, 2, . . . , n}. For a set S,
|S| denotes the cardinality of S. Let X = {x1, . . . , xn} be a set of Boolean variables,
and for x ∈ X, x denotes the negation of x. A branching program (BP), denoted by
B = (V , E), is a rooted directed acyclic multigraph. A BP has a unique root node
r and two sink nodes (0-sink and 1-sink). 0-sink and 1-sink are labeled by 0 and 1,
respectively. Each node except for the sink nodes is labeled from X. Each edge e ∈ E

has a label 0 (0-edge) or 1 (1-edge). We call node v an xi-node when v’s label is xi .
A BP B is deterministic if any node except the two sink nodes in V has exactly two

1395Theory of Computing Systems (2020) 64:1392–1407

outgoing edges, a 0-edge and a 1-edge. Otherwise, B is nondeterministic. For an edge
e = (u, v) ∈ E, u is a parent of v and the head of e. The in-degree of v is defined as
the number of parents of v.

For a BP B on X, each input α = (α1, . . . , αn) ∈ {0, 1}n activates all αi-edges
leaving the xi-nodes in B, where 1 ≤ i ≤ n. A computation path is a path from
r to a 0-sink or from r to a 1-sink using only activated edges. A BP B outputs 0
if there is no computation path from the root r to a 1-sink; otherwise, B outputs 1.
Let f : {0, 1}n → {0, 1} be a Boolean function. A BP B represents f if f (α) is
equal to the output of B for any assignment α ∈ {0, 1}n. Two BPs B1 and B2 are
equivalent if B1 and B2 represent the same function. The size of B, denoted by |B|, is
defined as the number of edges in B. A BP is syntactic read-k-times if each variable
appears at most k times in each path. Figure 1 is an example of syntactic read-twice
BPs (k = 2). A BP is semantic read-k-times if each variable appears at most k times
in each computation path. In this paper, we use only the syntactic model and for
simplicity we call it read-k-times BP.

For a BP B and two nodes v, w, a subbranching program 〈B, v, w〉 is a subgraph
of B that contains v, w, and every nodes and edges contained in all v-w paths in B.
Given a BP B and nodes v, w ∈ V , we can construct 〈B, v, w〉 in O(|B|) time as
follows:

1. Find the subset V ′ of V such that V ′ contains every node that is reachable from
v and to w by the breadth-first search.

2. Obtain the subgraph of B induced by V ′.

Fig. 1 Syntactic read-twice
branching program

1396 Theory of Computing Systems (2020) 64:1392–1407

A partial assignment to x = (x1, . . . , xn) is α = (α1, . . . , αn) ∈ {0, 1, ∗}n such
that xi is unset when αi = ∗; otherwise xi is assigned to αi . For any partial assign-
ment α ∈ {0, 1, ∗}n, a support of α is defined as S(α) := {xi | αi �= ∗}. For partial
assignments α and α′, α ◦ α′ denotes the composition of α and α′ defined as follows:
α ◦ α′(i) = α′(i) if xi ∈ S(α′), and α ◦ α′(i) = α(i) otherwise. For instance, when
α = (1, ∗, 1) and α′ = (∗, ∗, 0), we have α ◦ α′ = (1, ∗, 0).

3 Key Lemmas

In this section, we provide two key lemmas for our algorithm. First, we introduce the
decomposition algorithm developed by Borodin, Razborov, and Smolensky [5]. Their
algorithm decomposes a (nondeterministic) read-k-times BP into a set of BPs with a
small number of variables. Next, we provide a satisfiability algorithm for a specific
class of Boolean functions that have three properties with parameters a and k. (1)
Each function is composed of a disjunction of ka subfunctions. (2) Each variable
belongs to at most k subfunctions. (3) Each subfunction has at most �n/a� variables.
Our algorithm that checks the satisfiability of such a function is exponentially faster
than a brute-force search.

Now, we analyze the running time of a decomposition algorithm by Borodin,
Razborov, and Smolensky [5]. We will use this algorithm as a module to solve the
syntactic read-k-times BP SAT in Section 4.1.

Lemma 1 (Theorem 1 in [5]) Let B be a (nondeterministic) syntactic read-k-times
BP with n variables and size m and represent a Boolean function f : {0, 1}n →
{0, 1}, and let a be a positive integer. There is an algorithm that constructs kamka

BPs {Bi,j } from B, where i ∈ [mka] and j ∈ [ka], such that the following properties
hold:

1. Let fi,j be the Boolean function represented by Bi,j . Then,

f =
∨

i∈[mka]

∧
j∈[ka]

fi,j .

2. Let Xi,j be the set of variables that appear in Bi,j . For each i and j , |Xi,j |
is at most �n/a�. For each i, each variable x belongs to at most k sets of
{Xi,j }j=1,...,ka .

We revisit the algorithm given in the proof of Theorem 1 in [5]. Let B be a non-
deterministic and syntactic read-k-times BP with n variables and size m. For each
pair of nodes (v, w) ∈ V 2, X(v, w) denotes the set of all variables that appear in the
labels on all possible paths from v to w except for the label of w. We find X(v, w)

by dynamic programming for each pair of nodes v, w ∈ V .
We call a sequence e1 := (w1, v2), e2 := (w2, v3), . . . , e� := (w�, v�+1) of edges

a trace if and only if the following properties hold:

(a) For each j with 1 ≤ j ≤ � + 1, we have |X(vj , wj)| < n/a.

1397Theory of Computing Systems (2020) 64:1392–1407

(b) For each j with 1 ≤ j ≤ �, we have |X(vj , vj+1)| ≥ n/a,

where we set v1 as the root and w�+1 as the 1-sink. For each trace, any variable x

belongs to at most k sets X(vj , wj), because B is a syntactic read-k-times BP. Note
that any path from r to the 1-sink contains a unique trace. By property (b), for each
trace, we have

�∑
j=1

|X(vj , vj+1)| + |X(v�+1, w�+1)| ≥ n�

a
+ |X(v�+1, w�+1)|, (1)

where w�+1 is the 1-sink. Since each variable belongs to at most k sets, the left-hand
side can be bounded above by kn. This leads that the length � of traces is at most ka.

Let T be the set of all traces. We construct T as follows. Enumerate all sequences
of edges in E with the length of at most ka. For each sequence, check whether it
satisfies the conditions (a) and (b) by using X(v, w). If it satisfies the conditions, then
put it in T . Note that the number of sequences needed to check is at most

∑ka
�=1

(
m
�

) ≤
mka . Thus, we have |T | ≤ mka .

For each trace T = (e1 = (w1, v2), . . . , e� = (w�, v�+1)) ∈ T and 1 ≤ j ≤ �, let
BT,j be a BP constructed as follows:

1. Prepare the subbranching program 〈B, vj , wj 〉, 0-sink, and 1-sink.
2. Create an edge from wj to the 1-sink with the same label of (wj , vj+1).
3. If some node v does not have a 0-edge (resp. 1-edge) as an outgoing edge, create

a 0-edge (resp. 1-edge) from v to the 0-sink.

Intuitively, BT,j contains all paths from vj to vj+1 through wj . Note that the index i

of the statement corresponds to each trace T . Let gT,j be the function represented by
BT,j . Thus, we have f = ∨

T ∈T
∧�+1

j=1 gT,j . Each function gT,j depends on at most
�n/a� variables by property (a). Because B is a syntactic read-k-times BP, for each
trace T and each variable x, at most k functions gT,j depend on x. Recalling that the
left-hand side of inequality (1) is bounded above by kn and we have � ≤ ka, � = ka

holds only if |X(v�+1, w�+1)| = 0, in which case gT,�+1 is a constant function. If
this constant is 0, then

∧�+1
j=1 gT,j is equal to 0 and we can drop whole terms. If it is

1, we can drop gT,�+1. Therefore, each conjunction part consists of at most ka terms.

Lemma 2 Given a (nondeterministic) syntactic read-k-times BP B with n variables
and size m, the running time of the decomposition algorithm described above is
O(kamka+1).

Proof Let us analyze the running time of the above construction. First, for each pair
of nodes v, w ∈ V , we find X(v, w) by dynamic programming in O(m) time. There-
fore, the running time for enumerating all X(v, w) is O(m3). The running time for
construction of T is O(kamka), because we have mka sequences and check the con-
ditions for each sequence in O(ka) time. For each trace T ∈ T , we construct at
most ka branching programs Bt,j in O(kam) time. Since we have |T | ≤ mka , we

1398 Theory of Computing Systems (2020) 64:1392–1407

construct at most kamka branching programs in O(kamka+1) time. Totally, the total
running time is at most O(m3) + O(kamka) + O(kamka+1) = O(kamka+1).

Next, we give the satisfiability algorithm for a specific class Boolean functions.
Let a and k be positive integers with a ≤ n. We are given a set of ka functions {fi}
(i ∈ [ka]) with the following properties:

1. Each fi depends on only at most �n/a� variables Xi ⊂ X, i.e., |Xi | ≤ �n/a�.
2. Each variable x belongs to at most k sets Xi .
3. Each function fi can be computed in a time of at most t and a space of at most s.

Our task is to count the satisfiable assignments of the function f = ∧
i∈[ka] fi .

We describe a satisfiability algorithm for function f . See Algorithm 1. To explain
our algorithm, we need some notations. Let us consider a subset F of [ka]. Note that
the number of such sets is 2ka . For F ⊆ [ka], F̄ is defined as [ka] \F . We define the
set of variables VF := (⋃

i∈F Xi

)\ (⋃
i∈F̄ Xi

)
. The set VF contains all variables that

belong to only
⋃

i∈F Xi . By the definition, for any F ∈ F , VF and VF̄ are disjoint.
First, our algorithm finds a subset F of [ka] that maximizes min{|VF |, |VF̄ |} at

Line 2. For this F , let Y be a set of variables X \ (
VF ∪ VF̄

)
. That is, any variable

x ∈ Y appears both in Xi and Xj for some i ∈ F and j ∈ F̄ . Let us pick up a

1399Theory of Computing Systems (2020) 64:1392–1407

partial assignment α whose support is Y . All functions fi |α for i ∈ F (resp. i ∈ F̄)
depend on only the variables in VF (resp. VF̄). Let AF be a set of partial assignments
αF such that S(αF) = VF and fi |α(αF) = 1 for all i ∈ F . We find AF by an
exhaustive search, i.e., checking the value fi |α(αF) for all i ∈ F and all partial
assignments with S(αF) = VF in Lines 6–10. Similarly, we find AF̄ which is a set
of partial assignments αF̄ such that S(αF̄) = VF̄ and fi |α(αF̄) = 1 for all i ∈ F̄ by
an exhaustive search in Lines 11–15. For any αF ∈ AF and any αF̄ ∈ AF̄ , we have
f (α◦αF ◦αF̄) = 1 holds, since f = ∧ka

i=1 fi . Therefore, the number of assignments
that satisfy f and contain a partial assignment α is exactly |AF | · |AF̄ |. In the for-
loop (Lines 4–17), we sum up |AF | · |AF̄ | for all partial assignments with support Y

and then obtain the number of all assignments that satisfy f .
We give the other key lemma.

Lemma 3 Let a and k be positive integers with a ≤ n. Suppose that we are given a
set of ka functions {fi} (i ∈ [ka]) that satisfy the following properties:
1. Each fi depends on only at most �n/a� variables Xi ⊂ X, i.e., |Xi | ≤ �n/a�.
2. Each variable x belongs to at most k sets Xi .
3. Each function fi can be computed in a time of at most t and a space of at most s.

Then, there exists a deterministic algorithm for counting the satisfiable assignments

of the function f = ∧
i fi that runs in time O

(
2kakan

) + O(kat) · 2

(
1− 2

4k+1

(
1− k

a

))
n

and space O(s + kan).

Proof Let us assume that each variable x belongs to at least one set Xi . If all sets Xi

do not contain a variable x, then
∑

i |Xi | ≤ k(n − 1). This implies that there exists a
set Xi such that |Xi | ≤ (n − 1)/a < �n/a�. Then, we can put the variable x into the
set Xi while preserving the properties.

First, Algorithm 1 requires the computational space O(kan) at Line 2, and O(s)

for computing functions fi |α(αF) and fi |α(αF̄) at Lines 7 and 12.
Next, we give the analysis of the complexity of Algorithm 1. At Line 2, we com-

pute a subset F ∈ [ka] that maximizes min{|VF |, |VF̄ |}. For each F ⊆ [ka], we have
min{|VF |, |VF̄ |} in O(kan) time. Therefore, Line 2 requires O(2kakan) time since
the number of subsets of [ka] is 2ka .

Let us fix a partial assignment α with support Y in the for-loop of Lines 5–17. We
construct AF by checking the value fi |α(αF) for all i ∈ F and all partial assignments
with S(αF) = VF in Lines 6–10. Thus, Lines 6–10 require t · |F | · 2|VF | ≤ tka ·
2|VF | time. Similarly, Lines 11–15 require at most tka · 2|VF̄ | time to construct AF̄ .
Since we have 2|Y | partial assignments with support Y , Lines 4–17 require at most
tka · 2|Y | · (

2|VF | + 2|VF̄ |) time. Because |Y | + |VF | + |VF̄ | = n, we have

2|Y | ·
(

2|VF | + 2|VF̄ |) ≤ 2|Y | ·
(

2max{|VF |,|VF̄ |}+1
)

= 2n−min{|VF |,|VF̄ |}+1.

Totally, the running time of Algorithm 1 is at most

O(2kakan) + 2kat · 2n−min{|VF |,|VF̄ |}.

1400 Theory of Computing Systems (2020) 64:1392–1407

We will show that maxF⊆[ka] min{|VF |, |VF̄ |} is at least 2
4k+1

(
1 − k

a

)
n− 1

2 . It follows
that the second term of the running time is

2kat · 2n−min{|VF |,|VF̄ |} ≤ 2kat · 2
n− 2

4k+1

(
1− k

a

)
n+ 1

2

= O(kat) · 2

(
1− 2

4k+1

(
1− k

a

))
n
.

Thus, it leads the lemma.
To analyze maxF⊆[ka] min{|VF |, |VF̄ |}, let us suppose that n is even for simplicity.

(In the case when n is odd, we also obtain the same result in a similar way.) Let S

be the set of variables {x1, . . . , xn/2} and L be the set of variables {x(n/2)+1, . . . , xn}.
Now, we define good/bad pairs of variables. This notation is used in the proof of
Theorem 6 in [5]. A pair (x, x′) ∈ S × L is good iff there is no i ∈ [ka] such that Xi

contains both x and x′, and bad otherwise. For each i, we have |S ∩ Xi | · |L ∩ Xi |
pairs (x, x′) ∈ S ×L such that Xi contains both x and x′. Since |S ∩Xi |+|L∩Xi | =
|Xi | ≤ ⌈

n
a

⌉
hold, we have

|S ∩ Xi | · |L ∩ Xi | ≤ 1

4
·
⌈n

a

⌉2
.

By the union bound, the number of bad pairs is at most ka
4 ·⌈n

a

⌉2. Thus, using
⌈

n
a

⌉
<

n
a

+ 1 and a ≤ n, the number of good pairs is at least

|S| · |L| − (#bad pairs) ≥ n2

4
− ka

4
·
⌈n

a

⌉2
>

1

4

(
1 − k

a

)
n2 − 3k

4
n.

Let us consider that a subset F ⊆ [ka] is chosen uniformly at random. For any
variable x ∈ X, we have

Pr[x ∈ VF] =
∏

i∈{i|x∈Xi }
Pr[i ∈ F] ≥ 2−k,

since x belongs to at most k sets Xi . Also, we have Pr[x ∈ VF̄] ≥ 2−k . Therefore,
for each good pair (x, x′) ∈ S × L, we have Pr[x ∈ VF , x′ ∈ VF̄] ≥ 4−k . Hence, the
average number of good pairs (x, x′) ∈ S × L such that x ∈ VF , x′ ∈ VF̄ is at least

1

4k

[
1

4

(
1 − k

a

)
n2 − 3kn

4

]
.

This implies that there exists a set F ⊆ [ka] such that

|VF | · |VF̄ | ≥ |S ∩ VF | · |L ∩ VF̄ | ≥ 1

4k

[
1

4

(
1 − k

a

)
n2 − 3kn

4

]
.

For such a set F , we have

min{|S ∩ VF |, |L ∩ VF̄ |} = |S ∩ VF | · |L ∩ VF̄ |
max{|S ∩ VF |, |L ∩ VF̄ |}

≥ 2

4kn

[
1

4

(
1 − k

a

)
n2 − 3kn

4

]
,

1401Theory of Computing Systems (2020) 64:1392–1407

since max{|S ∩ VF |, |L ∩ VF̄ |} ≤ max{|S|, |L|} = n
2 . Thus, we have

min{|VF |, |VF̄ |} ≥ min{|S ∩ VF |, |L ∩ VF̄ |}
≥ 2

4kn

[
1

4

(
1 − k

a

)
n2 − 3kn

4

]

= 2

4k+1

(
1 − k

a

)
n − 6k

4k+1

>
2

4k+1

(
1 − k

a

)
n − 1

2
.

The last inequality is by the fact that for any k ≥ 1, 6k

4k+1 < 1
2 holds. This means that

max
F⊆[ka] min{|VF |, |VF̄ |} ≥ 2

4k+1

(
1 − k

a

)
n − 1

2

and the proof is complete.

4 Satisfiability Algorithms for Syntactic Read-k-times BPs

4.1 Satisfiability Algorithm

In this section, we detail our satisfiability algorithm for syntactic read-k-times BPs
and analyze its running time. We describe the outline of our algorithm. Our algorithm
consists of two steps.

First, applying the decomposition algorithm in Lemma 1 with a = 2k, we decom-
pose the input syntactic read-k-times BP B into a disjunction of at most m2k2

BPs.
Then, B is satisfiable iff at least one of these decomposed BPs is satisfiable. In
addition, each decomposed BP consists of a conjunction of at most 2k2 BPs.

Second, we determine the satisfiability of each decomposed BP by checking
whether there exists an assignment that satisfies all BPs. Let a decomposed BP be a
conjunction of BPs {B1, . . . , B�}, where � ≤ 2k2. Applying Lemma 3 with a = 2k,
we count the number of satisfiable assignments that satisfy all BPs.

Repeating the above operations for all decomposed BPs, we can determine the
satisfiability of the input B.

Theorem 3 (Restatement of Theorem 1) There exists a deterministic and polynomial
space algorithm for a nondeterministic and syntactic read-k-times BP SAT with n

variables and m edges that runs in time O
(

poly(n, mk2
) · 2(1−4−k−1)n

)
.

Proof Our algorithm consists of the following two steps: (1) decomposition and (2)
satisfiability checking.

1402 Theory of Computing Systems (2020) 64:1392–1407

[Step 1: Decomposition]
Setting a = 2k in Lemma 1, construct the set of BPs {Bi,j } from the input B.

Let f and fi,j be Boolean functions represented by B and Bi,j , respectively. Let
Xi,j be the set of variables that appear in Bi,j . Then, the following properties hold:

1. f = ∨
i∈[m2k2]

∧
j∈[2k2] fi,j .

2. For each i and j , |Xi,j | is at most
⌈

n
2k

⌉
. For each i, each variable x belongs

to at most k sets of {Xi,j }j=1,...,2k2 .

The computational time required in Step 1 is at most O
(

2k2m2k2+1
)

.

[Step 2: Satisfiability Checking]
In order to check the satisfiability of B, we check whether there exists an assign-

ment that satisfies all branching programs Bi,1, . . . , Bi,2k2 for each i ∈ [m2k2].
Let us consider a fixed i. We denote Bi,j , fi,j , and Xi,j simply by Bj , fj , and Xj ,
respectively. Note that each function fj can be computed in O(m) time and O(m)

space by simulating the computation of Bj .

Our goal in this step is to determine whether there is an assignment that satisfies all fj

for j ∈ [2k2]. By applying Lemma 3 and setting a = 2k, t = O(m), and s = O(m),
we count the satisfiable assignments that satisfy all fj in a time of at most

O
(

22k2
k2n

)
+ O(k2m) · 2(1− 1

4k+1)n.

Therefore, the running time of Step 2 is at most

m2k2 ·
{
O

(
22k2

k2n
)

+ O(k2m) · 2

(
1− 1

4k+1

)
n
}

= poly
(
n, mk2

)
· 2

(
1− 1

4k+1

)
n
.

Combining the analyses of Step 1 and Step 2, the running time of our algorithm is at
most

O
(

2k2m2k2+1
)

+ poly
(
n, mk2

)
· 2

(
1− 1

4k+1

)
n = poly

(
n, mk2

)
· 2

(
1− 1

4k+1

)
n
.

Note that if a given B is a deterministic and syntactic read-k-times BP, then any
satisfiable assignment of B satisfies only one conjunction part of the decomposed
BPs. Then, the number of satisfiable assignments of B is equal to the sum of the
results of Step 2.

4.2 Improved Algorithm for k = 2

By Theorem 1, we can solve the satisfiability of syntactic read-twice BPs in time
poly(n, m) · 263n/64. We improve this bounds to poly(n, m) · 25n/6.

Theorem 4 (Restatement of Theorem 2) There exists a deterministic and polyno-
mial space algorithm for a nondeterministic and syntactic read-twice BP SAT with n

variables and m edges that runs in time O
(
poly(n, m) · 25n/6

)
.

1403Theory of Computing Systems (2020) 64:1392–1407

To prove theorem, we improve the analysis of the running time of Algorithm 1
when k = a = 2. Note that Lemma 3 does not give the upper bound of the running
time when k = a holds.

Lemma 4 Suppose that we are given a set of four functions fi (i = 1, 2, 3, 4) that
satisfy the following properties:

1. Each fi depends on only at most �n/2� variables Xi ⊂ X, i.e., |Xi | ≤ �n/2�.
2. Each variable x belongs to at most two sets Xi .
3. Each function fi can be computed in a time of at most t and a space of at most s.

Then, there exists a deterministic algorithm for counting the satisfiable assign-
ments of the function f = ∧

i fi that runs in time O(n) + O(t) · 25n/6 and space
O(s + n).

Proof By the same way of the proof of Lemma 3, we assume that each variable x

belongs to at least one set Xi . By Lemma 3, Algorithm 1 requires the computational
space O(s + kan) = O(s + n). Recall that for a set F ⊆ [4], VF is a set of variables
that belong to only

⋃
i∈F Xi . The running time of Algorithm 1 is at most

O(n) + 8t · 2n−min{|VF |,|VF̄ |}

from the proof of Lemma 3 with k = a = 2. To complete the proof, we need to show
that

max
F⊆[4]

min{|VF |, |VF̄ |} ≥ n

6
.

We show the following lemma and give the proof later.

Lemma 5 Let wi and vi,j be non-negative real values, where i, j ∈ [4] and i �= j

such that the following equations hold.

1. vi,j = vj,i ,
2. for each i, wi + ∑

j �=i vi,j ≤ 1/2,
3.

∑
i∈[4] wi + ∑

i,j∈[4],i<j vi,j = 1.

Let xi,j = wi + wj + vi,j . Then,

max
{
min{x1,2, x3,4}, min{x1,3, x2,4}, min{x1,4, x2,3}

} ≥ 1/6

holds.

For i ∈ [4], we set wi as the proportion of variables in only Xi . For i, j ∈ [4],
we set vi,j as the proportion of variables in both Xi and Xj . Under this setting,
xi,j = wi + wj + vi,j corresponds that the proportion of variables in only Xi or
Xj . Thus, we have xi,j = |VF |

n
with F = {i, j}. In order to apply Lemma 5, we

need to confirm all conditions hold under this setting. By the symmetry of the setting
of vi,j , condition 1 clearly holds. The left side term wi + ∑

j �=i vi,j of condition 2
corresponds to a portion of variables that contains in Xi . By the property 1 of the
statement of Lemma, condition 2 holds. The left side of condition 3 corresponds to

1404 Theory of Computing Systems (2020) 64:1392–1407

a portion of variables that is in some set Xi , then condition 3 clearly holds. Thus,
Lemma 5 implies that there exits a subset F of size two such that

min{|VF |, |VF̄ |} ≥ n/6.

It completes the proof.

Proof of Lemma 5 Without loss of generality, we can assume that one of the fol-
lowing two cases holds: (i) min{x1,2, x3,4} = x1,2, min{x1,3, x2,4} = x1,3,
min{x1,4, x2,3} = x1,4 and (ii) min{x1,2, x3,4} = x1,2, min{x1,3, x2,4} = x1,3,
min{x1,4, x2,3} = x2,3.

(i) Let us assume that min{x1,2, x3,4} = x1,2, min{x1,3, x2,4} = x1,3,
min{x1,4, x2,3} = x1,4. By x1,i = w1 + wi + v1,i for each i ∈ {2, 3, 4}, we
have max{x1,2, x1,3, x1,4} = w1 + maxi∈{2,3,4}{wi + v1,i}. Recall the condi-
tion 2 that wi + ∑

j �=i vi,j ≤ 1/2 holds for each i. Summing up this inequality
for i = 2, 3, 4, we have

∑
i∈{2,3,4}

(
wi +v1,i

)+2 · (v2,3+v2,4+v3,4) ≤ 3

2

v2,3 + v2,4 + v3,4 ≤ 3

4
−

∑
i∈{2,3,4}

(
wi + v1,i

)

2
. (2)

Recalling we have condition 3 that
∑

i∈[4] wi + ∑
i,j∈[4],i<j vi,j = 1, we have

1 =
∑
i∈[4]

wi +
∑

i,j∈[4],i<j

vi,j

= w1 +
∑

i∈{2,3,4}

(
wi + v1,i

) + v2,3 + v2,4 + v3,4

≤ w1 +
∑

i∈{2,3,4}
(
wi + v1,i

)

2
+ 3

4
.

The last inequality led by inequality (2). Simplifying the above inequality, we
have

∑
i∈{2,3,4}

(
wi + v1,i

) ≥ 1

2
− 2w1. (3)

Therefore, we have

w1 + max
i∈{2,3,4}

{wi + v1,i} ≥ w1 + 1

3

∑
i∈{2,3,4}

(
wi + v1,i

)

≥ w1 + 1

6
− 2

3
w1 (∵ By inequality (3))

= 1

6
+ 1

3
w1 ≥ 1

6
.

1405Theory of Computing Systems (2020) 64:1392–1407

(ii) Let we assume that min{x1,2, x3,4} = x1,2, min{x1,3, x2,4} = x1,3 and
min{x1,4, x2,3} = x2,3 hold. Recalling condition 3 again, we have

1 =
∑
i∈[4]

wi +
∑

i,j∈[4],i<j

vi,j

= x1,2 + x1,3 + x2,3 −
∑

i∈{1,2,3}
wi + w4 +

∑
i∈{1,2,3}

vi,4

≤ x1,2 + x1,3 + x2,3 + 1/2. (∵ By condition 2)

Thus, we have x1,2 + x1,3 + x2,3 ≥ 1/2 and this implies that max{x1,2,

x1,3, x2,3} ≥ 1/6 holds.

Proof of Theorem 2 Improved algorithm for k = 2 also consists of the following two
steps: (1) decomposition and (2) satisfiability checking.

[Step 1: Decomposition]
Setting a = 2 in Lemma 1, construct a set of BPs {Bi,j | i ∈ [m4], j ∈ [4]}

from the input BP B. Let f and fi,j be Boolean functions represented by B and
Bi,j , respectively. Let Xi,j be the set of variables that appear in Bi,j . By Lemma 1,
the following properties hold:

1. f = ∨
i∈[m4]

∧
j∈[4] fi,j .

2. For each i and j , |Xi,j | is at most n/2.
3. For each i, each variable x belongs to at most two sets of {Xi,1, Xi,2,

Xi,3, Xi,4}.
The running time required in Step 1 is at most poly(m).

[Step 2: Satisfiability Checking]
In order to check the satisfiability of B, we check whether there exists an assign-

ment that satisfies all four branching programs Bi,1, Bi,2, Bi,3 and Bi,4 for each
i ∈ [m4]. Let us consider a fixed i. We denote Bi,j , fi,j , and Xi,j simply by Bj ,
fj , and Xj , respectively. Note that each function fj can be computed in O(m)

time and O(m) space by simulating the computation of Bj .

Now, our task is to decide whether there is an assignment that satisfies all fj ,
where j ∈ [4]. By applying Lemma 4 and setting t = O(m), and s = O(m), we
count the satisfiable assignments that satisfy all fj in a time of at most

O(n) + O(m) · 25n/6.

Therefore, the running time of Step 2 is at most

m4 ·
{
O(n) + O(m) · 25n/6

}
= poly(n, m) · 25n/6.

Since the running time of Step 1 is dominated by the one of Step 2, the total of running
time for solving the satisfiability problem for read-twice BPs is at most poly(n, m) ·
25n/6.

1406 Theory of Computing Systems (2020) 64:1392–1407

References

1. Abboud, A., Hansen, T.D., Williams, V.V., Williams, R.: Simulating branching programs with edit
distance and friends: or: a polylog shaved is a lower bound made. In: Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC, pp. 375–388 (2016)

2. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those
languages in nc1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

3. Beame, P., Jayram, T.S., Saks, M.E.: Time-space tradeoffs for branching programs. J. Comput. Syst.
Sci. 63(4), 542–572 (2001)

4. Bollig, B., Sauerhoff, M., Sieling, D., Wegener, I.: Hierarchy theorems for kobdds and kibdds. Theor.
Comput. Sci. 205(1-2), 45–60 (1998)

5. Borodin, A., Razborov, A.A., Smolensky, R.: On lower bounds for read-k-times branching programs.
Comput. Complex. 3, 1–18 (1993)

6. Chen, R., Kabanets, V., Kolokolova, A., Shaltiel, R., Zuckerman, D.: Mining circuit lower bound
proofs for meta-algorithms. In: Proceedings of the 21st Annual IEEE Conference on Computational
Complexity (CCC), pp. 262–273 (2014)

7. Cook, S., Edmonds, J., Medabalimi, V., Pitassi, T.: Lower bounds for nondeterministic semantic
Read-Once branching programs. In: Proceedings of the 43rd International Colloquium on Automata,
Languages, and Programming (ICALP), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 55, pp. 36:1–36:13 (2016)

8. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Proceedings of the 18th Annual
ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pp. 6–20
(1986)

9. Håstad, J.: The shrinkage exponent of de morgan formulas is 2. SIAM J. Comput. 27(1), 48–64 (1998)
10. Impagliazzo, R., Matthews, W., Paturi, R.: A satisfiability algorithm for AC0 . In: Proceedings of the

23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 961–972 (2012)
11. Jukna, S.: A note on read-k times branching programs. ITA 29(1), 75–83 (1995)
12. Jukna, S.: A nondeterministic space-time tradeoff for linear codes. Inf. Process. Lett. 109(5), 286–289

(2009)
13. Nagao, A., Seto, K., Teruyama, J.: A moderately exponential time algorithm for k-IBDD satisfia-

bility. In: Proceedings of Algorithms and Data Structures - 14th International Symposium (WADS),
pp. 554–565 (2015)

14. Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. Chicago Journal Theoretical Computer
Science 1999 (1999)

15. Santhanam, R.: Fighting perebor: New and improved algorithms for formula and QBF satisfiability.
In: Proceedings of the 51th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 183–192 (2010)

16. Sauerhoff, M.: Lower bounds for randomized read-k-times branching programs. In: Proceedings of
the 15th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pp. 105–115
(1998)

17. Subbotovskaya, B.A.: Realizations of linear functions by formulas using and, or, not. Soviet
Mathematics Doklady 2, 110–112 (1961)

18. Thathachar, J.S.: On separating the read-k-times branching program hierarchy. In: Proceedings of the
30th Annual ACM Symposium on the Theory of Computing (STOC), pp. 653–662 (1998)

19. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. SIAM J. Comput.
42(3), 1218–1244 (2013)

20. Yao, A.C.: Lower bounds by probabilistic arguments (extended abstract). In: Proceedings of the 24th
Annual Symposium on Foundations of Computer Science (STOC), pp. 420–428 (1983)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

1407Theory of Computing Systems (2020) 64:1392–1407

	Satisfiability Algorithm for Syntactic Read-k-times Branching Programs
	Abstract
	Introduction
	Our Techniques
	Related Work
	Paper Organization

	Preliminaries
	Key Lemmas
	Satisfiability Algorithms for Syntactic Read-k-times BPs
	Satisfiability Algorithm
	Improved Algorithm for k=2

	References

