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Abstract
Entropy games and matrix multiplication games have been recently introduced by
Asarin et al. They model the situation in which one player (Despot) wishes to mini-
mize the growth rate of a matrix product, whereas the other player (Tribune) wishes
to maximize it. We develop an operator approach to entropy games. This allows us to
show that entropy games can be cast as stochastic mean payoff games in which some
action spaces are simplices and payments are given by a relative entropy (Kullback-
Leibler divergence). In this way, we show that entropy games with a fixed number
of states belonging to Despot can be solved in polynomial time. This approach also
allows us to solve these games by a policy iteration algorithm, which we compare
with the spectral simplex algorithm developed by Protasov.
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1 Introduction

1.1 Entropy Games andMatrix Multiplication Games

Entropy games have been introduced by Asarin et al. [2]. They model the situa-
tion in which two players with conflicting interests, called “Despot” and “Tribune”,
wish to minimize or to maximize a topological entropy representing the freedom of
a half-player, “People”. Entropy games are special “matrix multiplication games”, in
which two players alternatively choose matrices in certain prescribed sets; the first
player wishes to minimize the growth rate of the infinite matrix product obtained in
this way, whereas the second player wishes to maximize it. Whereas matrix multi-
plication games are hard in general (computing joint spectral radii is a special case),
entropy games correspond to a tractable subclass of multiplication games, in which
the matrix sets have the property of being invariant by row interchange, the so called
independent row uncertainty (IRU) assumption, sometimes also called row-wise or
rectangularity assumption. In particular, Asarin et al. showed in [2] that the prob-
lem of comparing the value of an entropy game to a given rational number is in NP
∩ coNP, giving to entropy games a status somehow comparable to other important
classes of games with an unsettled complexity, including mean payoff games, simple
stochastic games, or stochastic mean payoff games, see [6] for background.

Another motivation to study entropy games arises from risk sensitive control [1,
16, 17]: as we shall see, essentially the same class of operators arise in the latter set-
ting. A recent application of entropy games to the approximation of the joint spectral
radius of nonnegative matrices (without making the IRU assumption) can be found
in [21]. Other motivations originate from symbolic dynamics [32, Chapter 1.8.4].

1.2 Contribution

We first show that entropy games, which were introduced as a new class of games,
are equivalent to a class of zero-sum mean payoff stochastic games with perfect infor-
mation, in which some action spaces are simplices, and the instantaneous payments
are given by a Kullback-Leibler entropy. Hence, entropy games fit in a classical class
of games, with a “nice” payment function over infinite action spaces.

To do so, we introduce a slightly more expressive variant of the model of Asarin
et al. [2], in which the initial state is prescribed (the initial state is chosen by a
half-player, People, in the original model). This may look like a relatively minor
extension, so we keep the name “entropy game” for it, but this extension is essential
to develop an operator approach and derive consequences from it. We show that the
main results known for stochastic mean payoff games with finite actions space and
perfect information, namely the existence of the value and the existence of optimal
positional strategies, are still valid for entropy games (Theorems 10 and 9). This is
derived from a model theory approach of Bolte, Gaubert, and Vigeral [9], together
with the observation that the dynamic programming operators of entropy games are
definable in the real exponential field. Then, a key ingredient is the proof of exis-
tence of Blackwell optimal policies, as a consequence of o-minimality, see Theorem
8. Another consequence of the operator approach is the existence of Collatz-Wielandt
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optimality certificates for entropy games, Theorem 13. When specialized to the one
player case, this leads to a convex programming characterization of the value, Corol-
lary 14, which can also be recovered from a characterization of Anantharam and
Borkar [1].

Our main result, Theorem 16, shows that entropy games in which Despot has
a fixed number of significant states (states with a nontrivial choice) can be solved
strategically in polynomial time, meaning that optimal (stationary) strategies can be
found in polynomial time. Thus, entropy games are somehow similar to stochastic
mean payoff games, for which an analogous fixed-parameter tractability result holds
(by reducing the one player case to a linear program). This approach also reveals
a fundamental asymmetry between the players Despot and Tribune: our approach
does not lead to a polynomial bound if one fixes the number of states of Tribune.
In our proof, o-minimality arguments allow a reduction from the two-player to the
one-player case (Theorem 9). Then, the one-player case is dealt with using several
ingredients: ellipsoid method, separation bounds between algebraic numbers, and
results from Perron-Frobenius theory.

The operator approach also allows one to obtain practically efficient algorithms
to solve entropy games. In this way, the classical policy iteration of Hoffman-Karp
[23] can be adapted to entropy games. We report experiments showing that when
specialized to one player problems, policy iteration yields a speedup by one order of
magnitude by comparison with the “spectral simplex” method recently introduced by
Protasov [38].

Let us finally complete the discussion of related works. The formulation of entropy
games in terms of “classical” mean payoff games in which the payments are given
by a Kullback-Leibler entropy builds on known principles in risk sensitive control
[1, 17]. It can be thought as a version for two player problems of the Donsker-
Varadhan characterization of the Perron-eigenvalue [15]. The latter is closely related
to the log-convexity property of the spectral radius established by Kingman [27]. A
Donsker-Varadhan type formula for risk sensitive problems, which can be applied
in particular to Despot-free player entropy games, has been recently obtained by
Anantharam and Borkar, in a wider setting allowing an infinite state space [1]. In a
nutshell, for Despot-free problems, the Donsker-Varadhan formula appears to be the
(convex-analytic) dual of the Collatz-Wielandt formula. Chen and Han [13] devel-
oped a related convex programming approach to solve the entropy maximization
problem for Markov chains with uncertain parameters. We also note that the present
Collatz-Wielandt approach, building on [5], yields an alternative to the approach of
[2] using the “hourglass alternative” of [28] to produce concise certificates allow-
ing one to bound the value of entropy games. By comparison with [2], a essential
difference is the use of o-minimality arguments: these are needed because we study
the more precise version of the game, in which the initial state is fixed. Indeed, a
counter example of Vigeral shows that the mean payoff may not exist in such cases
without an o-minimality assumption [46], whereas the existence of the mean payoff
holds universally (without restrictions of an algebraic nature on the Shapley opera-
tor) if one allows one player to choose the initial state, see e.g. Proposition 2.12 of
[3]. Finally, the identification of tractable subclasses of matrix multiplication games
can be traced back at least to the work of Blondel and Nesterov [11].
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2 Entropy Games

An entropy game E is a perfect information game played on a finite directed weighted
graph G. There are 2 players, “Despot”, “Tribune”, and a half-player with a non-
deterministic behavior, “People”. The set of nodes of the graph is written as the
disjoint union D ∪ T ∪ P , where D, T and P represent sets of states in which
Despot, Tribune, and People play. We assume that the set of arcs E is included in
(D × T ) ∪ (T × P) ∪ (P × D), meaning that Despot, Tribune, and People alternate
their actions. A weight mpd , which is a positive real number, is attached to every arc
(p, d) ∈ P × D. All the other arcs in E have weight 1. An initial state, d̄ ∈ D, is
known to the players. A token, initially in node d̄, is moved in the graph according to
the following rule. If the token is currently in a node d belonging to D, then, Despot
chooses an arc (d, t) ∈ E and moves the token to a node t . Similarly, if the token is
currently in a node t ∈ T , Tribune chooses an arc (t, p) ∈ E and moves the token to
node p. Finally, if the token is in a node p ∈ P , People chooses an arc (p, d ′) ∈ E

and moves the token to a node d ′ ∈ D. We will assume that every player has at
least one possible action in each state in which it is his or her turn to play. In other
words, for all d ∈ D, the set of actions {(d, t) ∈ E} must be nonempty, and similar
conditions apply to t ∈ T and p ∈ P .

A history of the game consists of a finite path in the directed graph G, starting
from the initial node d̄. The number of turns of this history is defined to be the length
of this path, each arc counting for a length of one third. The weight of a history is
defined to be the product of the weights of the arcs arising on this path. For instance,
a history (d0, t0, p0, d1, t1, p1, d2, t2) where di ∈ D, ti ∈ T and pi ∈ P , makes 2
and 1/3 turn, and its weight is mp0d1mp1d2 .

A strategy of Player Despot is a map δ which assigns to every history ending in
some node d in D an arc of the form (d, t) ∈ E. Similarly, a strategy of Player
Tribune is a map τ which assigns an arc (t, p) ∈ E to every history ending with a
node t in T . The strategy δ is said to be positional if it only depends on the last node d

which has been visited and eventually of the number of turns. Similarly, the strategy
τ is said to be positional if it only depends on t and eventually of the number of turns.
These strategies are in addition stationary, if they do not depend on the number of
turns.

For every integer k, we define as follows the game in horizon k with initial state d̄,
Ek

d̄
. We assume that Despot and Tribune play according to the strategies δ, τ . Then,

People plays in a nondeterministic way. Therefore, the pair of strategies δ, τ allows
for different histories. The payment received by Tribune, in k turns, is denoted by
Rk

d̄
(δ, τ ). It is defined as the sum of the weights of all the paths of the directed graph

G of length k with initial node d̄ determined by the strategies δ and τ : each of these
paths corresponds to different successive choices of People, leading to different his-
tories allowed by the strategies δ, τ . The payment received by Despot is defined to
be the opposite of Rk

d̄
(δ, τ ), so that the game in horizon k is zero-sum. In that way,

the payment Rk

d̄
measures the “freedom” of People, Despot wishes to minimize it

whereas Tribune wishes to maximize it.
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We say that the game Ek

d̄
in horizon k with initial state d̄ has the value V k

d̄
if for all

ε > 0, there is a strategy δ∗
ε of Despot such that for all strategies τ of Tribune,

ε + V k

d̄
� Rk

d̄
(δ∗

ε , τ ) , (1)

and similarly, there is a strategy τ ∗
ε of Tribune such that for all strategies δ of Despot,

Rk

d̄
(δ, τ ∗

ε ) � V k

d̄
− ε . (2)

The strategies δ∗
ε and τ ∗

ε are said to be ε-optimal. In other words, Despot can make
sure his loss will not exceed V k

d̄
+ ε by playing δ∗

ε , and Tribune can make sure to

win at least V k

d̄
− ε by playing τ ∗

ε . The strategies δ∗ and τ ∗ are optimal if they are
0-optimal, i.e., if we have the saddle point property:

Rk

d̄
(δ, τ ∗) � Rk

d̄
(δ∗, τ ∗) = V k

d̄
� Rk

d̄
(δ∗, τ ) , (3)

for all strategies δ, τ of Despot and Tribune. If the value V k

d̄
exists for all choices

of the initial state d̄, we define the value vector of the family of games (Ek
d )d∈D in

horizon k, to be V k := (V k
d )d∈D ∈ R

D .
We now define the infinite horizon game E∞̄

d
, in which the payment received by

Tribune is given by
R∞̄

d
(δ, τ ) := lim sup

k→∞
(Rk

d̄
(δ, τ ))1/k

and the payment received by Despot is the opposite of the latter payment. (The choice
of limsup is somehow arbitrary, we could choose liminf instead without affecting
the results which follow.) The value V ∞̄

d
of the infinite horizon game E∞̄

d
, and the

optimal strategies in this game, are still defined by a saddle point condition, as in (1),
(2) and (3), the payment Rk

d̄
(δ, τ ) being now replaced by R∞̄

d
(δ, τ ).

We denote by V ∞ = (V ∞
d )d∈D ∈ R

D the value vector of the infinite horizon
games (E∞

d )d∈D .
We associate to the latter games the dynamic programming operator F : RD →

R
D , such that, for all X ∈ R

D , and d ∈ D,

Fd(X) = min
(d,t)∈E

max
(t,p)∈E

∑

(p,d ′)∈E

mpd ′Xd ′ . (4)

To relate this operator with the value of the above finite or infinite horizon games, we
shall interpret these games as zero-sum stochastic games with expected multiplica-
tive criteria. The one-player case was studied in particular by Howard and Matheson
under the name of risk-sensitive Markov decision processes [24] and by Rothblum
under the name of multiplicative Markov decision processes, see for instance [40].

For any node p ∈ P , we denote by Ep := {(p, d) ∈ E} the set of actions available
to People in state p, and we denote by qp the probability measure on Ep obtained by
normalizing the restriction of the weight function m to Ep: qpd = mpd/γ (p) with
γ (p) = ∑

(p,d ′)∈Ep
mpd ′ . Then, F can be rewritten as

Fd(X) = min
(d,t)∈E

max
(t,p)∈E

⎛

⎝γ (p)
∑

(p,d ′)∈E

qpd ′Xd ′

⎞

⎠ .
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A pair of strategies δ and τ of both players, determine the stochastic process
(Dk, Tk, Pk)k�0 with values in D × T × P , such that P(Dk+1 = d ′ | H) = qpd ′ for
all d ′ ∈ D and all histories H having k − 1/3 turns and ending in p ∈ P , and such
that the transitions from D to T and T to D are deterministicaly determined by the
strategies δ and τ respectively as in the above description of the entropy games E .
Then, the payoff of the entropy game with horizon k starting in d̄, Ek

d̄
, is equal to the

following expected multiplicative/ risk-sensitive criterion:

Rk

d̄
(δ, τ ) = E

(
γ (P0) · · · γ (Pk−1) | D0 = d̄

)
.

Proposition 1 The value of the entropy game in horizon k with initial state d, Ek
d ,

does exists. The value vector V k of this game is determined by the relations V 0 = e,
V k = F(V k−1), k = 1, 2, . . . , where e is the unit vector (1, ..., 1)	 ofRD . Moreover,
there exist optimal strategies for Despot and Tribune that are positional.

Proof This result follows from a classical dynamic programming argument. Indeed,
in the one player case, that is when there is only one choice of δ or one choice of
τ , that is when the operator F contains only a “min” or a “max”, the game is in the
class of Markov Decision Problems with multiplicative criterion and the Dynamic
Programming Principle has already been proved in this setting in [24, 40], see also
[47, Th. 1.1, Chap 11]. This shows that the game has a value which satifies V k =
F(V k−1) and V 0 = e, and that an optimal strategy is obtained using these equations.
For instance for a “max” (when Despot has only one choice), Tribune chooses any
action (t, p) attaining the maximum in

max
(t,p)∈E

∑

(p,d ′)∈E

mpd ′V k−1
d ′ = max

(t,p)∈E

⎛

⎝γ (p)
∑

(p,d ′)∈E

qpd ′V k−1
d ′

⎞

⎠ .

The resulting strategy τ ∗ is positional and it is optimal among all strategies τ . A
similar result holds for a “min”, leading to a positional strategy δ∗ for Despot.

Let us now consider the general two-player case. Define the sequence of vectors
V k by

V k
d = min

(d,t)∈E
max

(t,p)∈E

∑

(p,d ′)∈E

mpd ′V k−1
d ′ . (5)

with V 0
d = 1, for all d ∈ D. We construct candidate strategies δ∗ and τ ∗, depending

on the current position and number of turns, as follows. In state d, if there remains
k turns to be played, Despot selects an action (d, t) achieving the minimum in (5).
We denote by δ∗(d, k) the value of t such that (d, t) is selected. In state t , if there
remains k − 1/3 turns to be played, Tribune chooses any action (t, p) attaining the
maximum in

max
(t,p)∈E

∑

(p,d ′)∈E

mpd ′V k−1
d ′ .

Now, if Player Despot plays according to δ∗, we obtain a reduced one player game.
It follows from the same dynamic programming principle as above (applied here to
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time dependent transition probabilities q and factors γ (·)) that the value vector V δ∗,k

of this reduced game in horizon k does exist and satisfies the recursion

V
δ∗,k
d = max

(δ∗(d,k),p)∈E

⎛

⎝γ (p)
∑

(p,d ′)∈E

qpd ′V δ∗,k−1
d ′

⎞

⎠ ,

with V
δ∗,0
d = 1, for all d ∈ D. Since V δ∗,k is the value, we have V

δ∗,k
d � Rk

d(δ∗, τ )

for all strategies τ of Tribune. Noting that V
δ∗,k
d = V k

d by definition of δ∗, we deduce
that Despot, by playing δ∗, can guarantee that his loss in the horizon k game starting
from state d will not exceed V k

d . A dual argument shows that by playing τ ∗, Tribune
can guarantee that his win will be at least V k

d .

Example 1 Consider the entropy game whose graph and dynamic programming
operator are given by:

For readability, the states of Despot are shown twice on the picture. Here, D =
{d1, d2, d3}, T = {t1, t2, t3, t4}, P = {a, b, c, d}, E = {(d1, t1), (d1, t2), (d2, t2),
(d3, t3), (d3, t4), (t1, a), (t2, a), (t2, b), (t3, c), (t3, d), (t4, c), (a, d1), (b, d2), (b, d3),
(c, d2), (d, d2), (d, d3)}, and all the weights are equal to 1, i.e., mpdi

= 1 for all
p ∈ P and 1 � i � 3 such that (p, di) ∈ E.

One can check that V k = (1, φk+1, φk), where φ0 = φ1 = 1 and φk+2 = φk +
φk+1 is the Fibonacci sequence. As an application of Theorem 10 below, it can be
checked that the value vector of this entropy game is V ∞ = (1, ϕ, ϕ) where ϕ :=
(1 + √

5)/2 is the golden mean.

3 Stochastic Mean Payoff Games with Kullback-Leibler Payments

We next show that entropy games are equivalent to a class of stochastic mean pay-
off games in which some action spaces are simplices, and payments are given by a
Kullback-Leibler divergence.

To the entropy game E , we associate a stochastic zero-sum game with Kullback-
Leibler payments, denoted KL and defined as follows, referred to as “Kullback-
Leibler game” for brevity. This new game is played by the same players, Despot,
and Tribune, on the same weighted directed graph G (so with same sets E,P,D and
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same weight function m). The nondeterministic half-player, People, will be replaced
by a standard probabilistic half-player, Nature.

For any node p ∈ P , recalling that Ep := {(p, d) ∈ E} is the set of actions
available to People in state p, we denote by �p the set of probability measures on
Ep. Therefore, an element of �p can be identified to a vector ϑ = (ϑpd)(p,d)∈Ep

with nonnegative entries and sum 1. The admissible actions of Despot and Tribune in
the states d ∈ D and t ∈ T are the same in the game KL and in the entropy game E .
However, the two games have different rules when the state p ∈ P belongs to the set
of People’s states. Then, Tribune is allowed to play again, by selecting a probability
measure ϑ ∈ �p; in other words, Tribune plays twice in a row, selecting first an
arc (t, p) ∈ E, and then a measure ϑ ∈ �p. Then, Nature chooses the next state d

according to probability ϑpd , and Tribune receives the payment −Sp(ϑ; m), where
Sp(ϑ; m) is the relative entropy or Kullback-Leibler divergence between ϑ and the
measure obtained by restricting the weight function m to Ep:

Sp(ϑ; m) :=
∑

(p,d)∈Ep

ϑpd log(ϑpd/mpd) . (6)

Therefore, using the notations of Section 2, we get that

Sp(ϑ; m) = − log γ (p) +
∑

(p,d)∈Ep

ϑpd log(ϑpd/qpd)

is minimal when the chosen probability distribution ϑ on Ep is equal to the proba-
bility distribution qp of the transitions from state p in the stochastic game defined in
Section 2. Recall that relative entropy is related to information theory and statistics
[30]. An interesting special case arises when m ≡ 1, as in [2], thus qp is the uniform
distribution on Ep. Then, Sp(ϑ; m) = Sp(ϑ) := ∑

(p,d)∈Ep
ϑpd log ϑpd is nothing

but the Shannon entropy of ϑ .
A history in the game KL now consists of a finite sequence (d0, t0, p0, ϑ0, d1,

t1, p1, . . . ), which encodes both the states and actions which have been chosen. A
strategy δ of Despot is still a function which associates to a history ending in a state
in d an arc (d, t) in E. A strategy of Tribune has now two components (τ, π), τ is
a map which assigns to a history ending in a state in t an arc (t, p) ∈ E, as before,
whereas π assigns to the same history and to the next state p chosen according to τ

a probability measure on �p.
To each history corresponds a path in G, obtained by ignoring the occurrences

of probability measures. For instance, the path corresponding to the history h =
(d0, t0, p0, ϑ0, d1, t1, p1) is (d0, t0, p0, d1, t1, p1). Again, the number of turns of a
history is defined as the length of this path, each arc counting for 1/3. So the number
of turns of h is 1 and 2/3. Choosing strategies δ and (τ, π) of both players and fixing
the initial state d0 = d̄ determines a probability measure on the space of histories h.
We denote by

rk

d̄
(δ, (τ, π)) := −E

(
Sp0(ϑ0; m) + · · · + Spk−1(ϑk−1; m)

)

the expectation of the payment received by Tribune, in k turns, with respect to this
measure, where Sp is as in (6) and m is the weight function of the graph of the



Theory of Computing Systems (2019) 63:1089–1130 1097

game. We denote by vk

d̄
the value of the game in horizon k, with initial state d̄, and

we denote by vk = (vk
d)d∈D the value vector. As in the case of entropy games, we

shall use subscripts and superscripts to indicate special versions of the game, e.g.,
KLk

d refers to the game in horizon k with initial state d. Note also our convention to
use lowercase letters (as in vk

d ) to refer to the game with Kullback-Leibler payments,
whereas we used uppercase letters (as in V k

d ) to refer to the entropy game.
It will be convenient to consider more special games in which the actions of one of

the players are restricted. We will call policy of Despot a stationary positional strategy
of this player, i.e., a map which assigns to every node d ∈ D a node δ(d) = t ∈ T

such that (d, t) ∈ E. Similarly, we will call policy of Tribune a map which assigns
to every node t ∈ T a node τ(t) = p ∈ P such that (t, p) ∈ E. Observe, in this
definition of policy, the symmetry between Despot and Tribune, while the game is
asymetric: the policy τ is not enough to determine a positional strategy of Tribune,
because the probability distribution at every state p ∈ P is not specified by the policy
τ . The set of policies of Despot and Tribune are denoted by PD and PT , respectively.

If one fixes a policy δ of Despot, we end up with a reduced game KLk(δ, ∗) in
which only Tribune has actions. We denote by vk(δ, ∗) = (vk

d(δ, ∗))d∈D ∈ R
D the

value vector of this game in horizon k. Similarly, if one fixes a policy τ of Tribune,
we obtain a reduced game denoted by KLk(∗, (τ, ∗)), in which Despot plays when
the state is in D, Tribune selects an action according to the policy τ when the state
is in T , and Tribune plays when the state is in P . The value vector of this reduced
game is denoted by vk(∗, (τ, ∗)) = (vk

d(∗, (τ, ∗)))d∈D ∈ R
D . We also denote by

vk(δ, (τ, ∗)) = (vk
d(δ, (τ, ∗)))d∈D ∈ R

D the value of the reduced game in which
both policies δ of Despot and τ of Tribune are fixed, which means that only Tribune
plays when the state is in P . The systematic character of notation used here should be
self explanatory: the symbol ∗ refers to the actions which are not fixed by the policy.

We also consider the infinite horizon or mean payoff game KL∞, in which the
payment of Tribune is now

r∞̄
d

(δ, (τ, π)) := lim sup
k→∞

k−1rk

d̄
(δ, (τ, π)) .

For 0 < α < 1, we also consider the discounted game αKL with a discount factor α,
in which the payment of Tribune is

αrd̄ (δ, (τ, π)) := −E

(
Sp0(ϑ0; m) + αSp1(ϑ1; m) + α2Sp2(ϑ2; m) + · · ·

)

The value of the mean payoff game is denoted by v∞̄
d

, whereas the value of
the discounted game is denoted by αvd̄ . As above, we denote by KL∞(δ, ∗) and
KL∞(∗, (τ, ∗)) the games restricted by the choice of policies δ, τ , and use an anal-
ogous notation for the corresponding value vectors. For instance, αv(∗, (τ, ∗)) refers
to the value vector of the game αKL(∗, (τ, ∗)) with a discount factor α. We define the
notion of value, as well as the notion of optimal strategies, by saddle point conditions,
as in Section 2.

The following dynamic programming principle entails that the value of the
stochastic game with Kullback-Leibler payments in horizon k is the log of the value
of the entropy game.
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Proposition 2 The value vector vk = (vk
d)d∈D of the Kullback-Leibler game in

horizon k does exist. It is determined by the relations v0 = 0, vk = f (vk−1),
k = 1, 2, . . ., where

fd(x) = min
(d,t)∈E

max
(t,p)∈E

log

⎛

⎝
∑

(p,d ′)∈E

mpd ′ exp(xd ′)

⎞

⎠ , (7)

and we have vk
d = log V k

d .

In order to prove Proposition 2, we recall the following classical result in convex
analysis showing that the “log-exp”function is the Legendre-Fenchel transform of
Shannon entropy.

Lemma 3 The function x �→ log(
∑

1�i�n exi ) is convex and it satisfies

log

⎛

⎝
∑

1�i�n

exi

⎞

⎠ = max
∑

1�i�n

ϑi(xi−log ϑi); ϑi � 0, 1 � i � n,
∑

1�i�n

ϑj = 1 .

This result is mentioned in [42], Example 11.12. This convexity property is a spe-
cial instance of the general fact that the log of the Laplace transform of a positive
measure is convex (which follows from the Cauchy-Schwarz inequality), whereas the
explicit expression as a maximum follows from a straightforward computation (apply
Lagrange multipliers rule).

Proof of Proposition 2 For a zero-sum game with finite horizon and additive cri-
terion, the existence of the value is a standard fact, proved in a way similar to
Proposition 1. The value vector vk satisfies the following dynamic programming
equation

vk
d = min

(d,t)∈E
max

(t,p)∈E
max
ϑ∈�p

(−Sp(ϑ; m) + 〈ϑ, vk−1〉) , (8)

where 〈ϑ, x〉 = ∑
(p,d ′)∈Ep

ϑpd ′xd ′ for x ∈ R
D , and v0

d = 0. By Lemma 3,

log

⎛

⎝
∑

(p,d ′)∈E

mpd ′ exp(xd ′)

⎞

⎠ = log

⎛

⎝
∑

(p,d ′)∈Ep

exp(xd ′ + log mpd ′)

⎞

⎠

= max
ϑ∈�p

∑

(p,d ′)∈Ep

ϑpd ′(xd ′ + log mpd ′ − log ϑpd ′)

= max
ϑ∈�p

(−Sp(ϑ; m) + 〈ϑ, x〉)

and so, (8) can be rewritten as vk = f (vk−1) where f is given by (7). Observe
that the operator f is the conjugate of the operator F of the original entropy game:
f = log ◦F ◦ exp. It follows that vk = f k(v0) = log Fk(V 0) = log V k , where for
a vector Y ∈ (R∗+)D the notation ‘ log(Y )′ denotes the vector (log(Yi))1�i�D , and
exp := log−1.
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The map f arising in (7) is obviously order preserving and it commutes with the
addition of a constant, meaning that f (x+λe) = f (x)+λe where e is the unit vector
(1, ..., 1)	 of RD , and λ ∈ R. Any map with these two properties is nonexpansive
in the sup-norm, meaning that ‖f (x) − f (y)‖∞ � ‖x − y‖∞, see [14]. Hence, the
map x �→ f (xα) has a unique fixed point. For discounted games, the existence of
the value and of optimal positional strategies is a known fact:

Proposition 4 The discounted game αKL with discount factor 0 < α < 1 has a
value and it admits optimal strategies that are positional and stationary. The value
vector αv is the unique solution of αv = f (αvα).

Proof The existence and the characterization of the value are standard results, see
e.g. the discussion in [36]. It is also known that the optimal strategies are obtained by
selecting actions of the player attaining the minimum and maximum when evaluating
every coordinate of f (αvα), in a way similar to the proof of Proposition 1, V k−1

there being replaced by αv. Since αv does not depend on the number of turns, the
optimal strategies are also stationary.

Nonexpansive maps can be considered more generally with respect to an arbitrary
norm. In this setting, the issue of the existence of the limit of vk/k = f k(v0)/k as
k → ∞, and of the limit of (1 − α)(αv), as α → 1−, where αv is the unique fixed
point of x �→ f (xα), has received much attention. The former limit is sometimes
called escape rate vector. Nonexpansiveness implies that the set of accumulation
points of the sequence vk/k is independent of the choice of v0, but it does not suffice
to establish the existence of the limit; some additional “tameness” condition on the
map f is needed. Indeed, a result of Neyman [36], using a technique of Bewley and
Kohlberg [10], shows that the two limits limk→∞ f k(v0)/k and limα→1−(1−α)αv do
exist and coincide if f is semi-algebraic. More generally, Bolte, Gaubert and Vigeral
[9] showed that the same limits still exist and coincide if the nonexpansive mapping
f is definable in an o-minimal structure. A counter example of Vigeral shows that
the latter limit may not exist, even if the action spaces are compact and the payment
and transition probability functions are continuous, so the o-minimality assumption
is essential in what follows [46].

In order to apply this result, let us recall the needed definitions, referring to [44,
45] for background. An o-minimal structure consists, for each integer n, of a family
of subsets of Rn. A subset of Rn is said to be definable with respect to this structure
if it belongs to this family. It is required that definable sets are closed under the
Boolean operations, under every projection map (elimination of one variable) from
R

n to R
n−1, and under the lift, meaning if A ⊂ R

n is definable, then A ×R ⊂ R
n+1

and R×A ⊂ R
n+1 are also definable. It is finally required that when n = 1, definable

subsets are precisely finite unions of intervals. A function f from R
n to R

k is said to
be definable if its graph is definable.

An important example of o-minimal structure is the real exponential field Ralg,exp.
The definable sets in this structure are the subexponential sets [45], i.e., the images
under the projection maps R

n+k → R
n of the exponential sets of Rn+k , the latter
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being sets of the form {x | P(x1, . . . , xn+k, e
x1 , . . . , exn+k ) = 0} where P is a real

polynomial. A theorem of Wilkie [48] implies that Ralg,exp is o-minimal, see [45].
Observe in particular that the set {x ∈ R

2 | x1 � x2} is definable in this structure,
being the projection of {x ∈ R

3 | x2−x1 = x2
3}. Using the o-minimal character of this

structure, this implies that definable maps are stable by the operations of pointwise
maximum and minimum. We deduce the following key fact.

Fact 5 The dynamic programming operator f of the Kullback-Leibler game, defined
by (7), is definable in the real exponential field.

Theorem 6 ([9]) Let f : Rn → R
n be nonexpansive in any norm, and suppose that

f is definable in an o-minimal structure. Then,

lim
k→∞ f k(0)/k

does exists, and it coincides with

lim
α→1−(1 − α)αv .

Corollary 7 Let vk = (vk
d)d∈D be the value vector in horizon k of the stochastic

game with Kullback-Leibler payments, KLk , and for 0 < α < 1, let αv denote the
value vector of the discounted game αKL with discount factor 0 < α < 1. Then
limk→∞ vk/k does exist and it coincides with limα→1−(1 − α)(αv).

Proof We already noted that the map f in (7) is nonexpansive in the sup-norm. It is
definable in the real exponential field. So Theorem 6 can be applied to it.

Corollary 7 will allow us to establish the existence of the value of the mean pay-
off game, and to obtain optimal strategies, by considering the discounted game, for
which, as noted in Proposition 4, the existence of the value and of optimal policies
are already known.

Let us recall that a strategy in a discounted game is said to be Blackwell optimal
if it is optimal for all discount factors sufficiently close to one. The existence of
Blackwell optimal positional strategies is a basic feature of perfect information zero-
sum stochastic games with finite action spaces (see [39, Chap. 10] for the one-player
case, the two-player case builds on similar ideas, e.g. [18, Lemma 26]). We next show
that this result has an analogue for entropy games. To get a Blackwell type optimality
result, we need to restrict to a setting with finitely many positional strategies. Recall
that PD (resp. PT ) denotes the set of policies of Despot (resp. Tribune). We also
recall our notation v∞(δ, ∗) for the value of the mean payoff game KL∞(δ, ∗) in
which Despot plays according to the policy δ.

We define the projection of a pair of strategies (δ, (τ, π)) in the game KL to be
the strategy (δ, τ ) in the game E . In the present setting, it is appropriate to say that
a pair of policies (δ, τ ) ∈ PD × PT is Blackwell optimal if there is a real number
0 < α0 < 1 such that, for all α ∈ (α0, 1), (δ, τ ) is the projection of a pair of optimal
strategies (δ, (τ, π)) in the discounted game αKL.
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Theorem 8 The family of discounted Kullback-Leibler games (αKL)α∈(0,1) has
positional Blackwell optimal strategies.

Proof For all α ∈ (0, 1), the discounted game has positional optimal strategies
δ∗, (τ ∗, π∗). This follows from the standard dynamic programming argument men-
tioned in the proofs of Proposition 1 and 4, noting that δ∗(d) is obtained by choosing
any t ∈ T such that (d, t) ∈ E attains the minimum in the expression

αvd = min
(d,t)∈E

max
(t,p)∈E

max
ϑ∈�p

(−Sp(ϑ; m) + 〈ϑ, α(αv)〉) .

Similarly, τ ∗(t) is chosen to be any p ∈ P such that (t, p) ∈ E attains the
maximum in

max
(t,p)∈E

max
ϑ∈�p

(−Sp(ϑ; m) + 〈ϑ, α(αv)〉) ,

and π∗(p) is chosen to be the unique action ϑ attaining the maximum in

max
ϑ∈�p

(−Sp(ϑ; m) + 〈ϑ, α(αv)〉)

(observe that the function to be maximized is strictly concave and continuous on �p,
and that �p is compact and convex, so the maximum is achieved at a unique point).

By definition of the value and of optimal strategies, we have, for all strategies δ

and (τ, π) of Despot and Tribune respectively,

αrd(δ∗, (τ, π)) � αvd = αrd(δ∗, (τ ∗, π∗)) � αrd(δ, (τ ∗, π∗)) , (9)

which is equivalent to

αvd = αrd(δ∗, (τ ∗, π∗)) = αvd(δ∗, ∗) = αvd(∗, (τ ∗, π∗)) . (10)

Specializing the first inequality in (9) to τ = τ ∗, and bounding above the last term,
we deduce that, for all for all strategies δ and τ of Despot and Tribune respectively,
we have

αv(δ∗, (τ, ∗)) � αvd = αv(δ∗, (τ ∗, ∗)) � αv(δ, (τ ∗, ∗)) , (11)

where αvd(δ, (τ, ∗)) is the value of the reduced discounted 1-player discounted game
αKL(δ, (τ, ∗)) starting at d ∈ D, in which the (not necessarily positional) strategies
δ of Despot and τ of Tribune are fixed. The inequalities (11) can be specialized in
particular to policies δ ∈ PD and τ ∈ PT . Then, by Proposition 4, αv(δ, (τ, ∗)) is the
unique fixed point of the self-map x �→ τ f δ

d (xα) of RD , where τ f δ is the dynamic
programming operator given by

τ f δ
d (x) = log

⎛

⎝
∑

(τ◦δ(d),d ′)∈E

mτ◦δ(d),d ′ exp(xd ′)

⎞

⎠ . (12)

It follows that the map α �→ αv(δ, (τ, ∗)) is definable in the real exponential field
Ralg,exp. (To see this, observe that, by Fact 5, the set {(x, y) | x = τ f δ

d (y)} × R is
definable in this structure; then, taking the intersection of this set with the definable
sets {(x, y, α) | yd = xdα}, for d ∈ D, and projecting the intersection keeping only
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the x and α variables, we obtain a definable set which is precisely the graph of the
map �→ αv(δ, (τ, ∗))).

For all (δ̄, τ̄ ) ∈ PD × PT , let I (δ̄, τ̄ ) denote the set of α ∈ (0, 1) such that

αv(δ̄, (τ, ∗)) � αv(δ̄, (τ̄ , ∗)) � αv(δ, (τ̄ , ∗)) (13)

holds for all (δ, τ ) ∈ PD × PT . Since the saddle point property (11) holds for all α

(δ∗ and τ ∗ depend on α, of course), we have

∪(δ̄,τ̄ ) I (δ̄, τ̄ ) = (0, 1) . (14)

Observe that the set I (δ̄, τ̄ ) is a subset of R definable in the real exponential field,
which is o-minimal. It follows that I (δ̄, τ̄ ) is a finite union of intervals. Hence, (14)
provides a covering of (0, 1) by finitely many intervals, and so, one of the sets I (δ̄, τ̄ )

must include an interval of the form (1 − ε, 1).
To show that the policies δ̄, τ̄ obtained in this way are Blackwell optimal, it

remains to show that if (δ̄, τ̄ ) satisfies (13) for some α, then it is the projection of a
pair of optimal strategies (δ̄, (τ̄ , π̄)) in the discounted game αKL. For this, we shall
apply the existence of optimal strategies that are positional and the resulting (10) and
(11) to the reduced games αKL(δ̄, ∗) and αKL(∗, (τ̄ , ∗)), respectively.

The first game leads to the existence of positional stationary strategies τ 1, π1 of
Tribune such that, for all d ∈ D,

αvd(δ̄, ∗) = αrd(δ̄, (τ 1, π1)) = αv(δ̄, (τ 1, ∗)) .

Then, using (13), we get that αv(δ̄, (τ̄ , ∗)) � αv(δ̄, (τ 1, ∗)) = αvd(δ̄, ∗) �
αv(δ̄, (τ̄ , ∗)), hence the equality αv(δ̄, (τ̄ , ∗)) = αvd(δ̄, ∗).

The second one leads to the existence of positional stationary strategies δ2, π2 of
Despot and Tribune respectively such that, for all d ∈ D,

αvd(∗, (τ̄ , ∗)) = αrd(δ2, (τ̄ , π2)) = αvd(δ2, (τ̄ , ∗)) = αvd(∗, (τ̄ , π2)) .

Then, using (13), we deduce that αvd(δ̄, (τ̄ , ∗)) � αvd(δ2, (τ̄ , ∗)) =
αvd(∗, (τ̄ , π2)) � αvd(δ̄, (τ̄ , π2)) � αvd(δ̄, (τ̄ , ∗)), hence the equality
αvd(δ̄, (τ̄ , ∗)) = αvd(∗, (τ̄ , π2)) = αvd(δ̄, (τ̄ , π2)). With the equality proved
with the first game, this leads to αvd(δ̄, ∗) = αv(δ̄, (τ̄ , ∗)) = αvd(δ̄, (τ̄ , π2)) =
αvd(∗, (τ̄ , π2)). This shows that (δ̄, (τ̄ , π2)) is a pair of optimal strategies for the
discounted game αKL. Since (δ̄, τ̄ ) is its projection, we get that it is Blackwell
optimal.

Theorem 9 The value v∞ of the stochastic mean payoff game with Kullback-Leibler
payments does exist, and it coincides with limk→∞ vk/k = limα→1−(1 − α)(αv).
For all (δ, τ ) ∈ PD × PT , the same properties hold for the values v∞(δ, ∗) and
v∞(∗, (τ, ∗)) of the reduced games in which Despot plays according to δ when the
state is in D and Tribunes plays according to τ when the state is in T , respectively.
Moreover, the Blackwell optimal strategies (δ∗, τ ∗) ∈ PD×PT of Corollary 8 satisfy,
for all d ∈ D,

v∞
d = v∞

d (δ∗, (τ ∗, ∗)) = v∞
d (δ∗, ∗) = v∞

d (∗, (τ ∗, ∗)) . (15)
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In particular,

v∞
d = min

δ∈PD

v∞
d (δ, ∗) = max

τ∈PT

v∞
d (∗, (τ, ∗)) .

Proof We already noted in Corollary 7 that

lim
k→∞ vk/k = lim

α→1−(1 − α)(αv) . (16)

Moreover, it is shown in [9, Corollary 2, (iii)], as a consequence of a theorem of
Mertens and Neyman [34], that this limit coincides with the value of the game. These
results rely on the definable and sup-norm nonexpansive character of the dynamic
programming operator f . The dynamic programming operator f δ , associated to the
reduced game determined by the strategy δ ∈ PD can be written as

f δ
d (x) := max

(δ(d),p)∈E
log

⎛

⎝
∑

(p,d ′)∈E

mpd ′ exp(xd ′)

⎞

⎠ . (17)

It is definable and sup-norm nonexpansive, hence the same conclusions apply to the
game KL(δ, ∗), i.e,

lim
k→∞ vk(δ, ∗)/k = lim

α→1−(1 − α)(αv(δ, ∗)) (18)

is the value of the game KL∞(δ, ∗). We argue in the same way for the game
KL(∗, (τ, ∗)), noting that the associated dynamic programming operator is now

τ fd(x) := min
(d,t)∈E

log

⎛

⎝
∑

(τ (t),d ′)∈E

mτ(t)d ′ exp(xd ′)

⎞

⎠ . (19)

which is still definable and sup-norm nonexpansive. Hence,

lim
k→∞ vk(∗, (τ, ∗))/k = lim

α→1−(1 − α)(αv(∗, (τ, ∗))) (20)

is the value of the game KL∞(∗, (τ, ∗)).
Let δ∗, τ ∗ denote the positional Blackwell optimal strategies constructed in Corol-

lary 8. By definition, there is an interval (α0, 1) such that for all α ∈ (α0, 1), there
exists π∗ depending on α such that

αv = αv(δ∗, (τ ∗, π∗)) = αv(δ∗, ∗) = αv(∗, (τ ∗, π∗))
which by (11) leads to

αv = αv(δ∗, ∗) = αv(∗, (τ ∗, ∗)) = αv(δ∗, (τ ∗, ∗)) . (21)

Multiplying these expressions by (1 − α), passing to the limit, and using (16), (18)
and (20), we obtain (15).

Remark 1 Corollary 9 shows that Player Despot has an optimal positional strategy
δ∗ in the mean payoff Kullback-Leibler game. It also shows that in the same game,
the actions of Player Tribune at states t ∈ T can be chosen according to the optimal
positional strategy τ ∗. This theorem does not imply, however, that at every state p ∈
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P , the optimal action ϑ ∈ �p can be chosen optimally according to a positional
strategy π . Indeed, the proof by an o-minimality argument uses in an essential way
the fact that there are finite actions spaces at every states d and t , whereas �p is
infinite. We leave for further investigation the question of the existence of such a
positional strategy, noting that it is not needed in the application to entropy games.

Remark 2 It is shown in [9, Corollary 2, (iii)], as a consequence of a theorem of
Mertens and Neyman [34], that a stochastic game with a definable Shapley operator
has a uniform value, a property which is stronger than the mere existence of the value.
Loosely speaking, a stochastic game with initial state d is said to have a uniform
value v∞

d if both players can almost guarantee v∞
d provided that the length of the k-

stage game is large enough. In the present setting, we get the following property: for
any ε > 0, there is a couple of strategies of (δ, (τ, π)) and a time K such that, for
every k � K , every starting state d and every strategies δ′ and (τ ′, π ′),

rk
d (δ, τ ′, π ′)/k � v∞

d + ε, rk
d (δ′, τ, π)/k � v∞

d − ε .

4 Application to the Entropy GameModel

4.1 Existence of Optimal Positional Strategies in the Entropy Game

As an application of Corollary 9, we obtain the existence of optimal positional
strategies in the entropy game model of Section 2.

Theorem 10 The infinite horizon entropy game has a value and it has optimal posi-
tional strategies, namely the Blackwell optimal strategies (δ∗, τ ∗) ∈ PD × PT of
Corollary 8. Moreover, for all initial states d,

V ∞
d = lim

k→∞

(
V k

d

)1/k

.

Proof By Proposition 1, V k = F(V k−1) where F is as in (4). Moreover, F =
exp ◦f ◦log is the conjugate of the dynamic programming operator f of the Kullback-
Leibler game introduced in (7). Corollary 7 shows that v∞ = limk→∞ vk/k does
exists. It follows that V ∞

d := limk→∞(V k
d )1/k = exp(v∞

d ) does exist for all d ∈ D.
Let (δ∗, τ ∗) denote the Blackwell optimal strategies given by Corollary 8. We

showed in Corollary 9 that v∞ = v∞(δ∗, ∗), and by Corollary 7, we have

v∞(δ∗, ∗) = lim
k→∞ vk(δ∗, ∗)/k .

Using the dynamic programming principle for finite horizon 1-player games,
or equivalently, by applying Proposition 2 to the reduced finite horizon game
KLk(δ∗, ∗), we obtain that

vk(δ∗, ∗)/k = (f δ∗
)k(0)/k ,
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where for all δ, f δ is the dynamic programming operator defined in (17) associated
to the reduced game KL(δ, ∗). Consider now the conjugate Fδ := exp ◦f δ ◦ log, so
that

Fδ
d (X) := max

(δ(d),p)∈E

⎛

⎝
∑

(p,d ′)∈E

mpd ′Xd ′

⎞

⎠ . (22)

By Proposition 1, for all strategies τ of Tribune, non necessarily positional, and all
initial states d ∈ D, we have

Rk
d(δ∗, τ ) � [(F δ∗

)k(e)]d .

Applying all the above equalities and inequalities, we deduce that

lim sup
k→∞

(Rk
d(δ∗, τ ))1/k � lim

k→∞[(F δ∗
)k(e)]1/k

d = exp(v∞
d ) = V ∞

d ,

so Player Despot can guarantee his loss does not exceed V ∞
d by playing δ∗.

Let us now consider the reduced infinite horizon or finite horizon entropy and
Kullback-Leibler games in which the strategy of Tribune is fixed and equal to τ ∗. By
the same arguments as above, we show that the positional strategy τ ∗ guarantees to
Player Tribune to win at least V ∞

d in the entropy game. Indeed, applying successively
Corollary 9 and Proposition 2, we deduce

v∞ = v∞(∗, (τ ∗, ∗)) = lim
k→∞ vk(∗, (τ ∗, ∗))/k = lim

k→∞(τ
∗
f )k(0)/k ,

where, for all τ , τ f is as in (19). Then, considering the conjugate τF := exp ◦τ f ◦log,
so that, for all τ ,

τFd(X) := min
(d,t)∈E

⎛

⎝
∑

(τ (t),d ′)∈E

mτ(t)d ′Xd ′

⎞

⎠ , (23)

and applying Proposition 2 and 1, we deduce that

V ∞
d = lim

k→∞(τ
∗
Fd)k(e)1/k � lim inf

k→∞ Rk
d(δ, τ ∗)1/k ,

for all strategies δ of Despot, non necessarily positional, and all initial states d ∈ D.
So Player Tribune can win at least V ∞

d by playing τ ∗.

4.2 Comparison with the Original Entropy GameModel

The original entropy game model of Asarin et al. [2] is a zero-sum game defined
in a way similar to Section 2, up to a technical difference: in their model, the ini-
tial state is not prescribed. The payment of Tribune in horizon k, instead of being
Rk

d̄
(δ, τ ), is the quantity R̄k(δ, τ ), defined now as the sum of weights of all paths

of length k starting at a node in D and ending at a node in D. Hence, R̄k(δ, τ ) =∑
d∈D Rk

d(δ, τ ). The payment of Tribune can be defined in their game as follows
R̄∞(δ, τ ) = lim supk→∞(R̄k(δ, τ ))1/k . This game is denoted by Eorig,∞, we denote
by V̄ ∞ the value of this game, which is shown to exist in [2].

Note that in the initial model in [2], the weights mpd ′ are equal to 1. The gen-
eralization to weighted entropy games, in which the weights mpd ′ are integers is
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discussed in Section 6 of [2]. The case in which the weights mpd ′ take rational values
can be reduced to the latter case by multiplying all the weights by an integer factor.
Therefore, we will ignore the restriction that mpd ′ = 1 in our definition of Eorig,∞
and will refer to the entropy game model with rational weights as the entropy game
model. The following observation follows readily from Theorem 10.

Proposition 11 The value of the original entropy game Eorig,∞ considered by Asarin
et al. [2] (with a free initial state), coincides with the maximum of the values of the
games E∞

d , taken over all initial states d ∈ D:

V̄ ∞ = max
d∈D

V ∞
d .

Example 2 Proposition 11 is illustrated by the game of Example 1. In the original
model of [2], the value, defined independently of the initial state, is (1 + √

5)/2,
whereas our model associates to the initial state d1 a value 1 which differs from the
values of d2 and d3.

In [2], entropy games were compared with matrix multiplication games. We
present here this correspondence in the case of general weights mpd ′ . Given poli-
cies δ ∈ PD and τ ∈ PT , let A(δ) ∈ R

D×T and B(τ) ∈ R
T ×D be such that

A(δ)dt = 1 if t = δ(d) and 0 otherwise, and B(τ)td = mτ(t)d if (τ (t), d) ∈ E

and 0 otherwise, for all (d, t) ∈ D × T . We shall think of A(δ) and B(τ) as rect-
angular matrices. Then R̄k(δ, τ ) = ‖(A(δ)B(τ))k‖1, where for any A ∈ R

D×D , Ak

denotes its kth power and ‖A‖1 = ∑
dd ′ |Add ′ | its 1 norm. From this, one deduces

that R̄∞(δ, τ ) = ρ(A(δ)B(τ)), where ρ(A) denotes the spectral radius of the matrix
A. Moreover, let A and B denote the sets of all matrices of the form A(δ) and B(τ)

respectively, and let AB be the set of all matrices AB with A ∈ A and B ∈ B. The
sets A, B and AB are subsets of matrices M satisfying the property that all elements
of M have same dimension and if Mi is the set of ith rows of the elements of M,
then M is the set of matrices the ith row of which belongs to Mi . Such a prop-
erty defines the notion of IRU matrix sets (for independent row uncertainty sets) in
[2]. The following property proved in [2] is the analogue of Theorem 9, V ∞

d being
replaced by V̄ ∞:

V̄ ∞ = min
A∈A

max
B∈B

ρ(AB) = max
B∈B

min
A∈A

ρ(AB) . (24)

A more general property is proved in [5, Section 8], as a consequence of the Collatz-
Wielandt theorem (see Corollary 13 below).

Remark 3 Our approach shows that entropy games reduce to Kullback-Leibler
games, which are stochastic mean payoff games (with compact action spaces), Asarin
et al. [2] remarked that the special deterministic entropy games, in which People
has only one possible action in each state, can be re-encoded as deterministic mean
payoff games. This can also be recovered from our approach: in this deterministic
case, the simplices �p are singletons in the Kullback-Leibler game, and the entropy



Theory of Computing Systems (2019) 63:1089–1130 1107

function vanishes, so the Kullback-Leibler game degenerates to a deterministic mean
payoff game.

5 Applying the Collatz-Wielandt Theorem to Entropy Games

The classical Collatz-Wielandt formulæ provide variational characterizations of the
spectral radius ρ(M) of a nonnegative matrix M ∈ R

D×D:

ρ(M) = inf{λ > 0 | ∃X ∈ int RD+, MX � λX}
= max{λ � 0 | ∃X ∈ R

D+ \ {0}, MX = λX} ,

= max{λ � 0 | ∃X ∈ R
D+ \ {0}, MX � λX} ,

where R
D+ denotes the nonnegative orthant of RD , and intRD+ its interior, i.e, the set

of positive vectors. The infimum is not always attained in the first line, whereas by
writing “max”, we mean that the suprema are always attained.

This has been extended to non-linear, order preserving and continuous self-maps
of the standard positive cone by Nussbaum [37], see also [3, 5, 19, 22, 31]. Recall
that a self-map of R

D+ is said to be order preserving if u � v ⇒ F(u) � F(v)

for all u, v ∈ R
D+ , the relation � being understood entrywise. This map is positively

homogeneous of degree 1 if F(αu) = αu, for all α > 0 and u ∈ R
D+ .

Theorem 12 Let F be a continuous, order preserving, and positively homogeneous
of degree 1 self-map of RD+ . Then the following quantities coincide

lim
k→∞ max

d∈D
[Fk(e)]1/k

d (25)

inf{λ > 0 | ∃X ∈ int RD+, F (X) � λX} (26)

max{λ � 0 | ∃X ∈ R
D+ \ {0}, F (X) = λX} , (27)

max{λ � 0 | ∃X ∈ R
D+ \ {0}, F (X) � λX} , (28)

Proof The existence of (25) and the fact it coincides with (26) is proved in [19, Prop
1]. The fact that (26) and (27) coincide is proved in [37, Theorem 3.1]. The fact that
(27) and (28) coincide is proved in [3, Lemma 2.8].

The common value of the expressions in Theorem 12 is called the non-linear
spectral radius of F .

We showed in Proposition 11 that the value of the original entropy game Eorig is
precisely

V̄ ∞ = max
d∈D

V ∞
d = lim

k→∞ max
d∈D

[Fk(e)]1/k
d

where F is the dynamic programming operator defined in (4). This operator is con-
tinuous, order preserving, and homogeneous of degree one. Hence, we get as an
immediate corollary of Theorem 12:



1108 Theory of Computing Systems (2019) 63:1089–1130

Corollary 13 The value V̄ ∞ of the original entropy game Eorig (with a free initial
state) coincides with any of the following expressions

inf{λ > 0 | ∃X ∈ int RD+, F (X) � λX} (29)

max{λ > 0 | ∃X ∈ R
D+ \ {0}, F (X) = λX} (30)

max{λ > 0 | ∃X ∈ R
D+ \ {0}, F (X) � λX} , (31)

where F is the dynamic programming operator (4).

The Collatz-Wielandt formulæ of Theorem 13 are helpful to establish strong dual-
ity results, like (24). Note that (24) is weaker than Theorem 13 since it does not
imply the existence of a nonlinear vector whereas (30) of Theorem 13 does. See also
[3] for an application to mean payoff games and tropical geometry. Our main inter-
est here lies in the following application of (29). We say that a state d of Despot is
significant if the set of actions of Despot in this state, {(d, t) ∈ E}, has at least two
elements (i.e., Despot has to make a choice in this state). We say that an entropy game
is Despot-free if the Despot player does not have any significant state. A Despot-free
game is essentially a one (and half) player problem, since the minimum term in the
corresponding dynamic programming operator (4) vanishes. Indeed, for each d ∈ D,
there is a unique node t such that (d, t) ∈ E, and we define the map σ : D → T

by σ(d) = t . The following corollary, which follows from Corollary 13 by making
the change of variables μ = log λ and x = log X, is also a special case of a result of
Anantharam and Borkar [1].

Corollary 14 The logarithm of the value of a Despot-free original entropy game is
given by the value of the optimization problem

inf μ

(μ, x) ∈ R × R
D, satisfying

μ + xd � log

(
∑

d ′∈D

mp,d ′exd′
)

for all d ∈ D, p ∈ P such that (σ (d), p) ∈ E .

(32)

Observe that the latter expression is the value of an optimization problem in which
the variables are μ and x = (xd)d∈D , the objective function is the linear form
(μ, x) �→ μ, and the feasible set is convex. Hence, this will lead us to a polynomial
time decision procedure in the Despot free case, which we develop in the next section.

6 Polynomial time Solvability of Entropy Games with a Few
Significant Despot Positions

By solving strategically an entropy game, we mean finding a pair of optimal policies.
We assume from now that the weights mp,d are integers. Since policies are combi-
natorial objects, solving strategically the game is a well posed problem in the Turing
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(bit) model of computation. Once optimal policies are known, the value of the game,
which is an algebraic number, can be obtained as the Perron root of an associated
integer matrix. Our first main result is the following.

Theorem 15 Despot-free entropy games can be solved strategically in polynomial
time.

This will be proved in Section 7, by combining several ingredients: a reduction to
the irreducible case, an application of the ellipsoid method, and separation bounds
for algebraic numbers.

We will also show the following generalization of Theorem 15.

Theorem 16 Entropy games in which Despot has a fixed number of significant states
can be solved strategically in polynomial time.

7 Proof of Theorem 15 and Theorem 16

We start by considering a Despot-free game. We decompose the proof of Theorem
15 in several steps, corresponding to different subsections.

7.1 Reduction to the Irreducible Case

First, we associate to a Despot-free entropy game a projected directed graph Ḡ, with
node set D and an arc d → d ′ if there is a path (d, t, p, d ′) in the original directed
graph G. We say that the game is irreducible if Ḡ is strongly connected. Recall that
we assumed that any node has a successor, so that strongly connected components
are all non trivial (not reduced to a node with no edge).

Lemma 17 The value of an irreducible Despot-free entropy game is independent
of the initial state. Moreover, there is a vector U ∈ intRD+ and a scalar λ∗ > 0
such that F(U) = λ∗U , and λ∗ coincides with the value of any initial state in this
game.

Proof The non-linear Perron-Frobenius theorem in [19] provides a sufficient con-
dition for the existence of a positive eigenvector of an order preserving positively
homogeneous self-map F of the interior of the cone. It suffices to check that a cer-
tain directed graph G(F) associated to F is strongly connected. Specialized to the
present setting, this directed graph is defined as follows: the node set is D, and there
is an arc from d → d ′ if

lim
s→∞ Fd(sed ′) = +∞ ,

where ed ′ = (0, . . . , 0, 1, 0, . . . , 0)	 is the d ′th vector of the canonical basis of RD .
By considering the explicit form of F , we see that G(F) is precisely the directed
graph Ḡ. Hence, by Theorem 2 of [19], there exists a vector U ∈ intRD+ and a scalar
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λ∗ > 0 such that F(U) = λ∗U . It follows from Theorem 13 and from the fact that
the value of the original entropy game is maxd∈D V ∞

d that V ∞
d � λ∗ holds for all

d ∈ D.
We next show that the other inequality holds. Recall that V ∞

d = limk→∞
[Fk(e)]1/k

d is the value of the entropy game with initial state d, where e =
(1, ..., 1)	 ∈ R

D+ .
Since D is finite, there is a positive scalar β > 0 such that e � βU (indeed,

take β := (maxd∈D Ud)−1). Using the order preserving and positively homogeneous
character of the dynamic programming operator F , we get

Fk(e) � Fk(βU) = βFk(U) = β(λ∗)kU

and so, using that U is positive,

V ∞
d = lim

k→∞[Fk(e)]1/k
d � lim

k→∞(β(λ∗)kUd)1/k = λ∗ .

Hence, V ∞
d = λ∗ holds for all d ∈ D.

Thanks to this lemma, we will speak of “value”, without mentioning the initial
state, when the entropy game is irreducible.

Every strongly connected component C of Ḡ with set of nodes DC ⊂ D yields a
reduced game, in which the set of states of Despot is DC , and Tribune only selects
actions such that the next state of Despot will remain in DC for at least one action
chosen by People. Moreover, People chooses only actions so that the next state
remains in DC . By definition of Ḡ, this reduced game is irreducible. We denote
it by E[C]. The following elementary observation allows us to reduce the general
Despot-free case to the irreducible Despot-free case.

Lemma 18 In a Despot-free entropy game, the value of a state d is the maximum
of the value of the irreducible games E[C] corresponding to the different strongly
connected components C of Ḡ to which d has access.

Proof This follows from a more precise of Zijm, Theorem 5.1 in [50], which deter-
mines the asymptotic expansion of Fk(e) as k → ∞. However, the present lemma
is more elementary. Alternatively, one can note that the operator f := log ◦F ◦ exp
is precisely in the class of operators considered in [18, Section 4]. The lemma is a
special case of Theorem 29 there.

Therefore, from now on, we make the following assumption.

Assumption 19 The game is Despot-free and irreducible.

We also make the following assumption.

Assumption 20 The weights mp,d are integers.
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The case in which the weights are rational numbers reduces to this one (multi-
plying all weights by a common denominator does not change optimal positional
strategies).

7.2 Reduction to aWell Conditioned Convex Programming Problem

Our strategy, to prove Theorem 15 when the game is irreducible is to apply the ellip-
soid method to the convex programming formulation (32). To do so, we must replace
this formulation by another convex program whose feasible set is included in a ball
B2(a, R), (the Euclidean ball with center a and radius R), and contains a Euclidean
ball B2(a, r), where log(R/r) is polynomially bounded in the size of the input. The
following key lemma allows us to do so. It bounds the non-linear eigenvalue and
eigenvector of the dynamic programming operator F , which have been shown to exist
in Lemma 17. We set W := max(p,d)∈E mp,d and n := |D|.

Lemma 21 Suppose the game is Despot-free and irreducible. Then, the value λ of
the game is such that 1 � λ � nW . Moreover, there exists a vector U ∈ intRn+ such
that F(U) = λU , and

1 � Ud � λn−1 , ∀d ∈ D . (33)

Proof (1) The fact that λ � nW follows from the first Collatz-Wielandt formula
(29), which implies that λ � maxd Fd(e), where e is the unit vector of RD . We have
maxd Fd(e) � nW . Similarly, the last Collatz-Wielandt formula (31) implies that
λ � mind Fd(e). Since we assumed that every node in G has at at least one successor,
we have Fd(e) � 1 for all d ∈ D, and so λ � 1.

(2) Let (d, d ′) be an arc in Ḡ, corresponding to a path of length 1 in G, of the form
(d, t, p, d ′). Then, mpd ′Ud ′ � Fd(U) = λUd holds, with λ � nW and mpd ′ integer.
In particular, Ud ′ � λUd holds. Since the game is irreducible, any two vertices of
Ḡ are connected by a path of length at most n − 1. It follows that Ud ′/Ud � λn−1

holds for all d, d ′ ∈ D. We may assume that the minimal entry of U is equal to 1, by
dividing U by this minimal entry. Then, Ud � λn−1 holds for all d.

We denote by K the set of pairs (u, μ) ∈ R
D × R � R

n+1, such that

f (u) � μe + u (34a)

0 � ud � (n − 1)�log(nW)�,∀d ∈ D, (34b)

0 � μ � �log(nW)� + 2 , (34c)

where �t� denotes the smallest integer greater than or equal to t , and f is given by
(7), recalling that e denotes the unit vector of RD . Recall that W � 1 since this is an
integer, and that if n �= 1, then (n − 1)�log(nW)� � 1. By combining Corollary 14,
Lemma 17 and Lemma 21, we arrive at the following result.
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Proposition 22 The value of a Despot-free irreducible entropy game coincides with
the exponential of the value of the convex program:

min μ, (u, μ) ∈ K , (35)

where K is defined by (7.2).

Proof If (u, μ) ∈ K , then it satisfies (32), so by Corollary 14, it is not smaller than
the logarithm of the value of the game. Hence, the value of (35) is an upper bound
for the logarithm of the value of the game. Now, if we take λ to be equal to the value
of the game, we know by Lemma 21 and Lemma 17 that 1 � λ � nW and that we
can find a vector U ∈ intRn+ such that F(U) = λU , and the bounds (33) on U hold.
Then, setting u := log(U) and μ := log λ, we get that (u, μ) ∈ K . It follows that
the exponential of the value of (35) coincides with the value of the game.

Finally, the convexity of K follows from the convexity of every coordinate map
of f , which is an immediate consequence of Lemma 3.

We denote by B2(a, r) the Euclidean ball with center a and radius r . The sup-norm
ball with the same radius and center is denoted by B∞(a, r). We have the following
lemma.

Lemma 23 Let a = ((1/2)e, �log(nW)� + 3/2) ∈ R
D × R, and let

r := 1/3, R := √
n + 1((n − 1) log(nW) + n + 1) . (36)

Then,
B2(a, r) ⊂ K ⊂ B2(a, R) .

Proof Any point (u, μ) in B∞(a, r) satisfies (1/2 − r)e � u � (1/2 + r)e and
�log(nW)� + 3/2 − r � μ � �log(nW)� + 3/2 + r . Since n �= 1, we get that
(n − 1)�log(nW)� � 1, and since r � 1/2, we obtain that (u, μ) satisfies the box
constraints (34b) and (34c) defining K . Since f is order preserving and commutes
with the addition of a constant,

f (u) � f ((1/2 + r)e) = (1/2 + r)e + f (0)

� (1/2 + r + �log(nW)�)e � (1/2 + r + �log(nW)�)e + (u + (r − 1/2)e)

= (2r + �log(nW)�)e + u � (3r − 1 + μ)e + u

and so f (u) � μe + u as soon as r � 1/3. We deduce that B2(a, 1/3) ⊂
B∞(a, 1/3) ⊂ K .

Moreover, since K is included in a box of width  = (n − 1)�log(nW)� + 2, for
any choice of a′ ∈ K , K is included in the sup-norm ball B∞(a′, ), and so, in the
euclidean ball B2(a

′, 
√

n + 1). It follows that K ⊂ B2(a, R).

7.3 Construction of a Polynomial TimeWeak Separation Oracle

We shall solve Problem (35) by the ellipsoid method [20]. The latter needs the
following notions.
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Definition 1 Let K denote a convex body in R
q . A weak separation oracle for K

is a procedure, taking as input a rational number ν > 0 and a rational vector y ∈ R
q ,

which concludes one of the following: (i) asserting that y is at Euclidean distance at
most ν from K ; (ii) finding an approximate separating half-space of precision ν,
i.e., a linear form φ : x �→ c · x, with c ∈ R

q , of Euclidean norm at least 1, such that
for every x ∈ K ,

φ(x) � φ(y) + ν .

Let us now recall the main complexity result about the ellipsoid method [20]. To
do so, we denote by 〈r〉 the number of bits needed to code an object r , under the
standard binary encoding. For instance, if r is an integer, 〈r〉 := �log2(r)� + 1, if
r = p/q is a rational, 〈r〉 := 〈p〉+〈q〉, if r = (ri) is a rational vector, 〈r〉 := ∑

i〈ri〉,
and if ψ is a linear form with rational coefficients over Rq , ψ(x) = ∑

i rixi , for
x ∈ R

q , then 〈ψ〉 = ∑
i〈ri〉. Here and after, the notion of length of an input refers to

the binary encoding.
The ellipsoid method can be applied to solve the following problem consisting

in finding an approximate minimum of precision ε of a linear form ψ with rational
coefficients over a convex body K ⊂ R

q . This means looking for a vector x∗ such
that d2(x

∗, K ) � ε and ψ(x∗) � minx∈K ψ(x)+ε, where d2 denotes the Euclidean
distance. We assume that we know a vector a ∈ K with rational coordinates, and
rational numbers 0 < r < R such that

B(a, r) ⊂ K ⊂ B(a, R) .

In that case, the size of the input of the approximate minimization problem is
measured by 〈ψ〉 + 〈a〉 + 〈r〉 + 〈R〉 + 〈ε〉.

It is shown in [20] that if the convex set K admits a polynomial time weak
separation oracle, the ellipsoid method computes an ε-approximate solution of the
minimization problem in a time polynomial in the size of the input. Specialized to the
present setting, and taking into account the polynomial estimates for log r and log R

in Lemma 23, we get the following result.

Theorem 24 (Corollary of [20, Th. 3.1]) Suppose that the set K defined by (7.2)
admits a weak separation oracle which runs in polynomial time in the bitsize of the
input and in the bitsize of the game. Then, the ellipsoid method returns an approxi-
mate optimal solution of precision ε of Problem (35), i.e., a vector (u, μ) such that
that d2((u, μ), K ) � ε and μ does not exceed the value of Problem (35) by more
than ε, in a time that is polynomial in 〈ε〉 + |E| + log W .

Recall that | · | denotes the cardinality of a set, in particular |E| denotes the number
of arcs of G.

The following result allows us to apply Theorem 24 to Problem (35).

Proposition 25 The convex set K defined by (7.2) admits a weak separation oracle
which runs in polynomial time.
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To show this proposition, we need a series of arguments. Some of these arguments,
like the next lemma, are standard, whereas other arguments require some transpar-
ent but rather technical bookkeeping, exploiting the non-expansive character of f to
control the approximation errors.

Lemma 26 Let ε > 0 and t be rational numbers, and assume first that t � 0.
Then, a rational approximation of absolute precision ε of exp(t) can be computed in
a time that is polynomial in 〈t〉 and 〈ε〉. Assume now that t > 0. Then, a rational
approximation of absolute precision ε of log(t) can be computed in a time that is
polynomial in 〈t〉 and 〈ε〉.

Proof It is shown in [7] that the conclusion is true when the input belongs to a fixed
compact subset of the intervals (−∞, 0], in the case of exp, or of (0, ∞), in the case
of log. The fact that the same property still holds for the whole intervals (−∞, 0] and
(0, ∞) follows from the range reduction techniques [35].

Lemma 27 Let x be a vector in RD with rational entries, and let ε > 0 be a rational
number. An approximation of f (x) with a sup-norm error not exceeding ε can be
obtained in polynomial time in 〈x〉 + 〈ε〉 + |E| + log W .

Proof We have

fd(x) = max
(σ (d),p)∈E

log(
∑

(p,d ′)∈E

mpd ′ exp(xd ′)) .

Hence, it suffices to check that for every p ∈ P , the value

h(x) := log

⎛

⎝
∑

(p,d ′)∈E

mpd ′ exp(xd ′)

⎞

⎠

can be approximated with a precision ε within a polynomial time. We set x̄ :=
maxd ′∈D xd ′ , and make the change of variables xd ′ = x̄ + x̃d ′ , so that

h(x) = x̄ + log t, t :=
∑

(p,d ′)∈E

mpd ′ exp(x̃d ′)

We observe that 1 � t and that log has Lipschitz constant 1 over [1, ∞). Hence, to
evaluate h(x) with a precision ε, it suffices to compute an approximation t̃ of t with
precision ε/2, which can be done in polynomial time thanks to Lemma 26, and then
to approximate log t̃ with precision ε/2, which can also be done in polynomial time
by the same lemma.

Proof of Proposition 25 Let ν > 0. Our aim is to check whether a given pair (v̄, μ̄)

is at distance at most ν from K . Since we already showed that we can get an
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approximation of f in polynomial time, the proof will be a matter of routine book-
keeping (except perhaps the use of the subdifferential of f to construct a separating
halfspace).

We denote by ε > 0 a rational number, ε � 1, which we shall fix in the course of
the proof.

We provide the announced separation oracle. We first check that every box con-
straint, as well as the non-linear constraints fd(v̄) � v̄d + μ̄, for d ∈ D, are satisfied
up to a precision ε, which can be done in polynomial time in 〈v̄〉+ 〈ε〉+ |E|+ log W

thanks to Lemma 27.
(i) If these constraints are satisfied up to a precision ε, we have −ε � v̄d �

(n − 1)�log(nW)� + ε, −ε � μ̄ � �log(nW)� + 2 + ε, and f (v̄) � (μ̄ + ε)e + v̄.
Setting ṽd = min(max(v̄d , 0), �(n − 1) log(nW)�), we get that ‖v̄ − ṽ‖∞ � ε with
ṽ satisfying the constraint (34b). Using the fact that f is nonexpansive in the sup-
norm, we deduce that f (ṽ) � μ̃e + ṽ, where μ̃ = μ̄ + 3ε. Moreover, 0 � μ̃ �
�log(nW)� + 2 + 4ε. Now, since f is also convex, for all t ∈ [0, 1], we have

f (tṽ) � tf (ṽ) + (1 − t)f (0) � μ̃′e + t ṽ ,

with μ̃′ = tμ̃ + (1 − t)�log(nW)�. Hence, taking t = 1/(1 + 2ε), we get that μ̃′
satisfies the constraint (34c), whereas ṽ′ = t ṽ still satisfies the constraint (34b), so
that (ṽ′, μ̃′) belongs to K . Using t � 2ε, we also have ‖(v̄, μ̄) − (ṽ′, μ̃′)‖∞ � εL,
with L = (5 + 2(n − 1)�log(nW)�), implying that d2((v̄, μ̄), K ) � L

√
n + 1ε.

Hence, we shall require that

ε � ε1 := ν

(5 + 2(n − 1)�log(nW)�)√n + 1
,

to make sure that d2((v̄, μ̄), K ) � ν.
(ii) Assume now that one of the box constraints is violated by more than ε. Then,

one of the linear forms (v, μ) �→ ±vd or (v, μ) �→ ±μ provides a separating half-
space, and the norm of this linear form is 1. Assume finally that all the box constraints
are satisfied up to ε, and that one of the non-linear constraints is violated by more
than ε. Let us write this constraint as

g(v, μ) := log

(
∑

d ′∈D

mpd ′ exp(vd ′)

)
− vd − μ � 0

for some d ∈ D and (σ (d), p) ∈ E, so that g(v̄, μ̄) > ε. Since g is convex, the
differential φ of g at point (v̄, μ̄) satisfies

φ(v − v̄, μ − μ̄) � g(v, μ) − g(v̄, μ̄) � −ε

for all (v, μ) ∈ K , i.e.,

φ(v, μ) � φ(v̄, μ̄) − ε, ∀(v, μ) ∈ K

showing that φ is a separating half-space. However, we need an approximate half-
space given by a linear form with rational coefficients, which we next construct by
approximating φ.
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To do so, we first compute the differential of g at point (v̄, μ̄). This is the linear
form

φ : (x, y) ∈ R
D × R �→

∑

d ′
xd ′mpd ′ exp(v̄d ′)/

(
∑

d ′′
mpd ′′ exp(v̄d ′′)

)
− xd − y .

The maximum of v̄ can be subtracted to every coordinate of v̄ without changing
this linear form. Then, by Lemma 26, the coefficients of this linear form can be
approximated in polynomial time. It follows that we can compute an approximation φ̃

of φ of precision ε in polynomial time in 〈v̄〉+〈ε〉. Observe that the coefficient of the
variable y in the linear form φ is always equal to −1. Hence, the approximate linear
form φ̃ can be chosen with the same coefficient, and then, φ̃ is of norm at least 1.

Since any element (v, μ) of K satisfies the box constraints (34b) and (34c),
whereas (v̄, μ̄) satisfies these constraints up to ε � 1, we get that

|(v, μ) − (v̄, μ̄)|∞ � M := (n − 1)�log(nW)�) + 3 ,

hence

|φ̃(v − v̄, μ − μ̄) − φ(v − v̄, μ − μ̄)| � M(D + 1)ε, ∀(v, μ) ∈ K .

So it suffices that

ε � ε2 := ν

M(D + 1)

to make sure that φ̃ defines an approximate separating half-space of precision ν.
To summarize, it suffices to take ε = min(ε1, ε2) in the previous analysis, so

that the conditions of Definition 1 are satisfied. Moreover, for this choice, all the
computations take a polynomial time in 〈ν〉 + 〈v̄〉 + 〈μ̄〉, and the size |E| + log W of
the description of the game.

7.4 Using Separation Bounds Between Algebraic Numbers to Compare Policies

It follows from Theorem 24 that we can compute in polynomial time an approximate
solution of Problem (35) with precision ε. We next show that it is possible to choose
ε with a polynomial number of bits, in such a way that this approximate solution
allows us to identify an optimal policy. We shall actually prove a version of this result
in the more general two-player case. This extended version, stated as Corollary 29,
will apply both to the Despot-free case, and to the case of entropy games with a
fixed number of significant states, see Section 7.6. To prove it, we rely on separation
bounds for algebraic numbers.

Theorem 28 [41] Let p be a univariate polynomial of degree n with integer coef-
ficients, possibly with multiple roots. Let S be the sum of the absolute values of its
coefficients. Then, the distance between any two distinct roots of p is at least

(2n
n
2 +2(S + 1)n)−1 .
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To any given pair (δ, τ ) of policies, one can associate a directed sub-graph G(δ, τ )

of G, obtained, by erasing for all d ∈ D, every arc in {(d, t) ∈ E} except {d, δ(d)},
and similarly, by erasing for all t ∈ T , every arc in {(t, p) ∈ E} except {t, τ (t)}.
The dynamic programming operator of the game associated to this sub-graph G(δ, τ )

coincides with the conjugate τF δτ := exp ◦τ f δ ◦ log of (12) and is equal to the linear
operator with matrix τMδ ∈ N

D×D:

τF δ : RD → R
D, X �→ τMδX , (37)

where the entry (d, d ′) of τMδ is equal to mτ◦δ(d),d ′ when (τ ◦ δ(d), d ′) ∈ E and
to zero otherwise. Then, the value of the entropy game starting in state d, R∞

d (δ, τ )

coincides with the maximum of the Perron-roots (that is the positive eigenvalues
which coincide with the spectral radii) of the submatrices of τMδ with nodes in a
strongly connected component to which d has access in the graph G(δ, τ ). The value
of the original entropy game coincides with the Perron-root of τMδ .

Corollary 29 There exists a rational function (n, W) �→ ηsep(n, W) > 0 such that
for every two different pairs (δ, τ ) and (δ′, τ ′) which yield different values of the
entropy game, these two values differ by at least ηsep(n, W) and

ηsep(n, W) � exp(−poly(n + log W))

where the polynomial inside the exponential is independent of the input.

Proof Given a pair (δ, τ ) of policies, the values of the entropy game are eigenvalues
of the matrix A = τMδ ∈ N

D×D . Observe that the entries of A are integers bounded
by W . Let fA be the characteristic polynomial of A. The coefficient of the mono-
mial of degree n − k in fA is the sum of the Ck

n principal minors of A of size k.
By Hadamard’s inequality, each absolute value of these minors is at most (

√
nW)k ,

and so, every coefficient of fA has an absolute value bounded by Ck
n(

√
nW)k and

their sum is � (2
√

nW)n. Two different pairs of strategies yield two characteristic
polynomials, fA and fB , whose product is of degree 2n and whose sum of abso-
lute value of coefficients is bounded by the product of such bounds for fA and fB ,
so by (2

√
nW)2n. Therefore, the size S appearing in Theorem 28 is bounded by

(2
√

nW)2n. We deduce that if the two pairs of strategies yield distinct values, the
distance between these values is at least

ηsep(n, W) := (2(2n)n+2((2�√n�W)2n + 1)2n)−1 .

This number is rational and satisfies

ηsep(n, W) � exp(−poly(n + log W)),

for some polynomial function poly. Since the above lower bound is true for every
two pairs of different policies (δ, τ ) and (δ′, τ ′), we obtain the result.
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Hence, if two policies of Tribune yield different values λ and λ′, then, |λ − λ′|
is bounded below by the rational number ηsep > 0 whose number of bits is
polynomially bounded in the size of the input.

7.5 Synthesis of an Optimal Strategy of Tribune from an Approximate Solution
of the Convex Program in Proposition 22

To any policy τ of Tribune, we associate a dynamic programming operator τF , which
is the specialization of the map τF δ of previous section to the case where δ = σ .
This is the self-map of RD defined by

τFd(X) =
∑

(τ (σ (d)),d ′)∈E

mτ(σ(d))d ′Xd ′ .

So τF (X) = τMX, where τM = τMσ is the |D| × |D| matrix with nonnegative
entries equal to mτ(σ(d))d ′ when (τ (σ (d)), d ′) ∈ E and zero otherwise.

7.5.1 The Simpler Situation in Which Every Policy τ of Tribune Yields an Irreducible
Matrix

To explain our method, we make first the restrictive assumption that for every pol-
icy τ of Tribune, the matrix τM is irreducible. In particular, we can take an optimal
policy τ ∗. By a standard result of Perron-Frobenius theory [12], τ∗

M has a left eigen-
vector π with positive entries, associated to the spectral radius λτ∗ := ρ(τ

∗
M), called

Perron root. Hence, πτ∗
M = λτ∗

π . Since τ ∗ is optimal, λτ∗ = λ∗, where λ∗ is the
value of the entropy game starting from any node d ∈ D, see Lemma 17. More-
over, by applying Lemma 21 to the linear map U �→ (τ

∗
M)T U , where T denotes the

transposition, we deduce that πd/πd ′ � (nW)n−1.
For any rational number ε > 0, the ellipsoid algorithm, applied to the optimization

problem of Proposition 22, yields in polynomial time a vector u and a scalar μ such
that μ � log λ∗ + ε and d2((u, μ), K ) � ε. So there exists (ũ, μ̃) ∈ K such that
‖u − ũ‖∞ � ε and |μ − μ̃| � ε. Since (ũ, μ̃) ∈ K , and log λ∗ is the value of (35),
we deduce that log λ∗ � μ̃ � μ + ε, so λ∗ exp(−ε) � exp(μ) � λ∗ exp(ε). Using
(7.2), and assuming that ε � 1, we deduce that ud −ud ′ � (n−1)�log(nW)�+2ε �
(n − 1)(log(nW) + 1) + 2, for all d, d ′ ∈ D. Using the nonexpansivity of f , we also
obtain that f (u) � f (ũ)+εe � ũ+ (μ̃+ε)e � (μ+3ε)e+u � (log λ∗ +4ε)e+u.
Taking U := (Ud)d∈D with Ud := exp(ud), we get F(U) � λ∗ exp(4ε)U and
Ud/Ud ′ � (enW)n−1e2.

We choose any policy τ such that F(U) = τMU . Therefore,

τ(σ (d)) ∈ argmax
τ∈PT

∑

(τ (σ (d)),d ′)∈E

mτ(σ(d))d ′Ud ′ .

We claim that τ is optimal if ε is sufficiently small.
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To show the latter claim, we observe that τ∗
MU � F(U). For all d ∈ D,

0 � πd(λ∗ exp(4ε)Ud − Fd(U)) � πd(λ∗ exp(4ε)Ud − (τ
∗
MU)d)

�
∑

d ′∈D

πd ′(λ∗ exp(4ε)Ud ′ − (τ
∗
MU)d ′)

= π(λ∗ exp(4ε)U − τ∗
MU)

= λ∗(exp(4ε) − 1)πU . (38)

Using πd/πd ′ � (nW)n−1 and Ud/Ud ′ � (enW)n−1e2, we deduce that πU �
πdUd(1 + (n − 1)(enW)2(n−1)e), so F(U) � λU , where λ := λ∗[1 − (exp(4ε) −
1)(n − 1)e(enW)2(n−1)]. In view of the formula of λ, we can choose ε > 0, with a
polynomially bounded number of bits, such that λ > λ∗ − .sep. Since, τMU � λU ,
we have ρ(τM) � λ and so ρ(τM) > λ∗ − ηsep. Since λ∗ is the maximum of the
values of all the policies, ρ(τM) � λ∗. By definition of the separation parameter ηsep
given in Corollary 29, this implies that ρ(τM) = λ∗, and so the policy τ of Tribune
which we just constructed is optimal, showing the claim.

In the preceding argument, the computation (38) may look a bit magic at the first
sight, it should become intuitive if one interprets it as an approximate complementary
slackness condition for the semi-infinite program of Proposition 22, the invariant
measure π playing the role of a Lagrange multiplier.

When some policies τ yield a reducible matrix τM , the synthesis of the optimal
policy τ still exploits the same idea with an additional technicality, since we can
only guarantee that the inequality Fd(U) � λUd is valid for every state d such that
πd > 0. We explain the more technical argument in the next section.

7.5.2 Synthesis of an Optimal Strategy of Tribune, in General

Recall that if M is a reducible nonnegative matrix, a class of M is a strongly con-
nected component of the directed graph of M , and that this class is basic if the B ×B

submatrix of M , denoted by MBB , has Perron root ρ(M). It is known [12] that M

has always a basic class, and a nonnegative left eigenvector associated with ρ(M).
Moreover, choosing a basic class B which is final among the basic classes of M ,
that is such that the set S of nodes d ′ ∈ D that are reachable in the directed graph
of M starting from some node in the basic class B does not contain any node of
another basic class, then there exists a nonnegative left eigenvector π so that its sup-
port {d | πd �= 0} coincides with S. We shall assume that π , S and B satisfy these
properties, for M = τ∗

M corresponding to an optimal policy τ ∗. We set N := D \B,
and for any D × D matrix M , any vector u ∈ R

D , and any subsets F and G of
D, we denote by MFG the F × G submatrix of M and by vF the vector of R

F

given by vF := (vd)d∈F . Since B is a basic class and B has access to any element
of S, we get that no element of S \ B has access to an element of B, and since π

equals zero outside S, we get that the restriction of πτ∗
M to B equals πB

τ∗
MBB and
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so πB
τ∗
MBB = λ∗πB . The same computation as in Section 7.5.1 restricted to the

elements d ∈ B now gives

0 � πd(λ∗ exp(4ε)Ud − Fd(U)) � πd(λ∗ exp(4ε)Ud − (τ
∗
MU)d)

� πB(λ∗ exp(4ε)UB − (τ
∗
MBBUB + τ∗

MBNUN))

= λ∗(exp(4ε) − 1)πBUB − πB
τ∗
MBNUN .

The bounds on U obtained in Section 7.5.1 are still valid, and the ones of πd/πd ′ are
valid only for d, d ′ ∈ B using πB

τ∗
MBB = λ∗πB and the irreducibility of τ∗

MBB .
We deduce that Fd(U) � λUd for all d ∈ B, for the same λ as in Section 7.5.1.
Moreover, πB

τ∗
MBNUN � λ∗(exp(4ε) − 1)πBUB . We define ε′ := λ∗(exp(4ε) −

1)en(enW)2(n−1), so that τ∗
MdNUN � ε′Ud for all d ∈ B, where τ∗

MdN is the dth
line of the matrix τ∗

MBN .
We first choose, any policy τ and set B ′ such that τMdDU � λUd and

τMdN ′UN ′ � ε′Ud , for all d ∈ B ′, with N ′ = D \ B ′. We know from the above anal-
ysis that there is always at least one policy τ and set B ′ with this property (namely τ ∗
and B ′ = B). Moreover, such a policy and set can be obtained by the following algo-
rithm. Indeed, let us start from any policy τ such that F(U) = τMU , and choose B ′
as the set of d ∈ D such that τMdDU � λUd . Then, B ⊂ B ′ since τMdDU = Fd(U).
At each step of the algorithm, one applies the following operations to each d ∈ B ′
in some order: set N ′ = D \ B ′ and check if τMdN ′UN ′ � ε′. If this does not hold,
change τ(σ (d)) to any action so that τMdDU � λUd and τMdNUN � ε′. If this is
impossible, then eliminate d from B ′ and continue. Then stop at any step in which B ′
does not change. Since the cardinality of B ′ decreases by one at each step to which
one does not stop and B ′ ⊃ B, we get that the algorithm stops after at most n itera-
tions and needs at most n2 products of a matrix by a vector, so it takes a polynomial
time. Moreover at each step and so at the end of the algorithm, we have B ′ ⊃ B and
N ′ ⊂ N .

We deduce that τMB ′B ′UB ′ � (λ − ε′)UB ′ , showing that ρ(τM) � ρ(τMB ′B ′) �
(λ − ε′). In view of the formula of λ and ε′ we can always choose ε > 0, with
a polynomially bounded number of bits, such that λ − ε′ > λ∗ − ηsep. Hence,
ρ(τM) = ρ(τMB ′B ′) = λ∗, since ρ(τM) is an eigenvalue of τM . We also deduce
from τMB ′B ′UB ′ � (λ − ε′)UB ′ that every state d ∈ B ′ has value λ∗. Finally, since
the game is irreducible, we can always replace τ(σ (d)) for d �∈ B ′ to make B ′ acces-
sible from any initial state, so that the policy τ is optimal. This concludes the proof
of Theorem 15.

7.6 Derivation of Theorem 16 from Theorem 15

By Corollary 9,

V ∞
d = min

δ∈PD

V ∞
d (δ, ∗)

Observe that |PD| � |E|s , where s is the number of significant states for despot,
hence, if s is fixed, this minimum involves a polynomial number of terms. Thanks to
the separation bound given in Corollary 29, it suffices to compute an approximation
of each V ∞

d (δ, ∗) for some ε > 0 such that log ε is polynomially bounded in the
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size of the input, to make sure that a policy δ achieving the minimum in the above
expression, in which every term V ∞

d (δ, ∗) is replaced by its approximate value, is an
optimal policy.

8 Multiplicative Policy Iteration Algorithm and Comparison
with the Spectral Simplex Method of Protasov

We now consider the question of solving entropy games in practice.

8.1 Algorithms

The equivalence between entropy games and some special class of stochastic mean
payoff games, through logarithmic glasses (see Section 3), will allow us to adapt clas-
sical algorithms for one or two player zero sum games, such as the value iteration and
the policy iteration algorithm. We next present a multiplicative version of the policy
iteration algorithm, which follows by adapting policy iteration ideas for two player
games by Hoffman and Karp [23], with “multiplicative” policy iteration techniques
of Howard and Matheson [24], Rothblum [40] and Sladky [43], The latter “multi-
plicative” policy iteration techniques apply to the Despot-free case. For clarity, we
shall explain first policy iteration in the special Despot-free case: this is more trans-
parent, and this also will allow us to interpret Protasov’s spectral simplex method
[38] as a variant of policy iteration. The newer part here is the two player case, which
is dealt with in Algorithm 9.

We assume that D = T = {1, . . . , |T |} and σ is the identity in (32) . Let τF and
τM , τ ∈ PT , be defined as in the previous section. If τM is irreducible, in particular
if all its entries are positive, τM has an eigenvector Xτ > 0, associated to the Perron
root λτ := ρ(τM). Moreover, Xτ is unique up to a multiplicative constant and is
called a Perron eigenvector. If all the matrices τM , τ ∈ PT are irreducible, one can
construct a multiplicative version of the policy iteration, Algorithm 1.

argmax

Algorithm 1 Multiplicative policy Iteration for Despot-free entropy games.

1: Initialize 1, 0, 1 0 randomly.

2: while 1
do

3: Compute the Perron root and a Perron eigenvector .

4: Compute a new policy such that, for all ,

and set 1 if this choice is compatible with the former condition.

5: 1

6: end while

7: return the optimal policy , the Perron root and Perron eigenvector of

.

1
of

1
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The following result shows that Algorithm 1 does terminate. The proof relies on a
multiplicative version of the classical strict monotonicity argument in policy iteration,
which was already used by Howard and Matheson [24], Rothblum [40] and Sladky
[43]. We reproduce the short proof for completeness.

Proposition 30 Consider Algorithm 1, where the computations are performed in
exact arithmetics and all the matrices τM , τ ∈ PT are supposed to be irreducible.
Then, the sequence λτk

is increasing as long as τ k �= τ k−1. Moreover, the algorithm
ends after a finite number of iterations k, and λτk

is the value of the game (at any
initial state).

Proof The property that λτk
is increasing uses the general property that for an

irreducible nonnegative matrix M , and for a positive vector u, Mu � λu (component-
wise) and Mu �= λu implies ρ(M) > λ. Then, the algorithm terminates since the
number of policies τ is a finite set, and so {λτ | τ ∈ PT } is finite. When τ k = τ k−1,
we get F(Xτk

) = λτk
Xτk

, and Lemma 17 shows that λτk
is the value of the game (at

any initial state).

Algorithm 1 has a dual version, in which maximization is replaced by minimiza-
tion, in order to solve the Tribune-free setting of entropy games. For this dual version
of Algorithm 1, the sequence λτk

is decreasing as long as τ k �= τ k−1. This uses
the property (dual to the previous one) that for an irreducible nonnegative matrix M ,
and for a positive vector u, Mu � λu and Mu �= λu implies ρ(M) < λ. Then the
algorithm terminates as for the primal version.

In practice, Algorithm 1 can only be implemented in an approximate way. A bot-
tleneck in this algorithm is the computation of the Perron root and Perron eigenvector.
The later can be computed by standard double precision algorithms, like the QR
method. The latter method requires O(D3) flops, where D is the size of the matrix
τM associated to a policy τ . (Note that such complexity estimates in an informal
“floating point” arithmetic model are meaningful only for well conditioned instances,
in contrast with the Turing-model complexity estimates that we derived uncondi-
tionnally in Section 7.) One may also use a more scalable algorithm, like the power
algorithm. In fact, we shall see in Algorithm 5 that the power idea can be applied
directly and in a simpler way to solve the non-linear equation, avoiding the recourse
to policy iteration. So it is not clear that the power algorithm will be the best choice
to compute the eigenpair in situations in which Algorithm 1 is competitive. In the
experiments which follow, we used the QR method in Algorithm 1.

In [38], Protasov introduced the Spectral Simplex Algorithm. His algorithm is a
variant of Algorithm 1 in which at every iteration the policy is improved only at one
state, which is the first state t such that Ft(X

τk
) > λτk

Xτk

t . We shall also consider
another version of Algorithm 1, in which we also change the policy at only one state
t , but we choose it in order to maximize the expression Ft(X

τk
) − λτk

Xτk

t . We shall
refer to this algorithm as ”Spectral Simplex-D” since this is analogous to Dantzig’s
pivot rule in the original simplex method [49].

The Spectral Simplex Algorithm introduced by Protasov in [38] is described in the
Despot-free setting in Algorithm 2.
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Algorithm 2 Spectral simplex algorithm [38].

1: Initialize 1, 0, 1 0 randomly.

2: while 1
do

3: Compute the Perron root and a Perron eigenvector of .

4: Set 1 for 1 .

5: bool = true, 1.

6: while (bool) and ( ) do

7: if max then

8: Choose

1 argmax .

9: bool = false.

10: end if

11: 1.

12: end while

13: 1

14: end while

15: return the first policy such that 1 , the Perron root and a Perron

eigenvector of the matrix .

The Spectral Simplex Algorithm with Dantzig update is shown in Algorithm 3,
again in the Despot-free setting.

Algorithm 3 Spectral simplex algorithm for despot free game - dantzig update.

1: Initialize 1, 0, 1 0 randomly.

2: while 1
do

3: Compute the Perron root and a Perron eigenvector of .

4: Set 1 for 1 .

5: Compute the vector

1 1 .

6: Choose argmax1 .

7: Choose

1 arg max .

8: 1

9: end while

10: return the first policy such that 1 , the Perron root and a Perron

eigenvector of the matrix .

One can also adapt the Algorithms 2 and 3 to the Tribune-free setting, again using
minimization instead of maximization and replacing τF by Fδ .
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8.2 Numerical Experiments

We next report numerical experiments in the case of Despot-free in order to compare
Protasov’s spectral simplex algorithm (with and without the improvement of Dantzig’
pivot rule) with the multiplicative policy iteration algorithm (Algorithm 1). In the
log-log Figs. 1 and 2, these algorithms are respectively named ”Policy Iteration”,
”Spectral Simplex” and ”Spectral Simplex-D”.

We constructed random Despot-free instances in which D = T has cardinal n,
and every coordinate of the operator is of the form Ft(X) = max1�p�m

∑
t ′ A

p

tt ′Xt ′ ,
where (A

p

tt ′) is a 3-dimensional tensor whose entries are independent random vari-
ables drawn with the uniform law on {1, . . . , 15}. Remember that m is an integer
which represents the number of possible different actions per state t . All the results
shown on the figures are the average made over 30 simulations, they concern the sit-
uation in which one of the two parameters m, n is kept constant while the other one
increases. The time is given in seconds. The computations were performed on Mat-
lab R2016a, using an Intel(R) Core(TM) i7-6500 CPU @ 2.59GHz processor with
12,0Go of RAM.

In both figures, Spectral Simplex-D appears to be more efficient than the Spectral
Simplex algorithm with its original rule. However both algorithms are experimentally
outperformed by policy iteration, by one to two order of magnitude, when n → ∞,
whereas when m → ∞ (for constant parameter n), the performance of the three
algorithms seem to deteriorate at the same rate.

9 Two-player Entropy Games: Multiplicative Policy Iteration
and Power Algorithm

Let us now consider the general two-player case. For δ ∈ PD and τ ∈ PT , let Fδ

(resp. τF δ) be the dynamic programming operator of the game in which the strategy

Fig. 1 Performance of Algorithms 1, 2, and 3 for different n = 10, ..., 500
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Fig. 2 Performance of Algorithms 1, 2, and 3 for different m = 10, ..., 500

of Despot, δ, is fixed (resp. the strategies of Despot and of Tribune, δ and τ are fixed),
see (22) (resp. (37)). We assume here that the matrices τMδ of the linear operators
τF δ , δ ∈ PD, τ ∈ PT , see (37), are irreducible.

Then, the Hoffman-Karp’s idea [23] is readily adapted to the multiplicative set-
ting: in the following algorithm, a sequence δk is constructed in a similar way as τ k

in the dual version of Algorithm 1, except that in Step 3, λδk
and Xδk

are computed
by applying Algorithm 1 to the dynamic programming operator Fδk

in which the
strategy of Despot is fixed to δk . We call this the multiplicative Hoffman-Karp algo-
rithm. ta It can also be viewed as an “exact” version of the policy iteration algorithm
of Hoffman and Karp [23] for f .

Algorithm 4 Policy iteration for two-player entropy games.

1: Initialize 1, 0, 1 0 randomly.

2: while 1
do

3: Apply Algorithm 1 to . This returns a policy , the Perron root

and the Perron eigenvector of .

4: Compute a new policy 1 such that, for all ,

1 argmin max

taking 1 if it belongs to the latter argmin.

5: 1

6: end while

7: return the first policies such that 1, and the Perron root

and the Perron eigenvector of .
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A similar proof as the one of Proposition 30 shows that Algorithm 4, implemented
in exact arithmetics, terminates and is correct under the previous assumption that for
any pair of policies of the two players, the associated transition matrix is irreducible.
Indeed, as for the dual version of Algorithm 1, λδk

is decreasing as long as δk �= δk−1.
Then, since again the set of policies of Despot is finite, the algorithm ends.

To have an additional point of comparison, we used a power type algorithm, more
precisely, the projective version of the Krasnoselski-Mann iteration, proposed in [21].
The original Krasnoselski-Mann iteration was developed in [29, 33], its analysis was
extended and refined by Ishikawa [26] and Baillon and Bruck [8]. Recall that

Fd(X) = min
(d,t)∈E

max
(t,p)∈E

∑

(p,d ′)∈E

mpd ′Xd ′ ,

and let us define

Hd(X) = (XdGd(X))1/2, whereGd(X) = Fd(X)

(
∏

d ′∈E Fd ′(X))1/|D| .

Every fixed point of H is an eigenvector X ∈ RD+ of F such that
∏

d ′∈E Xd = 1,
indeed

H(X) = X ⇐⇒ (XdGd(X))1/2 = Xd, ∀d ∈ D

⇐⇒ Gd(X) = Xd, ∀d ∈ D

⇐⇒ Fd(X)

(
∏

d ′ Fd ′(X))1/|D| = Xd, ∀d ∈ D

⇐⇒ Fd(X) = λXd, ∀d ∈ D, and
∏

d ′∈E

Xd = 1 ,

for some λ > 0 (since then λ = (
∏

d ′ Fd ′(X))1/|D|). It can be shown as a corollary
of a general result of Ishikawa [26] concerning nonexpansive mappings in Banach
spaces that Algorithm 5 does converge if F has an eigenvector in the interior of
the cone. We refer the reader to [21] for more details on the analysis of the projec-
tive Krasnoselski-Mann iteration. We use Hilbert’s projective metric dH (X, Y ) =
‖ log(X) − log(Y )‖H (with ‖X‖H = maxd Xd − mind Xd ) to test the approximate
termination.

Algorithm 5 Power algorithm for two-player entropy games.

1: Initialize 0, 0 1 0 .

2: while 1
do

3: 1

4: 1

5: 1

6: end while

7: return the first vector such that 1 .
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Fig. 3 Performance of Algorithms 4 and 5 for n = 10, ..., 2000

The log-log Figs. 3 and 4 show the performances of the power algorithm and the
two-player policy iteration algorithm. The computation were performed on the same
computer as in the previous section; the time is still given in seconds. The policy
iteration algorithm outperforms the power algorithm asymptotically for large number
of actions m, whereas for large number of states n, the power algorithm is more
efficient. The experimentally observed efficiency of the –naive– power algorithm
actually reveals that the random instances we considered are relatively “easy”.

Fig. 4 Performance of Algorithms 4 and 5 for m = 10, ..., 200
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10 Concluding Remarks

We developed an operator approach for entropy games, relating them with risk sensi-
tive control via non-linear Perron-Frobenius theory. This leads to a theoretical result
(polynomial time solvability of the Despot-free case), and this allows one to adapt
policy iteration to these games. Several issues concerning policy iteration in the spec-
tral setting remains unsolved. A first issue is to understand what kind of approximate
eigenvalue algorithms are best suited. A second issue is to identify significant classes
of entropy games on which the Hoffman-Karp type policy iteration algorithm can be
shown to run in polynomial time (compare with [25, 49] in the case of Markov deci-
sion processes). In view of the asymmetry between Despot and Tribune, one may
expect that Tribune-free entropy games are at least as hard as deterministic mean
payoff games, it would be interesting to confirm that this is the case.
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