
https://doi.org/10.1007/s00224-019-09926-y

Dependences in Strategy Logic

Patrick Gardy1,2 ·Patricia Bouyer1 ·Nicolas Markey1,3

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Strategy Logic (SL) is a very expressive temporal logic for specifying and verify-
ing properties of multi-agent systems: in SL, one can quantify over strategies, assign
them to agents, and express LTL properties of the resulting plays. Such a powerful
framework has two drawbacks: first, model checking SL has non-elementary com-
plexity; second, the exact semantics of SL is rather intricate, and may not correspond
to what is expected. In this paper, we focus on strategy dependences in SL, by track-
ing how existentially-quantified strategies in a formula may (or may not) depend on
other strategies selected in the formula, revisiting the approach of [Mogavero et al.,
Reasoning about strategies: On the model-checking problem, 2014]. We explain why
elementary dependences, as defined by Mogavero et al., do not exactly capture the
intended concept of behavioral strategies. We address this discrepancy by introducing
timeline dependences, and exhibit a large fragment of SL for which model checking
can be performed in 2-EXPTIME under this new semantics.

Keywords Temporal logic · Multiple-player games · Strategy · Model checking

1 Introduction

Temporal logics Since Pnueli’s seminal paper [36] in 1977, temporal logics have been
widely used in theoretical computer science, especially by the formal-verification

This article is part of the Topical Collection on Special Issue on Theoretical Aspects of Computer
Science (2018)

This work was supported by ERC project EQualIS (StG-308087). A preliminary version of this
paper appeared in the proceedings of STACS’18 [19].

� Nicolas Markey
nicolas.markey@irisa.fr

1 LSV, CNRS, ENS Paris-Saclay, University of Paris-Saclay, Saint-Aubin, France

2 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University,
Shanghai, China

3 Irisa, University of Rennes & CNRS & Inria, Rennes, France

Theory of Computing Systems (2020) 64: –46 07 75

Published online: 2020January8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-019-09926-y&domain=pdf
http://orcid.org/0000-0003-1977-7525
mailto: nicolas.markey@irisa.fr

community. Temporal logics provide powerful languages for expressing properties of
reactive systems, and enjoy efficient algorithms for satisfiability and model checking
[13]. Since the early 2000s, new temporal logics have appeared to address open and
multi-agent systems. While classical temporal logics (e.g. CTL [12, 37] and LTL [36])
could only deal with one or all the behaviours of the whole system, ATL [2] expresses
properties of (executions generated by) behaviours of individual components of the
system. This can be used to specify that a controller can enforce safety of a whole
system, whatever the other components do. This is usually seen as a game where
the controller plays against the other components, with the aim of maintaining safety
of the global system; ATL can then express the existence of a winning strategy in
such a game. ATL has been extensively studied since its introduction, both about its
expressiveness and about its verification algorithms [2, 20, 28].

Adding strategic interactions in temporal logics Strategies in ATL are handled in a
very limited way, and there are no real strategic interactions in that logic (which, in
return, enjoys a polynomial-time model-checking algorithm). Indeed, ATL expresses
properties such as “Player A has a strategy to enforce ϕ” (denoted 〈〈A〉〉ϕ), where ϕ

is a property to be fulfilled along any execution resulting from the selected strategy;
in other terms, this existential quantification over strategies of A always implicitly
contains a universal quantification over all the strategies of all the other players. This
only allows to express zero-sum objectives.

Over the last 10 years, various extensions have been defined and studied in
order to allow for more strategy interactions [1, 8, 11, 30, 39]. Strategy Logic
(SL for short) [11, 30] is such a powerful approach, in which strategies are first-
class objects; formulas can quantify (universally and existentially) over strategies,
store those strategies in variables, assign them to players, and express properties of
the resulting plays. As a simple example, the existence of a winning strategy for
Player A (with objective ϕA) against any strategy of Player B would be written as
∃σA. ∀σB . assign(A �→ σA; B �→ σB). ϕA. This precisely corresponds to formula
〈〈A〉〉 ϕA of ATL (if the game only has two players).

SL can express much more: for example, it can express the existence of a strategy for
Player A which allows Player B to satisfy one of two goals ϕB or ϕ′

B : we would write

∃σA. [(∃σB . assign(A �→σA; B �→σB). ϕB)∧(∃σ ′
B . assign(A �→ σA; B �→ σ ′

B). ϕ′
B).

This expresses collaborative properties which are out of reach of ATL: formula
〈〈A〉〉 (〈〈B〉〉 ϕB ∧ 〈〈B〉〉ϕ′

B) in ATL is equivalent to (〈〈B〉〉ϕB ∧ 〈〈B〉〉ϕ′
B , since 〈〈B〉〉 ϕB

is understood as the existence of a winning strategy against any strategy of the other
player(s).

As a last example, SL can express classical concepts in game theory, such as Nash
equilibria with Boolean objectives. This provides an easy way of showing decidabil-
ity of rational synthesis [14, 18, 26] or assume-admissible synthesis [7]): for instance,
the existence of an admissible strategy for objective ϕ of Player A (i.e., a strategy
that is strictly dominated by no other strategies [7]) is expressed as

∃σA. ∀σ ′
A.

[
∨ ∃σB . assign(A �→σA, B �→σB).ϕ ∧ assign(A �→σ ′

A, B �→ σB).¬ϕ

∀σ ′
B . assign(A �→σA, B �→σ ′

B).ϕ ∨ assign(A �→σ ′
A, B �→ σ ′

B).¬ϕ

]
.

Theory of Computing Systems (2020) 64:46 –507 7468

Such a formula shows that complex strategy interactions may be useful for expressing
classical properties of multi-player games.

This series of examples illustrates how SL is both expressive and convenient, at the
expense of a very high complexity: SL model checking has non-elementary complex-
ity (and satisfiability is undecidable, unless the problem is restricted to turn-based
game structures) [27, 30].

The high expressiveness of this logic, together with the decidability of its model-
checking problem, has led to numerous studies around SL, either considering
fragments of the logic with more efficient algorithms, or more expressive variants of
the logic (e.g. with quantitative aspects), or variations on the notion of strategies (e.g.
with limited observation of the game).

On the one hand, limitations have been imposed to strategic interactions in order
to get more efficient algorithms [29, 32]. A goal is an LTL condition imposed to
a strategy profile (built from quantified strategies). The fragment SL[1G] then con-
tains formulas in prenex form with a single goal (and nested combinations thereof);
this fragment is very close to ATL� [2] in terms of expressiveness, and its model-
checking problem is 2-EXPTIME-complete. A BDD-based implementation of the
model-checking algorithm for SL[1G], using a translation to parity games, is imple-
mented in the tool MCMAS [10]. Several other fragments have been considered, e.g.
allowing conjunctions (SL[CG]), disjunctions (SL[DG]), or general boolean combi-
nations of goals (SL[BG]); model checking still is in 2-EXPTIME for the first two
fragments [32], but it is non-elementary for SL[BG] [5].

On the other hand, various extensions have also been considered, in order to
see how far the logic can be extended while preserving decidable model checking.
In Graded SL, (existential) strategy quantifiers are decorated with quantitative con-
straints on the cardinality of the set of strategies satisfying a formula; this can be
used e.g. to express uniqueness on Nash equilibria. Model checking is decidable
(with non-elementary complexity) for Graded SL [3]. On a different note, Prompt SL
extends SL with a parameterized modality F≤nϕ, which bounds the number of steps
within which ϕ has to hold. Similarly, Bounded-Outcome SL adds a bound on the
number of outcomes that must satisfy a given path formula. Again, model checking
is decidable for those extensions [17].

Finally, SL has also been studied with different notions of strategies. When lim-
iting strategy quantification to memoryless strategies, model checking is PSPACE-
complete (as there are exponentially many strategies), but satisfiability is undecidable
even for turn-based game structures [27]. Different types of strategies, based on
sequences of actions, states or atomic propositions, are also considered in [22], with
a focus on bisimulation invariance. When considering partial-observation strategies,
model checking is undecidable (as is already the case for ATL [15]); a decidable
fragment of SL is identified in [4], with a hierarchical restriction on nested strategy
quantifiers. This study of imperfect-information games has been extended with epis-
temic variants of SL, which allows to reason about the knowledge of agents. Model
checking is undecidable in the general case, but several papers identify specific
settings where model checking is decidable [9, 21, 25].

Theory of Computing Systems (2020) 64:46 –507 7 469

Understanding SL It has been noticed in recent works that the nice expressiveness
of SL comes with unexpected phenomena. One such phenomenon is induced by the
separation of strategy quantification and strategy assignment: when selecting a strat-
egy to be played later, are the intermediary events part of the memory of that strategy?
While both options may make sense depending on the applications, only one of them
makes model checking decidable [6].

A second phenomenon—which is the main focus of the present paper—concerns
strategy dependences [30]: in a formula such as ∀σA. ∃σB . ϕ, the existentially-
quantified strategy σB may depend on the whole strategy σA; in other terms, the
action returned by strategy σB after some finite history ρ may depend on what strat-
egy σA would play on any other history ρ′. Again, in some contexts, it may be
desirable that the value of strategy σB after history ρ can be computed based solely
on what has been observed along ρ (see Fig. 2 for an illustration). This approach was
initiated in [30, 33], conjecturing that large fragments of SL (subsuming ATL*) would
have 2-EXPTIME model-checking algorithms with such limited dependences.

Our contributions We follow this line of work by performing a more thorough
exploration of strategy dependences in (a fragment of) SL. We mainly follow the
framework of [33], based on a kind of Skolemization of the formula: for instance,
a formula of the form (∀xi∃yi)i . ϕ is satisfied if there exists a dependence map θ

defining each existentially-quantified strategy yj based on the universally-quantified
strategies (xi)i . In order to recover the classical semantics of SL, it is only required
that the strategy θ((xi)i)(yj) (i.e. the strategy assigned to the existentially-quantified
variable yj by θ((xi)i)) only depends on (xi)i<j .

Based on this definition, other constraints can be imposed on dependence maps, in
order to refine the dependences of existentially-quantified strategies on universally-
quantified ones. Elementary dependences [33] only allows existentially-quantified
strategy yj to depend on the values of (xi)i<j along the current history. This gives
rise to two different semantics in general, but on several fragments of SL (namely
SL[1G], SL[CG] and SL[DG]), the classic and elementary semantics would coincide
[29, 32].

The coincidence actually only holds for SL[1G]. As we explain in this paper, ele-
mentary dependences as defined and used in [29, 32] do not exactly capture the
intuition that strategies should depend on the “behavior [of universal strategies] on
the history of interest only” [32]: indeed, they only allow dependences on universally-
quantified strategies that appear earlier in the formula, while we claim that the
behaviour of all universally-quantified strategies should be considered. We address
this discrepancy by introducing another kind of dependences, which we call timeline
dependences, and which extend elementary dependences by allowing existentially-
quantified strategies to additionally depend on all universally-quantified strategies
along strict prefixes of the current history (as illustrated on Fig. 5).

We study and compare those three dependences (classic, elementary and time-
line), showing that they correspond to three distinct semantics. Because the semantics
based on dependence maps is defined in terms of the existence of a witness map,
we show that the syntactic negation of a formula may not correspond to its seman-
tic negation: there are cases where both a formula ϕ and its syntactic negation ¬ϕ

Theory of Computing Systems (2020) 64:46 –507 7470

fail to hold (i.e., none of them has a witness map). This phenomenon is already
present, but had not been formally identified, in [30, 33]. The main contribution of
the present paper is the definition of a large (and, in a sense, maximal) fragment of
SL for which syntactic and semantic negations coincide under the timeline seman-
tics. As an (important) side result, we show that model checking this fragment under
the timeline semantics is 2-EXPTIME-complete.

Related works To the best of our knowledge, strategy dependences have only been
considered in a series of recent works by Mogavero et al. [29, 30, 32, 33], both
as a way of making the semantics of SL more realistic in certain situations, and as
a way of lowering the algorithmic complexity of verification of certain fragments
of SL.

The question of the dependence of quantifiers in first-order logic is an old topic:
in [23], branching quantifiers are introduced to define how quantified variables may
depend on each other. Similarly, Dependence Logic [38] and Independence-Friendly
Logic [24] also add such restrictions on dependences of quantified variables on top
of first-order logic. While the settings are quite different to ours, the underlying ideas
are similar, and in particular share an interpretation in terms of games of imperfect
information.

2 Definitions

2.1 Concurrent Game Structures

Let AP be a set of atomic propositions, V be a set of variables, and Agt be a
set of agents. A concurrent game structure is a tuple G = (Act,Q, �, lab) where
Act is a finite set of actions, Q is a finite set of states, � : Q × ActAgt → Q is
the transition function, and lab : Q → 2AP is a labelling function. An element
of ActAgt will be called a move vector. For any q ∈ Q, we let succ(q) be the set
{q ′ ∈ Q | ∃m ∈ ActAgt. q ′ = �(q, m)}. For the sake of simplicity, we assume in
the sequel that succ(q) = ∅ for any q ∈ Q. A game G is said turn-based whenever
for every state q ∈ Q, there is a player own(q) ∈ Agt (named the owner of q) such
that for any two move vectors m1 and m2 with m1(own(q)) = m2(own(q)), it holds
�(q, m1) = �(q, m2). Figure 1 displays an example of a (turn-based) game.

Fix a state q ∈ Q. A play in G from q is an infinite sequence of
states in Q such that q0 = q and qi ∈ succ(qi−1) for all i > 0. We write PlayG(q)

for the set of plays in G from q. In this and all similar notations, we might omit

Fig. 1 A game and a SL[BG] formula

Theory of Computing Systems (2020) 64:46 –507 7 471

to mention G when it is clear from the context, and q when we consider the union
over all q ∈ Q. A (strict) prefix of a play π is a finite sequence ρ = (qi)0≤i≤L, for
some . We write Pref(π) for the set of strict prefixes of play π . Such finite
prefixes are called histories, and we let HistG(q) = Pref(PlayG(q)). We extend the
notion of strict prefixes and the notation Pref to histories in the natural way, requiring
in particular that ρ /∈ Pref(ρ). A (finite) extension of a history ρ is any history ρ′
such that ρ ∈ Pref(ρ′). Let ρ = (qi)i≤L be a history. We define first(ρ) = q0 and
last(ρ) = qL. Let ρ′ = (q ′

j)j≤L′ be a history from lastρ. The concatenation of ρ and
ρ′ is then defined as the path ρ · ρ′ = (q ′′

k)k≤L+L′ such that q ′′
k = qk when k ≤ L

and q ′′
k = q ′

k−L when L ≥ k (notice that we required q ′
0 = qL).

A strategy from q is a mapping δ : HistG(q) → Act. We write StratG(q) for the set
of strategies in G from q. Given a strategy δ ∈ Strat(q) and a history ρ from q, the
translation δ−→ρ of δ by ρ is the strategy δ−→ρ from lastρ defined by δ−→ρ (ρ′) = δ(ρ ·ρ′)
for any ρ′ ∈ Hist(last(ρ)). A context (sometimes also called valuation) from q is a
partial function χ : V∪Agt ⇀ Strat(q). As usual, for any partial function f , we write
dom(f) for the domain of f .

Let q ∈ Q and χ be a context from q. If Agt ⊆ dom(χ), then χ induces a unique
play from q, called its outcome, and defined as such that q0 = q

and for every , we have qi+1 = �(qi, mi) with mi(A) = χ(A)((qj)j≤i) for
every A ∈ Agt.

2.2 Strategy Logic with Boolean Goals

Strategy Logic (SL for short) was introduced in [11], and further extended and stud-
ied in [30, 34], as a rich logical formalism for expressing properties of games. SL
manipulates strategies as first-order elements, assigns them to players, and expresses
LTL properties on the outcomes of the resulting strategic interactions. This results in
a very expressive temporal logic, for which satisfiability is undecidable [31, 34] and
model checking is TOWER-complete [5, 30]. In this paper, we focus on a restricted
fragment of SL, called SL[BG]� (where BG stands for boolean goals [30], and the
symbol � indicates that we do not allow nesting of (closed) subformulas; we discuss
this latter restriction below).

Syntax Formulas in SL[BG]� are built along the following grammar

SL[BG]� � ϕ ::= ∃x. ϕ | ∀x. ϕ | ξ ξ ::= ¬ξ | ξ ∧ ξ | ξ ∨ ξ | ω

ω ::= assign(σ). ψ ψ ::= ¬ψ |ψ ∨ ψ |ψ ∧ ψ |Xψ |ψ Uψ |p
where x ranges over V , σ ranges over the set VAgt of full assignments, and p ranges
over AP. A goal is a formula of the form ω in the grammar above; it expresses an LTL
property ψ on the outcome of the mapping σ . Formulas in SL[BG]� are thus made
of an initial block of first-order quantifiers (selecting strategies for variables in V),
followed by a boolean combination of such goals.

Free variables With any subformula ζ of some formula ϕ ∈ SL[BG]�, we associate
its set of free agents and variables, which we write free(ζ). It contains the agents and
variables that have to be associated with a strategy in order to unequivocally evaluate

Theory of Computing Systems (2020) 64:46 –507 7472

ζ (as will be seen from the definition of the semantics of SL[BG]� below). The set
freeζ is defined inductively:

free(p) = ∅ for all p ∈ AP free(Xψ)=Agt ∪ free(ψ)

free(¬α) = free(α) free(ψ1Uψ2)=Agt ∪ free(ψ1)∪ free(ψ2)

free(α1 ∨ α2) = free(α1) ∪ free(α2) free(∃x. ϕ)= free(ϕ) \ {x}
free(α1 ∧ α2) = free(α1) ∪ free(α2) free(∀x. ϕ)= free(ϕ) \ {x}

free(assign(σ). ϕ) = (free(ϕ) ∪ σ(Agt ∩ free(ϕ))) \ Agt

Subformula ζ is said to be closed whenever free(ζ) = ∅. We can now comment on
our choice of considering the flat fragment of SL[BG]: the full fragment, as defined
in [30], allows for nesting closed SL[BG] formulas in place of atomic propositions.
The meaning of such nesting in our setting is ambiguous, because our semantics (in
Sections 3–5) are defined in terms of the existence of a witness, which does not easily
propagate in formulas. In particular, as we explain later in the paper, the semantics
of the negation of a formula (there is a witness for ¬ϕ) does not coincide with the
negation of the semantics (there is no witness for ϕ); thus substituting a subformula
and substituting its negation may return different results.

Semantics Fix a state q ∈ Q, and a context χ : V ∪ Agt ⇀ Strat(q). We inductively
define the semantics of a subformula α of a formula of SL[BG]� at q under context χ ,
requiring free(α) ⊆ dom(χ). We omit the easy cases of boolean combinations and
atomic propositions.

Given a mapping σ : Agt → V , the semantics of strategy assignments is defined
as follows:

Notice that, writing χ ′ = χ[A ∈ Agt �→ χ(σ(A))], we have free(ψ) ⊆ dom(χ ′)
if free(α) ⊆ dom(χ), so that our inductive definition is sound.

We now consider path formulas ψ = Xψ1 and ψ = ψ1 Uψ2. Since Agt ⊆
free(ψ) ⊆ dom(χ), the context χ induces a unique outcome
from q. For , we write outn(q, χ) = (qi)i≤n, and define χ−→

n as the context
obtained by shifting all the strategies in the image of χ by outn(q, χ). Under the
same conditions, we also define q−→

n = last(outn(q, χ)). We then set

In the sequel, we use classical shorthands, such as � for p ∨ ¬p (for any p ∈ AP),
Fψ for �Uψ (eventually ψ), and Gψ for ¬F¬ψ (always ψ). It remains to define
the semantics of the strategy quantifiers. This is actually what this paper is all about.
We provide here the original semantics, and discuss alternatives in the following
sections:

Example 1 We consider the (turn-based) game G is depicted on Fig. 1. We name
the players after the shape of the state they control. The SL[BG] formula ϕ to the

Theory of Computing Systems (2020) 64:46 –507 7 473

right of Fig. 1 has four quantified variables and two goals. We show that this formula
evaluates to true at q0: fix a strategy δy (to be played by player); because G is turn-
based, we identify the actions of the owner of a state with the resulting target state,
so that δy(q0q1) will be either p1 or p2. We then define strategy δz (to be played
by) as δz(q0q2) = δy(q0q1). Then clearly, for any strategy assigned to player ,
one of the goals of formula ϕ holds true, so that ϕ itself evaluates to true.

Subclasses ofSL[BG] Because of the high complexity and subtlety of reasoning with
SL and SL[BG], several restrictions of SL[BG] have been considered in the literature
[29, 32, 33], by adding further restrictions to boolean combinations in the grammar
defining the syntax:

– SL[1G] restricts SL[BG] to a unique goal. SL[1G]� is then defined from the
grammar of SL[BG]� by setting ξ ::= ω in the grammar;

– the larger fragment SL[CG] allows for conjunctions of goals. SL[CG]� corre-
sponds to formulas defined with ξ ::= ξ ∧ ξ | ω;

– similarly, SL[DG] only allows disjunctions of goals, i.e. ξ ::= ξ ∨ ξ | ω;
– finally, SL[AG] mixes conjunctions and disjunctions in a restricted way. Goals in

SL[AG]� can be combined using the following grammar: ξ ::= ω ∧ ξ | ω ∨ ξ | ω.

In the sequel, we write a generic SL[BG]� formula ϕ as (Qixi)1≤i≤l . ξ(βj . ψj)j≤n

where:

– (Qixi)i≤l is a block of quantifications, with {xi | 1 ≤ i ≤ l} ⊆ V and Qi ∈
{∃, ∀}, for every 1 ≤ i ≤ l;

– ξ(g1, ..., gn) is a boolean combination of its arguments;
– for all 1 ≤ j ≤ n, βj . ψj is a goal: βj is a full assignment and ψj is an LTL

formula.

3 Strategy Dependences

We now follow the framework of [30, 33] and define the semantics of SL[BG]� in
terms of dependence maps. This approach provides a fine way of controlling how
existentially-quantified strategies depend on other strategies (in a quantifier block).
Using dependence maps, we can limit such dependences.

Dependence maps Consider an SL[BG]� formula ϕ = (Qixi)1≤i≤l . ξ(βj . ϕj)j≤n,
assuming w.l.o.g. that {xi | 1 ≤ i ≤ l} = V . We let V∀ = {xi | Qi = ∀} ⊆ V
be the set of universally-quantified variables of ϕ. A function θ : StratV∀ → StratV

is a ϕ-map (or map when ϕ is clear from the context) if θ(w)(xi)(ρ) = w(xi)(ρ)

for any w ∈ StratV
∀
, any xi ∈ V∀, and any history ρ. In other words, θ(w) extends

w to V . This general notion allows any existentially-quantified variable to depend
on all universally-quantified ones (dependence on existentially-quantified variables
is implicit: all existentially-quantified variables are assigned through a single map,
hence they all depend on the others); we add further restrictions later on. Using maps,

Theory of Computing Systems (2020) 64:46 –507 7474

we may then define new semantics for SL[BG]�: generally speaking, formula ϕ =
(Qixi)1≤i≤l . ξ(βj . ϕj)j≤n holds true if there exists a ϕ-map θ such that, for any
w : V∀ → Strat, the valuation θ(w) makes ξ(βj . ϕj)j≤n hold true.

Classic maps are dependence maps in which the order of quantification is
respected:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀.(

∀xj ∈ V∀ ∩ {xj | j < i}. w1(xj) = w2(xj)
)
⇒(θ(w1)(xi) = θ(w2)(xi)) . (C)

In words, if w1 and w2 coincide on V∀ ∩{xj | j < i}, then θ(w1) and θ(w2) coincide
on xi .

Elementary maps [29, 30] have to satisfy a more restrictive condition: for those
maps, the value of an existentially-quantified strategy at any history ρ may only
depend on the value of earlier universally-quantified strategies along ρ. This may be
written as:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀. ∀ρ ∈ Hist.(

∀xj ∈V∀∩{xk |k<i}.∀ρ′ ∈ Pref(ρ) ∪ {ρ}. w1(xj)(ρ
′) = w2(xj)(ρ

′)
)

⇒
(θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)). (E)

In this case, for any history ρ, if two valuations w1 and w2 of the universally-
quantified variables coincide on the variables quantified before xi all along ρ, then
θ(w1)(xi) and θ(w2)(xi) have to coincide at ρ.

The difference between both kinds of dependences is illustrated on Fig. 2:
for classic maps, the existentially-quantified strategy x2 may depend on the whole
strategy x1, while it may only depend on the value of x1 along the current history
for elementary maps. Notice that a map satisfying (E) also satisfies (C).

Indeed, consider a map θ satisfying (E), and pick two strategy valuations w1
and w2 and an existential variable xi such that

∀xj ∈ V∀ ∩ {xj | j < i}. w1(xj) = w2(xj).

In particular, for those xj , we have w1(xj)(ρ) = w2(xj)(ρ) for any history ρ (hence
also for any of its prefixes). By (E), it follows θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ). Since
this holds for any history, we have shown θ(w1)(xi) = θ(w2)(xi).

Fig. 2 Classical (left) vs elementary (right) dependences for a formula ∀x1. ∃x2. ∀x3. ξ

Theory of Computing Systems (2020) 64:46 –507 7 475

Satisfaction relations Pick a formula ϕ = (Qixi)1≤i≤l . ξ
(
βj . ϕj

)
j≤n

in SL[BG]�.
We define:

As explained above, this actually corresponds to the usual semantics of SL[BG]�

as given in Section 2 [30, Theorem 4.6]. When , a map θ satisfying the
conditions above is called a C-witness of ϕ for G and q. Similarly, we define the
elementary semantics [30] as:

Again, when such a map exists, it is called an E-witness. Notice that since Property
(E) implies Property (C), we have for any ϕ ∈ SL[BG]�.
This corresponds to the intuition that it is harder to satisfy a SL[BG]� formula when
dependences are more restricted. The contrapositive statement then raises questions
about the negation of formulas.

The syntactic vs. semantic negations If ϕ = (Qixi)1≤i≤lξ(βj . ϕj)j≤n is an SL[BG]�

formula, its syntactic negation ¬ϕ is the formula (Qixi)i≤l(¬ξ)(βj . ϕj)j≤n, where
Qi = ∃ if Qi = ∀ and Qi = ∀ if Qi = ∃. Looking at the definitions of

and , it could be the case that e.g. and this only
requires the existence of two adequate maps. However, since and coin-
cide, and since in the classical semantics of SI, we get

. Also, since , we also get
. As we now show, the converse implication holds for

SL[1G]�, but may fail to hold for SL[BG]�.

Proposition 1 There exist a game G with initial state q0 and a formula ϕ ∈ SL[BG]�

such that and .

Proof Consider the formula and the one-player game of Fig. 3. We start by proving
that . For a contradiction, assume that a witness map θ satisfying (E)
exists, and pick any valuation w for the universal variable x. First, for the first goal
in the conjunction to be fulfilled, the strategy assigned to y must play to q1 from q0.

We abbreviate this as θ(w)(y)(q0) = q1 in the sequel. Now, consider two val-
uations w1 and w2 such that w1(x)(q0) = w2(x)(q0) = q2 and w1(x)(q0 · q1) =
w2(x)(q0 · q1), but such that w1(x)(q0 · q2) = p1 and w2(x)(q0 · q2) = p2. In
order to fulfill the second goal under both valuations w1 and w2, we must have

Fig. 3 A game G and an SL[BG]� formula ϕ such that

Theory of Computing Systems (2020) 64:46 –507 7476

θ(w1)(y)(q0 · q1) = p1 and θ(w2)(y)(q0 · q1) = p2. But this violates Prop-
erty (E): since w1(x) and w2(x) coincide on q0 and on q0 · q1, we must have
θ(w1)(y)(q0 · q1) = θ(w2)(y)(q0 · q1).

We now prove that . Indeed, following the previous discussion, we
easily get that , by letting θ(w)(y)(q0) = q1 and θ(w)(y)(q0 · q1) =
w(x)(q0 · q2) if w(x)(q0) = q2, and θ(w)(y)(q0 · q1) = w(x)(q0 · q1) if w(x)(q0) =
q1. As explained above, this entails , and .

The proof above uses only one player and two quantifiers, but a complex combi-
nation of goals. The game and formula of Fig. 1 provide an alternative proof, with
three players and four quantifiers, but a formula in SL[DG]� (which also entails the
result for SL[CG]�).

Indeed, we already proved (see Example 1) that , by making strategy
z play in q2 in the same direction as what strategy y plays in q1. Then it cannot be

, since this would imply , and both ϕ and ¬ϕ would hold,
which is impossible in the classical semantics. Thus .

Now, in the elementary semantics, we require the existence of a dependence
map θ , defining in particular θ(w)(z)(q0 · q2), and such that θ(w)(z)(q0 · q2) =
θ(w′)(z)(q0 · q2) whenever w(y)(q0) = w′(y)(q0). Consider the following two
valuations w and w′:

w(y)(q0) = q1 w(y)(q0q1) = p1 w(xA)(q0) = q2 w(xB)(q0) = q1
w′(y)(q0) = q1 w′(y)(q0q1) = p2 w(xA)(q0) = q1 w(xB)(q0) = q2.

Since w(y)(q0)=w′(y)(q0), we must have θ(w)(z)(q0 ·q2)= θ(w′)(z)(q0 ·q2). Then

– if θ(w)(z)(q0 · q2) = p2, then under the strategies prescribed by θ(w), both
disjuncts in ϕ are false.

– otherwise, θ(w)(z)(q0 · q2) = p1, and under the strategies prescribed by θ(w′),
again both disjuncts are false.

It follows that .

We now prove hat this phenomenon does not occur in SL[1G]:

Proposition 2 For any game G with initial state q0, and any formula ϕ ∈ SL[1G]�, it
holds .

Notice that this result follows from [30, Corollary 4.21], which states that and
coincide on SL[1G]. However, since it is central to our approach, we develop a

(new) full proof of this result.

Proof We begin with intuitive explanations before giving full details. We encode the
satisfaction relation into a two-player turn-based parity game: the first
player of the parity game will be in charge of selecting the existentially-quantified
strategies, and her opponent will select the universally-quantified ones. This will be
encoded by replacing each state of G with a tree-shaped module as depicted on Fig. 4.
Following the strategy assignment of the SL[1G] formula ϕ, the strategies selected

Theory of Computing Systems (2020) 64:46 –507 7 477

Fig. 4 Expressing as a two-player turn-based parity game

by those players will define a unique play, along which the LTL objective has to be
fulfilled; this verification is encoded into a (doubly-exponential) parity automaton.

We prove that if, and only if, the first player wins; conversely,
if the second player wins. Both claims crucially rely on the existence of

memoryless optimal strategies for two-player parity games. Finally, by determinacy
of those games, we get the expected result.

Notice that in this construction, Player P∃ has full observation, hence her moves
may depend on all moves of Player P∀ along the current history. As a result,
in our encoding, existentally-quantified strategies may depend on the value of all
universally-quantified strategies along the current history; in the example of Fig. 4,
this means that the moves selected by Player P∃ for x1 may depend on the moves
selected by Player P∀ for x2 earlier in the game.

However, memoryless strategies are sufficient for both players to win par-
ity games; a memoryles strategy for Player P∃ then precisely corresponds to an
elementary dependence map, which proves our result.

We now give a full proof following this intuition.

Building a turn-based parity gameH fromG and ϕ For the rest of the proof, we fix
a game G and a SL[1G] formula ϕ = (Qixi)i≤lβ. ϕ. Each state of G is replaced with
a copy of the tree-shaped quantification game depicted on Fig. 4. A quantification
game Qϕ is formally defined as follows:

– it involves two players, P∃ and P∀;

Theory of Computing Systems (2020) 64:46 –507 7478

– the set of states is Sϕ = {m ∈ Act∗ | 0 ≤ |m| ≤ l}, thereby defining a tree of
depth l + 1 with directions Act. A state m in Sϕ with 0 ≤ |m| < l belongs to
Player P∃ if, and only if, Q|m|+1 = ∃.

– from each m with 0 ≤ |m| < l, for all a ∈ Act, there is a transition to m · a.
The empty word ε ∈ Sϕ is the starting node of the quantification game, and
currently has no incoming transitions; states with |m| = l also currently have no
outgoing transitions.

A leaf (i.e., a state m with |m| = l) in a quantification game represents a move
vector of domain V = {xi | 1 ≤ i ≤ l}: we identify each leaf m with the move
vector m, hence writing m(xi) for m(i).

We let D be a deterministic parity automaton over 2AP associated with ϕ.
We write d0 for the initial state of D. Using quantification games, we can now define
the turn-based parity game H:

– it involves players P∃ and P∀;
– for each state q of G and each state d of D, H contains a copy of the quantifica-

tion game Qϕ , which we call the (q, d)-copy. Hence the set of states of H is the
product of the state spaces of G, D and Qϕ .

– the transitions in H are of two types:

– internal transitions in each copy of the quantification game are preserved;
– consider a state (q, d,m) where |m| = l; this is a leaf in the quantifi-

cation game. Let q ′ = �(q, mβ), where mβ : Agt → Act is the move
vector over Agt defined by mβ(A) = m(i − 1) where xi = β(A) (i.e.,
assigning to each player A ∈ Agt the action m(β(A))); then we add a
transition from (q, d,m) to (q ′, d ′, ε) where d ′ is the state of D reached
from d when reading lab(q ′). Notice that (q, d,m) then has at most one
outgoing transition.

– the priorities are inherited from those in D: state (q, d,m) has the same priority
as d .

Correspondence between G and H We begin with building a correspondence
between the runs and strategies in G and those in H. In a sense, each step of a history
in G is split into several steps in H; we thus refine the notion of history in G in order
to establish our correspondence.

Definition 1 A lane in G is a tuple (ρ, u, b, t) made of

– a history ρ = (qj)0≤j≤a (for some integer a);
– a function u : V × Pref(ρ) → Act;
– an integer b ∈ [0; l];
– a function t : {x1, ..., xb} → Act (t is the empty function if b = 0);

and such that

∀0 ≤ j < a. �(qj , (mj (β(A)))A∈Agt) = qj+1 with mj : V → Act

x �→ u(x, ρ≤j) (1)

Theory of Computing Systems (2020) 64:46 –507 7 479

We can then build a one-to-one application Gp between histories in H and lanes
in G. With a history π in H, written

π =
⎛
⎝ ∏

0≤j<a

∏
0≤i≤l

(qj , dj ,mj,i)

⎞
⎠ ·

∏
0≤i≤b

(qa, da,ma,i),

having length a · (l + 1) + b + 1 with 0 ≤ b < l, we associate a lane Gp(π) =
((qj)j≤a, u, b, t) with

u : V × Pref(ρ) → Act t : {x1, ..., xb} → Act
xi, (qj)j≤c �→ mc,i (∀c < a) xi �→ ma,i

The resulting function Gp is clearly injective (different histories will correspond
to different lanes), but also surjective. To prove the latter statement, we build the
inverse function Hp: for a lane ((qj)j≤a, u, b, t), we set Hp((qj)j≤a, u, b, t) = π

where π is the history in H of length a · (l + 1) + b + 1 defined as

π =
∏

0≤j<a

∏
0≤i≤l

(
qj , dj , u(xi, (qj ′)j ′≤j)

) ·
∏

0≤i≤b

(
qa, da, t (xi, (qj)j≤a)

)

where dj is the state of D reached on input (qk)0≤k≤j−1.
Because of the coherence condition (1), Hp((qj)j≤a, u, i, t) is indeed a history

in H. From the definitions, one can easily check that

Hp(Gp(π)) = π

and deduce that Hp is the inverse function of Gp; therefore

Lemma 1 The application Gp is a bijection between lanes of G and histories in H,
and Hp is its inverse function.

Extending the correspondence We can use Gp to describe another correspon-
dence G between strategies for P∃ in H and maps in G. Remember that a map in G
is a function θ : (HistG → Act)V

∀ → (HistG → Act)V . Remember also that if
Qj = ∀, then θ(w)(xi)(ρ) = w(xi)(ρ), so that we only have to define the map for
existentially-quantified variables.

Formally, the application G takes as input a strategy δ for player P∃ in H, and
returns a map in G. It will enjoy the following properties:

– for any finite outcome π of δ in H ending at the root of a quantification game,
there exists a function w such that Gp(π) = (ρ, u, 0, t∅) where ρ is the outcome
of G(δ)(w) in G under the assignment defined by β;

– conversely, for any path ρ in G that is an outcome of G(δ)(w) for some w and
under the assignment defined by β, then letting u(x, ρ′) = G(δ)(w)(x)(ρ′), we
have that (ρ, u, 0, t∅) is a lane in G and Hp(ρ, u, 0, t∅) is an outcome of δ in H
ending in the root of a quantification game.

Theory of Computing Systems (2020) 64:46 –507 7480

We fix δ, and for all w, ρ and xi , we define G(δ)(w)(xi)(ρ) by a double induction,
first on the length of the history ρ in G, and second on the sequence of variables xi .
We prove the properties above alongside the definition.

– Initial step: we begin with the case where ρ is the single state q0.
We proceed by induction on existentially-quantified variables, merging the

initialization step with the induction step as they are similar. Consider an
existentially-quantified variable xi in V . Given w : V∀ × Pref(ρ) ∪ {ρ} → Act,
we define a function ti,w : [x1; xi−1] → Act such that ti,w(x) = w(x, q0) for x ∈
V∀ ∩ [x1; xi−1], and ti,w(x) = G(δ)(w)(x)(q0) for x ∈ V∃ ∩ [x1; xi−1], assum-
ing that they have been defined in the previous induction steps on variables. We
can then create the lane lanei,w = (ε, u∅, i − 1, t) and define

G(δ)(w)(xi)(q0) = δ(Hp(lanei,w))

Pick an outcome π of δ in H of length l + 2, and write m for its l + 1-st
state: it defines a valuation for the variables in V , hence defining a move
vector mβ under the assignment β in Act. By construction of H, this outcome
ends in the state (q1, d1, ε) where q1 = �(q0, mβ) and d1 is the successor of the
initial state d0 of D when reading lab(q1). We now prove that q0 · q1 is the out-
come of G(δ)(w) for some w. For this, we let w(xi) = mi for all xi ∈ V∀. By
construction, G(δ)(w)(xj)(q0) precisely corresponds to m(j), for all xj ∈ V∃.
In the end, under assignment β, G(δ)(w) precisely returns the move vector mβ ,
hence proving our result.

The proof of the converse statement follows similar arguments: consider an
outcome ρ = q0 · q1 of G(δ)(w) for some w. The lane (ρ, u, 0, t∅) defined with
u(x, q0) = G(δ)(w)(x)(q0) then corresponds through Hp to a play ending in
(q1, d1, ε), and visiting the leaf m defined as mi = u(xi, q0). By construction,
this is an outcome of δ in H.

– induction step: we consider a history ρ in G, assuming we have already defined
G(δ)(w)(xi)(ρ

′) for all prefix ρ′ of ρ, and for all w and all variable xi .
We now define G(δ)(w)(xi)(ρ), by induction on the list of variables. Again,
the initialization step is merged with the induction step as they rely on the same
arguments.

Consider an existentially-quantified variable xi , and w : V∀×Pref(ρ)∪{ρ} →
Act. We define a function ti,w : [x1; xi−1] → Act where ti,w associate with
x ∈ V∀ ∩ [x1; xi−1] the action w(x)(π), and with x ∈ V∃ ∩ [x1; xi−1] the
action G(δ)(w)(x)(ρ). We also define uw : V × Pref(ρ) → Act as uw(x, ρ′) =
G(δ)(w)(x)(ρ′), for all prefixes ρ′ of ρ. We can then create the lane lanei,w =
(π, uw, i − 1, ti,w) and finally define

G(δ)(w)(xi)(ρ) = δ(Hp(lanei,w)).

Using the same arguments as in the initial step, we prove our correspondence
between the outcomes of δ in H and the outcomes of G(δ) in G.

Notice that in the construction above, G(δ)(w)(xi)(ρ) may depend on the value of
w(xj , ρ

′) for j > i and ρ′ ∈ Pref(ρ): indeed, in the inductive definition, we define

Theory of Computing Systems (2020) 64:46 –507 7 481

G(δ)(w)(xj)(ρ
′) before defining G(δ)(w)(xi)(ρ). Hence in general G(δ) is not an

elementary map.
However, in case δ is memoryless, we notice that G(δ)(w)(xi)(ρ) only depends

on value of δ in the last state of the lane lanei,w, hence in particular not on uw. This
removes the above dependence, and makes G(δ) elementary.

Finally, notice that we can define a dual correspondence G relating strategies of
Player P∀ and elementary maps in G where existential and universal variables are
swapped.

Concluding the proof Using G, we prove our final correspondence between H
and G:

Lemma 2 Assume that P∃ is winning inH and let δ be a positional winning strategy.
Then the elementary map G(δ) is a witness that .

Similarly, assume that P∀ is winning in H and let δ be a positional winning
strategy. Then the elementary map G(δ) is a witness that .

Proof We prove the first point, the second one following similar arguments. Assume
that P∃ is winning in H, and pick a memoryless winning strategy δ. Toward a contra-
diction, assume further that G(δ) is not a witness of . Then there exists
w0 : V∀ → (HistG → Act) s.t. . We use w0 to build a strategy δ

for Player P∀ in H. Given a history

π =
∏

0≤j<a

∏
0≤i≤l

(qj , dj ,mj,i) ·
∏

0≤i≤b

(qa, da,ma,i)

in H, we define ρ = ∏
0≤j≤a qj and set δ(π) = G(δ)(w)(xb)(η) where

– w : Pref(ρ) ∪ {ρ} × (V∀ ∩ [x1; xb]) → Act is such that w(ρ′, xi) is the action to
be played for going from π≤|ρ′|·(l+1)+i−1 to π≤|ρ′|·(l+1)+i in H;

– η = ∏
0≤j<a

∏
0≤i≤l(qj , dj ,mj,i)).

Write for the outcome of θ(w0) under strategy assignment β in G.
Then, by construction of δ, the outcome of δ and δ in H will visit the -
copies of the quantification game, where dj is the state reached by reading (qj ′)j ′≤j

in the deterministic automaton D. Now, since , we get that ν

does not satisfy ϕ and therefore the outcome of δ and δ in H does not satisfy the
parity condition. This is in contradiction with δ being the winning strategy of P∃, and
proves that G(δ) must be a witness that .

Proposition 2, together with the determinacy of parity games [16, 35] immediately
imply that at least one of ϕ and ¬ϕ must hold in G for . This concludes our
proof.

The following two results, already mentioned in [30], immediately follow: the first
result uses the fact that implies ; the second one uses the
two-player game built in the proof.

Theory of Computing Systems (2020) 64:46 –507 7482

Corollary 1 The relations and coincide over SL[1G].

Corollary 2 Model checking SL[1G] is 2-EXPTIME-complete (for both semantics).

Remark 1 As an immediate corollary of (the proof of) Prop. 1, we have that the
relations and differ on SL[CG]� (as well as on SL[DG]�). This contradicts
the claim in [32] that and would coincide on SL[CG] (and SL[DG]).

Indeed, in [32], the satisfaction relation for SL[DG] and SL[CG] is encoded into a
two-player game in pretty much the same way as we did in the proof of Proposition 2
for SL[1G]. While this indeed rules out dependences outside the current history, it
also gives information to Player P∃ about the values (over prefixes of the current
history) of strategies that are universally-quantified later in the quantification block.
This proof technique works with SL[1G]� because the single goal can be encoded as a
parity objective, for which memoryless strategies exist, so that the extra information
is not crucial. In the next section, we investigate the role of this extra information for
larger fragments of SL[BG]�.

4 Timeline Dependences

Following the discussion above, we introduce a new type of dependences between
strategies (which we call timeline dependences). They allow strategies to also observe
(and depend on) all other universally-quantified strategies on the strict prefix of the
current history. For instance, for a block of quantifiers ∀x1. ∃x2. ∀x3, the value of x2
after history ρ may depend on the value of x1 on ρ and its prefixes (as for elementary
maps), but also on the value of x3 on the (strict) prefixes of ρ. Such dependences are
depicted on Fig. 5. We believe that such dependences are relevant in many situations,
especially for reactive synthesis, since in this framework strategies really base their
decisions on what they could observe along the current history.

Formally, a map θ is a timeline map if it satisfies the following condition:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀. ∀ρ ∈ Hist.(∀xj ∈ V∀ ∩ {xk | k<i}. ∀ρ′ ∈ Pref(ρ) ∪ {ρ}. w1(xj)(ρ) = w2(xj)(ρ)

∧ ∀xj ∈ V∀. ∀ρ′ ∈ Pref(ρ). w1(xj)(ρ) = w2(xj)(ρ)

)
⇒

(θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)) . (T)

Fig. 5 Elementary (left) vs timeline (right) dependences for a formula ∀x1. ∃x2. ∀x3. ξ

Theory of Computing Systems (2020) 64:46 –507 7 483

Using those maps, we introduce the timeline semantics of SL[BG]�:

Such a map, if any, is called a T-witness of ϕ for G and q. As in the previous section,
it is easily seen that Property (E) implies Property (T), so that an E-witness is also a
T-witness, and for any formula ϕ ∈ SL[BG]�.

Example 2 Consider again the game of Fig. 1 in Section 2. We have seen that
in Example 1, and that in the proof of Prop. 1. With time-

line dependences, we have . Indeed, now θ(w)(z)(q0 · q2) may depend
on w(xA)(q0) and w(xB)(q0): we could then have e.g. θ(w)(z)(q0 · q2) = p1 when
w(xA)(q0) = q2, and θ(w)(z)(q0 · q2) = p2 when w(xA)(q0) = q1. It is easily
checked that this map is a T -witness of ϕ for q0.

Comparison of and As explained at the end of Section 3, the proof of Prop.
2 actually shows the following result:

Proposition 3 For any game G with initial state q0, and any formula ϕ ∈ SL[1G]�, it
holds

We now prove that this does not extend to SL[CG]� and SL[DG]�:

Proposition 4 The relations and differ on SL[CG]�, as well as on SL[DG]�.

Proof The result for SL[DG]� is witnessed by Example 2. For SL[CG]�, we consider
the game structure and formula of Fig. 6. We first notice that : indeed, in
order to satisfy the first goal under any choice of xA, the strategy for y has to point
to p1 from both q1 and q2. But then no choice of xB will make the second goal true.

On the other hand, considering the timeline semantics, strategy y after q0 · q1
and q0 · q2 may depend on the choice of xA in q0. When w(xA)(q0) = q1, we let
θ(w)(y)(q0 · q1) = p1 and θ(w)(y)(q0 · q2) = p2 and θ(w)(xB)(q0) = q2, which
makes both goals hold true. Conversely, if w(xA)(q0) = q2, then we let θ(w)(y)(q0 ·
q2) = p1 and θ(w)(y)(q0 · q1) = p2 and θ(w)(xB)(q0) = q1, which also defines a
timeline map witnessing .

The syntactic vs. semantic negations While both semantics differ, we now prove that
the situation w.r.t. the syntactic vs. semantic negations is similar. First, following

Fig. 6 and differ on SL[CG]�

Theory of Computing Systems (2020) 64:46 –507 7484

Prop. 3 and 2, the two negations coincide on SL[1G]� under the timeline semantics.
Moreover:

Proposition 5 For any formula ϕ in SL[BG]�, for any game G and any state q0, we
have .

Remember that the same result for was proven easily from the implica-
tion , and because the two negations coincide for .
The proof for is more involved.

Proof For a contradiction, assume that there exist two maps θ and θ witnessing
and resp. Then

(2)

(3)

From θ and θ, we build a strategy valuation χ on V such that θ(χ|V∀) = θ(χ|V∃) = χ .
By (2) and (3), we get that and .
It follows that there must exist a goal βj . ϕj for which and

; then the outcome corresponding to βj would satisfy both ϕj and
¬ϕj , which for LTL formulas is impossible.

We define χ(x)(ρ) inductively on histories and on the list of quantified variables.
When ρ is the empty history q0, we consider two cases:

– if x1 ∈ V∀, then θ(w)(x1)(q0) does not depend on w at all, since θ is a timeline-
map. Hence we let χ(x1)(q0) = θ(w)(x1)(q0), for any w.

– similarly, if x1 ∈ V∃, we let χ(x1)(q0) = θ(w)(x1)(q0), which again does not
depend on w.

Similarly, when χ(x)(q0) has been defined for all x ∈ {x1, ..., xi−1}, we again
consider two cases:

– if xi ∈ V∀, we define w(xj)(q0) = χ(xj)(q0) for all xj ∈ V∃ ∩ {x1, ..., xi−1},
and let χ(xi)(q0) = θ(w)(xi)(q0), which again does not depend on the value of
w besides those defined above;

– symmetrically, if xi ∈ V∃, we define w(xj)(q0) = χ(xj)(q0) for all xj ∈ V∀ ∩
{x1, ..., xi−1}, and let χ(xi)(q0) = θ(w)(xi)(q0).

Notice that this indeed enforces that θ(χ|V∀)(xi)(q0) = χ(xi)(q0) when xi ∈ V∃,
and θ(χ|V∃)(xi)(q0) = χ(xi)(q0) when xi ∈ V∀.

The induction step is proven similarly: consider a history ρ and a variable xi ,
assuming that χ has been defined for all variables on all prefixes of ρ, and for
variables in {x1, ..., xi−1} on ρ itself. Then:

– if xi ∈ V∀, we define w(xj)(ρ
′) = χ(xj)(ρ

′) for all xj ∈ V and all ρ′ ∈
Pref(ρ), and w(xj)(ρ) = χ(xj)(ρ) for all xj ∈ V∃ ∩ {x1, ..., xi−1}. We then
let χ(xi)(ρ) = θ(w)(xi)(q0), which does not depend on the value of w besides
those defined above;

– the construction for the case when xi ∈ V∃ is similar.

Theory of Computing Systems (2020) 64:46 –507 7 485

As in the initial step, it is easy to check that this construction enforces θ(χ|V∀) =
θ(χ|V∃) = χ , as required.

Proposition 6 There exists a formula ϕ ∈ SL[BG]�, a (turn-based) game G and a
state q0 such that and .

Proof For this proof, we reuse the game and formula of Fig. 3. Since the quantifier
part is ∀x. ∃y, the timeline- and elementary semantics coincide for this formula. Since

, also .
The negation of ϕ is

Assume that there exists a timeline map θ witnessing . Con-
sider the valuations w1(y)(q0) = w2(y)(q0) = q2, and w1(y)(q0 · q2) = p1 and
w2(y)(q0 · q2) = p2. Notice that the first disjunct is not satisfied under those
valuations. We consider two (symmetric) possiblities:

– we may have both θ(w1)(x)(q0) and θ(w2)(x)(q0) to q1: then θ(w1)(x)(q0 · q1)

and θ(w2)(x)(q0 ·q1) must return the same move, since w1(y)(q0) = w2(y)(q0).
If they play to p1, then none of the disjunct would be fulfilled under strategy
valuation w1; if they play to p2, then all three disjunct are false under w2.

– the argument is symmetric if θ(w1)(x)(q0) = θ(w2)(x)(q0) = q2.

Hence

5 The Fragment SL[EG]�

In this section, we focus on the timeline semantics . We exhibit a fragment1

SL[EG]� of SL[BG]�, containing SL[CG]� and SL[DG]�, for which the syntactic and
semantic negations coincide:

Theorem 1 For any game G with initial state q0, and any formula ϕ ∈ SL[EG]�,
it holds .

We prove this result in the sequel of this section. We first introduce semi-stable
sets, which are the basis of the definition of SL[EG]�; we then prove useful properties
of those sets, and finally proceed to the proof of Theorem 1.

1We name our fragment SL[EG]� as it comes as a natural continuation after fragments SL[AG]� [33],
SL[BG]� [30], and SL[CG]� and SL[DG]� [32].

Theory of Computing Systems (2020) 64:46 –507 7486

5.1 Semi-stable Sets

For , we let {0, 1}n be the set of mappings from [1, n] to {0, 1}. We write 0n

(or 0 if the size n is clear) for the function that maps all integers in [1, n] to 0, and 1n

(or 1) for the function that maps [1, n] to 1. For f, g ∈ {0, 1}n, we define:

f : i �→ 1−f (i) f � g : i �→ min{f (i), g(i)} f � g : i �→ max{f (i), g(i)}.
The set {0, 1}n can be seen as the lattice of subsets of [1; n], with the above three
operations corresponding to complement, intersection and union, respectively.

We then introduce the notion of semi-stable sets, on which the definition of
SL[EG]� relies: a set Fn ⊆ {0, 1}n is semi-stable if for any f and g in Fn, it holds
that

∀s ∈ {0, 1}n. (f � s) � (g � s) ∈ Fn or (g � s) � (f � s) ∈ Fn.

Example 3 Obviously, the set {0, 1}n is semi-stable, as well as the empty set. It is
easily seen that any singleton set also is semi-stable. For n = 2, the set {(0, 1), (1, 0)}
is easily seen not to be semi-stable: taking f = (0, 1) and g = (1, 0) with s = (1, 0),
we get (f � s) � (g � s) = (0, 0) and (g � s) � (f � s) = (1, 1). Similarly,
{(0, 0), (1, 1)} is not semi-stable. Any other subset of {0, 1}2 is semi-stable.

We can now define SL[EG]� as follows:

SL[EG]� �ϕ ::= ∀x.ϕ | ∃x.ϕ | ξ ξ ::= Fn((ωi)1≤i≤n)

ω ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | Xψ | ψ Uψ | p

where Fn ranges over semi-stable subsets of {0, 1}n, for all . The semantics of
the operator Fn is defined as

Equivalently:

so that SL[EG]� is indeed a fragment of SL[BG]�. Notice that SL[CG]� corresponds
to the case where Fn = {1n}, which is semi-stable, so that SL[EG]� encompasses
SL[CG]�. As we prove later, {0, 1}n \ {0n} also is semi-stable, which entails that
SL[EG]� also subsumes SL[DG]�.

Example 4 Consider the following formula, expressing the existence of a Nash
equilibrium for two players with respective LTL objectives ψ1 and ψ2:

∃x1.∃x2.∀y1.∀y2.
∧{

(assign(A1 �→y1; A2 �→x2).ψ1)⇒(assign(A1 �→x1; A2 �→x2).ψ1)
(assign(A1 �→x1; A2 �→y2).ψ2)⇒(assign(A1 �→x1; A2 �→x2).ψ2)

Theory of Computing Systems (2020) 64:46 –507 7 487

This formula has four goals, and it corresponds to the set

F 4 = {(a, b, c, d) ∈ {0, 1}4 | a ≤ b and c ≤ d}
Taking f = (1, 1, 0, 0) and g = (0, 0, 1, 1), with s = (1, 0, 1, 0) we have (f �
s) � (g � s) = (1, 0, 0, 1) and (g � s) � (f � s) = (0, 1, 1, 0), none of which
is in F 4. Hence our formula is not (syntactically) in SL[EG]� (notice however that
the existence of a Nash equilibrium can also be written as the disjunction (over all
possible payoffs for the agents) of formulas in SL[CG]�).

The definition of SL[EG] may look artificial. The main reason why we work with
SL[EG] is that it is maximal for the first claim of Theorem 1 (see Prop. 9). But as the
next result shows, it is actually a large fragment encompassing SL[AG] (hence also
SL[CG] and SL[DG]):

Proposition 7 SL[EG]� contains SL[AG]�. The inclusion is strict (syntactically).

Proof Remember that boolean combinations in SL[AG]� follow the grammar ξ ::=
ξ ∨ ω | ξ ∧ ω | ω. In terms of subsets of {0, 1}n, it corresponds to considering sets
defined in one of the following two forms:

Fn
ξ = {f ∈ {0, 1}n | f (n) = 1} ∪ {g ∈ {0, 1}n | g|[1;n−1] ∈ Fn−1

ξ ′ }
Fn

ξ = {f ∈ {0, 1}n | f (n) = 1 and f|[1;n−1] ∈ Fn−1
ξ ′ }

depending whether ξ(pj)j = ξ ′(pj)j ∨ pn or ξ(pj)j = ξ ′(pj)j ∧ pn. Assuming
(by induction) that Fn−1

ξ ′ is semi-stable, then we can prove that Fn
ξ also is. We detail

the proof for the second case, the first case being similar.
Consider the case where Fn

ξ = {f ∈ {0, 1}n | f (n) = 1 andf|[1;n−1] ∈ Fn−1
ξ ′ }.

Pick any two elements f and g in Fn
ξ , and s ∈ {0, 1}n. Since f (n) = g(n) = 1,

we have [(f � s) � (g � s)](n) = [(f � s) � (g � s)](n) = 1. Moreover,
the restriction of [(f � s)� (g� s)] and of [(f � s)� (g� s)] to their first n− 1 bits
is computed from the restriction of f , g and s to their first n − 1 bits. Since Fn−1

ξ ′
is semi-stable, one of [(f � s)� (g� s)][1;n−1] and [(f � s)� (g� s)][1;n−1] belongs
to Fn−1

ξ ′ , so that one of [(f � s) � (g � s)] and [(f � s) � (g � s)] is in Fn
ξ .

That the inclusion is strict is proven by considering the semi-stable set H 3 =
{(1, 1, 1), (1, 1, 0), (1, 0, 1),)(0, 1, 1)}. Assume that it corresponds to a formula in
SL[AG]�: then the boolean combination ξ(x1, x2, x3) of that formula must be in one
of the following forms:

ξ ′(x1, x2) ∧ x3 ξ ′(x1, x2) ∨ x3 ξ ′(x1, x2) ∧ ¬x3 ξ ′(x1, x2) ∨ ¬x3.

It remains to prove that none of these cases corresponds to H 3: the first case does
not allow (1, 1, 0); the second case allows (0, 0, 1); the third case does not allow
(1, 0, 1); the last case allows (0, 0, 0).

Theory of Computing Systems (2020) 64:46 –507 7488

5.2 Properties of semi-stable Sets

Before proving our main theorem, we show that semi-stable sets enjoy several nice
structural properties. Our first lemma entails that SL[EG]� is closed under (syntactic)
negation.

Lemma 3 Fn is semi-stable if, and only if, its complement is.

Proof Assume Fn is not semi-stable, and pick f and g in Fn and s ∈ {0, 1}n such
that none of α = (f �s)�(g�s) and γ = (g�s)�(f �s) are in Fn. It cannot be the
case that g = f , as this would imply α = f ∈ Fn. Hence α = γ . We claim that α and
γ are our witnesses for showing that the complement of Fn is not semi-stable: both
of them belong to the complement of Fn, and (α�s)�(γ �s) can be seen to equal f ,
hence it is not in the complement of Fn. Similarly for (γ � s) � (α � s) = g.

Lemma 4 If Fn ⊆ {0, 1}n is semi-stable, then for any s ∈ {0, 1}n and any non-empty
subset Hn of Fn, it holds that

∃f ∈ Hn. ∀g ∈ Hn. (f � s) � (g � s) ∈ Fn.

Proof For a contradiction, assume that there exist s ∈ {0, 1}n and Hn ⊆ Fn such
that, for any f ∈ Hn, there is an element g ∈ Hn for which (f � s) � (g � s) /∈ Fn.
Then there must exist a minimal integer 2 ≤ λ ≤ |Hn| and λ elements {fi | 1 ≤ i ≤ λ}
of Hn such that

∀1 ≤ i ≤ λ − 1 (fi � s) � (fi+1 � s) ∈ Fn and (fλ � s) � (f1 � s) ∈ Fn.

By Lemma 3, the complement of Fn is semi-stable. Hence, considering (fλ−1 � s)�
(fλ � s) and (fλ � s) � (f1 � s), one of the following two vectors is not in Fn:

([(fλ−1 � s) � (fλ � s)] � s) � ([(fλ � s) � (f1 � s)] � s)

([(fλ � s) � (f1 � s)] � s) � ([(fλ−1 � s) � (fλ � s)] � s)

The second expression equals fλ, which is in Fn. Hence we get that (fλ−1 � s) �
(f1 � s) is not in Fn, contradicting minimality of λ.

For two elements f and g of {0, 1}n, we write f ≤ g whenever f (i) = 1 implies
g(i) = 1 for all i ∈ [1, n] (this corresponds to set inclusion when seeing {0, 1}n as
the lattice of subsets of [1; n]). Given Bn ⊆ {0, 1}n, we write ↑Bn = {g ∈ {0, 1}n |
∃f ∈ Bn, f ≤ g}. A set Fn ⊆ {0, 1}n is upward-closed if Fn = ↑Fn. Notice
that being upward-closed and being semi-stable are uncomparable (for instance, the
set ↑{(0, 0, 1, 1); (1, 1, 0, 0)} is not semi-stable). We now explain how to transform
a semi-stable set into an upward-closed one by flipping some of its bits. This will
simplify the presentation of the proof of our main theorem.

Fix a vector b ∈ {0, 1}n. We define the operation flipb : {0, 1}n → {0, 1}n that
maps any vector f to (f � b) � (f � b). In other terms, flipb flips the i-th bit of its
argument if bi = 0, and keeps this bit unchanged if bi = 1. In SL[EG]�, flipping bits

Theory of Computing Systems (2020) 64:46 –507 7 489

amounts to negating the corresponding goals. The first part of the following lemma
thus indicates that our definition for SL[EG]� is sound.

Lemma 5 For any b ∈ {0, 1}n, if Fn ⊆ {0, 1}n is semi-stable, then so is flipb(F
n).

Moreover, for any semi-stable set Fn, there exists b ∈ {0, 1}n such that flipb(F
n) is

upward-closed.

Example 5 Take F 2 = {(0, 0), (1, 0), (1, 1)}. This set is semi-stable, but it is not
upward-closed. Letting b = (1, 0), we have flipb(F

2) = {(0, 1), (1, 1), (1, 0)}, which
is upward-closed (and still semi-stable).

Proof We begin with the first statement. Assume that Fn is semi-stable, and take
f ′ = flipb(f) and g′ = flipb(g) in flipb(F

n), and s ∈ {0, 1}n. By distributivity, we get

(f ′ � s) � (g′ � s) = (
((f � b) � (f � b)) � s

)
�

(
((g � b) � (g � b)) � s

)
= (((f � s) � (g � s)) � b) �

(
((f � s) � (g � s)) � b

)
Write α = (f � s) � (g � s) and β = (f � s) � (g � s). One can easily check that
β = α. We then have

(f ′ � s) � (g′ � s) = (α � b) �
(
α � b

) = flipb(α). (4)

This computation being valid for any f and g, we also have

(g′ � s) � (f ′ � s) = (γ � b) �
(
γ � b

) = flipb(γ) (5)

with γ = (g � s) � (f � s). By hypothesis, at least one of α and γ belongs to Fn,
so that also at least one of (f ′ � s) � (g′ � s) and (g′ � s) � (f ′ � s) belongs
to flipb(F

n).
The second statement of Lemma 5 trivially holds for Fn = ∅; thus in the follow-

ing, we assume Fn to be non-empty. For 1 ≤ i ≤ n, let si ∈ {0, 1}n be the vector
such that si(j) = 1 if, and only if, j = i. Applying Lemma 4, we get that for any i,
there exists some fi ∈ Fn such that for any f ∈ Fn, it holds

(fi � si) � (f � si) ∈ Fn. (6)

We fix such a family (fi)i≤n then define g ∈ {0, 1}n as , i.e.
g(i) = fi(i) for all 1 ≤ i ≤ n. Starting from any element of Fn and applying (6)
iteratively for each i, we get that g ∈ Fn. Since g � si = fi � si , we also have

∀f ∈ Fn (g � si) � (f � si) ∈ Fn

By (5), since flipg(g) = 1, we get

∀f ∈ Fn (1� si) � (flipg(f) � si) ∈ flipg(F
n). (7)

Now, assume that flipg(F
n) is not upward closed: then there exist elements f ∈ Fn

and h /∈ Fn such that flipg(f)(i) = 1 ⇒ flipg(h)(i) = 1 for all i. Starting from f and
iteratively applying (7) for those i for which flipg(h)(i) = 1 and flipg(f)(i) = 0, we
get that flipg(h) ∈ flipg(F

n) and h ∈ Fn. Hence flipg(F
n) must be upward closed.

Theory of Computing Systems (2020) 64:46 –507 7490

5.3 Defining Quasi-orders from semi-stable Sets

For Fn ⊆ {0, 1}n, we write Fn for the complement of Fn. Fix such a set Fn, and
pick s ∈ {0, 1}n. For any h ∈ {0, 1}n, we define

F
n(h, s) = {h′ ∈ {0, 1}n | (h � s) � (h′ � s) ∈ Fn}

Fn(h, s) = {h′ ∈ {0, 1}n | (h � s) � (h′ � s) ∈ Fn}
Trivially F

n(h, s)∩Fn(h, s) = ∅ and F
n(h, s)∪Fn(h, s) = {0, 1}n. If we assume Fn

to be semi-stable, then the family (Fn(h, s))h∈{0,1}n enjoys the following property:

Lemma 6 Fix a semi-stable set Fn and s ∈ {0, 1}n. For any h1, h2 ∈ {0, 1}n, either
F

n(h1, s) ⊆ F
n(h2, s) or Fn(h2, s) ⊆ F

n(h1, s).

Proof Assuming otherwise, there would exist h′
1 ∈ F

n(h1, s)\Fn(h2, s) and h′
2 ∈

F
n(h2, s)\Fn(h1, s). We then have:

(h1 � s) � (h′
1 � s) ∈ Fn (h2 � s) � (h′

1 � s) ∈ Fn

(h2 � s) � (h′
2 � s) ∈ Fn (h1 � s) � (h2 � s) ∈ Fn

Now consider (h1 � s)� (h′
1 � s), (h2 � s)� (h′

2 � s) and s. As Fn is semi-stable,
one of the two following vector is in Fn :(

(h1 � s) � (h′
1 � s) � s

)
�

(
(h2 � s) � (h′

2 � s) � s
)(

(h2 � s) � (h′
2 � s) � s

)
�

(
(h1 � s) � (h′

1 � s) � s
)

The first vector is equal to (h1 � s)� (h′
2 � s) and the second to (h2 � s)� (h′

1 � s)

and both are supposed to be in Fn, we get a contradiction.

Given a semi-stable set Fn and s ∈ {0, 1}n, we can use the inclusion relation of
Lemma 6 to define a relation �Fn

s (written �s when Fn is clear) over the elements
of {0, 1}n. It is defined as follows: h1 �s h2 if, and only if, Fn(h1, s) ⊆ F

n(h2, s).
This relation is a quasi-order: its reflexiveness and transitivity both follow from

the reflexiveness and transitivity of the inclusion relation ⊆. By Lemma 6, this quasi-
order is total. Intuitively, �s orders the elements of {0, 1}n based on how “easy” it is
to complete their restriction to s so that the completion belongs to Fn. In particular,
only the indices on which s take value 1 are used to check whether h1 �s h2: given
h1, h2 ∈ {0, 1}n such that (h1 � s) = (h2 � s), we have F(h1, s) = F(h2, s), and
h1 ≡s h2.

Example 6 Consider the set F 3 = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}
represented on Fig. 7, which can be shown to be semi-stable.

Fix s = (1, 1, 0). Then F
3((0, 1, �), s) = {0, 1}2 × {1}: the only way to complete

(0, 1, �) to an element in F 3 is by replacing � with 1. Similarly, F3((1, 1, �), s) =
F

3((1, 0, �), s) = {0, 1}3, and F
3((0, 0, �), s) = ∅. It follows that (0, 0, �) �s

(0, 1, �) �s (1, 0, �) ≡s (1, 1, �).
For s′ = (0, 0, 1), we can proceed similarly and get that (�, �, 0) �s′ (�, �, 1).

Theory of Computing Systems (2020) 64:46 –507 7 491

Fig. 7 A semi-stable set over {0, 1}n

We now prove a technical result over such orders, which will be useful for the
proof of Lemma 11.

Lemma 7 Given a semi-stable set Fn, s1, s2 ∈ {0, 1}n such that s1 � s2 = 0 and
f, g ∈ {0, 1}n such that f �s1 g and f �s2 g, it holds f �s1�s2 g.

Example 7 Consider again the semi-stable set F 3 of Example 6. Observe that for
s1 = (1, 0, 0), it holds (0, �, �) �s1 (1, �, �), because for any x, y ∈ {0, 1},
if (0, x, y) ∈ F 3, then also (1, x, y) ∈ F 3; similarly, for s2 = (0, 1, 0), we have
(�, 0, �) �s2 (�, 1, �). Lemma 7 entails that (0, 0, �) �s (1, 1, �), with s = (1, 1, 0).

Proof Because f �s1 g and f �s2 g, we have

∀i ∈ {1, 2}∀h ∈ {0, 1}n (f � si) � (h � si) ∈ Fn ⇒ (g � si) � (h � si) ∈ Fn (8)

Consider h′ ∈ {0, 1}n such that α = (f �(s1�s2))�(h′�(s1 � s2)) is in Fn. Define
the element h = α�s2, then (f �s2)�(h�s2) = (f �(s1�s2))�(h′�(s1 � s2)) ∈
Fn. Using (8) with s2 and h, we get β = (g � s2)� (h� s2). As s1 � s2 = 0, we can
write β = (f � s1) � (g � s2) � (h′ � (s1 � s2)) ∈ Fn.

Now consider h = β � s1, we have (f � s1)� (h� s1) = β ∈ Fn. Using (8) with
s1 and h, we get (g � (s1 � s2))� (h′ � (s1 � s2)) ∈ Fn. Therefore Fn(f, s1 � s2) ⊆
F

n(g, s1 � s2) and f �s1�s2 g.

The following lemma is straightforward:

Lemma 8 Assuming Fn is upward-closed, for any f , g and s in {0, 1}n, if f ≤ g

(i.e. for all i, f (i) = 1 ⇒ g(i) = 1), then f �s g. In particular, 0 is a minimal
element for �s , for any s.

Proof Since f ≤ g, then also (f �s)�(h�s) ≤ (g�s)�(h�s), for any h ∈ {0, 1}n.
Since Fn is upward-closed, if (f �s)�(h�s) is in Fn, then so is (g�s)�(h�s).

5.4 Sketch of Proof of Theorem 1

The proof of Theorem 1 is long and technical. Before giving the full details, we begin
with some intuition how semi-stable sets, and the quasi-orders defined above, are

Theory of Computing Systems (2020) 64:46 –507 7492

used to prove the result. We first notice that the approach we used in Prop. 2 does
not extend in general to formulas with several goals. Consider for instance formula
(Qixi)i≤l(β1. ϕ1 ⇔ β2. ϕ2): if at some points the two goals give rise to two different
outcomes, thus to two different subgames, the winning objectives in one subgame
depends on what is achieved in the other subgame.

SL[EG]� has been designed to simplify such dependences between different sub-
games: when two (or more) outcomes are available at a given position, each subgame
can be assigned an independent winning objective. This objective can be obtained
from the quasi-orders �s associated with the SL[EG]� formula being checked. Con-
sider again Example 6: associating the set F 3 with three goals ω1, ω2 and ω3
(and adequate strategy quantifiers), we get a formula in SL[EG]�. Assume that
the moves selected by the players give rise to the same transition for ω1 and ω2,
and to a different transition for ω3; this gives rise to two subgames. In the subgame
reached when following the transition of ω1 and ω2 (hence with s = (1, 1, 0)), the
optimal way of playing is given by (0, 0, �) �s (0, 1, �) �s (1, 0, �) ≡s (1, 1, �),
independently of what may happen in the subgame reached by following the tran-
sition given by ω3; for instance, it is better to fulfill only ω1 than to fulfill only ω2
(i.e. (0, 1, �) �s (1, 0, �)), which can be observed on Fig. 7 by the fact that fulfilling
ω1 is enough to make the whole formula hold true. In the subgame corresponding to
ω3, the optimal way of playing is given by (�, �, 0) �s′ (�, �, 1): it is always better
to fulfill ω3, whatever happens on the other subgame.

Our proof follows the schema depicted on Fig. 8. Building on the idea depicted
on Fig. 4, we would like to construct a turn-based parity game encoding the SL[EG]�

model-checking instance at hand. Strategy quantifiers are encoded with tree-shaped
quantification games as in Fig. 4, but now, the leaves of quantification games may
give rise to different outcomes, depending on the goal being considered: Fig. 8
depicts the case of a leaf from which the first two goals would go in one direction
(to q1 here) while the third goal follows a different direction (to q2). Notice that from
the other leaves, the goals may have been grouped differently (and in particular, they
may have all given rise to the same transition).

Now, consider the outcome generated by the first two goals: it goes to a sub-
game starting in state q1, and only the first two goals have to be tracked. From our
observations above, we can compute an order defining the best way of satisfying the
remaining two goals; this does not depend on what happens along the other outcome,
generated by the third goal. We can thus consider this subgame alone, and apply the
same construction with the remaining goals (using parity automata to keep track of
the satisfaction of the LTL formulas in the goals). Since there are finitely many goals,
we eventually end up in a situation where there is a single goal, or where the goals
always give rise to the same outcomes; then the computation remains in the same
subgame, and the situation corresponds to the case of Fig. 4.

We implement these ideas as follows: first, in order to keep track of the truth values
of the LTL formulas ψi of each goal, we define a family of parity automata, one for
each subset of goals of the formula under scrutiny. A subgame, as considered above,
is characterized by a state q of the original concurrent game, a state dp of each of
the parity automata, and a vector s ∈ {0, 1}n defining which goals are still active in
that subgame. For each subgame, we can compute, by induction on s, the optimal set

Theory of Computing Systems (2020) 64:46 –507 7 493

Fig. 8 In a formula based on the semi-stable sets of Fig. 7, upon separation of the goals, the game splits
into independent subgames

of goals that can be fulfilled from that configuration. The optimal strategies of both
players in each subgame can be used to define (partial) optimal timeline dependence
maps. We can then combine these partial maps together to get optimal dependence
maps θ and θ ; using similar arguments as for the proof of Prop. 5, we get a valua-
tion χ such that θ(χ|V∀) = χ = θ(χ|V∃), from which we deduce that exactly one of
ϕ and ¬ϕ holds.

5.5 Proof of Theorem 1

We can now prove our main theorem, which we first restate:

Theorem 1 For any game G with initial state q0, and any formula ϕ ∈, SL[EG]�

it holds

Proof Following Lemma 5, we assume for the rest of the proof that the set Fn of
the SL[EG]� formula ϕ is upward-closed (even if it means negating some of the LTL
objectives). We also assume it is non-empty, since the result is trivial otherwise.

The proof of Theorem 1 is in three steps:

– we build a family of parity automata expressing the objectives that may have to
be fulfilled along outcomes. A configuration of a subgame is then described by
a state q of the game, a vector d of states of those parity automata, and a set s of
goals that are still active in the current subgame;

Theory of Computing Systems (2020) 64:46 –507 7494

– we characterize the two ways of fulfilling a set of goals: either by fulfilling all
goals along the same outcome, or by partitioning them among different branches;

– we encode these two possibilities into 2-player parity games, and inductively
compute optimal sets of goals (represented as vectors bq,d,s ∈ {0, 1}n) that can
be achieved from any given configuration. By determinacy of parity games, we
derive timeline maps witnessing the fact that bq,d,s can be achieved, and the
fact that it is optimal. If bq0,d0,1 ∈ Fn, we get a witness map for ;
otherwise, we get one for .

5.5.1 Automata for Conjunctions of Goals

We use deterministic parity word automata to keep track of the goals to be satisfied.
Since we initially have no clue about which goal(s) will have to be fulfilled along an
outcome, we use a (large) set of automata, all running in parallel.

For s ∈ {0, 1}n and h ∈ {0, 1}n, we let Ds,h be a deterministic parity automaton
accepting exactly the words over 2AP along which the following formula �s,h holds:

�s,h =
∨

k∈{0,1}n
h�s k

∧
j s.t.

(k�s)(j)=1

ϕj .

where a conjunction over an empty set (i.e., if (k � s)(j) = 0 for all j) is true.
Notice that in �s,h, we should also have imposed ¬ϕj for those indices j for

which (k � s)(j) = 0. However, using Lemma 8, if h �s k and k ≤ k′, then also
h �s k′, so that any conjunction containing more ϕj ’s would also appear in �s,h.

Notice that when s = 0, we have h �s k for any h and k, so that �0,h is true
for any h ∈ {0, 1}n). From now on, we only consider vectors s ∈ {0, 1}n such that
|s| = ∑

1≤i≤n si ≥ 1.
As an example, take s ∈ {0, 1}n with |s = 1|, writing j for the index where

s(j) = 1; for any h ∈ {0, 1}n, if there is k �s h with k(j) = 0 (which in particular
is the case when h(j) = 0), then the automaton Ds,h is universal; otherwise Ds,h

accepts the set of words over 2AP along which ϕj holds.
We write D = {Ds,h | s ∈ {0, 1}n, h ∈ {0, 1}n} for the set of automata defined

above. A vector of states of D is a function associating with each automaton D ∈ D
one of its states. We write VS for the set of all vectors of states of D. For any vector
d ∈ VS and any state q of G, we let succ(d, q) to be the vector of states associating
with each D ∈ D the successor of state d(D) after reading lab(q); we extend
succ to finite paths (qi)0≤i≤n in G inductively, letting succ(d, (qi)0≤i≤n) =
succ(succ(d, (qi)0≤i≤n−1), qn).

An infinite path in G is accepted by an automaton D of D whenever the
word is accepted by D. We write L(D) for the set of paths of G accepted
by D. Finally, for d ∈ VS, we write L(Dd

s,h) for the set of words that are accepted
by Ds,h starting from the state d(Ds,h) of Ds,h.

Proposition 8 The following holds for any s ∈ {0, 1}n:

1. �s,0 ≡ � (i.e., Ds,0 is universal);

Theory of Computing Systems (2020) 64:46 –507 7 495

2. for any h1, h2 ∈ {0, 1}n, if h1 �s h2, we have �s,h2 ⇒ �s,h1 (i.e., L(Ds,h2) ⊆
L(Ds,h1));

3. for any h ∈ Fn, �1,h ≡ ∨
k∈Fn

∧
j s.t. k(j)=1 ϕj .

Proof �s,0 contains the empty conjunction (k = 0) as a disjunct. Hence it is equiva-
lent to true. When h1 �s h2, formula �s,h1 contains more disjuncts than �s,h2 , hence
the second result. Finally, if f ∈ Fn, and is empty otherwise.
Hence if h ∈ Fn, we have h �1 k if, and only if, k ∈ Fn, which entails the result.

5.5.2 TwoWays of Achieving Goals

After a given history, a set of goals may be achieved either along a single outcome,
in case the assignment of strategies to players gives rise to the same outcomes, or
they may be split among different outcomes. We express those two ways of satisfying
goals, by means of two operators parameterized by the current configuration.

The first operator covers the case where the goals currently enabled by s (those
goals βi . ϕi for which s(i) = 1) are all fulfilled along the same outcome. For any
d ∈ VS and any two s and h in {0, 1}n, the operator �stick

d,s,h is defined as follows:
given a context χ with V ⊆ dom(χ) and a state q of G,

Intuitively, all the goals enabled by s must give rise to the same outcome, which is
accepted by Dd

s,h. In the formula above, χ ◦ βj corresponds to the strategy profile to
be used for goal βj · ϕj .

We now consider the case where the active goals are partitioned among different
outcomes.

Definition 2 A partition of an element s ∈ {0, 1}n is a sequence (sκ)1≤κ≤λ, with
λ ≥ 2, of elements of {0, 1}n with s1 � · · · � sλ = s and where for any two κ = κ ′,
sκ � sκ ′ = 0.

An extended partition of s is a sequence τ = (sκ , qκ , dκ)1≤κ≤λ of elements of
{0, 1}n × Q × VS where (sκ)1≤κ≤λ is a partition of s, qκ are states of G, and dκ are
vectors of states of the automata in D.

We write Part(s) for the set of all extended partitions of s. Notice that we only
consider non-trivial partitions; in particular, if |s| ≤ 1, then Part(s) = ∅. For any
d ∈ VS, any s in {0, 1}n and any set of partitions ϒs of s, the operator �

sep
d,s,ϒs

states that the goals currently enabled by s all follow a common history ρ for a finite
number of steps, and then partition themselves according to some partition in ϒs .
The operator �

sep
d,s,ϒs

is defined as follows:

Theory of Computing Systems (2020) 64:46 –507 7496

Notice that h does not appear explicitly in this definition, but �
sep
d,s,ϒs

will depend

on h through the choice of ϒs . The operators �stick and �sep are illustrated on Fig. 9.

5.5.3 Fulfilling Optimal Sets of Goals

We now inductively (on |s|) define new operators �d,s,h combining the above two
operators �stick and �sep, and selecting optimal ways of partitioning the goals among
the outcomes.

Base case: |s| = 1 When only one goal is enabled, we only have to consider a single
outcome, so that we let �d,s,h = �stick

d,s,h, for any d ∈ VS and h ∈ {0, 1}n. By Prop. 8,
for any context χ such that Agt ⊆ dom(χ), it holds , hence also

. Hence there must exist a maximal value b in the lattice
{0, 1}n such that We write bq,d,s for one such value
(notice that it need not be unique). By maximality, for any h such that bq,d,s ≺s h,

we have .

Induction step We assume that for any d ∈ VS, any h ∈ {0, 1}n and any s ∈ {0, 1}n
with |s ≤ k|, we have defined an operator �d,s,h, and that for any q ∈ Q, we have
fixed an element bq,d,s ∈ {0, 1}n for which and such
that for any h such that bq,d,s ≺s h, it holds .

Pick s ∈ {0, 1}n with |s = k + 1|, together with an extended partition τ =
(sκ , qκ , dκ)1≤κ≤λ. Then we must have |sκ | < k +1 for all 1 ≤ κ ≤ λ, so that �dκ ,sκ ,h

and bqκ ,dκ ,sκ have been defined at previous steps. We let

We then define

�d,s,h = �stick
d,s,h ∨ �

sep
d,s,ϒs,h

with ϒs,h = {τ ∈ Part(s) | h �s cs,τ }.

Fig. 9 Illustration of �stick
d,s,h and �

sep
d,s,ϒs

Theory of Computing Systems (2020) 64:46 –507 7 497

As previously, we claim that for any χ such that Agt ⊆ dom(χ).
Indeed, for a given χ , if all the outcomes of the goals enabled by s follow the same
infinite path, then this path is accepted by Ds,0 and ; otherwise, after
some common history ρ, the outcomes are partitioned following some extended par-
tition τ0, which obviously satisfies 0 �s cs,τ0 since 0 is a minimal element of �s .
Hence in that case .

In particular, it follows that , and we can
fix a maximal element bq,d,s for which and

for any h �s bq,d,s .
This concludes the inductive definition of �d,s,bq,d,s

. We now prove that it satisfies
the following lemma:

Lemma 9 For any q ∈ Q, any d ∈ VS and any s ∈ {0, 1}n, it holds

Proof The first result is a direct consequence of the construction: the values for bq,d,s

have been selected so that .
To prove the second part, we again turn the satisfaction of �d,s,h, for h �s bq,d,s ,

into a parity game, as for the proof of Prop. 2. We only sketch the proof here, as it
involves the same ingredients.

The parity game is obtained from G by replacing each state by a quantification
game. We also introduce two sink states, qeven and qodd, which are winning for Player
P∃ and for Player P∀ respectively. When arriving at a leaf (q, d,m) of the (q, d)-
copy of the quantification game, there may be one of the following three transitions
available:

– if there is a state q ′ such that for all j with s(j) = 1, it holds q ′ = �(q, mβj
)

(in other terms, the moves selected in the current quantification game generate
the same transition for all the goals enabled by s), then there is a single transition
to (q ′, d ′, ε), where d ′ = succ(d, q ′).

– otherwise, if there is an extended partition τ = (sκ , qκ , dκ)1≤κ≤λ of s such that
cs,τ �s h and, for all 1≤κ≤λ, for all j such that sκ(j)=1, we have �(q, mβj

)=qκ

and succ(d, qκ) = dκ , then there is a transition from (q, d,m) to qeven.
– otherwise, there is a transition from (q, d,m) to qodd.

The priorities defining the parity condition are inherited from those in Ds,h.
Since , Player P∃ does not have a winning strategy

in this game, and by determinacy Player P∀ has one. From the winning strategy of
Player P∀, we obtain a timeline map ϑq,d,s,h for (Qixi)1≤i≤l witnessing the fact that

.

Remark 2 While the definition of �d,s,bq,d,s
(and in particular of bq,d,s) is not effec-

tive, the parity games defined in the proof above can be used to compute each

Theory of Computing Systems (2020) 64:46 –507 7498

bq,d,s and �d,s,bq,d,s
. Indeed, such parity games can be used to decide whether

for all h, and selecting a maximal value for which the
result holds. Then bq0,d0,1 ∈ Fn implies .

Each parity game has size doubly-exponential, with exponentially-many priori-
ties; hence they can be solved in 2-EXPTIME. The number of games to solve is also
doubly-exponential, so that the whole algorithm runs in 2-EXPTIME.

Applying Lemma 9, we fix a timeline map ϑq,d,s for (Qixi)1≤i≤l witnessing (9),
and for each h �s bq,d,s , a timeline map ϑq,d,s,h for (Qixi)1≤i≤l witnessing (10).

We now focus on the operator obtained at the end of the induction, when s = 1.
Following Prop. 8, L(D1,f) does not depend on the exact value of f , as soon as it is
in Fn. We then let

�Fn = �stick
d0,1,f ∨ �

sep
d0,1,ϒFn

where f is any element of Fn (remember Fn is assumed to be non-empty), d0 is the
vector of initial states of the automata in D, and ϒFn = {Part(1) | c1,τ ∈ Fn}.

We write ϑ1 and ϑ1 for the maps ϑq0,d0,1 and ϑq0,d0,1,h for some h ∈ Fn, as given
by Lemma 9. From the discussion above, ϑq0,d0,1,h does not depend on the choice
of h in Fn, and we simply write it ϑq0,d0,1.

Then:

Lemma 10 If , then ϑ1 witnesses the fact that

Conversely, if , then ϑ1

witness the fact that .

Proof The first part directly follows from the previous lemma. For the second part,
means that bq0,d0,1 /∈ Fn. Hence for any f ∈ Fn, we

have f �s bq0,d0,1, so that ϑq0,d01 is a witness that .

5.5.4 Compiling optimal maps

From Lemma 9, we have timeline maps for each q, d and s. We now compile them
into two map θ and θ . The construction is inductive, along histories.

Pick a history ρ starting from q0 and strategies for universally-quantified variables
w : V∀ → (Hist → Act). Assuming θ has been defined along all strict prefixes of ρ,
a goal βj . ϕj is said active after ρ w.r.t. θ(w) if the following condition holds:

∀i < |ρ|. ρ(i + 1) = �(ρ(i), (θ(w)(βj (A))(ρ≤i))A∈Agt).
In other terms, βj . ϕj is active after ρ w.r.t. θ(w) if ρ is the outcome of strategies
prescribed by θ(w) under assignment βj . We let sρ,θ(w) be the element of {0, 1}n
such that sρ,θ(w)(j) = 1 if, and only if, βj . ϕj is active after ρ w.r.t. θ(w).

We now define θ(w)(xi)(ρ) for all xi ∈ V:

– if xi ∈ V∀, we let θ(w)(xi)(ρ) = w(xi)(ρ);
– if xi ∈ V∃, we consider two cases:

– if sρ,θ(w) = 1, then all goals are still active, and θ follows the map ϑ1:
θ(w)(xi)(ρ) = ϑ1(w)(xi)(ρ).

Theory of Computing Systems (2020) 64:46 –507 7 499

– otherwise, we let ρ1 be the maximal prefix of ρ for which sρ1,θ(w) =
sρ,θ(w). We may then write ρ = ρ1 · ρ2, and let q1 = last(ρ1) and d1 =
succ(d0, ρ1). We then let θ(w)(xi)(ρ) = ϑq1,d1,sρ,θ(w)

(w−→ρ1
)(xi)(ρ2).

The dual map θ is defined in the same way, using maps ϑ in place of ϑ .
The following result will conclude our proof of Theorem 1.

Lemma 11 There exists a context χ with domain V such that θ(χ|V∀) = χ and

θ(χ|V∃) = χ . It satisfies

Proof We use the same technique as in the proof of Prop. 5: from θ and θ , we build
a strategy context χ on V such that θ(χ|V∀) = χ and θ(χ|V∃) = χ .

We introduce some more notations. For w : V∀ → (HistG → Act), we let

– πw
j be the outcome out(q0, (θ(w)((βj (A))A∈Agt)) for all 1 ≤ j ≤ n;

– f w be the element of {0, 1}n such that f w(j) = 1 if, and only if, ;
– Rw ⊆ {0, 1}n × HistG be the relation such that (s, ρ) ∈ Rw if, and only if,

s = sρ,θ(w) and ρ is minimal (meaning for any strict prefix ρ′ of ρ, it holds
(s, ρ′) /∈ Rw).

Lemma 12 For any w : V∀ → (HistG → Act) and any ρ ∈ Hist, letting dρ =
succ(d0, ρ), it holds

∀s ∈ {0, 1}n. (s, ρ) ∈ Rw ⇒ blast(ρ),dρ,s �s f w.

Proof Fix some w ∈ (HistG → Act)V
∀
. The proof proceeds by induction on |s|.

Base case: |s| = 1 Assume (s, ρ) ∈ Rw. As |s| = 1, there is a unique goal, say
βj0 . ϕj0 , active along ρ w.r.t. θ(w). By definition of θ , πj0 = ρ · η where η is the
outcome of ϑlast(ρ),dρ,s(w−→ρ)((βj (A))A∈Agt) from last(ρ).

Because |s| = 1, we have �dρ,s,blast(ρ),dρ ,s
= �stick

dρ,s,blast(ρ),dρ ,s
. The map ϑlast(ρ),dρ,s

is a witness that ; therefore it also witnesses

that . By definition of the �stick operators,

this implies that for any w, the outcome of ϑlast(ρ),dρ,s(w−→ρ) from last(ρ) is accepted

by the automaton D
dρ

s,blast(ρ),dρ ,s
; in particular, η is accepted by D

dρ

s,blast(ρ),dρ ,s
.

The automaton D
dρ

s,blast(ρ),dρ ,s
accepts paths which give better results (w.r.t. �s)

for the objectives (βj . ϕj)j |s(j)=1 than blast(ρ),dρ,s . In other terms, we have
blast(ρ),dρ,s �s f w.

Theory of Computing Systems (2020) 64:46 –507 7500

Induction step We assume that the Proposition 12 holds for any elements s ∈ {0, 1}n
of size |s| < α. We now consider for the induction step an element s ∈ {0, 1}n such
that |s| = α and (s, ρ) ∈ Rw.

– if the enabled goals all follow the same outcome, i.e., if there exists an infinite
path η such that πj = ρ ·η for all j having s(j) = 1, then with arguments similar
to those of the base case, we get blast(ρ),dρ,s �s f w.

– otherwise, the goals enabled by s split following an extended partition τ =
(sκ , qκ , dκ)κ≤λ. We let η be the history from the last state of ρ to the point where
the goals split.

The map ϑlast(ρ),dρ,s witnesses that ; therefore η

may only reach a partition τ such that

blast(ρ),dρ,s �s cs,τ (11)

This partition τ is such that for any 1 ≤ κ ≤ λ, it holds (sκ , ρ · η · qκ) ∈ Rw;
using the induction hypothesis, we get

sκ � bqκ ,dκ ,sκ �sκ f w (12)

Then, using Lemma 7 repeatedly on the (sκ)1≤κ≤λ, and (12), we obtain

s1 � bq1,d1,s1 �s1 f w ⇒ (s1 � bq1,d1,s1) � (s2 � bq2,d2,s2) �s1�s2 f w

⇒ . . .

⇒ (s1 � bq1,d1,s1) � · · · � (sλ � bqλ,dλ,sλ) �s1�···�sλ f w

⇒ cs,τ �s f w.

Combined with (11), we get blast(ρ),dρ,s �s cs,τ �s f w.

Lemma 13 if, and only if, bq0,d0,1 ∈ Fn.

Proof Assume that bq0,d0,1 ∈ Fn. Then . Applying
Lemma 10, the map ϑ1 (and therefore θ , which act as ϑ1 before goals branch
along different paths) witnesses . This implies that

, which contradicts the hypothesis.

Conversely, if bq0,d0,1 ∈ Fn, then , which is witnessed
by map ϑ1. Thus

We are now ready to prove the first part of Lemma 11: consider a function
w : V∀ → (HistG → Act). By Lemma 12 applied to w, s = 1, and ρ = q0,
we get that bq0,d0,1 �1 f w. Now, by Lemma 13, bq0,d0,1 ∈ Fn, therefore the ele-
ment f w, being greater than bq0,d0,1 for �1, must also be in Fn, which means that

.
The second implication of the lemma is proven using similar arguments.
Lemma 11 allows us to conclude that at least one of ϕ and ¬ϕ must hold on G

for . Lemma 5 implies that at most one can hold. Combining both we get that
exactly one holds.

From this proof, we get:

Corollary 3 Model checking SL[EG] for is 2-EXPTIME-complete.

Theory of Computing Systems (2020) 64:46 –507 7 501

Remark 3 Notice that we do not get the twin of Corollary 1 here, and actually
and differ over SL[EG]�. Indeed, the proof of Prop. 4 provides a counterexample:

– as shown in the proof of Prop. 4, the game G and formula ϕ ∈ SL[CG]� of Fig. 6
are such that

– considering the classical semantics, because of the conjunction of goals, any
strategy for y for which the rest of the formula is fulfilled must play differently
in states q1 and q2. On the other hand, in order to fulfill the first conjunct for any
strategy xA, then the strategy y must play to p1 from both q1 and q2. Hence no
such strategy exist.

5.6 Maximality of SL[EG]�

Finally, we prove that SL[EG]� is, in a sense, maximal for the first property of
Theorem 1:

Proposition 9 For any non-semi-stable boolean set Fn ⊆ {0, 1}n, there exists a
SL[BG]� formula ϕ built on Fn, a game G and a state q0 such that and

.

Proof We consider again the game G depicted on Fig. 6, with two agents and .
Let Fn be a non-semi-stable set over {0, 1}n. Then there must exist f1, f2 ∈ Fn,
and s ∈ {0, 1}n, such that (f1 � s) � (f2 � s) /∈ Fn and (f2 � s) � (f1 � s) /∈ Fn.
We then let

ϕ = ∀y1. ∀y2. ∀x1. ∃x2. Fn(β1. ϕ1, . . . , βn. ϕn)

where

and

ϕi =

⎧⎪⎪⎨
⎪⎪⎩
Fp1 ∨ Fp2 if f1(i) = f2(i) = 1
Fp1 if f1(i) = 1 and f2(i) = 0
Fp2 if f1(i) = 0 and f2(i) = 1
false if f1(i) = f2(i) = 0

Formulas ϕi have been built to satisfy the following property:

Lemma 14 Let ρ be a maximal run of G from q0. Let k ∈ {1, 2} be such that ρ visits
a state labelled with pk . Then for any 1 ≤ i ≤ n, we have if, and only if,
fk(i) = 1.

The following two lemmas conclude the proof:

Lemma 15 .

Theory of Computing Systems (2020) 64:46 –507 7502

Proof Towards a contradiction, assume that . Let θ be a timeline map
witnessing this fact. We let σ1 (resp. σ2) be the strategy that maps history q0 to q1
(resp. q2). We let τ1 be such that τ1(q0 · q1) = p1. This defines a valuation w,
respectively mapping y1, y2 and x1 to σ1, σ2 and τ1. Then the strategy τ2 = θ(w)(x2)

is such that

Now, consider the valuation w′ obtained from w by changing the strategy for x1
to τ ′

1, where τ ′
1(q0 · q1) = p2. Then θ(w′)(x2) = θ(w)(x2) = τ2, since θ is a

timeline map. Since θ witnesses the satisfaction of ϕ, we also have

Let v and v′ be the vectors in {0, 1}n representing the values of the goals
(β1. ϕ1, . . . , βn. ϕn) under θ(w) and θ(w′), respectively. Then v and v′ are in Fn.
However:

– if τ2(q0 · q2) = p1, then under θ(w′), for any 1 ≤ i ≤ n:

– if si = 1, strategies σ1 and τ ′
1 are applied, so that the game ends in p2;

then v′
i = 1 if, and only if, f2(i) = 1;

– if si = 0, strategies σ2 and τ2 are used, and the game goes to p1; then
v′
i = 1 if, and only if, f1(i) = 1.

In the end, we have v′ = (f1 � s) � (f2 � s), which is not in Fn.
– if τ2(q0 · q2) = p2, then under θ(w), for any 1 ≤ i ≤ n:

– if si = 1, strategies σ1 and τ1 are applied, so that the game ends in p1;
then vi = 1 if, and only if, f1(i) = 1;

– if si = 0, strategies σ2 and τ2 are used, and the game goes to p2; then
vi = 1 if, and only if, f2(i) = 1.

In the end, we have v = (f1 � s) � (f2 � s), which also is not in Fn.

Both cases lead to a contradiction, so that our hypothesis that can only
be wrong.

Lemma 16 .

Proof We use similar arguments as above: we assume , and fix a
witnessing timeline map θ for ¬ϕ.

We consider four valuations w11, w12, w21 and w22 for x2, such that wjk(x2)(ρ) =
wj ′k′

(x2)(q0) (the exact value is not important) and wjk(x2)(q0 · q1) = pi and
wjk(x2)(q0 · q2) = pj . We let σ1 = θ(wjk)(y1), σ2 = θ(wjk)(y2) and τ1 =
θ(wjk)(x1). Notice that those strategies do not depend on i and j , since θ is a time-
line map for ¬ϕ. We write v

jk
i for the vector representing the truth value of goal

βi . ϕi under valuation θ(wjk).

Theory of Computing Systems (2020) 64:46 –507 7 503

Fig. 10 Relations between classical, elementary and timeline semantics

Assume that σ2(q0) = q1, and that τ1(q0 · σ1(q0)) = p1. Then under w11 (i.e.,
when τ2(q0 · q1) = p1), for any 1 ≤ i ≤ n, the outcome of strategy assignment βi

from q0 goes to p1. Hence v11 = f1, which is in Fn, contradicting the fact that θ

witnesses . Similar arguments apply if τ1(q0 · σ1(q0)) = p2, and when
σ2(q0) = q2. Thus our assumption that cannot be correct.

6 Conclusions and FutureWorks

In this paper, we have studied various semantics of SL, depending on how the succes-
sive strategy quantifiers in an SL formula may depend on each other. Following [30],
we defined a natural translation of the elementary semantics of SL[1G] into a two-
player turn-based parity game, and introduced a new timeline semantics for SL[BG]
that better corresponds to this translation. For this new semantics, we defined a frag-
ment SL[EG] for which the timeline semantics can be model-checked in 2-EXPTIME.
Figure 10 represents the relations between those semantics (with implications in grey
only valid for SL[1G]), as well as the maximal fragments of SL[BG] for which the
semantical and syntactical negations coincide.

While our work clarifies the setting of strategy dependences in SL, those various
semantics of SL remains to be fully understood, in particular as to which situations
are better suited for which semantics. Of course, studying the decidability and com-
plexity of model checking for the different semantics and fragments of SL[BG] is a
natural continuation of this work. Studying quantitative or epistemic extensions of
SL[EG] under the timeline semantics is also a natural direction to follow. Finally,
since our approach relies on translations to two-player parity games, our model-
checking algorithm would be a good candidate for being implemented e.g. in the tool
MCMAS.

References

1. Ågotnes, T., Goranko, V., Jamroga, W.: Alternating-time temporal logics with irrevocable strategies.
In: Samet, D. (ed.) Proceedings of the 11th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK’07), pp. 15–24 (2007)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713
(2002). https://doi.org/10.1145/585265.585270

3. Aminof, B., Malvone, V., Murano, A., Rubin, S.: Graded modalities in strategy logic. Inf. Comput.
261(4), 634–649 (2018). https://doi.org/10.1016/j.ic.2018.02.021

Theory of Computing Systems (2020) 64:46 –507 7504

https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/j.ic.2018.02.021

4. Berthon, R., Maubert, B., Murano, A., Rubin, S., Vardi, M.Y.: Strategy logic with imperfect informa-
tion. In: Proceedings of the 32th Annual Symposium on Logic in Computer Science (LICS’17), pp.
1–12. IEEE Comp. Soc. Press. https://doi.org/10.1109/LICS.2017.8005136 (2017)

5. Bouyer, P., Gardy, P., Markey, N.: Weighted strategy logic with boolean goals over one-counter
games. In: Harsha, P., Ramalingam, G. (eds.) Proceedings of the 35th Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’15), volume 45 of Leib-
niz International Proceedings in Informatics, Leibniz-Zentrum für Informatik, pp. 69–83 (2015).
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.69

6. Bouyer, P., Gardy, P., Markey, N.: On the semantics of strategy logic. Inf. Process. Lett. 116(2), 75–79
(2016). https://doi.org/10.1016/j.ipl.2015.10.004

7. Brenguier, R., Raskin, J.-F., Sankur, O.: Assume-admissible synthesis. Acta Inform. 54(1), 41–83
(2017). https://doi.org/10.1007/s00236-016-0273-2

8. Brihaye, T., Da Costa, A., Laroussinie, F., Markey, N.: ATL with strategy contexts and bounded
memory. In: Artemov, S.N., Nerode, A. (eds.) Proceedings of the International Symposium Logical
Foundations of Computer Science (LFCS’09), volume 5407 of Lecture Notes in Computer Science,
pp. 92–106. Springer (2009). https://doi.org/10.1007/978-3-540-92687-0 7

9. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: A model checker for the ver-
ification of strategy logic specifications. In: Biere, A., Bloem, R. (eds.) Proceedings of the 26th
International Conference on Computer Aided Verification (CAV’14), volume 8559 of Lecture Notes
in Computer Science, pp. 525–532. Springer (2014). https://doi.org/10.1007/978-3-319-08867-9 34

10. Čermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent systems against one-
goal strategy logic specifications. In: Bonet, B., Koenig, S. (eds.) Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI’15), pp. 2038–2044. AAAI Press (2015)

11. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. In: Caires, L., Vasconcelos, V.T. (eds.)
Proceedings of the 18th International Conference on Concurrency Theory (CONCUR’07), volume
4703 of Lecture Notes in Computer Science, pp. 59–73. Springer (2007). https://doi.org/10.1007/
978-3-540-74407-8 5

12. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-
time temporal logic. In: Kozen, D.C. (ed.) Proceedings of the 3rd Workshop on Logics of Pro-
grams (LOP’81), volume 131 of Lecture Notes in Computer Science, pp. 52–71. Springer (1982).
https://doi.org/10.1007/BFb0025774

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, New York (2000)
14. Condurache, R., Filiot, E., Gentilini, R., Raskin, J.-F., Sangiorgi, D.: The complexity of rational

synthesis. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y. (eds.) Proceedings of the 43rd Inter-
national Colloquium on Automata, Languages and Programming (ICALP’16) – Part II, volume 55 of
Leibniz International Proceedings in Informatics, pp. 121:1–121:15. Leibniz-Zentrum Für Informatik
(2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.121

15. Dima, C., Ţiplea, F.L.: Model-checking ATL under imperfect information and perfect recall semantics
is undecidable. Research Report arXiv:1102.4225 (2011)

16. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science (FOCS’91), pp. 368–377. IEEE Comp. Soc.
Press. https://doi.org/10.1109/SFCS.1991.185392 (1991)

17. Fijalkow, N., Maubert, B., Murano, A., Rubin, S.: Quantifying bounds in strategy logic. In: Ghica,
D.R., Jung, A. (eds.) Proceedings of the 27th EACSL Annual Conference on Computer Science Logic
(CSL’18), volume 119 of Leibniz International Proceedings in Informatics, pp. 23:1–23:23. Leibniz-
Zentrum Für Informatik (2018). https://doi.org/10.4230/LIPIcs.CSL.2018.23

18. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R. (eds.) Pro-
ceedings of the 16th International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’10), volume 6015 of Lecture Notes in Computer Science, pp. 190–204. Springer
(2010). https://doi.org/10.1007/978-3-642-12002-2 16

19. Gardy, P., Bouyer, P., Markey, N.: Dependences in strategy logic. In: Proceedings of the 35th
Annual Symposium on Theoretical Aspects of Computer Science (STACS’18), volume 96 of Leibniz
International Proceedings in Informatics, pp. 34:1–34:15. Leibniz-Zentrum Für Informatik (2018).
https://doi.org/10.4230/LIPIcs.STACS.2018.34

20. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of alternating-time
temporal logic. Theor. Comput. Sci. 353(1-3), 93–117 (2006)

21. Guelev, D.P., Dima, C.: Epistemic ATL with perfect recall, past and strategy contexts. In: Fisher,
M., van der Torre, L.W.N., Dastani, M., Governatori, G. (eds.) Proceedings of the 13th International

Theory of Computing Systems (2020) 64:46 –507 7 505

https://doi.org/10.1109/LICS.2017.8005136
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.69
https://doi.org/10.1016/j.ipl.2015.10.004
https://doi.org/10.1007/s00236-016-0273-2
https://doi.org/10.1007/978-3-540-92687-0_7
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-540-74407-8_5
https://doi.org/10.1007/978-3-540-74407-8_5
https://doi.org/10.1007/BFb0025774
https://doi.org/10.4230/LIPIcs.ICALP.2016.121
http://arXiv.org/abs/1102.4225
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.4230/LIPIcs.CSL.2018.23
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.4230/LIPIcs.STACS.2018.34

Workshop on Computational Logic in Multi-Agent Systems (CLIMA’12), volume 7486 of Lecture Notes
in Artificial Intelligence, pp. 77–93. Springer (2012). https://doi.org/10.1007/978-3-642-32897-8 7

22. Gutierrez, J., Harrenstein, P., Perelli, G., Wooldridge, M.: Nash equilibrium and bisimulation invari-
ance. In: Meyer, R., Nestmann, U. (eds.) Proceedings of the 28th International Conference on
Concurrency Theory (CONCUR’17), volume 85 of Leibniz International Proceedings in Informatics,
pp. 17:1–17:16. Leibniz-Zentrum Für Informatik (2017). https://doi.org/10.4230/LIPIcs.CONCUR.
2017.17

23. Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods – Proceedings of the
Symposium on Foundations of Mathematics, pp. 167–183. Pergamon Press (1961)

24. Hintikka, J., Sandu, G.: Informational independence as a semantical phenomenon. In: Fenstad, J.E.,
Frolov, I.T., Hilppinen, R. (eds.) Proceedings of the 8th International Congress of Logic, Methodology
and Philosophy of Science, volume 70 of Studies in Logic and the Foundations of Mathematics,
pp. 571–589, North-Holland (1989). https://doi.org/10.1016/S0049-237X(08)70066-1

25. Huang, X., van der Meyden, R.: An epistemic strategy logic. ACM Trans. Comput. Log. 19(4), 26:1–
26:45 (2018). https://doi.org/10.1145/3233769

26. Kupferman, O., Perelli, G., Vardi, M.Y.: Synthesis with rational environments. Ann. Math. Artif.
Intell. 78(1), 3–20 (2016). https://doi.org/10.1007/s10472-016-9508-8

27. Laroussinie, F., Markey, N.: Augmenting ATL with strategy contexts. Inf. Comput. 245, 98–123
(2015). https://doi.org/10.1016/j.ic.2014.12.020

28. Laroussinie, F., Markey, N., Oreiby, G.: On the expressiveness and complexity of ATL. Logical
Methods in Computer Science 4(2:7), 1–25 (2008). https://doi.org/10.2168/LMCS-4(2:7)2008

29. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: What makes ATL∗ decidable? A decidable frag-
ment of strategy logic. In: Koutny, M., Ulidowski, I. (eds.) Proceedings of the 23rd International
Conference on Concurrency Theory (CONCUR’12), volume 7454 of Lecture Notes in Computer
Science, pp. 193–208. Springer (2012)

30. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: On the model-
checking problem. ACM Trans. Comput. Log. 15(4), 34:1–34:47 (2014). https://doi.org/10.1145/
2631917

31. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: On the satisfiabil-
ity problem. Logical Methods in Computer Science 13(1:9), 1–37 (2017). https://doi.org/10.23638/
LMCS-13(1:9)2017

32. Mogavero, F., Murano, A., Sauro, L.: On the boundary of behavioral strategies. In: Proceedings of
the 28th Annual Symposium on Logic in Computer Science (LICS’13), pages 263–272. IEEE Comp.
Soc. Press (2013)

33. Mogavero, F., Murano, A., Sauro, L.: A behavioral hierarchy of strategy logic. In: Bulling, N., van
der Torre, L.W.N., Villata, S., Jamroga, W., Vasconcelos, W.W. (eds.) Proceedings of the 15th Interna-
tional Workshop on Computational Logic in Multi-Agent Systems (CLIMA’14), volume 8624 of Lec-
ture Notes in Artificial Intelligence, pp. 148–165. Springer (2014). https://doi.org/10.1007/978-3-319-
09764-0 10

34. Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: Lodaya, K., Mahajan,
M. (eds.) Proceedings of the 30th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’10), volume 8 of Leibniz International Proceedings in Informat-
ics, pp. 133–144. Leibniz-Zentrum Für Informatik (2010). https://doi.org/10.4230/LIPIcs.FSTTCS.
2010.133

35. Mostowski, A.: Games with forbidden positions. Research report 78 university of Danzig (1991)
36. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foun-

dations of Computer Science (FOCS’77), pp. 46–57. IEEE Comp. Soc. Press. https://doi.org/10.1109/
SFCS.1977.32 (1977)

37. Queille, J.-P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In:
Dezani-Ciancaglini, M., Montanari, U. (eds.) Proceedings of the 5th International Symposium on
Programming (SOP’82), volume 137 of Lecture Notes in Computer Science, pp. 337–351. Springer
(1982). https://doi.org/10.1007/3-540-11494-7 22

38. Väänänen, J.: Dependence Logic: A New Approach to Independence-Friendly Logic, volume 70
of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (2007).
https://doi.org/10.1017/CBO9780511611193

Theory of Computing Systems (2020) 64:46 –507 7506

https://doi.org/10.1007/978-3-642-32897-8_7
https://doi.org/10.4230/LIPIcs.CONCUR.2017.17
https://doi.org/10.4230/LIPIcs.CONCUR.2017.17
https://doi.org/10.1016/S0049-237X(08)70066-1
https://doi.org/10.1145/3233769
https://doi.org/10.1007/s10472-016-9508-8
https://doi.org/10.1016/j.ic.2014.12.020
https://doi.org/10.2168/LMCS-4(2:7)2008
https://doi.org/10.1145/2631917
https://doi.org/10.1145/2631917
https://doi.org/10.23638/LMCS-13(1:9)2017
https://doi.org/10.23638/LMCS-13(1:9)2017
https://doi.org/10.1007/978-3-319-09764-0_10
https://doi.org/10.1007/978-3-319-09764-0_10
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.133
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1017/CBO9780511611193

39. Wang, F., Huang, C.-H., Yu, F.: A temporal logic for the interaction of strategies. In: Katoen,
J.-P., König, B. (eds.) Proceedings of the 22nd International Conference on Concurrency Theory
(CONCUR’11), volume 6901 of Lecture Notes in Computer Science, pp. 466–481. Springer (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Theory of Computing Systems (2020) 64:46 –507 7 507

	Dependences in Strategy Logic
	Abstract
	Introduction
	Temporal logics
	Adding strategic interactions in temporal logics
	Understanding SL
	Our contributions
	Related works

	Definitions
	Concurrent Game Structures
	Strategy Logic with Boolean Goals
	Syntax
	Free variables
	Semantics
	Subclasses of SL[BG]

	Strategy Dependences
	Dependence maps
	Satisfaction relations
	The syntactic vs. semantic negations
	Building a turn-based parity game H from G and
	Correspondence between G and H
	Extending the correspondence
	Concluding the proof

	Timeline Dependences
	Comparison of s00224-019-09926-yflbbq.eps and s00224-019-09926-yflbbr.eps
	The syntactic vs. semantic negations

	The Fragment SL[EG]
	Semi-stable Sets
	Properties of semi-stable Sets
	Defining Quasi-orders from semi-stable Sets
	Sketch of Proof of Theorem 1
	Proof of Theorem 1
	Automata for Conjunctions of Goals
	Two Ways of Achieving Goals
	Fulfilling Optimal Sets of Goals
	Base case: |s|=1
	Induction step

	Compiling optimal maps
	Base case: |s|=1
	Induction step

	Maximality of SL[EG]

	Conclusions and Future Works
	References

