
https://doi.org/10.1007/s00224-019-09910-6

Complexity and Inapproximability Results for Parallel Task
Scheduling and Strip Packing

Sören Henning1 ·Klaus Jansen1 ·Malin Rau1 · Lars Schmarje1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We study Parallel Task Scheduling Pm|sizej |Cmax with a constant number of
machines. This problem is known to be strongly NP-complete for each m ≥ 5, while
it is solvable in pseudo-polynomial time for each m ≤ 3. We give a positive answer
to the long-standing open question whether this problem is strongly NP-complete
for m = 4. As a second result, we improve the lower bound of 12

11 for approxi-
mating pseudo-polynomial Strip Packing to 5

4 . Since the best known approximation
algorithm for this problem has a ratio of 5

4 + ε, this result almost closes the gap
between approximation ratio and inapproximability result. Both results are proved by
a reduction from the strongly NP-complete problem 3-Partition.

Keywords Parallel Task Scheduling · Strip Packing · 3-Partition ·
Inapproximability · Complexity

This article is part of the Topical Collection on Computer Science Symposium in Russia (2018)

This work was supported by German Research Foundation (DFG) project JA 612/20-1

� Malin Rau
mra@informatik.uni-kiel.de

Sören Henning
she@informatik.uni-kiel.de

Klaus Jansen
kj@informatik.uni-kiel.de

Lars Schmarje
las@informatik.uni-kiel.de

1 Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Theory of Computing Systems (2020) 64:120–140

Published online: 1 February 20198

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-019-09910-6&domain=pdf
http://orcid.org/0000-0002-5710-560X
mailto: mra@informatik.uni-kiel.de
mailto: she@informatik.uni-kiel.de
mailto: kj@informatik.uni-kiel.de
mailto: las@informatik.uni-kiel.de

1 Introduction

In the Parallel Task Scheduling problem denoted as P |sizej |Cmax in the three-field-
notation, a set of jobs J has to be scheduled on m machines minimizing the makespan
Cmax. Each job j ∈ J has a processing time p(j) ∈ N and requires q(j) ∈ N

machines. A schedule S is given by two functions σ : J → N and ρ : J → 2{1,...,m}.
The function σ maps each job to a start point in the schedule, while ρ maps each job
to the set of machines it is processed on. We say a machine i contains a job j ∈ J if
i ∈ ρ(j). A schedule is feasible if each machine processes at most one job at a time
and each job is processed on the required number of machines (i.e. |ρ(j)| = q(j)).
The objective is to find a feasible schedule S minimizing the makespan Cmax :=
maxj∈J (σ (j) + p(j)).

In 1989, Du and Leung [9] proved the Parallel Task Scheduling problem
P |sizej |Cmax to be strongly NP-complete for all m ≥ 5, while P |sizej |Cmax is solv-
able by a pseudo-polynomial time algorithm for all m ≤ 3. In this paper, we address
the case of m = 4, which has been open since and prove:

Theorem 1 Parallel Task Scheduling on 4 machines is strongly NP-complete.

Building on this result, we can prove a lower bound for the absolute approximation
ratio of pseudo-polynomial time algorithms for the Strip Packing problem, where an
algorithm A has absolute approximation ratio α if A(I)/OPT(I) ≤ α for all instances
I of the given problem. In the Strip Packing problem a set of rectangular items I has
to be placed into a strip of width W ∈ N and infinite height. Each item i ∈ I has a
width w(i) ∈ N≤W and a height h(i) ∈ N. A packing of the items I into the strip
is a function ρ : I → Q0 × Q0, which places the items axis-parallel into the strip
by assigning the left bottom corner of an item to a position in the strip such that for
each item i ∈ I with ρ(i) = (xi, yi) we have xi + w(i) ≤ W . We say two items
i, j ∈ I overlap if they share an inner point. A packing is feasible if no two items
overlap. The height of a packing is defined as H := maxi∈I yi + h(i). The objective
is to find a feasible packing of the items I into the strip that minimizes the packing
height. If all item sizes are integral, we can transform feasible packings to packings
where all positions are integral without enlarging the packing height [5]. Therefore,
we can assume that we have packings of the form ρ : I → N0 × N0.

Lately, pseudo-polynomial time algorithms for Strip Packing where the width of
the strip is allowed to appear polynomially in the running time of the algorithm, while
it appears only logarithmically in the input size of the instance, gained high interest.
In a series of papers [11, 20, 21, 23, 26], the best approximation ratio was improved
to 5

4 +ε. On the other hand, it is not possible to find an algorithm with approximation

Fig. 1 The upper and lower bounds for the best possible approximation for pseudo-polynomial Strip
Packing achieved so far

Theory of Computing Systems (2020) 64:120–140 121

ratio better than 12
11 , except P = NP [1]. In this paper, we improve this lower bound

to 5
4 , which almost closes the gap between lower bound and best algorithm (Fig. 1).

Theorem 2 It is NP-Hard to find a pseudo-polynomial time approximation algo-
rithm for Strip Packing with an absolute approximation ratio strictly better than
5
4 .

1.1 RelatedWork

Parallel Task Scheduling In 1989, Du and Leung [9] proved Parallel Task Scheduling
Pm|sizej |Cmax to be strongly NP-complete for all m ≥ 5, while it is solvable by
a pseudo-polynomial time algorithm for all m ≤ 3. Amoura et al. [2], as well as
Jansen and Porkolab [19], presented a polynomial-time approximation scheme (in
short PTAS) for the case that m is a constant. A PTAS is a family of polynomial-time
algorithms that finds a solution with an approximation ratio of (1 + ε) for any given
value ε > 0. If m is polynomially bounded by the number of jobs, a PTAS exists [23].
Nevertheless, if m is arbitrarily large, the problem gets harder. By a simple reduction
from the Partition problem, one can see that there is no polynomial time algorithm
with approximation ratio smaller than 3

2 . Parallel Task Scheduling with arbitrarily
large m has been widely studied [10, 12, 25, 31]. The algorithm with the best known
absolute approximation ratio of 3

2 + ε was presented by Jansen [17].

Strip Packing The Strip Packing problem was first studied in 1980 by Baker et al.
[4]. They presented an algorithm with an absolute approximation ratio of 3. This ratio
was improved by a series of papers [8, 16, 27–29]. The algorithm with the best known
absolute approximation ratio by Harren, Jansen, Prädel and van Stee [15] achieves a
ratio of 5

3 + ε. By a simple reduction from the Partition problem, one can see that
it is impossible to find an algorithm with better approximation ratio than 3

2 , unless
P = NP.

For this problem also asymptotic approximation algorithms have been studied. An
algorithm for a minimization problem has an asymptotic approximation ratio of α, if
there is a constant c (which might depend on ε or the maximal occurring item height
hmax) such that the objective value A(I) computed by the algorithm is bounded by
αOPT(I) + c. The lower bound of 3

2 does not hold for asymptotic approximation
ratios and they have been studied in various papers [3, 8, 14]. Kenyon and Rémila
[24] presented an asymptotic fully polynomial approximation scheme (in short AFP-
TAS) with additive term O(hmax/ε

2), where hmax is the largest occurring item height.
An approximation scheme is fully polynomial if its running time is polynomial in
1/ε as well. This algorithm was simultaneously improved by Sviridenko [30] and
Bougeret et al. [6] to an algorithm with an additive term of O(hmax log(1/ε)/ε). Fur-
thermore, at the expense of the running time, Jansen and Solis-Oba [22] presented an
asymptotic PTAS with an additive term of hmax.

Recently, the focus shifted to pseudo-polynomial time algorithms. Jansen and
Thöle [23] presented an pseudo-polynomial time algorithm with approximation ratio
of 3

2 + ε. Later Nadiradze and Wiese [26] presented an algorithm with ratio 7
5 + ε. Its

Theory of Computing Systems (2020) 64:120–140122

approximation ratio was independently improved to 4
3 + ε by Gálvez et al. [11] and

by Jansen and Rau [21]. 5/4+ε is the best approximation ratio so far, achieved by an
algorithm by Jansen and Rau [20]. All these algorithms have a polynomial running
time if the width of the strip W is bounded by a polynomial in the number of items.

In contrast to Parallel Task Scheduling, Strip Packing cannot be approximated
arbitrarily close to 1, if we allow pseudo-polynomial running time. This was proved
by Adamaszek et al. [1] by presenting a lower bound of 12

11 . As a consequence,
Strip Packing admits no quasi-polynomial time approximation scheme, unless NP ⊆
DT IME(2polylog(n)). For an overview on 2-dimensional packing problems and open
questions regarding these problems, we refer to the survey by Christensen et al. [7].

1.2 Organization of this Paper

In Section 2, we will prove Theorem 1 by a reduction from the strongly NP-complete
problem 3-Partition. First, we describe the jobs to construct for this reduction. After-
ward, we prove: if the 3-Partition instance is a Yes-instance, then there is a schedule
with a specific makespan, and if there is a schedule with this specific makespan then
the 3-Partition instance has to be a Yes-instance. While the first claim can be seen
directly, the proof of the second claim is more involved. Proving the second claim,
we first show that it can be w.l.o.g. supposed that each machine contains a certain
set of jobs. In the next step, we prove some implications on the order in which the
jobs appear on the machines which finally leads to the conclusion that the 3-Partition
instance has to be a Yes-instance. In Section 3 we discuss the implications for the
inapproximability of pseudo-polynomial Strip Packing.

2 Hardness of Scheduling Parallel Tasks

In this Section, we prove Theorem 1 by a reduction from the 3-Partition problem.
In this problem, we are given a list I = (ι1, . . . , ι3z) of 3z positive integers with∑3z

i=1 ιi = zD and D/4 < ιi < D/2 for each 1 ≤ i ≤ 3z. The problem is to decide
whether there exists a partition of the set I = {1, . . . , 3z} into sets I1, . . . , Iz such that∑

i∈Ij
ιi = D for each 1 ≤ j ≤ z. This problem is strongly NP-complete see [13]

problem [SP15]. Hence, it cannot be solved in pseudo-polynomial time, unless P = NP.
Before we start constructing the reduction, we introduce some notations. Let j ∈ J

and J ′ ⊆ J . We define the work of j as w(j) := p(j) · p(j) and the total work of
J ′ as w(J ′) := ∑

j∈J ′ w(j). For a given schedule S = (σ, ρ), we denote by nj (J
′)

the number of jobs from the set J ′ that are finished before the start of the job j , i.e.,
nj (J

′) = |{i ∈ J ′ : σ(i) + p(i) ≤ σ(j)}|. Furthermore, we will use a notation
defined in [9] for swapping a part of the content of two machines; let j ∈ J be a job
that is processed by at least two machines, M and M ′, with start point σ(j). We can
swap the content of the machines M and M ′ after time σ(j) without violating any
scheduling constraint. We define this swapping operation as SWAP(σ (j), M, M ′).

The main idea of our reduction is to construct a set of structure jobs. These struc-
ture jobs have the property that each possible way to schedule them with the optimal
makespan leaves z gaps, each with processing time D, i.e., it happens exactly at z

Theory of Computing Systems (2020) 64:120–140 123

Fig. 2 Packing of structure jobs with gaps (hatched area) for 3-Partition items. The items in the green area
(left) are repeated z times. With the displayed choice of processing times, the items in the red area (right)
can be rotated by 180 degrees such that α is scheduled on M4 after the job in B and β is scheduled on M1
before the job in A

distinct times that a machine is idle, and the duration of each idle time is exactly
D, see Fig. 2 at the hatched areas. As a consequence, partition jobs, which have
processing times equal to the 3-Partition numbers, can only be scheduled with the
desired makespan if the 3-Partition instance is a Yes-instance.

2.1 Construction

In this section, we will construct a scheduling instance for P 4|sizej |Cmax from a
given 3-Partition instance. In the following two paragraphs, we will give an intu-
ition which jobs we introduce why with which processing time. An overview of the
introduced jobs and their processing times can be found in Table 1 and the fourth
paragraph of this section.

Given a 3-Partition instance, we construct ten disjoint sets of jobs A, B, a, b, c,
α, β, γ , δ, and λ, which will be forced to be scheduled as in Fig. 2 by choosing
suitable processing times. In the first step, we add a unique token to the processing
time of each set of jobs to be processed simultaneously to ensure that these jobs have
to be processed at the same time in every schedule. As this token, we choose Dx ,
where x ∈ {2, . . . , 7} and D is the required sum of the items in each partition set.

Table 1 Overview of the generated jobs

q(j) = 3, p(j) = D4 =: pA if j ∈ A := {A0, . . . , Az}
q(j) = 3, p(j) = D2 =: pB if j ∈ B := {B0, . . . , Bz}
q(j) = 2, p(j) = D5 + D6 + 3zD8 =: pa if j ∈ a := {a1, . . . , az}
q(j) = 2, p(j) = D6 + D7 + 3zD8 =: pb if j ∈ b := {b1, . . . , bz}
q(j) = 2, p(j) = D3 + (z + i)D8 if j = ci ∈ c := {c0, . . . , cz}
q(j) = 1, p(j) = D2 + D3 + D7 + 4zD8 =: pα if j ∈ α := {α1, . . . , αz}
q(j) = 1, p(j) = D3 + D4 + D5 + (4z − 1)D8 =: pβ if j ∈ β := {β1, . . . , βz}
q(j) = 1, p(j) = D7 + (3z − i)D8 − D if j = γi ∈ γ := {γ1, . . . , γz}
q(j) = 1, p(j) = D5 + (3z − i)D8 if j = δi ∈ δ := {δ1, . . . , δz}
q(j) = 1, p(j) = D2 + D3 + zD8 if j = λ1

q(j) = 1, p(j) = D3 + D4 + 2zD8 if j = λ2

q(j) = 1, p(j) = ιj if j ∈ P := {p1, . . . , p3z}

Theory of Computing Systems (2020) 64:120–140124

For example for jobs in B we define a processing time of D2, while we define the
processing time of each job in α such that it contains D7 + D2 + D3, see Fig. 2.

Unfortunately, the tokens D2 to D7 are not enough to ensure that the schedule in
Fig. 2 is the only possible one. Consider the jobs contained in the red area (right) in
Fig. 2. With the choice of processing times as shown in the figure, it is possible to
rotate the red area by 180 degrees such that α is scheduled on M4 and β is scheduled
on M1. After rotating every second of these set of jobs, it is possible to reorder the
jobs, and fusing the areas for the 3-Partition items into two or three areas, see Fig. 3.
To prohibit this possibility to rotate, we introduce one further token D8. This token
is added to the processing time of some jobs such that the combined processing time
of the jobs in the red area on M1 differs from the one on M4. To ensure this, we have
to give up the property that in each of the sets A, B, a, b, c, α, β, γ, δ all jobs have
the same processing time. More precisely, each job in the sets c, δ, and γ receives a
unique processing time.

In the following, we describe the jobs constructed for the reduction. We introduce
two sets A and B of 3-processor jobs, three sets a, b and c of 2-processor jobs, and
five sets α, β, γ , δ, and λ of 1-processor jobs. The description of the jobs inside these
sets and their processing times can be found in Table 1. We call these jobs structure
jobs. Additionally, we generate for each i ∈ {1, . . . , 3z} one 1-processor job, called
partition job, with processing time ιi and define P as the set containing all partition
jobs. Last, we define W := (z + 1)(D2 + D3 + D4) + z(D5 + D6 + D7) + z(7z +
1)D8. Note that the total work of the introduced jobs adds up to 4W , i.e., a schedule
without idle times has makespan W while each schedule containing idle times has a
makespan, which is strictly larger than W .

Given a set J ⊆ ⋃{A, B, a, b, c, α, β, δ, λ} of the jobs constructed this way, their
total processing time p(J) has the form

∑7
i=2 xiD

i , with xi ∈ N for i = 2, . . . , 7.
For each occurring xi , we want the tokens Di to be unique in the way that xiD

i <

Di+1 for each possible occurring sum of processing times of structure jobs and each
i = 2, . . . , 7. Let kmax be the largest occurring coefficient in the sum of processing
times of any given subset of the generated structure jobs, i.e., kmax ≤ 4z(7z + 1).
If D ≤ kmax, we scale each number in the 3-Partition instance with kmax, before
constructing the jobs. As a result in the scaled instance it holds that kmaxD

i < Di+1.
Since kmax depends polynomially on z, the input size of the scaled instance will still
depend polynomially on the input size of the original instance. In the following, let
us assume that D > kmax in the given 3-Partition instance. Note that in a schedule
without idle times, a machine cannot contain a set of jobs, with processing times that

Fig. 3 A reordering we have to prohibit, because it fuses the areas for 3-Partition items into two areas, one
area on M2 and one area on M3 if z is even, and into three areas if z is odd

Theory of Computing Systems (2020) 64:120–140 125

add up to a value where one of the coefficients is larger than the corresponding one
in W .

In the following two subsections, we will prove that there is a schedule with
makespan W if and only if the 3-Partition instance is a Yes-instance.

2.2 Partition to Schedule

Let I be a Yes-instance of 3-Partition with partition I1, . . . , Iz. One can easily verify
that the structure jobs can be scheduled as shown in Fig. 4. After each job γj , for
each 1 ≤ j ≤ z, we have a gap with processing time D. We schedule the partition
jobs with indices out of Ij directly after γj . Their processing times add up to D, and
therefore they fit into the gap. The resulting schedule has a makespan of W .

2.3 Schedule to Partition

Let a schedule S = (σ, ρ) with makespan W be given. We will now step by step
describe why I has to be a Yes-instance of 3-Partition. In the first step, we will show
that we can transform the schedule such that each machine contains a certain set of
jobs.

Lemma 1 We can transform the schedule S into a schedule such that M1 contains
the jobs

⋃{A, a, α, λ1}, M2 contains the jobs
⋃{A, B, c, ǎ, b̌, γ̌ , δ̌}, M3 contains

the jobs
⋃{A, B, c, â, b̂, γ̂ , δ̂} and M4 contains the jobs

⋃{B, b, β, λ2}, where a =
ǎ∪̇â, b = b̌∪̇b̂, γ = γ̌ ∪̇γ̂ , and δ = δ̌∪̇δ̂. Furthermore, if the jobs are scheduled in
this way, it holds that |ǎ| = |γ̌ | and |b̌| = |δ̌|.

Proof First, we will show that the content of the machines can be swapped, without
enlarging the makespan, such that M2 and M3 each contain all the jobs in A ∪ B. We
will show this claim inductively. For the induction basis, consider the job in A ∪ B

with the smallest starting point in this set. We can swap the complete content of the
machines such that M2 and M3 contain this job. For the induction step, let us assume
that the first i jobs from the set A ∪ B are scheduled on the machines M2 and M3.
Consider the (i + 1)st job. This job is either already scheduled on the machines M2
and M3, and we do nothing, or there is one machine M ∈ {M2, M3}, which does not
contain this job. Let us assume the latter. Let M ′ ∈ {M1, M4} be the third machine

Fig. 4 An optimal schedule, for a Yes-instance, where t0 := ∑4
k=2 Dk + zD8, t1 := ∑7

k=2 Dk + (7z −
1)D8, and t2 := ∑7

k=2 Dk + 7zD8

Theory of Computing Systems (2020) 64:120–140126

containing the i-th job in A ∪ B. We transform the schedule such that M2 and M3
contain the (i+1)-th job, by performing a swapping operation SWAP(σ (xi), M, M ′).
After this swap M , and hence both machines M2 and M3, will contain the (i + 1)st
job, which concludes the proof that the content of the machines can be swapped such
that M2 and M3 each contain all the jobs in A ∪ B.

In the next step, we will determine the set of jobs contained by the machines M1

and M4 using the token D8. Besides the jobs in A ∪ B, M2 and M3 contain jobs with
total processing time of (z + 1)D3 + zD5 + zD6 + zD7 + z(7z + 1)D8. Hence,
M2 and M3 cannot contain jobs in α ∪ β ∪ λ, since their processing times contain
D2 or D4. Therefore, each job in α ∪ β ∪ λ has to be processed either on M1 or on
M4. Furthermore, each job in A ∪ B has to be processed on one of the machines M1

or M4 additional to the machines M2 and M3 since each of these jobs needs three
machines to be scheduled. In addition to the jobs jobs in

⋃{A, B, α, β, λ}, M1 and
M4 together contain further jobs with a total processing time of zD5 +2zD6 +zD7 +
6z2D8. Exclusively jobs from the set a ∪ b have a processing time containing D6.
Therefore, each machine processes z of them. Hence corresponding to D8, a total
processing time of 3z2D8 is used by jobs in the set a ∪ b on each machine. This
leaves a processing time of (4z2 + z)D8 for the jobs in α ∪ β ∪ λ on M1 and M4.
All the 2(z + 1) jobs in α ∪ β ∪ λ contain D3 in their processing time. Therefore,
each machine M1 and M4 processes exactly z + 1 of them. We will swap the content
of M1 and M4 so that λ1 is scheduled on M1. As a consequence, M1 processes z

jobs from the set α ∪ β ∪ {λ2}, with processing times that sum up to 4z2D8 in the
D8 component. The jobs in α have with 4zD8 the largest amount of D8 in their
processing time. Therefore, M1 has to process all of them since z · 4zD8 = 4z2D8,
while M4 contains the jobs in β ∪ {λ2}. Since we have p(α ∪ {λ1}) = (z + 1)D2 +
(z+1)D3 +zD7 +z(4z+1)D8, jobs from the set A∪B ∪a∪b with total processing
time of (z + 1)D4 + zD5 + zD6 + 3z2D8 have to be scheduled on M1. In this set,
the jobs in A are the only jobs with processing times containing D4, while the jobs
in a are the only jobs with a processing time containing D5. As a consequence, M1
processes the jobs

⋃{A, a, α, {λ1}}. Analogously we can deduce that M4 processes
the jobs

⋃{B, b, β, {λ2}}.
In the last step, we will determine which jobs are scheduled on M2 and M3. As

shown before, each of them contains the jobs A ∪ B. Furthermore, since no job in c

is scheduled on M1 or M4, and they require two machines to be processed, machines
M2 and M3 both contain the set c. Additionally, each job in γ ∪ δ has to be scheduled
on M2 or M3 since they are not scheduled on M1 or M4. Each job in a ∪ b occupies
one of the machines M1 and M4. The second machine they occupy is either M2 or
M3. Let ǎ ⊆ a be the set of jobs that is scheduled on M2 and â ⊆ a be the set
that is scheduled on M3. Clearly a = ǎ∪̇â. We define the sets b̂, b̌, δ̂, δ̌, γ̂ , and γ̌

analogously. By this definition, M2 contains the jobs
⋃{A, B, ǎ, b̌, δ̌, γ̌ , c} and M3

contains the jobs
⋃{A, B, â, b̂, δ̂, γ̂ , c}.

We still have to prove that |ǎ| = |γ̌ | and |b̌| = |δ̌|. First, we notice that |ǎ| +
|b̌| = z since these jobs are the only jobs with a processing time containing D6. So
besides the jobs in

⋃{A, B, c, ǎ, b̌}, M2 contains jobs with total processing time of
(z − |ǎ|)D5 + (z − |b̌|)D7 +∑z

i=1(3z − i)D8 = |b̌|D5 + |ǎ|D7 +∑z
i=1(3z − i)D8.

Theory of Computing Systems (2020) 64:120–140 127

Since the jobs in δ are the only jobs in δ ∪γ having a processing time containing D5,
we have |δ̌| = |b̌| and analogously |γ̌ | = |ǎ|.

In the next steps, we will prove that it is possible to transform the order in which
the jobs appear on the machines to the one in Fig. 4. Notice that, since there is no
idle time in the schedule, each start point of a job i is given by the sum of processing
times of the jobs on the same machine scheduled before i. So the start position σ(i)

of a job i has the form

σ(i) = x0 + x2D
2 + x3D

3 + x4D
4 + x5D

5 + x6D
6 + x7D

7 + x8D
8

for −zD ≤ x0 ≤ zD < D2 and 0 ≤ xj ≤ 4z(7z + 1) ≤ D for each 2 ≤ j ≤ 8. Note
that −zD ≤ x0 since the processing time of the jobs in γ is given by D7 + (3z −
i1)D8 − D and there are at most z of them while x0 ≤ zD since the total sum of
processing times of partition jobs is at most zD. This equation for σ(i) allows us to
analyze how many jobs of which type are scheduled before a job i on the machine that
processes i. For example, let us look at the coefficient x4. This value is just influenced
by jobs with processing times containing D4. The only jobs with these processing
times are the jobs in the set A ∪ β ∪ {λ2}. The jobs in β ∪ {λ2} are just processed on
M4, while the jobs in A each are processed on the three machines M1, M2, and M3.
Therefore, we know that at the starting point σ(i) of a job i scheduled on machines
M1, M2 or M3 we have that x4 = ni(A). Furthermore, if i is scheduled on M4 we
know that x4 = ni(β)+ni({λ2}). In Table 2, we present which sets influences which
coefficients in which way when job i is started on the corresponding machine.

Let us consider the start point σ(i) of a job i that uses more than one machine. We
know that σ(i) is the same on all the used machines and therefore the coefficients
are the same as well. In the following, we will study for each of the sets A, B, a,
b, c what we can conclude for the starting times of these jobs. For each of the sets,
we will present an equation, which holds at the start of each item in this set. These
equations give us a strong set of tools for our further arguing.

Lemma 2 Let be A′ ∈ A, B ′ ∈ B, a′ ∈ a, b′ ∈ b, and c′ ∈ c. It holds that

nA′(c) − nA′({λ1}) = nA′(B) − nA′({λ1}) = nA′(α) = nA′(b) = nA′(a), (1)

nB ′(c) − nB ′({λ2}) = nB ′(A) − nB ′({λ2}) = nB ′(β) = nB ′(a) = nB ′(b), (2)

Table 2 Overview of the values of the coefficients at the start point of a job i, if i is scheduled on machine
Mj

M1 M2 M3 M4

x2 ni(α) + ni({λ1}) ni(B) ni(B) ni(B)

x3 ni(α) + ni({λ1}) ni(c) ni(c) ni(β) + ni({λ2})
x4 ni(A) ni(A) ni(A) ni(β) + ni({λ2})
x5 ni(a) ni(ǎ) + ni(δ̌) ni (â) + ni(δ̂) ni (β)

x6 ni(a) ni(ǎ) + ni(b̌) ni (â) + ni(b̂) ni (b)

x7 ni(α) ni(b̌) + ni(γ̌) ni (b̂) + ni(γ̂) ni (b)

Theory of Computing Systems (2020) 64:120–140128

na′(B) = na′(α) + na′({λ1})) = na′(c), (3)

nb′(A) = nb′(β) + nb′({λ2}) = nb′(c), (4)

and
nc′(b) = nc′(a). (5)

Proof We will prove these equations using the conditions for the coefficients from
Table 2. We write =xi

when the coefficient xi is the reason why the equality is true.
To prove (1), we will consider the start points of the jobs in A. Each job A′ ∈ A

is scheduled on machines M1, M2 and M3. As a consequence the coefficients on all
these tree machines have to be the same, when the job A′ starts. Therefore, we know
that at σ(A′) we have

nA′(B) =x2 nA′(α) + nA′({λ1}) =x3 nA′(c). (i)

Furthermore, we know that

nA′(a) =x6 nA′(ǎ) + nA′(b̌) =x6 nA′(â) + nA′(b̂).

Since nA′(a) = nA′(ǎ)+nA′(â) and nA′(b) = nA′(b̌)+nA′(b̂), because a = ǎ∪̇â and
b = b̌∪̇b̂, we can deduce that nA′(â) = nA′(b̌) and nA′(ǎ) = nA′(b̂) and therefore

nA′(a) = nA′(b). (ii)

Additionally, we know that

nA′(α) =x7 nA′(b̌) + nA′(γ̌) =x7 nA′(b̂) + nA′(γ̂).

Thanks to this equality, we can show that nA′(α) = nA′(b): First, we show nA′(α) ≥
nA′(b). Let b′ ∈ b be the last job in b scheduled before A′ if there is any. Let us
w.l.o.g assume that b′ ∈ b̂. It holds that

nA′(b)
σ(b′)<σ(A′)= nb′(b) + 1 =x7 nb′(b̂) + nb′(γ̂) + 1
σ(b′)<σ(A′)≤ nA′(b̂) + nA′(γ̂) =x7 nA′(α).

If there is no such b′ we have nA′(b) = 0 ≤ nA′(α). Next, we show nA′(α) ≤ nA′(b).
Let b′′ ∈ b be the first job in b scheduled after A if there is any. Let us w.l.o.g assume
that b′′ ∈ b̌. It holds that

nA′(b)
σ(A′)<σ(b′′)= nb′′(b) =x7 nb′′(b̌) + nb′′(γ̌)

σ (A′)<σ(b′′)≥ nA′(b̌) + nA′(γ̌) =x7 nA′(α).

If there is no such b′′, we have nA′(b) = z ≥ nA′(α). As a consequence, we have

nA′(α) = nA′(b). (iii)

In summary, we can deduce that

nA′(c) − nA′({λ1}) =(i) nA′(B) − nA′({λ1}) =(i) nA′(α) =(iii) nA′(b) =(ii) nA′(a),

which concludes the proof of (1). Since the Table 2 is symmetrically, we can deduce
correctness of (2) analogously.

Theory of Computing Systems (2020) 64:120–140 129

Next we prove the (3) and (4). Each item a′ ∈ a is scheduled on machine M1 and
on one of the machines M2 or M3. For both possibilities a ∈ â or a ∈ ǎ, we can
deduce (3) directly from the Table 2:

na′(B) =x2 na′(α) + na′({λ1}) =x3 na′(c).

Analogously, we deduce (4):

nb′(A) =x4 nb′(β) + nb′({λ2}) =x3 nb′(c).

Last, we prove (5). Each item c′ ∈ c is scheduled on M2 and M3. Let a′ ∈ a be the
job with the smallest σ(a′) ≥ σ(c′). Let us w.l.o.g assume that a′ ∈ â. It holds that

nc′(ǎ) + nc′(b̌) = x6nc′(â) + nc′(b̂) ≤ na′(â) + na′(b̂) =x6 na′(a)

= na′(â) + na′(ǎ) = nc′(â) + nc′(ǎ).

As a consequence, we have nc′(b̌) ≤ nc′(â) and nc′(b̂) ≤ nc′(ǎ). Analogously, let
b′ ∈ b be the job with the smallest σ(b′) ≥ σ(c′). Let us w.l.o.g assume that b′ ∈ b̌.
It holds that

nc′(â) + nc′(b̂) = x6nc′(ǎ) + nc′(b̌) ≤ nb′(ǎ) + nb′(b̌) =x6 nb′(b)

= nb′(b̂) + nb′(b̌) = nc′(b̂) + nc′(b̌).

Therefore, nc′(ǎ) ≤ nc′(b̂) and nc′(â) ≤ nc′(b̌). As a consequence from both equa-
tions, we have nc′(ǎ) = nc′(b̂) and nc′(â) = nc′(b̌). Together with nc′(ǎ)+nc′(b̌) =x6

nc′(â) + nc′(b̂) (5), i.e., nc′(b) = nc′(a), is a direct consequence.

These equations give us the tools to analyze the given schedule with makespan W .
To this point we have proved that we can assume that the machines M1 to M4 contain
the correct sets of jobs. Consider the jobs from the sets A, B, a, b, and c. Note that if
one job from the set A∪B ∪ a ∪ b ∪ c is started no (other) job from the set A∪B ∪ c

can be processed at the same time, since these jobs will always share at least one
machine when processed. The next step is to prove that the jobs in these sets appear
in the correct order, namely B0, c0, A0,

(
b1
a1

)
, B1, c1, A1, . . . see Fig. 5. We will prove

this claim in two steps. First, we will show that in this schedule the first and last jobs
have to be elements from the set A∪B (see Lemma 3). Afterward, we will prove that
between two successive jobs from the set A there appears exactly one jobs from each
set B, a, b, and c, and prove an analogue statement for two successive jobs from the
set B (see Lemma 4).

With the knowledge gathered in the proofs of Lemma 3 and Lemma 4, we can
prove that the given schedule can be transformed such that all jobs are scheduled
contiguously, i.e., on an interval of machines, and that I has to be a Yes-instance of

Fig. 5 The processing order of the jobs in the sets A, B, a, b, and c

Theory of Computing Systems (2020) 64:120–140130

3-Partition (see Lemma 5). In the following, we write =(l), when the equation (l) is
the reason why the equality is true.

Lemma 3 One job i ∈ A ∪ B is the first job which is processed, i.e., σ(i) = 0.
Furthermore one job from the set j ∈ A ∪ B is the last job to be processed in the
schedule, i.e., σ(i) + p(j) = W .

Proof Let i := arg minι∈A∪B σ(ι) be the job with the smallest start point in A ∪ B,
(i.e., ni(A) = 0 = ni(B)). If i ∈ A it holds that

0 = ni(B) =(1) ni(α) + ni({λ1}) =(1) ni(a) + ni({λ1})
and therefore ni(a) = ni(α) = 0 = ni({λ1}). The jobs a ∪ α ∪ {λ1} ∪ A are the only
jobs, which are contained on machine M1. Since ni(A) = 0 as well, it has to be that
σ(i) = 0. If i ∈ B we can prove σ(i) = 0 analogously using equality (2).

Since the schedule stays valid if we mirror the schedule such that the new start
points are s′(i) = W − σ(i) − p(i) for each job i, the last job has to be in the set
A ∪ B as well.

Next, we will show that the items in the sets A and B have to be scheduled alter-
natingly. Let (A0, . . . , Az) be the set A and (B0, . . . , Bz) be the set B each ordered
by increasing size of the starting points. Simply swap the jobs if they do not have this
order.

Lemma 4 If σ(B0) = 0, it holds for each item i ∈ {0, . . . , z} that
i = nAi

(A) = nAi
(B) − 1 = nAi

(c) − 1 = nAi
(α) = nAi

(b) = nAi
(a), (6)

and
i = nBi

(B) = nBi
(A) = nBi

(β) = nBi
(c) = nBi

(a) = nBi
(b), (7)

and nAi
({λ1}) = 1 as well as nBi

({λ2}) = 0.

Proof We will prove this lemma by proving the following claim:

Claim 1 If σ(B0) = 0, it holds for each item i ∈ {0, . . . , z} that

nAi
(A) = nAi

(B) − nAi
({λ1})

and nAi
({λ1}) = 1.

We will prove this claim inductively and per contradiction. Assume for contradic-
tion that

nA0(B) − nA0({λ1}) > nA0(A) = 0.

Therefore, we have 1 ≤ nA0(B) − nA0({λ1}). Let a′ ∈ a, b′ ∈ b and c′ ∈ c be the
first started jobs in their sets. Since

nA0(b) =(1) nA0(a) =(1) nA0(c) − nA0({λ1}) =(1) nA0(B) − nA0({λ1}) ≥ 1,

the jobs a′, b′ and c′ start before A0. It holds that nb′(c) =(4) nb′(A) = 0.
Therefore, c′ has to start after b′ resulting in nc′(b) ≥ 1. Furthermore, we have

Theory of Computing Systems (2020) 64:120–140 131

na′(c) =(3) na′(B) ≥ 1. Hence, c′ has to start before a′ resulting in nc′(a) = 0.
In total we have 1 ≤ nc′(b) =(5) nc′(a) = 0, a contradiction. Therefore, we
have nA0(B) − nA0({λ1}) ≤ nA0(A) = 0. As a consequence, it holds that 1 ≤
nA0(B) ≤ nA0({λ1}) ≤ 1 and we can conclude nA0(B) = 1 = nA0({λ1}) as well as
nA0(B)−nA0({λ1}) = nA0(A). Therefore 1 = nAi

({λ1}) holds for all i ∈ {0, . . . , z}.
To this point we have proved the induction basis.

For the induction step it is enough to prove that nAi
(B) − 1 = nAi

(A) for all
i ∈ {0, . . . , z}. To prove this, we first show that if this condition holds for for all i′
up to an i ∈ {0, . . . , z} we can derive the (6) and an equation which is similar to (7)
for all these i′. Choose i ∈ {0, . . . , z} such that

nAi′ (B) − 1 = nAi′ (A) (8)

for all i′ ∈ {0, . . . , i}. A direct consequence from this equation is the (6) for all
i′ ∈ {0, . . . , i}:
i′ = nA′

i
(A) =(8) nA′

i
(B) − 1 =(1) nA′

i
(c) − 1 =(1) nA′

i
(α) =(1) nA′

i
(b) =(1) nA′

i
(a).

Furthermore, we have nBi
(B) = i = nAi

(A) = nAi
(B) − 1. Therefore Bi has to

be scheduled before Ai . Additionally, we have nBi
(B) − 1 = nBi−1(B) = i − 1 =

nAi−1(A) = nAi−1(B) − 1, so Bi has to be scheduled after Ai−1. Therefore, we have
nBi

(B) = nBi
(A) and the following equation is a consequence for all i′ ∈ {0, . . . , i}:

i′ = nBi′ (B) = nBi′ (A) =(2) nBi′ (c) =(2) nBi′ (β) + nBi′ ({λ2})
=(2) nBi′ (a) + nBi′ ({λ2}) =(2) nBi′ (b) + nBi′ ({λ2}). (9)

We still have to prove Claim 1, to prove the lemma. To this point, we have proved
the base of the induction. However, we still have to prove nAi+1(B) − 1 = nAi+1(A)

since we already know that nAi
({λ1}) = 1 for all i ∈ {0, . . . , z}. We will prove this

in two steps:

Claim 2 nAi+1(B) − 1 ≤ nAi+1(A)

Assume for contradiction that nAi+1(B) − 1 > nAi+1(A). As a consequence, we
have

1 = nAi+1(A) − nAi
(A) < nAi+1(B) − 1 − (nAi

(B) − 1) = nAi+1(B) − nAi
(B),

and hence, nAi+1(B) − nAi
(B) ≥ 2. Therefore, there are jobs Bi+1, Bi+2 ∈ B that

are scheduled between Ai and Ai+1. Since we have

2 ≤ nAi
(B) − 1 − (nAi

(B) − 1) =(1) nAi
(c) − 1 − (nAi+1(c) − 1)

= (1)nAi
(b) − nAi+1(b) =(1) nAi

(a) − nAi+1(a)

there have to be two jobs a′, a′′ ∈ a, b′, b′′ ∈ b and c′, c′′ ∈ c that are scheduled
between Ai and Ai+1 as well. W.l.o.g we assume that σ(a′) ≤ σ(a′′), σ(b′) ≤ σ(b′′)
and σ(c′) ≤ σ(c′′).

Next, we will deduce in which order the jobs a′, a′′, b′, b′′, c′, c′′, Bi+1, and Bi+2
appear in the schedule. It holds that

nb′′(c) =(4) nb′′(A)
σ(Ai)<σ(b′′)= nAi

(A) + 1 =(8) nAi
(B) =(1) nAi

(c)

Theory of Computing Systems (2020) 64:120–140132

since b′′ starts after Ai but before Ai+1. Therefore, b′ and b′′ have to finish before c′,
i.e., σ(b′) < σ(b′′) < σ(c′), since no job from the set c can be scheduled between
Ai and b′′. As a consequence, we have

nc′(a) =(5) nc′(b)
σ(Ai)<σ(b′)<σ(b′′)<σ(c′)≥ nAi

(b) + 2 =(1) nAi
(a) + 2.

Hence, a′′ has to start before c′ as well. Additionally, it holds that

nBi+2(c) =(2) nBi+2(A)
σ(Ai)<σ(Bi+2)= nAi

(A) + 1 =(8) nAi
(B) =(1) nAi

(c).

since Bi+2 starts after Ai but before Ai+1. As a consequence, Bi+2 has to start before
c′. Additionally, it holds that

na′′(B) =(3) na′′(c)
σ(Ai)<σ(a′′)<σ(c′)= nAi

(c) =(1) nAi
(B).

Therefore, a′′ has to start before Bi+1, since there can not be a job from the set B

scheduled between Ai and a′′.
To this point, we have deduced that the jobs have to appear in the following order

in the schedule: Ai , a′, a′′, Bi+1, Bi+2, c′, c′′, Ai+1. However, this schedule is not
feasible, since we have

nAi
(a) + 2

σ(Ai)<σ(a′)<σ(a′)<σ(Bi+1)≤ nBi+1(a) ≤(2) nBi+1(A)

σ(Ai)<σ(Bi+1)<σ(Ai+1)= nAi
(A) + 1 =(1) nAi

(a) + 1,

a contradiction. �

Therefore, the assumption nAi+1(B) − 1 > nAi+1(A) was wrong, and it holds that
nAi+1(B) − 1 ≤ nAi+1(A) proving Claim 2.

Claim 3 nAi+1(B) − 1 ≥ nAi+1(A)

Assume for contradiction that nAi+1(B) − 1 < nAi+1(A). As a consequence, it
holds that nAi+1(B) = nAi

(B) since

nAi
(B) − 1 ≤ nAi+1(B) − 1

assumption≤ nAi+1(A) − 1 = nAi
(A) = nAi

(B) − 1.

Furthermore, there has to be at least one job Bi+1 ∈ B that starts after Ai+1 since
|A| = |B|. Therefore, we have nBi+1(c) − nBi

(c) = nBi+1(A) − nBi
(A) ≥ 2. As a

consequence, there are jobs c′, c′′ ∈ c which are scheduled between Bi and Bi+1. Let
c′ be the first job in c scheduled after Bi and c′′ be the next. Since we do not know
the value of nBi

({λ2}) or nBi+1({λ2}), we can just deduce from (2) that nBi+1(a) −
nBi

(a) ≥ 1. Therefore, there has to be a job a′ ∈ a that is scheduled between Bi and
Bi+1.

Theory of Computing Systems (2020) 64:120–140 133

We will now look at the order in which the jobs Ai , Ai+1, c′, c′′ and a′ have to be
scheduled. First, we know that Ai and Ai+1 have to be scheduled between c′ and c′′,
since

nAi
(c) =(1) nAi

(B)
σ(Bi)<σ(Ai)<σ(Bi+1)= nBi

(B)+ 1 =(9) nBi
(A)+ 1 =(2) nBi

(c)+ 1

and

nAi+1(c) =(1) nAi+1(B)
σ(Bi)<σ(Ai+1)<σ(Bi+1)= nBi

(B) + 1 =(9) nBi
(A) + 1 =(2) nBi

(c) + 1,

and hence there has to be exactly one job from the set c scheduled between Bi and Ai ,
as well as Bi and Ai+1. Furthermore, we know that a′ has to be scheduled between
c′ and c′′ as well, since

na′(c) =(3) na′(B)
σ(Bi)<σ(a′)= nBi

(B) + 1 =(9) nBi
(A) + 1 =(2) nBi

(c) + 1.

As a consequence, we can deduce that there is a job b′ ∈ b which is scheduled
between c′ and c′′, since

nc′′(b) =(5) nc′′(a)
σ(c′)<σ(a′)<σ(c′′)≥ nc′(a) + 1 =(5) nc′(b) + 1.

We know about this b′ that

nb′(A) =(4) nb′(c)
σ(Bi)<σ(c′)<σ(b′)<σ(c′′)= nBi

(c) + 1 =(2) nBi
(A) + 1,

so b′ has to be scheduled between Ai and Ai+1.
In summary, the jobs are scheduled as follows: Bi , c′, Ai , b′, Ai+1, c′′, Bi+1.

However, this schedule is infeasible since

nAi
(b) =(1) nAi

(B) − 1
assumption= nAi+1(B) − 1 =(1) nAi+1(b) = nAi

(b) + 1,

a contradiction. �

As a consequence, it has to hold that nAi+1(B) − 1 ≥ nAi+1(A) proving Claim 3.
Altogether as a consequence of Claim 2 and Claim 3, we have proved that nAi+1(B)−
nAi+1({λ1}) = nAi+1(A) for all i ∈ {0, . . . , z}. This concludes the proof of the Claim
1.

Last we have to prove the (7). To do this we have to prove that nBi
({λ1}) = 0 for

all i ∈ {0, . . . , z}. We do this by proving the following claim.

Claim 4 λ2 is scheduled after the last job in B.

To prove the (7), we have to prove that nBi
({λ2}) = 0 for each i ∈ {0, . . . , z}, i.e.,

we have to prove Claim 4. Assume there is an i ∈ {0, . . . , z} with nBi
({λ2}) > 0. Let

i be the smallest of these indices. We know that

i − 1 =(9) nBi
(A) − 1 = nBi

(A) − nBi
({λ2}) =(2) nBi

(a).

Since nAi
(b) =(1) nAi

(a) =(6) i = nBi
(a) + 1 =(2) nBi

(b) + 1 there has to be an
unique a′ ∈ a and an unique b′ ∈ b scheduled between Bi and Ai . Furthermore,
since nAi

(c) =(6) i + 1 and nBi
(c) =(9) i, there has to be a c′ ∈ c scheduled

Theory of Computing Systems (2020) 64:120–140134

between Bi and Ai as well. At the start of b′ it holds that nb′(c) =(4) nb′(A) =
nAi−1(A) + 1 =(4) nAi−1(c), so b′ has to start before c′. Additionally, at the start of
a′ we have na′(c) =(4) na′(B) = nBi

(B) + 1 =(9) nBi
(c) + 1 and therefore a′ hast

to start after c′. In total, the jobs appear in the following order: Bi, b
′, c′, a′, Ai . But

this can not be the case, since we have

nBi−1(a)
(σ (c′)<σ(a′))= nc′(a) =(5) nc′(b)

(σ (Bi)<σ(b′)<σ(c′))= nBi−1(b) + 1 =(2) nBi−1(a) + 1.

Hence, we have contradicted that assumption. Hence, we have nBi
({λ2}) = 0 for all

i ∈ {0, . . . , z} and (7) is a consequence:

nBi
(b) = nBi

(a) = nBi
(c) = nBi

(β) = nBi
(A) = nBi

(B) = i.

A direct consequence of Lemma 4 is that the last job on M2 is a job in A. Since
the (1) and (2), as well as (3) and (4), are symmetric, we can deduce an analogue
statement if the first job on M2 is in A. More precisely, we can show that nBi

(A) −
nBi

({λ2}) = nBi
(B) and nBi

({λ2}) = 1 for each Bi ∈ B in this case. This would
imply that the last job on M2 is a job in B. Since we can mirror the schedule such
that the last job is the first job, we can suppose that the first job on M2 is a job in B.

At this point, we know which machines process which jobs and for all the jobs
using more than one machine we know the rough order of their processing by the
(6) and (7). These are all the tools we need to prove that if the optimal schedule for
the scheduling instance derived from I has makespan W then I is a Yes-instance for
3-Partition and we will prove it in the next lemma.

Lemma 5 If the optimal schedule for the scheduling instance derived from I has
makespan W then I is a Yes-instance for 3-Partition and we can transform the
schedule such that all jobs are scheduled on contiguous machines.

Proof First, we will prove that M1 processes the jobs A ∪ a ∪ α ∪ {λ1} in the order
λ1, A0, a1, α1, A1, a2, α2, A2, . . . , az, αz, Az, where ai ∈ a and αi ∈ α for each
i ∈ {1, . . . z}, see Fig. 6. Lemma 4 ensures that the first job on M1 is the job λ1.
Furthermore, since 0 = nA0(A) =(6) nA0(α) =(6) nA0(a), the second job on M1 is
A0. For each i ∈ {1, . . . , z} it holds that nAi

(α) =(6) nAi−1(α) + 1 and nAi
(a) =(6)

nAi−1(a) + 1. Therefore, there is exactly one job ai ∈ a and one job αi ∈ α sched-
uled between the jobs Ai−1 and Ai . It holds that nAi−1(a) + 1 =(6) i =(7) nBi

(a).
Therefore, ai has to be scheduled between Ai−1 and Bi . As a consequence, we have
nai

(α) + 1 = nai
(α) + nai

({λ1}) =(3) nai
(B) = nBi

(B) =(7) nBi
(a) = nai

(a) + 1.

Fig. 6 Proved positions of the jobs in the sets A, a, and α

Theory of Computing Systems (2020) 64:120–140 135

Therefore, ai has to be scheduled before αi and the jobs appear in machine M1 in the
described order. As a result, we know about the start point of Ai that

σ(Ai) = p(λ1) + ipa + ipα + ipA

= (i + 1)(D2 + D3) + i(D4 + D5 + D6 + D7) + (7zi + z)D8.

Now, we will show that the machine M4 processes the jobs B ∪ b ∪β ∪{λ2} in the
order B0, β1, b1, B1, β2, b2, B2, . . . , βz, bz, Bz, λ2 see Fig. 7. The first job on M4 is
the job B0, since Lemma 3 states that one of the jobs in A ∪ B has start point 0 and
we decided w.l.o.g. that B0 is this job. Equation (7) ensures that between the jobs Bi

and Bi+1 there is scheduled exactly one job bi+1 ∈ b and exactly one job βi+1 ∈ β.
It holds that nAi

(b)+1 =(6) i +1 =(7) nBi+1(b). Therefore, bi+1 has to be scheduled
between Ai and Bi+1. As a consequence, it holds that

nbi+1(β)
nbi+1 ({λ2})=0= nbi+1(β) + nbi+1({λ2}) =(4) nbi+1(A)

σ(Ai)<σ(bi+1)<σ(Bi+1)= nBi+1(A) =(7) nBi+1(b)

σ(Ai)<σ(bi+1)<σ(Bi+1)= nbi+1(b) + 1.

Hence, bi+1 has to be scheduled after βi+1 and the jobs on machine M4 appear in the
described order. As a result, we know about the start point of Bi that

σ(Bi) = ipb + ipβ + ipB

= iD2 + iD3 + iD4 + iD5 + iD6 + iD7 + (i(7z − 1))D8.

Next, we can deduce that the jobs in c are scheduled as shown in Fig. 7. We
have nBi

(c) =(7) i =(6) nAi
(c) − 1. Therefore, there exists an c′ ∈ c for each

i ∈ {0, . . . , z}, which is scheduled between Bi and Ai . The processing time between
Bi and Ai is exactly σ(Ai) − σ(Bi) − p(Bi) = D3 + (z + i)D8. As a consequence,
one can see with an inductive argument that ci ∈ c with p(ci) = D3 + (z + i)D8

has to be positioned between Bi and Ai , since the job in c with the largest processing
time, cz, fits between Bz and Az only.

In this step, we will transform the schedule such that all jobs are scheduled on
contiguous machines. To this point, this property is obviously fulfilled by the jobs
in A ∪ B ∪ c. However, the jobs in a ∪ b might be scheduled on non-contiguous
machines. We know that the ai and bi are scheduled between Ai−1 and Bi . One part
of ai is scheduled on M1 and one part of bi is scheduled on M4, while each other part
is scheduled either on M2 or on M3 but both parts on different machines, because
σ(Bi)−σ(Ai−1)−p(Ai) = D5+D6+D7+(6z−i)D8 < D5+2D6+D7+6zD8 =
p(ai) + p(bi) for each i ∈ {0, . . . , z}. Since Ai and Bi+1 both are scheduled on
machines M2 and M3, we can swap the content of the machines between these jobs

Fig. 7 Proved positions of the jobs in the sets B, b, and β

Theory of Computing Systems (2020) 64:120–140136

such that the other part of ai is scheduled on M2 and the other part of bi is sched-
uled on M3. We do this swapping step for all i ∈ {0, . . . , z − 1} such that all other
parts of jobs in a are scheduled on M2 and all other part of jobs in b are scheduled
on M3 respectively. After this swapping step, all jobs are scheduled on contiguous
machines.

Now, we will show that I is a Yes-instance. To this point we know that M2 contains
the jobs A∪B∪a∪c. Since ǎ = a and |ǎ| = |γ̌ |, it has to hold by Lemma 1 that γ̌ = γ

implying that M2 contains all jobs in γ . Furthermore, since b̌ = ∅ and |b̌| = |δ̌|,
we have δ̌ = ∅ and therefore M2 does not contain any job in δ. Besides the jobs
A∪B∪a∪c∪γ , M2 processes further jobs with total processing time zD. Therefore,
all the jobs in P are processed on M2. We will now analyse where the jobs in γ are
scheduled. The only possibility where these jobs can be scheduled is the time between
the end of ai and the start of Bi for each i ∈ {1, . . . , z} since at each other time the
machine is occupied by other jobs. The processing time between the end of ai and the
start of Bi is exactly σ(Bi)−σ(Ai−1)−p(Ai−1)−p(ai) = D7+(3z−i)D8. The job
in γ with the largest processing time is the job γ1 with p(γ1) = D7+(3z−1)D8−D.
This job only fits between a1 and B1. Inductively we can show that γi ∈ γ with
p(γi) = D7 + (3z − i)D8 − D has to be scheduled between ai and Bi on M2.
Furthermore since p(γi) = D7 + (3z − i)D8 − D and the processing time between
the end of ai and the start of Bi is D7 + (3z − i)D8, there is exactly D processing
time left. This processing time has to be occupied by the jobs in P since this schedule
has no idle times. Therefore, we have for each i ∈ {1, . . . , z} a subset Pi ⊆ P

containing jobs with processing times adding up to D such that P1∪̇ . . . ∪̇Pz = P .
As a consequence I is a Yes-instance.

3 Hardness of Strip Packing

In this section, we will prove the Theorem 2. This can be done straight forward, by
using the reduction from above. Note that in the transformed optimal schedule, all
jobs are scheduled on contiguous machines, i.e., the machines the jobs are sched-
ule on are Neighbors in the natural order (M1, M2, M3, M4). As a consequence, we
have proved that this problem is strongly NP-complete even if we restrict the set of
feasible solutions to those where all jobs are scheduled on contiguous machines. We
will now describe how this insight delivers a lower bound of 5

4 for the best possible
approximation ratio for pseudo-polynomial Strip Packing and in this way prove the
Theorem.

To show our hardness result for Strip Packing, let us consider the following
instance. We define W := (z+1)(D2 +D3 +D4)+z(D5 +D6 +D7)+z(7z+1)D8

as the width of the strip, i.e., it is the same as the considered makespan in the schedul-
ing problem. For each job j defined in the reduction above, we introduce an item i

with w(i) = p(j) and height h(i) = q(j). Now, we can show analogously that if
the 3-Partition instance is a Yes-instance, there is a packing of height 4 (one example
is the packing in Fig. 4); and on the other hand if there is a packing with height 4,
the 3-Partition instance has to be a Yes-instance. If the 3-Partition instance is a No-
instance, the optimal packing has a height of at least 5 since the optimal height for

Theory of Computing Systems (2020) 64:120–140 137

this instance is integral. Therefore, we cannot approximate Strip Packing better than
5
4 in pseudo-polynomial time unless P = NP.

3.1 Variants of Strip Packing

Lastly we look at a variant of the Strip Packing problem called Scheduling of Con-
tiguous Moldable Parallel Tasks. In this problem setting we are given an (arbitrary
large) set of m machines, which have some kind of total order, and a set of par-
allel tasks J . Each task j ∈ J has a set Dj ⊆ {1, . . . , m} of machine amounts
it can be processed on, e.g., if Dj = {3, 7} the job j can be processed either on
three or on seven machines. For each q ∈ Dj it has an individual processing time
p(j, q) ∈ N>0 ∪ {∞}. A schedule S is given by two functions σ : J → N and
ρ : J → 2{1,...,m}. The function σ maps each job to a start point in the schedule,
while ρ maps each job to an interval of machines it is processed on. A schedule is
feasible if each machine processes at most one job at a time and each job is processed
on the required number of machines, (i.e., |ρ(j)| ∈ Dj).

This problem directly contains the Strip Packing problem as a special case by
setting Di = {w(i)} and p(i, w(i)) = h(i) for each item i ∈ I , and hence, it is
NP-hard to approximate it better than 5

4 in pseudo-polynomial time. However, it is
also NP-hard to find a better approximation than 5

4 if we require Dj = {1, . . . , m}
and p(j, q) ∈ N>0 for each job and number of machines. To show this, we use the
reduction from above. The number of machines is m := (z + 1)(D2 + D3 + D4) +
z(D5+D6+D7)+z(7z+1)D8. For each item i ∈ I constructed for the Strip Packing
instance, we introduce one job i with p(i, q) = 5, if q < w(i) and p(i, q) = h(i),
if q ≥ w(i). Obviously a schedule with height 4 can be found if and only if each job
i uses w(i) machines and the 3-Partition instance is a Yes-instance. Otherwise the
optimal schedule has a makespan of 5. Hence it is not possible to find an algorithm
with approximation ratio better than 5/4, unless P = NP.

Note that in this construction the processing time function is not monotone, i.e.,
we do not have p(j, q) · q ≤ p(j, q + 1) · (q + 1) for each q ∈ {1, . . . , m − 1}.
Hence, there could be a PTAS for the monotone case.

4 Conclusion

In this paper, we positively answered the long standing open question whether
the problem P 4|sizej |Cmax is strongly NP-complete. This closes the gap between
strongly NP-completeness for at least 5 machines, and the possibility to solve the
problem in pseudo-polynomial time for at most 3 machines.

Furthermore, we have improved the lower bound for pseudo-polynomial Strip
Packing to 5

4 . The best known published algorithm has an approximation ratio of
4
3 . This leaves a gap between the lower bound and the best known algorithm. How-
ever, very recently we were able to find a pseudo-polynomial time algorithm with
approximation ratio 5

4 + ε [20], which closes this gap.
Lastly, we have considered Scheduling of Contiguous Moldable Parallel Tasks and

proved that in the non-monotone case there is no pseudo-polynomial time algorithm

Theory of Computing Systems (2020) 64:120–140138

with approximation ratio better than 5/4 unless P = NP. However, in the monotone
case, finding a PTAS might be possible. In our opinion, it is an interesting open
problem, whether there is a PTAS for the monotone case or not, especially since there
is an FPTAS for the case that m > 8n/ε, see [18].

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable com-
ments and suggestions to improve the quality of the paper. This work was supported by German Research
Foundation (DFG) project JA 612 /20-1.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Adamaszek, A., Kociumaka, T., Pilipczuk, M., Pilipczuk, M.: Hardness of approximation for strip
packing. TOCT 9(3), 14,1–14,7 (2017). https://doi.org/10.1145/3092026

2. Amoura, A.K., Bampis, E., Kenyon, C., Manoussakis, Y.: Scheduling independent multiprocessor
tasks. Algorithmica 32(2), 247–261 (2002). https://doi.org/10.1007/s00453-001-0076-9

3. Baker, B.S., Brown, D.J., Howard, P.K.: 5/4 algorithm for two-dimensional packing. J. Algor. 2(4),
348–368 (1981). https://doi.org/10.1016/0196-6774(81)90034-1

4. Baker, B.S., Coffman, E.G. Jr.., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM J.
Comput. 9(4), 846–855 (1980). https://doi.org/10.1137/0209064

5. Bansal, N., Correa, J/R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions Inap-
proximability results and approximation schemes. Math. Oper. Res. 31(1), 31–49 (2006). https://doi.
org/10.1287/moor.1050.0168

6. Bougeret, M., Dutot, P.-F., Jansen, K., Robenek, C., Trystram, D.: Approximation algorithms for
multiple strip packing and scheduling parallel jobs in platforms. Discret. Math. Algor. Appl. 3(4),
553–586 (2011). https://doi.org/10.1142/S1793830911001413

7. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multi-
dimensional bin packing: A survey. Computer Science Review. https://doi.org/10.1016/j.cosrev.2016.
12.001 (2017)

8. Coffman, E.G. Jr.., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented
two-dimensional packing algorithms. SIAM J. Comput. 9(4), 808–826 (1980). https://doi.org/10.
1137/0209062

9. Jianzhong, D., Leung, J.Y.-T.: Complexity of scheduling parallel task systems. SIAM J. Discret. Math.
2(4), 473–487 (1989). https://doi.org/10.1137/0402042

10. Feldmann, A., Sgall, J., Teng, S.-H.: Dynamic scheduling on parallel machines. Theor. Comput. Sci.
130(1), 49–72 (1994). https://doi.org/10.1016/0304-3975(94)90152-X

11. Gȧlvez, W., Grandoni, F., Ingala, S., Khan, A.: Improved pseudo-polynomial-time approximation for
strip packing. In: 36th IARCS Annual Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), pp. 9:1–9:14. https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
(2016)

12. Garey, M.R., Graham, R.L.: Bounds for multiprocessor scheduling with resource constraints. SIAM
J. Comput. 4(2), 187–200 (1975). https://doi.org/10.1137/0204015

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP -completeness
(1979)

14. Golan, I.: Performance bounds for orthogonal oriented two-dimensional packing algorithms. SIAM J.
Comput. 10(3), 571–582 (1981). https://doi.org/10.1137/0210042

15. Harren, R., Jansen, K., Prȧdel, L., Rob van, S.: A (5/3 + ε)-approximation for strip packing. Comput.
Geom. 47(2), 248–267 (2014). https://doi.org/10.1016/j.comgeo.2013.08.008

16. Harren, R., van Stee, R.: Improved absolute approximation ratios for two-dimensional packing
problems. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and

Theory of Computing Systems (2020) 64:120–140 139

https://doi.org/10.1145/3092026
https://doi.org/10.1007/s00453-001-0076-9
https://doi.org/10.1016/0196-6774(81)90034-1
https://doi.org/10.1137/0209064
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1142/S1793830911001413
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1137/0209062
https://doi.org/10.1137/0209062
https://doi.org/10.1137/0402042
https://doi.org/10.1016/0304-3975(94)90152-X
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.1137/0204015
https://doi.org/10.1137/0210042
https://doi.org/10.1016/j.comgeo.2013.08.008

Techniques, Volume 5687 of Lecture Notes in Computer Science, pp. 177–189. Springer (2009).
https://doi.org/10.1007/978-3-642-03685-9 14

17. Jansen, K.: A (3/2+) approximation algorithm for scheduling moldable and non-moldable parallel
tasks. In: 24th ACM Symposium on Parallelism in Algorithms and Architectures, (SPAA), pp. 224–
235. https://doi.org/10.1145/2312005.2312048 (2012)

18. Jansen, K., Land, F.: Scheduling monotone moldable jobs in linear time. In: 2018 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21-25,
2018, pp. 172–181. https://doi.org/10.1109/IPDPS.2018.00027 (2018)

19. Jansen, K., Porkolab, L.: Linear-time approximation schemes for scheduling malleable parallel tasks.
Algorithmica 32(3), 507–520 (2002). https://doi.org/10.1007/s00453-001-0085-8

20. Jansen, K., Rau, M.: Closing the gap for pseudo-polynomial strip packing. arXiv:1712.04922 (2017)
21. Jansen, K., Rau, M.: Improved approximation for two dimensional strip packing with polynomial

bounded width. In: WALCOM: Algorithms and Computation, Volume 10167 of LNCS, pp. 409–420.
https://doi.org/10.1007/978-3-319-53925-6 32 (2017)

22. Jansen, K., Solis-Oba, R.: Rectangle packing with one-dimensional resource augmentation. Discret.
Optim. 6(3), 310–323 (2009). https://doi.org/10.1016/j.disopt.2009.04.001

23. Jansen, K., Thȯle, R.: Approximation algorithms for scheduling parallel jobs. SIAM J. Comput. 39(8),
3571–3615 (2010). https://doi.org/10.1137/080736491

24. Kenyon, C., Rėmila, E.: A near-optimal solution to a two-dimensional cutting stock problem. Math.
Oper. Res. 25(4), 645–656 (2000). https://doi.org/10.1287/moor.25.4.645.12118

25. Ludwig, W., Tiwari, P.: Scheduling malleable and nonmalleable parallel tasks. In: 5th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 167–176 (1994)

26. Nadiradze, G., Wiese, A.: On approximating strip packing with a better ratio than 3/2. In: 27th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1491–1510. https://doi.org/10.
1137/1.9781611974331.ch102 (2016)

27. Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: 2nd Annual European
Symposium on Algorithms (ESA) - Algorithms, pp. 290–299. https://doi.org/10.1007/BFb0049416
(1994)

28. Sleator, D.D.: A 2.5 times optimal algorithm for packing in two dimensions. Inf. Process. Lett. 10(1),
37–40 (1980). https://doi.org/10.1016/0020-0190(80)90121-0

29. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26(2),
401–409 (1997). https://doi.org/10.1137/S0097539793255801

30. Sviridenko, M.: A note on the kenyon-remila strip-packing algorithm. Inf. Process. Lett. 112(1-2),
10–12 (2012). https://doi.org/10.1016/j.ipl.2011.10.003

31. Turek, J., Wolf, J.L., Philip, S.: Approximate algorithms scheduling parallelizable tasks. In:
4th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 323–332.
https://doi.org/10.1145/140901.141909 (1992)

Theory of Computing Systems (2020) 64:120–140140

https://doi.org/10.1007/978-3-642-03685-9_14
https://doi.org/10.1145/2312005.2312048
https://doi.org/10.1109/IPDPS.2018.00027
https://doi.org/10.1007/s00453-001-0085-8
http://arXiv.org/abs/1712.04922
https://doi.org/10.1007/978-3-319-53925-6_32
https://doi.org/10.1016/j.disopt.2009.04.001
https://doi.org/10.1137/080736491
https://doi.org/10.1287/moor.25.4.645.12118
https://doi.org/10.1137/1.9781611974331.ch102
https://doi.org/10.1137/1.9781611974331.ch102
https://doi.org/10.1007/BFb0049416
https://doi.org/10.1016/0020-0190(80)90121-0
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1016/j.ipl.2011.10.003
https://doi.org/10.1145/140901.141909

	Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing
	Abstract
	Introduction
	Related Work
	Parallel Task Scheduling
	Strip Packing

	Organization of this Paper

	Hardness of Scheduling Parallel Tasks
	Construction
	Partition to Schedule
	Schedule to Partition

	Hardness of Strip Packing
	Variants of Strip Packing

	Conclusion
	References

