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Abstract
Suppose 1 < p < ∞. Carleson’s Theorem states that the Fourier series of any func-
tion in Lp[−π, π ] converges almost everywhere. We show that the Schnorr random
points are precisely those that satisfy this theorem for every f ∈ Lp[−π, π ] given
natural computability conditions on f and p.

Keywords Computability · Fourier analysis · Complex analysis ·
Algorithmic randomness · Computable analysis

1 Introduction

Recent discoveries have shown that algorithmic randomness has a very natural con-
nection with classical analysis. Many theorems in analysis have the form “For almost
every x, . . .”; the set of points for which the central claim of the theorem fails for a
given choice of parameters is called an exceptional set of the theorem. For example,
one of Lebesgue’s differentiation theorems states that if f is a monotone function on
[0, 1], then f is differentiable almost everywhere. In this case, for each monotone
function f on [0, 1], the set of points at which f is not differentiable is an exceptional
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set. On the other hand, every natural randomness notion is characterized by a conull
class of points. This suggests it is possible to characterize the points that satisfy a par-
ticular theorem in analysis in terms of a randomness notion. Put another way, it may
be the case that exceptional sets of a theorem can be used to characterize a standard
notion of randomness.

To date, results of this nature have been discovered in ergodic theory [4, 19, 20,
22, 26, 36, 51], differentiability [5, 7, 21, 27, 36, 40, 43], Brownian motion [1, 2, 18],
and other topics in analysis [3, 9, 46]. In this paper, we add Fourier series to this list
by considering Carleson’s Theorem. The original version of this theorem was proven
in 1966 by L. Carleson for L2 functions [10]; we will consider an extension of this
theorem to Lp functions for p > 1 that is due to Hunt but still generally referred
to as Carleson’s Theorem [28]. Throughout this paper we only consider the complex
version of Lp[−π, π ]; that is, we work in the space of all measurable f : [−π, π ] →
C so that

∫ π

−π
|f (t)|p dt < ∞.

Carleson’s Theorem Suppose 1 < p < ∞. If f is a function in Lp[−π, π ], then
the Fourier series of f converges to f almost everywhere.

Suppose 1 < p < ∞. It is well known that the Fourier series of any f ∈
Lp[−π, π ] converges to f in the Lp-norm. It follows that if the Fourier series
of f ∈ Lp[−π, π ] converges almost everywhere, then it converges to f almost
everywhere.

We consider Carleson’s Theorem in the context of computable analysis and
demonstrate the points that satisfy this theorem are precisely the Schnorr random
points via the following two theorems.

Theorem 1.1 Suppose p > 1 is a computable real. If t0 ∈ [−π, π ] is Schnorr
random and f is a computable vector in Lp[−π, π ], then the Fourier series for f

converges at t0.

Theorem 1.2 If t0 ∈ [−π, π ] is not Schnorr random, then there is a computable
function f : [−π, π ] → C whose Fourier series diverges at t0.

It is well known that when p ≥ 1 is a computable real, there are incomputable
functions in Lp[−π, π ] that are nevertheless computable as vectors, e.g., step func-
tions. Thus, Theorem 1.2 is considerably stronger than the converse of Theorem 1.1.
To the best of our knowledge, Theorems 1.1 and 1.2 yield the first characterization
of a randomness notion via a theorem of Fourier analysis. The proofs reveal some
interesting and sometimes surprising connections between topics from algorithmic
randomness such as Schnorr integral tests and topics from classical analysis such as
analytic and harmonic function theory. In particular, our proof of Theorem 1.1 com-
bines Miyabe’s integral tests with an inequality due to Fefferman and thereby side-
steps the surely arduous task of effectivizing a classical proof of Carleson’s Theorem.

The paper is organized as follows. In Section 2, we present the necessary back-
ground. Sections 3 and 4 contain the proofs of Theorems 1.1 and 1.2, respectively.
In Sections 5 and 6 we give two variations of Theorem 1.1. The first variation
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characterizes the values to which the Fourier series converges. The second variation
addresses the Fejér-Lebesgue Theorem which is similar to Carleson’s Theorem, but
also applies to the L1 case. Section 7 contains a broader analysis of our results.

2 Background and Preliminaries

We begin with the necessary topics from analysis and then discuss computable anal-
ysis and algorithmic randomness. We assume the reader is familiar with classical
computability in discrete settings as expounded in [12, 41, 42, 47].

2.1 Fourier Analysis

We begin with some notation. For all n ∈ Z and t ∈ [−π, π ], let en(t) = eint . For all
n ∈ Z and f ∈ L1[−π, π ], let

cn(f ) = 1

2π

∫ π

−π

f (t)e−int dt .

For all f ∈ L1[−π, π ] and all N ∈ N, let

SN(f ) =
N∑

n=−N

cn(f )en.

That is, SN(f ) is the (N + 1)st partial sum of the Fourier series of f . We say that
f ∈ L1[−π, π ] is analytic if cn(f ) = 0 whenever n < 0.

In C. Fefferman’s proof of Carleson’s Theorem, he showed that when 1 < p < ∞,
there is a constant C so that

∥
∥
∥
∥sup

N

|SN(f )|
∥
∥
∥
∥

1

≤ C‖f ‖p

for all f ∈ Lp[−π, π ] [15, 16]. We can (and do) assume that C is a positive integer.
The operator f �→ supN |SN(f )| is known as the Carleson operator. This estimate
will be a key component of the proof of Theorem 1.1.

Let E = {en : n ∈ Z}. A trigonometric polynomial is a function in the linear
span of E. If p is a trigonometric polynomial, then the degree of p is the smallest
d ∈ N so that Sd(p) = p.

2.2 Complex Analysis

We now summarize the required information on analytic and harmonic functions,
in particular harmonic measure. This material will be used exclusively in Section 4
(the proof of Theorem 1.2). More expansive treatments of analytic and harmonic
functions can be found in [11] and [38]; the material on harmonic functions is drawn
from [24].
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Suppose U ⊆ C is open and connected. Recall that a function f : U → C is
analytic if it has a power series expansion at each point of U ; equivalently, if f is
differentiable at each z0 ∈ U in the sense that

lim
z→z0

f (z) − f (z0)

z − z0

exists.
Let D denote the open unit disk, and let λ denote Lebesgue measure on the unit

circle. The points on the unit circle are called the unimodular points. When f is
analytic on D, let

an(f ) = f (n)(0)

n!
for all n ∈ N. That is, an(f ) is the (n + 1)st coefficient of the MacLaurin series of
f . Thus,

f (z) =
∞∑

n=0

an(f )zn

for all z ∈ D.
Now we turn our attention to harmonic functions. Again, let U be a subset of the

plane that is open and connected. Recall that a function u : U → R is harmonic if it
is twice continuously differentiable and satisfies Laplace’s equation

∂2u

∂x2
+ ∂2u

∂y2
= 0.

When u is harmonic on D, let ũ denote the harmonic conjugate of u that maps 0 to 0.
That is, ũ is the harmonic function on D so that ũ(0) = 0 and so that u and ũ satisfy
the Cauchy-Riemann equations:

∂u

∂x
= ∂ũ

∂y

∂u

∂y
= −∂ũ

∂x
.

Let û = u + iũ. Thus, û is analytic and is called the analytic extension of u.
When U is a relatively open subset of the unit circle, there is a harmonic function u

on the unit disk so that whenever ζ ∈ ∂D is not a boundary point of U , limz→ζ u(z) =
χU(ζ ) (where χA denotes the characteristic function of A); let ω(z, U,D) = u(z).
If we fix z ∈ D, then ω(z, ·,D) extends to a Borel probability measure on the unit
circle. Accordingly, the quantity ω(z, B,D) is called the harmonic measure of B at
z. Moreover, ω(0, B,D) = (2π)−1λ(B) [24].

An explicit formula for the harmonic measure of an open arc on the unit circle can
be obtained as follows. Let Log denote the principal branch of the complex logarithm.
That is,

Log(z) =
∫ z

1

1

ζ
dζ

for all points z that do not lie on the negative real axis. Let Arg = Im(Log). Suppose
A = {eiθ : θ1 < θ < θ2} where −π < θ1 < θ2 < π . Then

ω(z, A,D) = 1

π
Arg

(
z − eiθ2

z − eiθ1

)

− 1

2π
(θ2 − θ1).
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(See Exercise 1 on p. 26 of [24].) It follows that

ω̃(z, A,D) = 1

π
ln

∣
∣
∣
∣
z − eiθ2

z − eiθ1

∣
∣
∣
∣ and (2.1)

ω̂(z, A,D) = 1

πi
Log

(
z − eiθ2

z − eiθ1

)

− 1

2π
(θ2 − θ1). (2.2)

2.3 Computable Analysis

We now use the classical concepts of computability in a discrete setting to define the
concept of computability in a continuous setting.

A complex number z is computable if there is an algorithm that, given a nonnega-
tive integer k as input, computes a rational point q so that |q − z| < 2−k . A sequence
{an}n∈Z of points in the plane is computable if there is an algorithm that, given an
n ∈ Z and a k ∈ N as input, computes a rational point q so that |an − q| < 2−k .

Let us call a trigonometric polynomial τ rational if each of its coefficients is a
rational point.

Definition 2.1 Suppose p ≥ 1 is a computable real and suppose f ∈ Lp[−π, π ].
Then f is a computable vector ofLp[−π, π ] if there is an algorithm that, given k ∈ N

as input, computes a rational polynomial τ so that ‖f − τ‖p < 2−k .

In other words, a vector f ∈ Lp[−π, π ] is computable if it is possible to compute
arbitrarily good approximations of f by rational trigonometric polynomials.

The next proposition states the fundamental computability results we shall need
about vectors in Lp[−π, π ].

Proposition 2.2 Suppose p ≥ 1 is a computable real and f ∈ Lp[−π, π ].
(1) If f is a computable vector, then ‖f ‖p and {cn(f )}n∈Z are computable.
(2) If p = 2, then f is a computable vector if both ‖f ‖2 and {cn(f )}n∈Z are

computable.

Proof Suppose τ is a rational trigonometric polynomial. The Lp-norm of τ can be
computed directly from τ . Since |‖f ‖p − ‖τ‖p| ≤ ‖f − τ‖p, it follows that ‖f ‖p

is computable. We also have

|cn(f ) − cn(τ )|p =
∣
∣
∣
∣

∫ π

−π

(f (θ) − τ(θ))einθ dθ

2π

∣
∣
∣
∣

p

≤
(∫ π

−π

|f (θ) − τ(θ)| dθ

2π

)p

≤
∫ π

−π

|f (θ) − τ(θ)|p dθ

2π
= ‖f − τ‖p

p,

where the last step is by Jensen’s Inequality. It follows that {cn(f )}n∈Z is computable.
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Now suppose p = 2 and suppose {cn(f )}n∈Z and ‖f ‖2 are computable. Since
‖f ‖2

2 = ∑
n∈Z |cn(f )|2 and ‖f − SN(f )‖2

2 = ∑
|n|>N |cn(f )|2, it follows that f is

a computable vector in L2[−π, π ].

The following corollary shows that the computability of a vector in Lp[−π, π ] is
distinct from the computability of its Fourier coefficients.

Corollary 2.3 There is an incomputable vector f ∈ L2[−π, π ] so that {cn(f )}n∈Z
is computable.

Proof Let {rn}n∈N be any computable sequence of positive rational numbers so that∑∞
n=0 r2

n is incomputable. (The existence of such a sequence follows from the con-
structions of E. Specker [49].) Set f = ∑∞

n=0 rnen. Then ‖f ‖2
2 = ∑∞

n=0 r2
n is

incomputable. Thus, by Proposition 2.2, f is incomputable.

We now discuss computability of planar sets and functions. A comprehensive
treatment of the computability of functions and sets in continuous settings can be
found in [52]; the reader may also see [6, 25, 32, 33, 44, 50], and [8]. To begin, an
interval is rational if its endpoints are rational numbers. An open (closed) rational
rectangle is a Cartesian product of open (closed) rational intervals.

A subset of the plane U is computably open if it is open and the set of all closed
rational rectangles that are included in U is computably enumerable. On the other
hand, an open subset X of the real line is computably open if the set of all closed
rational intervals that are included in X is computably open. A sequence of open
sets of reals {Un}n∈N is computable if Un is computably open uniformly in n; that is,
if there is an algorithm that, given any n ∈ N as input, produces an algorithm that
enumerates the closed rational intervals included in Un.

Suppose X is a compact subset of the plane. A minimal cover of X is a finite
sequence of open rational rectangles (R0, . . . , Rm) so that X ⊆ ⋃

j Rj and so that
X ∩ Rj �= ∅ for all j ≤ m. We say that X is computably compact if the set of all
minimal covers of X is computably enumerable.

Suppose f is a function that maps complex numbers to complex numbers. We
say that f is computable if there is an algorithm P that satisfies the following three
criteria.

• Approximation: Whenever P is given an open rational rectangle as input, it
either does not halt or produces an open rational rectangle as output. (Here, the
input rectangle is regarded as an approximation of some z ∈ dom(f ) and the
output rectangle is regarded as an approximation of f (z).)

• Correctness: Whenever P halts on an open rational rectangle R, the rectangle it
outputs contains f (z) for each z ∈ R ∩ dom(f ).

• Convergence: Suppose U is a neighborhood of a point z ∈ dom(f ) and that V

is a neighborhood of f (z). Then, there is an open rational rectangle R such that
R contains z, R is included in U , and when R is put into P , P produces a rational
rectangle that is included in V .
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For example, sin, cos, and exp are computable as can be seen by considering their
power series expansions and the bounds on the convergence of these series that can be
obtained from Taylor’s Theorem. A consequence of this definition is that computable
functions on the complex plane must be continuous.

A sequence of functions {fn}n∈N of a complex variable is computable if it is com-
putable uniformly in n; that is, there is an algorithm that given any n ∈ N as input
produces an algorithm that computes fn.

It is well known that integration is a computable functional on C[0, 1]. It fol-
lows that when f is a computable analytic function on the unit disk, the sequence
{an(f )}n∈N of Maclaurin coefficients is computable uniformly in f . It also follows
that Log is computable.

A modulus of convergence for a sequence {an}n∈N of points in a complete metric
space (X, d) is a function g : N → N so that d(am, an) < 2−k whenever m, n ≥
g(k). Thus, a sequence of points in a complete metric space converges if and only
if it has a modulus of convergence. Suppose p ≥ 1 is computable. If {fn}n∈N is
a computable and convergent sequence of vectors in Lp[−π, π ], then limn fn is a
computable vector if and only if {fn}n∈N has a computable modulus of convergence.

Suppose f is a uniformly continuous computable function that maps complex
numbers to complex numbers. A modulus of uniform continuity for f is a function
m : N → N so that |f (z0)−f (z1)| < 2−k whenever z0, z1 ∈ dom(f ) and |z0−z1| ≤
2−m(k). If the domain of f is computably compact, then f has a computable modulus
of uniform continuity.

Suppose {an}n∈N is a sequence of complex numbers so that
∑∞

n=0 anz
n converges

whenever |z| < 1, and suppose G is a compact subset of the unit disk. A modu-
lus of uniform convergence for this series on G is a function m : N → N so that∣
∣
∣
∑∞

n=m(k) anz
n
∣
∣
∣ < 2−k whenever z ∈ G and k ∈ N. If the sequence {an}n∈N is com-

putable and if G is computably compact, then the series
∑∞

n=0 anz
n has a computable

modulus of uniform convergence on G.
We note that when p ≥ 1 is a computable real and f ∈ Lp[−π, π ], there are

two senses in which f can be “computable”: as a vector and as a function. These
fail to coincide. By definition, a computable function is continuous. However, there
are discontinuous functions in L1[−π, π ] that are computable as vectors; e.g., the
greatest integer function. Moreover, there are continuous functions in L1[−π, π ] that
are computable as vectors but not as functions.

Lastly, a lower semicomputable function is a function T : [−π, π ] → [0, ∞] that
is the sum of a computable sequence of nonnegative real-valued functions.

2.4 Algorithmic Randomness

There are three different approaches to defining the concept of randomness for-
mally. The one we will find useful for this paper is the measure-theoretic one: A
random point in a given probability space is said to be random if it avoids all null
classes generated in a certain way by computably enumerable functions. Thus, for
any reasonable randomness notion, the class of random points is conull. For a general
introduction to algorithmic randomness, see [14] or [39].
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While the most-studied randomness notion is Martin-Löf randomness, a weaker
notion, Schnorr randomness, lies at the heart of our paper. Schnorr randomness, like
most other randomness notions, was originally defined in the Cantor space 2ω with
Lebesgue measure [48]; however, the definition is easily adaptable to any computable
measure space, in particular [−π, π ] with the Lebesgue measure μ.

Definition 2.4 A Schnorr test is a computable sequence {Vn}n∈N of open sets of reals
so that μ(Vn) ≤ 2−n for all n and so that the sequence {μ(Vn)}n∈N is computable.
A real number x is said to be Schnorr random if for every Schnorr test {Vn}n∈N,
x �∈ ⋂

n Vn.

There are many other characterizations of Schnorr randomness, such as a
complexity-based characterization [13] and a martingale characterization [48]. In this
paper, we will use an integral test characterization due to Miyabe [35] which is rooted
in computable analysis.

Definition 2.5 A Schnorr integral test is a lower semicomputable function T :
[−π, π ] → [0, ∞] so that

∫ π

−π
T dμ is a computable real.

Thus, if T is a Schnorr integral test, then T (x) is finite for almost every x ∈
[−π, π ]. Miyabe’s characterization states that x ∈ [−π, π ] is Schnorr random if and
only if T (x) < ∞ for every Schnorr integral test T .

3 Proof of Theorem 1.1

Our proof of Theorem 1.1 is based on the following definition and lemmas.

Definition 3.1 Suppose {fn}n∈N is a sequence of functions on [−π, π ]. A function
η : N × N → N is a modulus of almost-everywhere convergence for {fn}n∈N if

μ({t ∈ [−π, π ] : ∃M, N ≥ η(k,m) |fN(t) − fM(t)| ≥ 2−k}) < 2−m

for all k and m.

Thus, every sequence of functions on [−π, π ] that converges almost everywhere
has a modulus of almost-everywhere convergence. Our goal, as stated in the follow-
ing lemma, is to show that the sequence of partial sums for the Fourier series of a
computable vector in Lp[−π, π ] has a computable modulus of almost-everywhere
convergence.

Lemma 3.2 Suppose p is a computable real so that p > 1, and suppose f is a
computable vector in Lp[−π, π ]. Then, {SN(f )}N∈N has a computable modulus of
almost-everywhere convergence.

With this lemma in hand, Theorem 1.1 follows from the next lemma.
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Lemma 3.3 Assume {fn}n∈N is a uniformly computable sequence of functions on
[−π, π ] for which there is a computable modulus of almost-everywhere convergence.
Then, the sequence {fn}n∈N converges at every Schnorr random real.

Generalizations of Lemma 3.3 can be found in Galatolo, Hoyrup, and Rojas [23,
Thm. 1] and well as Rute [46, Lemma 3.19 on p. 41]. Our proof is new. Theorem 1.1
follows by applying Lemma 3.3 to the sequence of partial sums of f .

Proof of Lemma 3.2 We compute η : N2 → N as follows. Let k, m ∈ N be given
as input. Compute a rational trigonometric polynomial τk,m so that ‖f − τk,m‖p ≤
2−(m+k+3)C−1 where C is as in Fefferman’s inequality. Then define η(k,m) to be
the degree of τk,m.

By definition, η is computable. We now show that it is a modulus of almost-
everywhere convergence. We begin with some notation. Let g ∈ Lp[−π, π ]. Set

Ek,N0(g) = {t ∈ [−π, π ] : ∃M, N ≥ N0 |SM(g)(t) − SN(g)(t)| ≥ 2−k}.
Thus, we aim to show that μ(Ek,η(k,m)(f )) < 2−m. For each k ∈ N, let

Êk(g) = {t ∈ [−π, π ] : sup
N

|SN(g)(t)| > 2−k}.

It follows that Ek,N0(g) ⊆ Êk+2(g).
We claim that Ek,η(k,m)(f ) ⊆ Ek,η(k,m)(f −τk,m). We see that if M, N ≥ η(k,m),

then

|SM(f )(t) − SN(f )(t)| ≤ |SM(f − τk,m)(t) − SN(f − τk,m)(t)| + |SM(τk,m)(t)

−SN(τk,m)(t)|
= |SM(f − τk,m)(t) − SN(f − τk,m)(t)|.

Thus, Ek,η(k,m)(f ) ⊆ Ek,η(k,m)(f − τk,m).
It now follows that Ek,η(k,m)(f ) ⊆ Êk+2(f − τk,m). We complete the proof

by showing that μ(Êk+2(f − τk,m)) < 2−m. By Fefferman’s Inequality and the
definition of τk,m, ∥

∥
∥
∥sup

N

|SN(f − τk,m)|
∥
∥
∥
∥

1

≤ 2−(m+k+3).

Thus, by Chebyshev’s Inequality,

μ(Êk+2(f − τk,m)) ≤ 2−(m+k+3)2k+2 = 2−(m+1) < 2−m.

Hence, μ(Êk+2(f − τk,m)) < 2−m.

Proof of Lemma 3.3 We apply Miyabe’s characterization of Schnorr randomness.
We begin by defining a Schnorr integral test as follows. Let η be a computable mod-
ulus of almost-everywhere convergence for {fn}n∈N, and abbreviate η(k, k) by Nk .
For each k ∈ N and each t ∈ [−π, π ] define

gk(t) = min {1, max{|fM(t) − fN(t))| : Nk < M,N ≤ Nk+1}} .

The sequence {gk}k∈N is computable. Set T = ∑∞
k=0 gk .
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We now show that T is a Schnorr integral test. By construction, T is lower semi-
computable. Therefore, it suffices to show that

∫ π

−π
T dμ is a computable real. To

this end, let m ∈ N be given. Since gk is computable uniformly in k, it is possible to
compute a rational number q so that | ∑m+6

k=0

∫
gkdμ − q| < 2−(m+1). We claim that

| ∫ π

−π
T dμ − q| < 2−m. By the Monotone Convergence Theorem,

∫ π

−π

T dμ =
∞∑

k=0

∫ π

−π

gk dμ.

Since gk ≤ 1 and μ{t : gk(t) ≥ 2−k} ≤ 2−k , we have
∫ π

−π

gk(t) dt ≤ 2−k · μ({t : g(t) < 2−k}) + 1 · μ({t : g(t) ≥ 2−k})
≤ 2−k · 2π + 1 · 2−k ≤ 2−k+4.

Thus,
∫ π

−π
T dμ − ∑m+6

k=0

∫
gkdμ < 2−(m+1), and we then have | ∫ π

−π
T dμ − q| <

2−m. Hence,
∫ π

−π
T dμ is a computable real.

Finally, we show that T (t0) = ∞ whenever {fn(t0)}n∈N diverges. This will com-
plete the proof of the lemma. Suppose {fn(t0)}n∈N diverges. Then there exists k0 ∈ N

so that for every n, we can find M, N ≥ n such that |fM(t0) − fN(t0)| ≥ 2−k0 . It
thus suffices to show that

∑∞
k=k1

gk(t0) ≥ 2−k0 for all k1 ∈ N. So, let k1 ∈ N. With-
out loss of generality, suppose gk < 1 whenever k ≥ k1. By the choice of k0, there
exist M and N so that Nk1 < M < N and |fM(t0) − fN(t0)| ≥ 2−k0 . By forming a
telescoping sum and applying the triangle inequality we obtain

|fM(t0) − fN(t0)| ≤
∞∑

k=k1

gk(t0).

Thus T (t0) = ∞, and the proof is complete.

4 Proof of Theorem 1.2

Our proof of Theorem 1.2 is based on an idea for a construction which is sketched in
[29]. Herein, we will use the material on harmonic functions discussed in Section 2
to carefully complete this sketch and provide an effective version of the construction.
We divide our work into the following three lemmas.

Lemma 4.1 Suppose G is a computably compact subset of the unit circle so that
λ(G) is computable and smaller than 2π . Then there is a computable function ψ

from D ∪ G into the horizontal strip R × (−π
2 , π

2 ) that is analytic on D and has the
property that Re(ψ(ζ )) ≥ − 3

4 ln(λ(G)(2π)−1) for all ζ ∈ G. Furthermore, we may
choose ψ so that ψ(0) = 0.

Lemma 4.2 Suppose G is a computably compact subset of [−π, π ] so that λ(G) is
computable and smaller than 2π . Then there is a computable and analytic trigono-
metric polynomial R so that Re(R(t)) ≥ − 1

2 ln(λ(G)/(2π)) for all t ∈ G and so
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that |Im(R(t))| < π for all t ∈ [−π, π ]. Furthermore, we may choose R so that
c0(R) = 0.

Lemma 4.3 Suppose G is a computably compact subset of [−π, π ] so that λ(G)

is computable and smaller than 2π . Then there is a computable trigonometric
polynomial p so that

sup
N

|SN(p)(t)| ≥ − 1

4π
ln

(
λ(G)

2π

)

for all t ∈ G and so that ‖p‖∞ < 1.

Proof of Lemma 4.1 By first applying a rotation if necessary, we can assume that
−1 �∈ G. Set a = λ(G)/(2π). Since G is computably compact, we can compute
pairwise disjoint open subarcs of the unit circle A0, . . . , As so that G ⊆ ⋃

j≤s Aj

and so that
λ(

⋃
j Aj )

2π
≤ a3/4.

Set F = ⋃
j≤s Aj and set a′ = λ(F )/(2π). For each z ∈ D ∪ G, let φ(x) =

ω̂(z, F,D). Thus, φ is computable and φ is analytic in D. By (2.2), φ(0) = a′. It also
follows that Re(φ(z)) > 0 for all z ∈ D ∪ G. So, for all z ∈ D ∪ G, set ψ1(z) =
Log(φ(z)). Thus, ψ1(0) = ln(a′). Set ψ(z) = ψ1(z) − ln(a′) for all z ∈ D ∪ G.
Hence, ψ1 and ψ are computable.

Let ζ ∈ G. We claim that Re(ψ(ζ )) ≥ − 3
4 ln(a). We begin by noting that

Re(ψ(ζ )) = Re(ψ1(ζ )) − ln(a′). By our choice of F , ln(a′) − 3
4 ln(a) ≤ 0. Thus,

Re(ψ(ζ )) ≥ − 3
4 ln(a) for all ζ ∈ G.

Since Re(φ) > 0, it follows that |Im(ψ1(z))| < π
2 . However, Im(ψ) = Im(ψ1)

since ln(a′) is real.

We note that the proof of Lemma 4.1 is uniform.

Proof of Lemma 4.2 Let G′ = {eit : t ∈ G}. Thus, G′ is a computably compact
subset of the unit circle and λ(G′) < 2π . Let ψ be as given by Lemma 4.1.

Let
G′′ = {rζ : 0 ≤ r ≤ 1 ∧ ζ ∈ G′}.

It follows that G′′ is computably compact. One way to see this is to first note that by
an effective Tychonoff Theorem [45], [0, 1] × G′ is a computably compact subset of
R

3. Let h(x0, x1, x2) = x0(x1 + ix2). Thus, h is a computable map from R
3 into R.

Therefore, its image on [0, 1] × G′, which is just G′′, is computably compact.
Thus, ψ is uniformly continuous on G′′ and has a computable modulus of uniform

continuity on G′′. This means that we can compute a rational number r0 ∈ (0, 1) so
that

Re(ψ(r0ζ )) ≥ −5

8
ln

(
λ(G′)

2π

)

for all ζ ∈ G.
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We now abbreviate an(ψ) by an. Let G(3) = {r0ζ : ζ ∈ G′}. The series∑∞
n=0 anz

n converges uniformly on G(3), and we can compute a modulus of uniform
convergence for it on G(3). It follows that we can compute N so that for all ζ ∈ G′,

Re

(
N∑

n=0

anr
n
0 ζ n

)

≥ −1

2
ln

(
λ(G′)

2π

)

and

∣
∣
∣
∣
∣
Im

(
N∑

n=0

anr
n
0 ζ n

)∣
∣
∣
∣
∣
< π .

Set R(t) = ∑N
n=0 anr

n
0 eint . Since ψ(0) = 0, a0 = 0 and so c0(R) = 0.

We note that the proof of Lemma 4.2 is also uniform.

Proof of Lemma 4.3 Let R be as given in Lemma 4.2 and let N = deg(R). Set q =
Im(R) and p = 1

π
e−N · q.

We claim that |SN(p)| = 1
2π

|R|. For convenience, we abbreviate cn(R) by cn.
Then cm = 0 when m ≤ 0 and

q(t) = 1

2i

[
N∑

n=1

cne
int +

N∑

n=1

(−cn)e
−int

]

and

p(t) = 1

2πi

⎡

⎣
0∑

m=1−N

cm+Neint +
2N∑

m=1+N

(−cm−N)e−int

⎤

⎦ .

Therefore,

SN(p)(t) = e−iNt 1

2π
SN(R)(t).

Thus, |SN(p)| = 1
2π

|R|.
Therefore,

sup
N

|SN(p)(t)| ≥ − 1

4π
ln

(
μ(G)

2π

)

for all t ∈ G.
Since |Im(R)| < π , it follows that ‖p‖∞ < 1.

Note that the proof of Lemma 4.3 is uniform as well.
Now suppose t0 is not Schnorr random. Then there is a Schnorr test {Un}n∈N so

that t0 ∈ ⋂
n Un.

We construct an array of trigonometric polynomials {pn,k}n,k∈N as follows. Since
U2n is computably open uniformly in n, we can compute an array of closed rational
intervals {In,j }n,j∈N so that U2n = ⋃

j In,j and so that μ(In,j ∩ In,j ′) = 0 when
j �= j ′. We then compute for each n ∈ N an increasing sequence mn,0 < mn,1 < . . .

so that

μ

⎛

⎝U2n −
⋃

j≤mn,k

In,j

⎞

⎠ < 2−(2n+k+1)
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for all n and k. We define the following sets:

Gn,0 =
⋃

j≤mn,0

In,j ∩ [−π, π ] and

Gn,k =
⋃

mn,k<j≤mn,k+1

In,j ∩ [−π, π ].

It follows that
μ(Gn,k) < 2−(2n+k)

for all n and k.
Now fix n and k. By Lemma 4.3, we can compute a trigonometric polynomial p

so that ‖p‖∞ < 1 and

sup
N

|SN(p)(t)| > − 1

4π
ln

(
μ(Gn,k)

2π

)

for all t ∈ Gn,k . Set pn,k = 2−(n+k+1)p. It follows that supN |SN(pn,k)(t)| > (8π)−1

for all t ∈ Gn,k .
We can now compute an array of nonnegative integers {rn,k}n,k∈N so that for each

m ∈ Z, either cm(ern,k
·pn,k) = 0 or cm(ern′,k′ ·pn′,k′) = 0 whenever (n, k) �= (n′, k′)

and so that cm(ern,k
· pn,k) = 0 whenever m < 〈n, k〉 (where 〈, 〉 is the Cantor coding

of N × N). We set

fn,k = ern,k
· pn,k and

f =
∑

n,k

fn,k .

Since ‖pn,k‖∞ < 2−(n+k+1), it follows that f is computable.
We now show that the Fourier series of f diverges at t0. It suffices to show that

sup
M,N

|SM(f )(t0) − SN(f )(t0)| >
1

8π
.

Let N0 ∈ N and choose n so that 〈n, 0〉 ≥ N0 and k so that t0 ∈ Gn,k . By the
construction of {rn,k}n,k∈N there exist M, N ′ so that fn,k = SN ′(f ) − SM(f ) and
M ≥ 〈n, k〉 ≥ 〈n, 0〉. By the construction of pn,k , there exists N so that M ≤ N ≤ N ′
and |SN(f )(t0) − SM(f )(t0)| > (8π)−1.

Thus, the Fourier series for f diverges at t0.
We note that this construction makes use of all of the conditions of Schnorr ran-

domness. In particular, the construction of mn,k utilizes the computability of μ(Un)

from n.

5 A Strengthening of Theorem 1.1; Convergence to f (t0)

Throughout this subsection, p denotes a computable real such that p ≥ 1.
In Theorem 1.1 we showed that SN(f )(t0) converges for Schnorr randoms t0

and computable vectors f ∈ Lp[−π, π ]. However, one would like to also say that
{SN(f )(t0)}N∈N converges to f (t0). The problem is that f is merely a vector in
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Lp[−π, π ], and so f (t0) is not well defined. Recall that a vector in Lp[−π, π ] is
actually an equivalence class of functions under the “equal almost everywhere” rela-
tion, and so every complex number is a candidate for the value of f (t0). Thus, the
limit of {SN(f )(t0)}N∈N may not be f (t0) even if t0 is Schnorr random.1 How-
ever, this problem has a solution via Cauchy names, a standard device in computable
analysis.

Definition 5.1 A sequence of rational trigonometric polynomials {τn}n∈N is a
Cauchy name of a vector f ∈ Lp[−π, π ] if limn→∞ ‖τn − f ‖p = 0 and if
‖τn − τn+1‖p < 2−(n+1) for all n ∈ N.

Thus, a Cauchy name of a vector in Lp[−π, π ] is a name of exactly one such
vector (up to almost everywhere equality).

A Cauchy name {τn}n∈N of a vector is computable if {τn}n∈N is a uniformly com-
putable sequence of rational trigonometric polynomials in the sense that the degree
and coefficients of τn can be computed from n. It follows that a vector in Lp[−π, π ]
is computable if and only if it has a computable Cauchy name.

We will show that there is a natural way to use a computable Cauchy name of f ∈
Lp[−π, π ] to assign a canonical value to f (t0) when t0 is Schnorr random. We will
then show that if f is a computable vector in Lp[−π, π ], then limN→∞ SN(f )(t0) is
the canonical value of f (t0) whenever t0 is Schnorr random. Our approach is based
on the following theorem which effectivizes a well-known result in measure theory;
namely, that a convergent sequence in Lp[−π, π ] has a subsequence that converges
almost everywhere.

Theorem 5.2 Suppose fn ∈ Lp[−π, π ] for all n ∈ N and suppose g is a computable
modulus of convergence for {fn}n∈N. Then, η(k,m) = � 1

2 (m+1
p

+ k + 1)� defines a
modulus of almost-everywhere convergence for {fg(2n)}n∈N.

Proof Set

En,r = {t ∈ [−π, π ] : |fg(2n+1)(t) − fg(2n)(t)| ≥ 2−r}.
Since g is a modulus of convergence for {fn}n∈N, ‖fg(2n+1) − fg(2n)‖p

p < 2−2np.
Thus, by Chebychev’s Inequality, μ(En,r ) ≤ 2p(r−2n).

Set N0 = η(k,m). Suppose M, N ≥ N0 and |fg(2M)(t) − fg(2N)(t)| ≥ 2−k . Then

2−k ≤
∞∑

n=N0

|fg(2n+2)(t) − fg(2n)(t)|.

1For example, Pour-El and Richards [44, p. 114] remark, “Of course, pointwise evaluation makes no sense
for Lp-functions, since an Lp-function is only determined up to sets of measure zero. This limitation
already exists in classical analysis, without any notions of logical ‘effectiveness’ being required. By its
very nature, an Lp-function is known only on the average.”
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It follows that t ∈ ⋃∞
c=0 EN0+c,k+1+c. But, by the definition of η,

∞∑

c=0

2p(k+1+c−2(N0+c)) <

∞∑

c=m+1

2−c = 2−m.

Thus, μ(
⋃∞

c=0 EN0+c,k+1+c) < 2−m. It follows that η is a modulus of almost-
everywhere convergence for {fg(2n)}n∈N.

We can now present the following corollary to Lemma 3.3.

Corollary 5.3 If {τn}n∈N is a computable Cauchy name for a vector in Lp[−π, π ]
and if t0 ∈ [−π, π ] is Schnorr random, then {τ2n(t0)}n∈N converges.

Corollary 5.3 leads to the idea that a Cauchy name for f assigns a value to f (t)

for Schnorr random t .

Definition 5.4 If {τn}n∈N is a computable Cauchy name for a vector f ∈ Lp[−π, π ],
and if {τ2n(t)}n∈N converges to α ∈ C, then we say {τn}n∈N assigns the value α to
f (t).

Thus, if f is a computable vector in Lp[−π, π ] and if t0 is Schnorr random, then
a value is assigned to f (t0) by each computable Cauchy name of f . We now show
that the same value is assigned by all computable Cauchy names via the following
proposition.

Proposition 5.5 Suppose {fn}n∈N and {gn}n∈N are computable sequence of func-
tions on [−π, π ] and that each has a computable modulus of almost-everywhere
convergence. Suppose also that limn→∞ fn(t) − gn(t) = 0 for almost every t ∈
[−π, π ]. Then, limn→∞ fn(t0) = limn→∞ gn(t0) whenever t0 ∈ [−π, π ] is Schnorr
random.

Proof Let η0 be a computable modulus of almost-everywhere convergence for
{fn}n∈N, and let η1 be a computable modulus of almost-everywhere convergence for
{gn}n∈N. Let h2n = fn, and let h2n+1 = gn. Set η(k,m) = η0(k+1, m+2)+η1(k+
1, m + 2). It follows that η is a computable modulus of almost-everywhere conver-
gence for {hn}n∈N. So, if t0 is Schnorr random, then {hn(t0)}n∈N converges, and so
{fn(t0)}n∈N and {gn(t0)}n∈N converge to the same value.

Definition 5.6 Suppose f is a computable vector in Lp[−π, π ]. When t0 is Schnorr
random, the canonical value of f (t0) is the value assigned to f (t0) by a computable
Cauchy name of f .

By Proposition 5.5, the choice of computable Cauchy name does not matter. Note
that if f is continuous, then the canonical value of f (t0) is in fact f (t0).

Proposition 5.5 yields an extension of Theorem 1.1.
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Corollary 5.7 Suppose p > 1 and suppose f is a computable vector in Lp[−π, π ].
Then, {SN(f )(t0)}N∈N converges to the canonical value of f (t0) whenever t0 is
Schnorr random.

It should also be remarked that these canonical values are similar to Miyabe’s
Schnorr layerwise computable functions from [35].

6 The p = 1 Case; Characterizing Schnorr Randomness
via the Fejér-Lebesgue Theorem

Carleson’s Theorem does not hold for vectors in L1[π, π ]. Indeed, Kolmogorov
[31] constructed a complex-valued function f in L1[π, π ] for which {SN(f )(t)}N∈N
diverges almost everywhere (later improved to “diverges everywhere”). Moser [37]
further constructed a computable such f . Nonetheless, Fejér and Lebesgue proved
that the Cesáro means of {SN(f )}N∈N converge to f almost everywhere. In this
section, we will show that the exceptional set of this theorem also characterizes
Schnorr randomness. We begin by reviewing the relevant components of the classical
theory. We will then discuss their effective renditions.

Recall that the (N + 1)st Cesáro mean of a sequence {an}n∈N is

1

N + 1

N∑

n=0

an.

If {an}n∈N converges, then so does the sequence of its Cesáro means and to the same
limit. Cesáro means provide a widely-used method for “evaluating divergent series;”
e.g., the Cesáro means of the partial sums of

∑∞
n=0(−1)n converge to 1

2 .
Now fix a vector f ∈ L1[−π, π ]. Let σN(f ) denote the (N + 1)st Cesáro mean

of {SN(f )}N∈N. That is,

σN(f ) = 1

N + 1

N∑

M=0

SM(f ).

One can also express σN(f ) via the convolution

σN(f )(t) = 1

2π

∫ π

−π

f (t − x)FN(x) dx (6.1)

where FN is the Fejér kernel

FN(x) = 1

N

sin2(Nx/2)

sin2(x/2)
.

Recall that t0 ∈ [−π, π ] is a Lebesgue point of f if

lim
ε→0+

1

2ε

∫ t0+ε

t0−ε

|f (t) − f (t0)| dt = 0.

One of Lebesgue’s differentiation theorems states that almost every point in [−π, π ]
is a Lebesgue point of f . Building on Fejér’s work on Cesáro means of Fourier
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series, Lebesgue then showed that {σN(f )(t0)}N∈N converges to f (t0) whenever t0 is
a Lebesgue point of f [34]. Fejér also showed that {σN(f )}N∈N converges uniformly
if f is continuous and periodic (in the sense that f (π) = f (−π)).

The result of this section can now be stated as follows.

Theorem 6.1 Suppose t0 ∈ [−π, π ]. Then, t0 is Schnorr random if and only
if {σN(f )(t0)}N∈N converges to the canonical value of f (t0) whenever f is a
computable vector in L1[−π, π ].

Proof Suppose t0 is Schnorr random, and let f be a computable vector in L1[−π, π ].
Let f̃ denote the function so that f̃ (t) equals the canonical value of f (t) when t is
Schnorr random and is 0 otherwise. Call f̃ the canonical version of f . Independently,
Pathak, Rojas, and Simpson [43] and Rute [46] showed that every Schnorr random t0
is a Lebesgue point of f̃ . Since f̃ (t) = f (t) almost everywhere, σN(f̃ ) = σN(f ).
Thus, by the Fejér-Lebesgue Theorem, {σN(f )(t0)}N∈N converges to the canonical
value of f (t0).

Now, suppose t0 is not Schnorr random. Then there is a Schnorr integral test T

so that T (t0) = ∞. We claim that T is a computable vector in L1[−π, π ]. Suppose
T = ∑∞

n=0 gn where {gn}n∈N is a computable sequence of nonnegative functions.
By the Monotone Convergence Theorem, ‖T ‖1 = ∑∞

n=0 ‖gn‖1. Let k ∈ N be given.
Since ‖T ‖1 is computable, from k we can compute a nonnegative integer m so that
‖∑∞

n=m+1 gn‖1 < 2−(k+1). Since gn is computable uniformly in n, we can then
compute a trigonometric polynomial τ so that ‖τ −∑m

n=0 gn‖1 < 2−(k+1). It follows
that ‖T − τ‖1 < 2−k .

We now show that limN σN(T )(t0) = ∞. Set hk = ∑k
n=0 gk . Fix k ∈ N. Since

FN ≥ 0, it follows from (6.1) that σN(T )(t0) ≥ σN(hk)(t0). Since hk is continuous
at t0, t0 is a Lebesgue point for hk and so limN→∞ σN(hk)(t0) = hk(t0). Thus,
limN σN(T )(t0) ≥ hk(t0). It follows that limN→∞ σN(f )(t0) = ∞.

The forward direction of Theorem 6.1 first appeared in Rute’s dissertation [46,
Cor. 4.22 on p. 49]. Note that if f : [−π, π ] → C is continuous, then every number
in [−π, π ] is a Lebesgue point of f . Thus, the converse of Theorem 6.1 cannot be
made as strong as Theorem 1.2.

The proof of the converse of Theorem 6.1 can easily be adapted to the case where
f ∈ Lp[−π, π ] and p ≥ 1. In addition, the proof of this direction shows that if
T ≥ 0 is a lower semicontinuous and integrable function (possibly with infinite
values) and if p ≥ 1, then there is a vector f ∈ Lp[−π, π ] so that {σN(f )(t)}N∈N
diverges whenever T (t) = ∞. If E is a measure zero subset of [−π, π ], then there is
a lower semicontinuous and non-negative function T so that ‖T ‖1 < ∞ and so that
T (t) = ∞ whenever t ∈ E. We thus obtain the following extension of a result of
Katznelson by a simpler proof [30].

Theorem 6.2 Suppose p ≥ 1, and suppose E is a measure 0 subset of [−π, π ]. Then
there exists f ∈ Lp[−π, π ] so that {σN(f )(t)}N∈N diverges whenever t ∈ E.
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7 Conclusion

We have used algorithmic randomness to study an almost-everywhere convergence
theorem in analysis. Many of these theorems have already been investigated, includ-
ing the ergodic theorem [20, 22, 27, 51], the martingale convergence theorem [46],
the Lebesgue Differentiation Theorem [43, 46], Rademacher’s Theorem [21], and
Lebesgue’s theorem concerning the differentiability of bounded variation functions
[7]. This list is not exhaustive and more work needs to be done. In some cases,
the resulting randomness notion is Schnorr randomness. In others, it is Martin-Löf
randomness or computable randomness.

In this conclusion, we would like to share some intuition about why Carleson’s
Theorem characterizes Schnorr randomness and what clues one might look for when
investigating similar theorems. Namely, we are interested in almost-everywhere con-
vergence theorems stating that for a family F of sequences of functions, every
sequence {fn}n∈N in the family converges almost everywhere. In Carleson’s Theo-
rem, F is the family of sequences {SN(f )}N∈N for f ∈ Lp.

The main clue that {SN(f )}N∈N converges on Schnorr randoms is that the point-
wise limit of this sequence is computable from the parameter f (indeed the limit
is f ). In such cases where the limit is computable, one can usually (at least from
our experience) find a computable modulus of almost-everywhere convergence.
This allows one to apply Lemma 3.3 or one of its generalizations to show that
the sequence {fn}n∈N converges for Schnorr randoms (e.g., Theorem 1.1). In some
cases, this rate of convergence follows from well-known quantitative estimates—
Fefferman’s Inequality in our case. Moreover, in convergence theorems where the
limit is computable, these theorems are usually constructively provable. We conjec-
ture that Carleson’s Theorem is provable in the logical frameworks of Bishop style
constructivism and RCA0.

On the other hand, if we are working with a theorem, such as the ergodic the-
orem, where the limit of the theorem is not always computable, then it is unlikely
that the sequence {fn}n∈N converges for all Schnorr randoms. Instead, one should
look into weaker randomness notions, such as Martin-Löf and computable ran-
domness. Nonetheless, convergence on Schnorr randoms can often be recovered by
restricting the theorem. For example, with the ergodic theorem, convergence hap-
pens on Schnorr randoms if the system is ergodic (or in any case where the limit is
computable).

Lastly, “reversals” similar to Theorem 1.2 are usually effective proofs of a stronger
result. For example, Miyabe’s characterization of the Schnorr randoms yields proof
of the following principle: If E ⊆ [−π, π ] is a null set, then there is a lower semicon-
tinuous and integrable function T : [−π, π ] → [0, ∞] so that T (t0) = ∞ whenever
t0 ∈ E. If we relativize Theorem 1.2, then we get Kahane and Katznelson’s result
[29] that for every null set E, there is a continuous function f such that {SN(f )}N∈N
diverges on E. However, the relativizations of the lemmas in Section 4 strengthen
the intermediate results in [29], and we have endeavored to carefully justify many
important details. Similarly, if an almost-everywhere convergence theorem charac-
terizes a standard randomness notion, then it usually satisfies the following property:
For every null set E there is a sequence {fn}n∈N for which the theorem says {fn}n∈N
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converges almost everywhere, but {fn}n∈N diverges on E. Not all almost-everywhere
theorems satisfy this property. Nonetheless, this property does seem to be satisfied by
theorems where the parameters of the theorem are functions in Lp, such as Carleson’s
Theorem and the Lebesgue differentiation theorem.
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