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Abstract
Given a set A of n people, with each person having a preference list that ranks a
subset of A as his/her acceptable partners in order of preference, we consider the
Roommates Problem (RP) and the Marriage Problem (MP) of matching people with
their partners. In RP there is no further restriction, while in MP only people of opposite
genders can be acceptable partners. For a pair of matchings X and Y , let φ(X, Y )

denote the number of people who prefer a person they get matched by X to a person
they get matched by Y , and define an unpopularity factor u(M) of a matching M

to be the maximum ratio φ(M ′, M)/φ(M, M ′) among all other possible matchings
M ′. In this paper, we develop an algorithm to compute the unpopularity factor of a
given matching in O(m

√
n log2 n) time for RP and in O(m

√
n log n) time for MP,

where m is the total length of people’s preference lists. We also generalize the notion
of unpopularity factor to a weighted setting where people are given different voting
weights and show that our algorithm can be slightly modified to support that setting
with the same running time.
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1 Introduction

The Stable Marriage Problem is one of the most actively studied problems in theo-
retical computer science and economics [13, 23]. It has many real-world applications
including assignments of medical residents [22] and high-school students [1, 2]. In
the original bipartite setting called Marriage Problem (MP), a set of n/2 men and a
set of n/2 women are given. Each person has a preference list that ranks all people
of opposite gender in strict order of preference. A man m and a woman w are called
a blocking pair for a matching M if they are not matched with each other in M but
prefer each other to their own partners in M . A matching is called stable if it does not
admit any blocking pair. Gale and Shapley [9] proved that a stable matching always
exists in any instance and developed an O(n2) algorithm to find one. Their algorithm
can be adapted to a setting where each person’s preference list may not contain all
people of opposite gender. It runs in O(m) time in this setting, where m is the total
length of people’s preference lists [13].

The Stable Roommates Problem is a generalization of the original Stable Marriage
Problem to a non-bipartite setting called Roommates Problem (RP), where each per-
son can be matched with anyone regardless of gender. Unlike in MP, a stable matching
in RP does not always exist. Irving [16] developed an O(n2) algorithm to find a stable
matching in a given RP instance, or report that none exists.

1.1 Popular Matchings

Apart from stability, another well-studied property of a preferable matching is pop-
ularity. For a pair of matchings X and Y , let φ(X, Y ) denote the number of people
who prefer a person they get matched by X to a person they get matched by Y . A
matching M is called popular if φ(M, M ′) ≥ φ(M ′, M) for any other matching M ′.
The concept of popularity of a matching was first introduced by Gardenfors [10] in
the context of the original Stable Marriage Problem. He also proved that in an MP

instance where each person’s preference list is strict (containing no tie), every sta-
ble matching must be popular (but not vice-versa), hence a popular matching always
exists.

The problem of determining whether a popular matching exists in a given instance,
however, becomes more computationally challenged in other settings. Biró et al. [5]
proved that when ties among people in the preference lists are allowed, the problem
of determining whether a popular matching exists in a given MP or RP instance is
NP-hard. Very recently, Faenza et al. [8] and Gupta et al. [12] independently proved
that this problem is still NP-hard for RP even when people’s preference lists are strict.
Cseh and Kavitha [6] showed that in a complete graph RP instance where each per-
son’s preference list is strict and contains all other people, the problem of determining
whether a popular matching exists is solvable in polynomial time for an odd n but is
NP-hard for an even n.

Problems related to popular matchings were also extensively studied in the set-
ting of one-sided preference lists (matching each person with a unique item, where
each person has a list that ranks items but each item does not have a list that ranks
people) called House Allocation Problem (HAP). Abraham et al. [3] developed an
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algorithm to find a popular matching in a given HAP instance, or report that none
exists. The algorithm runs in O(m + n) time when people’s preference lists are strict
and in O(m

√
n) time when ties are allowed, where m is the total length of people’s

preference lists and n is the total number of people and items. Mestre [21] later gen-
eralized their algorithm to a weighted setting where people are given different voting
weights, while Manlove and Sng [19] generalized it to a setting where each item is
allowed to be matched with more than one person called Capacitated House Alloca-
tion Problem (CHAP). Mahdian [18] studied the randomized version of this problem
where people’s preference lists are strict, complete (containing all items), and ran-
domly generated. He showed that a popular matching exists with high probability in
a random HAP instance if the ratio of the number of items to the number of people
is greater than a specific constant. Ruangwises and Itoh [24] later generalized Mah-
dian’s study to the case where preference lists are strict but not complete, and found
a similar behavior of the probability of existence of a popular matching. Abraham
and Kavitha [4] proved that in any instance with at least one popular matching, one
can achieve a popular matching by conducting at most two majority votes to force
a change in assignments, starting at any matching. Kavitha et al. [17] introduced
the concept of a mixed matching, which is a probability distribution over a set of
matchings, and proved that a mixed matching that is “popular” always exists.

1.2 Unpopularity Measures

While a popular matching may not exist in some instances, several measures of
badness of a matching that is not popular have been introduced. In the one-sided
preference lists setting, McCutchen [20] introduced two such measures: the unpop-
ularity factor and the unpopularity margin. The unpopularity factor u(M) of a
matching M is the maximum ratio φ(M ′, M)/φ(M, M ′) among all other possi-
ble matchings M ′, while the unpopularity margin g(M) is the maximum difference
φ(M ′, M) − φ(M, M ′) among all other possible matchings M ′. Note that the two
measures are not equivalent as φ(M ′, M) and φ(M, M ′) may not add up to the total
number of people since some people may like M and M ′ equally, thus it is possible
for a matching to have higher unpopularity factor but lower unpopularity margin than
another matching. See Example 1.

McCutchen [20] developed an algorithm to compute u(M) and g(M) of a given
matching M of an HAP instance in O(m

√
n2) and O((g+1)m

√
n) time, respectively,

where n2 is the number of items and g = g(M) is the unpopularity margin of M .
He also proved that the problem of finding a matching that minimizes either measure
is NP-hard. Huang et al. [15] later developed an algorithm to find a matching with
bounded values of these measures in HAP instances with certain properties.

The notions of unpopularity factor and unpopularity margin also apply to the
setting of two-sided preference lists (matching people with people). Biró et al. [5]
developed an algorithm to determine whether a given matching M is popular in
O(m

√
nα(n, m) log3/2 n) time for RP, where α is the inverse Ackermann function

(later improved to O(m
√

n log n) time when running with the recent fastest algo-
rithm to find a maximum weight perfect matching [7]), and in O(m

√
n) time for MP.

Their algorithm also simultaneously computes the unpopularity margin of M during
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the run. Huang and Kavitha [14] proved that an RP instance with strict preference
lists always has a matching with unpopularity factor O(log n), and it is NP-hard to
find a matching with the lowest unpopularity factor, or even the one with less than
4/3 times of the optimum.

Example 1 Consider the following RP instance. A set in a preference list means all
people in that set are ranked equally, e.g. a2 prefers a1 and a4 equally as his first
choices over a3.

In this example, φ(M0, M1) = 1, φ(M1, M0) = 0, φ(M0, M2) = 3,
φ(M2, M0) = 1, φ(M1, M2) = 3, and φ(M2, M1) = 1. Therefore, M0 is popular,
while u(M1) = ∞, g(M1) = 1−0 = 1, u(M2) = 3/1 = 3, and g(M2) = 3−1 = 2.
Observe that M1 has higher unpopularity factor but lower unpopularity margin
than M2.

1.3 Our Contribution

The algorithm of Biró et al. [5] determines whether a given matching M is popular
and also simultaneously computes the unpopularity margin of M , hence we cur-
rently have an algorithm to compute an unpopularity margin of a given matching in
O(m

√
n log n) time for RP and in O(m

√
n) time for MP. However, there is currently

no efficient algorithm to compute an unpopularity factor of a given matching in MP

or RP.
In this paper, by employing an auxiliary graph similar to the one in [5], we develop

an algorithm to compute the unpopularity factor of a given matching. The algorithm
runs in O(m

√
n log2 n) time for RP and in O(m

√
n log n) time for MP. We also gen-

eralize the notion of unpopularity factor to the weighted setting where people are
given different voting weights, and show that our algorithm can be slightly modified
to support that setting with the same running time.

2 Preliminaries

Let I be an RP or MP instance consisting of a set A = {a1, ..., an} of n people, with
each person having a preference list that ranks a subset of A as his/her acceptable
partners in order of preference. In RP there is no further restriction, while in MP

people are classified into two genders, and each person’s preference list can contain
only people of opposite gender. Throughout this paper, we consider a more general
setting where ties among two or more people are allowed in the preference lists. Also,
let m be the total length of people’s preference lists.

For a matching M and a person a ∈ A, let M(a) be the person matched with a in
M (for convenience, let M(a) = null if a is unmatched in M). Also, let ra(b) be the
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rank of a person b in a’s preference list, with the most preferred item(s) having rank
1, the second most preferred item(s) having rank 2, and so on (for convenience, let
ra(null) = ∞).

For any pair of matchings X and Y , we define φ(X, Y ) to be the number of people
who strictly prefer the person they get matched by X to the person they get matched
by Y , i.e.

φ(X, Y ) = |{a ∈ A|ra(X(a)) < ra(Y (a))}|.

Also, let

Δ(X, Y ) =
⎧⎨
⎩

φ(Y, X)/φ(X, Y ), if φ(X, Y ) > 0;
1, if φ(X, Y ) = φ(Y, X) = 0;
∞, otherwise.

Finally, define an unpopularity factor

u(M) = max
M ′∈M−{M}

Δ(M, M ′),

where M is the set of all matchings of a given instance I . Note that a matching M is
popular if and only if u(M) ≤ 1.

3 Unweighted Setting

We first consider an unweighted setting where every person has equal voting weight.

3.1 RP Instances

Let I be an RP instance, M be a matching of I , and k be an arbitrary positive rational
number. Beginning with a similar approach to [5], we construct an undirected graph
H(M,k) with vertices A ∪ A′, where A′ = {a′

1, ..., a′
n} is a set of “copies” of people in

A. An edge {ai, aj } exists if and only if ai is in aj ’s preference list and aj is in ai’s
preference list; an edge {a′

i , a
′
j } exists if and only if {ai, aj } exists; an edge {ai, a

′
j }

exists if and only if i = j .
The major distinction of our algorithm is that we assign weights to edges of H(M,k)

differently from [5]. For each pair of i and j with an edge {ai, aj }, define δi,j as
follows.

δi,j =
⎧⎨
⎩

1, if ai is unmatched in M or ai prefers aj to M(ai);
−k, if ai prefers M(ai) to aj ;
0, if {ai, aj } ∈ M or ai likes aj and M(ai) equally.

For each pair of i and j , we set the weights of both {ai, aj } and {a′
i , a

′
j } to be δi,j +

δj,i . Finally, for each edge {ai, a
′
i}, we set its weight to be −2k if ai is matched in M ,

and 0 otherwise. See Example 2.
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Example 2 Consider the following matching M in an RP instance.

The values of all δi,j are shown in the top-right table, and the auxiliary graph
H(M,2) is shown at the bottom.

The intuition of constructing this auxiliary graph is that we want to check whether
u(M) > k, i.e. whether there exists another matching M ′ with the number of people
who prefer M ′ to M more than k times the number of those who prefer M to M ′.
Each matching M ′ is represented by a perfect matching of H(M,k) consisting of the
edges of M ′ in A as well as their copies in A′, with each unmatched person ai being
matched with his own copy a′

i . We want to add 1 for each person who prefers M ′ to
M and subtract k for each one who prefers M to M ′, and then check whether the sum
is positive. This is the reason that we set δi,j to be −k if ai prefers M(ai) to aj , and
the weight of {ai, a

′
i} to be −2k if ai is unmatched in M .

The relation between u(M) and the graph H(M,k) is formally shown in the
following lemma.

Lemma 1 u(M) > k if and only if H(M,k) contains a positive weight perfect
matching.

Proof For any matching M ′, define A1(M
′) to be a set of people in A that are

matched in M ′, and A2(M
′) to be a set of people in A that are unmatched in M ′.

Also, define

A+
1 (M ′) = {ai ∈ A1(M

′)|ai is unmatched in M or ai prefers M ′(ai) to M(ai)};
A−

1 (M ′) = {ai ∈ A1(M
′)|ai prefers M(ai) to M ′(ai)};

A−
2 (M ′) = {ai ∈ A2(M

′)|ai is matched in M}.
We have φ(M ′, M) = |A+

1 (M ′)| and φ(M, M ′) = |A−
1 (M ′)| + |A−

2 (M ′)|.
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Suppose that u(M) > k. From the definition of u(M), there must be a match-
ing M0 such that φ(M0, M) > kφ(M, M0). In the graph H(M,k), consider a perfect
matching

S0 = M0 ∪ {{a′
i , a

′
j }|{ai, aj } ∈ M0} ∪ {{ai, a

′
i}|ai is unmatched in M0}

with weight W0. From the definition, we have

W0 = 2
(|A+

1 (M0)| − k|A−
1 (M0)|

) − 2k|A−
2 (M0)|

= 2
(|A+

1 (M0)| − k
(|A−

1 (M0)| + |A−
2 (M0)|

))
= 2(φ(M0, M) − kφ(M, M0))

> 0,

hence H(M,k) contains a positive weight perfect matching.
On the other hand, suppose there is a positive weight perfect matching S1 of

H(M,k) with weight W1. See Example 3. Let M1 = {{ai, aj } ∈ S1} and M2 =
{{ai, aj }|{a′

i , a
′
j } ∈ S1}. Since S1 is a perfect matching of H(M,k), we have A2(M1) =

A2(M2), and

0 < W1

= (|A+
1 (M1)| − k|A−

1 (M1)|
) + (|A+

1 (M2)| − k|A−
1 (M2)|

) − 2k|A−
2 (M1)|

= (|A+
1 (M1)| − k|A−

1 (M1)|
) + (|A+

1 (M2)| − k|A−
1 (M2)|

) − k|A−
2 (M1)| − k|A−

2 (M2)|
= (φ(M1, M) − kφ(M, M1)) + (φ(M2, M) − kφ(M, M2)).

Therefore, we have either φ(M1, M) > kφ(M, M1) or φ(M2, M) > kφ(M, M2),
which implies u(M) > k.

Example 3 Consider the auxiliary graphs H(M,2) and H(M,3) constructed from a
matching M in Example 2.

On the left, H(M,2) has a positive weight perfect matching consisting of the bold-
faced edges, but on the right, H(M,3) does not. This implies 2 < u(M) ≤ 3.

For a given value of k, the problem of determining whether u(M) > k is now
transformed to detecting a positive weight perfect matching of H(M,k), which can be
done by finding the maximum weight perfect matching of H(M,k).
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Lemma 2 Given an RP instance I , a matching M of I , and a rational number k =
x/y, where x ∈ [0, n − 1] and y ∈ [1, n] are integers, there is an algorithm to
determine whether u(M) > k in O(m

√
n log n) time.

Proof From Lemma 1, the problem of determining whether u(M) > k is equivalent
to determining whether H(M,k) has a positive weight perfect matching. Observe that
H(M,k) has O(n) vertices and O(m) edges, and we can multiply the weights of all
edges by y so that they are all integers with magnitude O(n). Using the recent algo-
rithm of Duan et al. [7], we can find a maximum weight perfect matching in a graph
with integer weight edges of magnitude poly(n) in O(m

√
n log n) time, hence we

can detect a positive weight perfect matching in H(M,k) in O(m
√

n log n) time.

As the possible values of u(M) are limited, we can perform a binary search for its
value. This allows us to efficiently compute u(M). To the best of our knowledge, this
is the first approach on popular matchings that employs the binary search technique.

Theorem 1 Given an RP instance I and a matching M of I , there is an algorithm to
compute u(M) in O(m

√
n log2 n) time.

Proof Observe that if u(M) is not ∞, it must be in the form of x/y, where x ∈
[0, n−1] and y ∈ [1, n] are integers, meaning that there are at most n2 possible values
of u(M). By performing a binary search on the value of k = x/y (if u(M) > n − 1,
then u(M) = ∞), we run the algorithm in Lemma 2 to determine whether u(M) > k

for O(log n2) = O(log n) times to find the exact value of u(M), hence the total
running time is O(m

√
n log2 n).

3.2 MP Instances

The running time of the algorithm in Theorem 1 is for a general RP instance. How-
ever, in an MP instance we can improve it using the following approach. For any
matching M in an MP instance, we define a matching

S = M ∪ {{a′
i , a

′
j }|{ai, aj } ∈ M} ∪ {{ai, a

′
i}|ai is unmatched in M}

in the graph H(M,k). Since S is a perfect matching, for any perfect matching S ′ of
H(M,k), every edge of S′ that is not in S must be a part of some cycle in which the
edges alternate between S and S′. Moreover, from the definition of δi,j , every edge
of S has zero weight. Therefore, H(M,k) contains a positive weight perfect matching
if and only if it contains a positive weight alternating cycle relative to S. Hence, the
problem becomes equivalent to detecting a positive weight alternating cycle (relative
to S) in H(M,k). Note that this property holds for every RP instance, not limited to
only MP.
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However, the special property of MP is that A is bipartite. Let AM and AW be the
two parts of A with no edge between vertices in the same part (which correspond
to the sets of men and women, respectively). Also, let A′

M = {a′
i |ai ∈ AM} and

A′
W = {a′

i |ai ∈ AW }. Observe that we can divide the vertices of H(M,k) into two
parts H1 = AM ∪A′

W and H2 = AW ∪A′
M with no edge between vertices in the same

part, so H(M,k) is also bipartite. In H(M,k), we orient the edges of S toward H2 and all
other edges toward H1, hence the problem of detecting a positive weight alternating
cycle becomes equivalent to detecting a positive weight directed cycle (see Example
4), which can be done in O(m

√
n) time using the shortest path algorithm of Goldberg

[11]. Therefore, by performing a binary search on the value of u(M) similar to in RP,
the total running time for MP is O(m

√
n log n).

Example 4 Consider the following matching M ′ in an MP instance with men a1 and
a3, and women a2 and a4.

On the left, H(M ′,2) has a positive weight perfect matching consisting of the bold-
faced edges, while S consists of the dotted edges.

On the right, since H(M ′,2) is a bipartite graph with parts H1 = {a1, a3, a
′
2, a

′
4}

(white vertices) and H2 = {a2, a4, a
′
1, a

′
3} (gray vertices), we orient the edges of S

(dotted arrows) toward H2, and the rest toward H1. This directed graph has a pos-
itive weight directed cycle consisting of the bold-faced arrows. Both figures imply
u(M ′) > 2.

In a way similar to RP, we have the following lemma and theorem for MP.

Lemma 3 Given an MP instance I , a matching M of I , and a number k = x/y,
where x ∈ [0, n − 1] and y ∈ [1, n] are integers, there is an algorithm to determine
whether u(M) > k in O(m

√
n) time.

Theorem 2 Given an MP instance I and a matching M of I , there is an algorithm to
compute u(M) in O(m

√
n log n) time.
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4 Weighted Setting

The previous section shows the algorithm to compute an unpopularity factor of
a given matching in an unweighted RP or MP instance where every person has
equal voting weight. However, in many real-world situations, people may have dif-
ferent voting weights based on position, seniority, etc. Our algorithm can also be
slightly modified to support a weighted instance with integer weights bounded by
N = poly(n) with the same running time in both RP and MP.

In the weighted setting, each person ai ∈ A has a weight w(ai). We analogously
define φ(M, M ′) to be the sum of weights of people who strictly prefer a matching
M to a matching M ′, i.e.

φ(M, M ′) =
∑

a∈A(M,M′)

w(a),

where A(M,M ′) = {a ∈ A|ra(M(a)) < ra(M
′(a))}. We also define Δ(M, M ′) and

u(M) the same way as in the unweighted setting. For each ai ∈ A, we assume that
w(ai) is a non-negative integer not exceeding N = poly(n). Note that an unweighted
instance can be viewed as a special case of a weighted instance where w(ai) = 1 for
all ai ∈ A.

To support the weighted setting, we construct an auxiliary graph H(M,k) with the
same set of vertices and edges as in the unweighted setting, but with slightly different
weights of the edges. For each pair of i and j with an edge {ai, aj }, define

δi,j =
⎧⎨
⎩

w(ai), if ai is unmatched in M or ai prefers aj to M(ai);
−kw(ai), if ai prefers M(ai) to aj ;
0, if {ai, aj } ∈ M or ai likes aj and M(ai) equally.

For each pair of i and j , the weights of {ai, aj } and {a′
i , a

′
j } is δi,j + δj,i . Finally,

for each edge {ai, a
′
i}, we set its weight to be −2kw(ai) if ai is matched in M , and 0

otherwise.
The auxiliary graph H(M,k) still has the same relation with u(M), as shown in the

following lemma.

Lemma 4 In the weighted RP instance, u(M) > k if and only if H(M,k) contains a
positive weight perfect matching.

Proof The proof of this lemma is very similar to that of Lemma 1. We define the sets
A1(M

′), A2(M
′), A+

1 (M ′), A−
1 (M ′), and A−

2 (M ′) by the same way as in the proof of
Lemma 1. However, from now on we will compute the sum of weights of each set’s
elements instead of counting the number of its elements.

For any set B, define w(B) = ∑
a∈B w(a). We have φ(M ′, M) = w(A+

1 (M ′))
and φ(M, M ′) = w(A−

1 (M ′)) + w(A−
2 (M ′)).

Suppose that u(M) > k. There must exist a matching M0 such that φ(M0, M) >

kφ(M, M0). Similarly to the proof of Lemma 1, in the graph H(M,k) consider a
perfect matching

S0 = M0 ∪ {{a′
i , a

′
j }|{ai, aj } ∈ M0} ∪ {{ai, a

′
i}|ai is unmatched in M0}

588 Theory of Computing Systems (2021) 65:579–592



with weight W0. From the definition, we have

W0 = 2
(
w(A+

1 (M0)) − kw(A−
1 (M0))

) − 2kw(A−
2 (M0))

= 2
(
w(A+

1 (M0)) − k
(
w(A−

1 (M0)) + w(A−
2 (M0))

))
= 2(φ(M0, M) − kφ(M, M0))

> 0,

hence H(M,k) contains a positive weight perfect matching.
On the other hand, suppose there is a positive weight perfect matching S1 of H(M,k)

with weight W1. Let M1 = {{ai, aj } ∈ S1} and M2 = {{ai, aj }|{a′
i , a

′
j } ∈ S1}.

Similarly to the proof of Lemma 1, we have A2(M1) = A2(M2), and

0< W1

= (
w(A+

1 (M1))−kw(A−
1 (M1))

)+(
w(A+

1 (M2))−kw(A−
1 (M2))

)−2kw(A−
2 (M1))

= (
w(A+

1 (M1)) − kw(A−
1 (M1))

) + (
w(A+

1 (M2)) − kw(A−
1 (M2))

)

− kw(A−
2 (M1)) − kw(A−

2 (M2))

= (φ(M1, M) − kφ(M, M1)) + (φ(M2, M) − kφ(M, M2)).

Therefore, we have either φ(M1, M) > kφ(M, M1) or φ(M2, M) > kφ(M, M2),
which implies u(M) > k.

Since the weights of people are bounded by N = poly(n), the unpopularity factor
u(M) must be in the form k = x/y, where x and y are integers not exceeding Nn.
For a given value of k, if we multiply the weights of all edges of H(M,k) by y, they
will be integers with magnitude O(Nn) = poly(n). Therefore, we can still use the
algorithm of Duan et al. [7] to find a maximum weight perfect matching of H(M,k)

with the same running time.
Moreover, there are at most O(N2n2) possible values of u(M). By perform-

ing a binary search on the value of k, we have to run the above algorithm for
O(log N2n2) = O(log n) times as in the unweighted setting, hence the total running
time is still O(m

√
n log2 n).

The argument for MP instances still works for the weighted setting as well since
H(M,k) is still bipartite, hence we have the following theorems for the weighted
setting RP and MP.

Theorem 3 Given a weighted RP instance I with integer weights bounded by
N = poly(n) and a matching M of I , there is an algorithm to compute u(M) in
O(m

√
n log2 n) time.

Theorem 4 Given a weighted MP instance I with integer weights bounded by
N = poly(n) and a matching M of I , there is an algorithm to compute u(M) in
O(m

√
n log n) time.
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Table 1 Currently best known algorithms for an unweighted instance with strict preference lists

Two-sided Lists One-sided Lists

Roommates
Problem (RP)

Marriage
Problem (MP)

House Allocation
Problem (HAP)

Determine if a popular
matching exists

NP-hard [8, 12] O(m) [10] O(m + n) [3]

Find a matching M that
minimizes g(M)

NP-hard [8, 12] O(m) [10] NP-hard [20]

Find a matching M that
minimizes u(M)

NP-hard [14] O(m) [10] NP-hard [20]

Test popularity of a given
matching M

O(m
√

n log n) [5, 7] O(m
√

n) [5] O(m + n) [3]

Compute g(M) of a given
matching M

O(m
√

n log n) [5, 7] O(m
√

n) [5] O((g + 1)m
√

n) [20]

Compute u(M) of a given
matching M

O(m
√

n log2 n) [§3] O(m
√

n logn) [§3] O(m
√

n2) [20]

5 Concluding Remarks

We develop an algorithm to compute the unpopularity factor of a given matching
in O(m

√
n log2 n) time for RP and O(m

√
n log n) time for MP, which runs only

slightly slower than the algorithm of McCutchen [20] to solve the same problem
in HAP and the algorithm of Biró et al. [5] to compute the unpopularity margin of
a given matching in RP and MP. Our results also complete Tables 1 and 2, which
show the running time of the currently best known algorithms related to popularity in

Table 2 Currently best known algorithms for an unweighted instance with ties allowed in the prefer-
ence lists

Two-sided Lists One-sided Lists

Roommates
Problem (RP)

Marriage
Problem (MP)

House Allocation
Problem (HAP)

Determine if a popular
matching exists

NP-hard [5] NP-hard [5] O(m
√

n) [3]

Find a matching M that
minimizes g(M)

NP-hard [5] NP-hard [5] NP-hard [20]

Find a matching M that
minimizes u(M)

NP-hard [5] NP-hard [5] NP-hard [20]

Test popularity of a given
matching M

O(m
√

n log n) [5, 7] O(m
√

n) [5] O(m
√

n2) [20]

Compute g(M) of a given
matching M

O(m
√

n log n) [5, 7] O(m
√

n) [5] O((g + 1)m
√

n) [20]

Compute u(M) of a given
matching M

O(m
√

n log2 n) [§3] O(m
√

n logn) [§3] O(m
√

n2) [20]
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RP, MP, and HAP in the unweighted setting with strict preference lists, and with ties
allowed, respectively. In both tables, m is the total length of preference lists, n is the
total number of people and items, n2 is the number of items (for HAP), and g is the
unpopularity margin of a given matching.

While the problem of finding a matching that minimizes the unpopularity factor or
margin in a given matching is NP-hard, the problem of approximating the optimum
of either measure is still open. For the unpopularity factor in RP with strict prefer-
ence lists, the current best algorithm is the one developed by Huang and Kavitha
[14], which approximates it up to O(log n) factor. A possible future work is to inves-
tigate whether there is a better approximation algorithm for RP, or to develop one for
HAP. For the unpopularity margin, however, there is currently no efficient algorithm
to approximate the optimum, both in RP and HAP. Another possible future work is to
investigate the probability of existence of a popular matching in RP where each per-
son’s preference list is independently and uniformly generated at random, similarly
to the study of Mahdian [18], and Ruangwises and Itoh [24] in HAP.
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