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Abstract
We study pattern matching problems on two major representations of uncertain
sequences used in molecular biology: weighted sequences (also known as position
weight matrices, PWM) and profiles (scoring matrices). In the simple version, in
which only the pattern or only the text is uncertain, we obtain efficient algorithms
with theoretically-provable running times using a variation of the lookahead scor-
ing technique. We also consider a general variant of the pattern matching problems
in which both the pattern and the text are uncertain. Central to our solution is a
special case where the sequences have equal length, called the consensus problem.
We propose algorithms for the consensus problem parameterised by the number of
strings that match one of the sequences. As our basic approach, a careful adaptation
of the classic meet-in-the-middle algorithm for the knapsack problem is used. On
the lower bound side, we prove that our dependence on the parameter is optimal up
to lower-order terms conditioned on the optimality of the original algorithm for the
knapsack problem. Therefore, we make an effort to keep the lower order terms of the
complexities of our algorithms as small as possible.
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1 Introduction

We study two well-known representations of uncertain texts: weighted sequences
and profiles. A weighted sequence (also known as position weight matrix, PWM)
for every position and every letter of the alphabet specifies the probability of occur-
rence of this letter at this position; see Table 1 for an example. A weighted sequence
represents many different strings, each with the probability of occurrence equal to
the product of probabilities of its letters at subsequent positions of the weighted
sequence. Usually a threshold 1

z
is specified, and one considers only strings that

match the weighted sequence with probability at least 1
z
. A scoring matrix (or a pro-

file) of length m is a matrix with m columns indexed by positions 1, . . . , m and σ

rows corresponding to the alphabet. The score of a string of length m is the sum of
scores in the scoring matrix of the subsequent letters of the string at the respective
positions. A string is said to match a scoring matrix if its matching score is above a
specified threshold Z.

1.1 WEIGHTED PATTERN MATCHING and PROFILE MATCHING

First of all, we study the standard variants of pattern matching problems on weighted
sequences and profiles, in which only the pattern or the text is an uncertain sequence.
In the most popular formulation of the WEIGHTED PATTERN MATCHING problem,
we are given a weighted sequence of length n, called a text, a solid (standard) string
of length m, called a pattern, both over an alphabet of size σ , and a threshold prob-
ability 1

z
. We are asked to find all positions in the text where the fragment of length

m represents the pattern with probability at least 1
z
. Each such position is called an

occurrence of the pattern in the text; we also say that the fragment of the text and
the pattern match. The WEIGHTED PATTERN MATCHING problem can be solved in
O(σn log m) time via the Fast Fourier Transform [7]. The average-case complexity
of the WPM problem has also been studied and a number of fast algorithms have
been presented for certain values of weight ratio z

m
[4, 5]. An indexing variant of the

problem has also been considered [1, 2, 13, 14, 16, 19]; here, one is to preprocess a
weighted text to efficiently answer pattern matching queries. The most efficient index
[2] for a constant-sized alphabet uses O(nz) space, takes O(nz) time to construct
and answers queries in optimal O(m + occ) time, where occ is the number of occur-
rences reported. A more general indexing data structure, which assumes z = O(1),
was presented in [6]. A streaming variant of the WEIGHTED PATTERN MATCHING

problem was considered very recently in [23].
In the classic PROFILE MATCHING problem, the pattern is an m × σ profile, the

text is a solid string of length n, and our task is to find all positions in the text where
the fragment of length m has score at least Z. A naı̈ve approach to the PROFILE

Table 1 A weighted sequence X

of length 4 over the alphabet
� = {a,b}

X[1] X[2] X[3] X[4]

π
(X)
1 (a) = 1/2 π

(X)
2 (a) = 1 π

(X)
3 (a) = 3/4 π

(X)
4 (a) = 0

π
(X)
1 (b) = 1/2 π

(X)
2 (b) = 0 π

(X)
3 (b) = 1/4 π

(X)
4 (b) = 1
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MATCHING problem works in O(nm + mσ) time. A broad spectrum of heuristics
improving this algorithm in practice is known; for a survey, see [22]. However, all
these algorithms have the same worst-case running time. One of the principal heuris-
tic techniques, coming in different flavours, is lookahead scoring that consists in
checking if a partial match could possibly be completed by the highest scoring letters
in the remaining positions of the scoring matrix and, if not, pruning the naı̈ve search.
The PROFILE MATCHING problem can also be solved in O(σn log m) time via the
Fast Fourier Transform [24].

Our results As the first result, we show how the lookahead scoring technique com-
bined with a data structure for answering longest common extension (LCE) queries
in a string can be applied to obtain simple and efficient algorithms for the stan-
dard pattern matching problems on uncertain sequences. For a weighted sequence,
by R we denote the size of its list representation. In the case that σ = O(1), which
often occurs in molecular biology applications, we have R = O(n). In the PROFILE

MATCHING problem, we set M as the number of strings that match the scoring matrix
with score above Z. In general M ≤ σm; however, we may assume that for practical
data this number is actually much smaller. We obtain the following results:

Theorem 1.1 PROFILE MATCHING can be solved in O(mσ + n log M) time.

Theorem 1.2 WEIGHTED PATTERN MATCHING can be solved inO(R+n log z) time.

1.2 PROFILE CONSENSUS andMULTICHOICE KNAPSACK

Along the way to our most involved contribution, we study PROFILE CONSENSUS,
a consensus problem on uncertain sequences. Specifically, we are to check for the
existence of a string that matches two scoring matrices, each above threshold Z. The
PROFILE CONSENSUS problem is essentially equivalent to the well-known MULTI-
CHOICE KNAPSACK problem (also known as the MULTIPLE CHOICE KNAPSACK

problem). In this problem, we are given n classes C1, . . . , Cn of at most λ items
each—N items in total—each item c characterised by a value v(c) and a weight
w(c). The goal is to select one item from each class so that the sums of values and
of weights of the items are below two specified thresholds, V and W . (In the more
intuitive formulation of the problem, we require the sum of values to be above a
specified threshold, but here we consider an equivalent variant in which both param-
eters are symmetric.) This problem generalises the (binary) KNAPSACK problem, in
which we have λ = 2. The MULTICHOICE KNAPSACK problem is widely used in
practice, but most research concerns approximation or heuristic solutions; see [17]
and references therein. As far as exact solutions are concerned, the classic meet-in-
the middle approach by Horowitz and Sahni [12], originally designed for the (binary)
KNAPSACK problem, immediately generalises to an O∗(λ� n

2 �)-time1 solution for
MULTICHOICE KNAPSACK.

1 The O∗ notation suppresses factors polynomial with respect to the instance size, whereas the Õ notation
ignores factors polylogarithmic with respect to the instance size (encoded in binary).
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Several important problems can be expressed as special cases of the MULTI-
CHOICE KNAPSACK problem using folklore reductions (see [17]). This includes the
SUBSET SUM problem, which, for a set of n integers, asks whether there is a subset
summing up to a given integer Q, and the k-SUM problem which, for k classes of
λ integers, asks to choose one element from each class so that the selected integers
sum up to zero. These reductions give immediate hardness results for the MULTI-
CHOICE KNAPSACK problem and thus yield the same consequences for PROFILE

CONSENSUS. For the SUBSET SUM problem, as shown in [9, 11], the existence of an
O∗(2εn)-time solution for every ε > 0 would violate the Exponential Time Hypoth-
esis (ETH) [15, 20]. Moreover, the O∗(2n/2) running time, achieved in [12], has not
been improved yet despite much effort. The 3-SUM conjecture [10] and the more gen-
eral k-SUM conjecture state that the 3-SUM and k-SUM problems cannot be solved in

O(λ2−ε) time and O(λ� k
2 �(1−ε)) time, respectively, for any ε > 0.

Our results In the complexities of our algorithms, the instance size of MULTICHOICE

KNAPSACK is described by the number of classes n, the total number of items N =
|C1| + · · · + |Cn|, and the maximum size of a class λ = max{|C1|, . . . , |Cn|}. We
also introduce additional parameters based on the number of solutions with feasible
weight or value:

AV =
∣
∣
∣
∣
∣

{

(c1, . . . , cn) : ci ∈ Ci for all i = 1, . . . , n,
∑

i

v(ci) ≤ V

}∣
∣
∣
∣
∣
,

that is, the number of choices of one element from each class that satisfy the value
threshold,

AW =
∣
∣
∣
∣
∣

{

(c1, . . . , cn) : ci ∈ Ci for all i = 1, . . . , n,
∑

i

w(ci) ≤ W

}∣
∣
∣
∣
∣
,

A = max(AV , AW), and a = min(AV , AW). We obtain the following result.

Theorem 1.3 MULTICHOICE KNAPSACK can be solved in O(N +√
aλ log A) time.

Note that a ≤ A ≤ λn and thus the running time of our algorithm for MULTI-
CHOICE KNAPSACK is bounded by O(N +nλ(n+1)/2 log λ). Up to lower order terms
(i.e., the factor n log λ = (λ(n+1)/2)o(1)), this matches the time complexities of the
fastest known solutions for both SUBSET SUM (also binary KNAPSACK) and 3-SUM.
Our parameters identify a new measure of difficulty for the MULTICHOICE KNAP-
SACK problem. The main novel part of our algorithm for MULTICHOICE KNAPSACK

is an appropriate (yet intuitive) notion of ranks of partial solutions.

1.3 WEIGHTED CONSENSUS and GENERAL WEIGHTED PATTERN MATCHING

Analogously to the PROFILE CONSENSUS problem, we define the WEIGHTED CON-
SENSUS problem. In the WEIGHTED CONSENSUS problem, given two weighted
sequences of the same length, we are to check if there is a string that matches each
of them with probability at least 1

z
. A routine to compare user-entered weighted
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sequences with existing weighted sequences in the database is used, e.g., in JAS-
PAR,2 a well-known database of PWMs. Finally, we study a general variant of pattern
matching on weighted sequences. In the GENERAL WEIGHTED PATTERN MATCH-
ING (GWPM) problem, both the pattern and the text are weighted. In the most
common definition of the problem (see [3, 13]), we are to find all fragments of the
text that give a positive answer to the WEIGHTED CONSENSUS problem with the
pattern. The authors of [3] proposed an algorithm for the GWPM problem based on
the weighted prefix table that works in O(nz2 log z + nσ) time. Solutions to these
problems can be applied in transcriptional regulation: motif and regulatory module
finding; and annotation of regulatory genomic regions.

Our results For a weighted sequence, by λ let us denote the maximal number of let-
ters with score at least 1

z
at a single position (thus λ ≤ min(σ, z)). Our algorithm for

the MULTICHOICE KNAPSACK problem (covered in Section 1.2) yields time com-
plexities O(R + √

zλ log z) and O(n
√

zλ log z) for WEIGHTED CONSENSUS and
GWPM, respectively. Using a tailor-made solution based on the same scheme, we
obtain faster procedures as specified below.

Theorem 1.4 The GENERAL WEIGHTED PATTERN MATCHING problem can be
solved inO(n

√
zλ(log log z+log λ)) time, and the WEIGHTED CONSENSUS problem

can be solved in O(R + √
zλ(log log z + log λ)) time.

In particular, we obtain the following result for the practical case of σ = O(1).

Corollary 1.5 GENERAL WEIGHTED PATTERN MATCHING over a constant-sized
alphabet can be solved in O(n

√
z log log z) time.

We also provide a simple reduction from MULTICHOICE KNAPSACK to
WEIGHTED CONSENSUS, which lets us transfer the negative results to the GWPM
problem.

Theorem 1.6 WEIGHTED CONSENSUS is NP-hard and cannot be solved in:

1. O∗(zε) time for every ε > 0, unless the exponential time hypothesis (ETH) fails;
2. O∗(z0.5−ε) time for some ε > 0, unless there is an O∗(2(0.5−ε)n)-time algorithm

for the SUBSET SUM problem;
3. Õ(R + z0.5λ0.5−ε) time for some ε > 0 and for n = O(1), unless the 3-SUM

conjecture fails.

For the higher-order terms, our complexities match the conditional lower bounds;
therefore, in the proofs of Theorems 1.3 and 1.4 we put significant effort to keep the
lower order terms of the complexities as small as possible.

Finally, we analyse the complexity of the MULTICHOICE KNAPSACK and GEN-
ERAL WEIGHTED PATTERN MATCHING problems in case of a large λ. This is

2http://jaspar.genereg.net

http://jaspar.genereg.net
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a theoretical study that shows a possibility of improvement of the complexity for
instances that do not originate from the SUBSET SUM and k-SUM problems.

Theorem 1.7 For every positive integer k = O(1), the MULTICHOICE KNAPSACK

problem can be solved in O(N + (a
k+1

2k+1 + λk) log A(
log A
log λ

)k) time.

Theorem 1.8 If λ2k−1 ≤ z ≤ λ2k+1 for some positive integer k = O(1), then the

WEIGHTED CONSENSUS problem can be solved in O(R + (z
k+1
2k+1 + λk) log λ) time,

and the GWPM problem can be solved in O(n(z
k+1

2k+1 + λk) log λ) time.

A preliminary version of this research appeared as [18].

1.4 Structure of the Paper

We start with Preliminaries, where we recall basic notions on classic strings and
formalise the model of computation. The following four sections describe our algo-
rithms: in Section 3 for PROFILE MATCHING; in Section 4 for WEIGHTED PATTERN

MATCHING; in Section 5 for PROFILE CONSENSUS; and in Section 6 for WEIGHTED

CONSENSUS and GWPM. In Section 7 we present conditional lower bounds for the
GWPM problem based on the special cases of MULTICHOICE KNAPSACK. Finally,
in Section 8 we perform a multivariate analysis of PROFILE CONSENSUS and GWPM
and present improved solutions in the case that log a

log λ
is a constant other than an odd

integer.

2 Preliminaries

Let � = {1, . . . , σ } be an alphabet. A string S over � is a finite sequence of letters
from �. By �m we denote the set of strings of length m over �. We denote the length
of S by |S| and, for 1 ≤ i ≤ |S|, the i-th letter of S by S[i]. By S[i . . j ] we denote the
string S[i] · · · S[j ] called a factor of S (if i > j , then the factor is an empty string).
A factor is called a prefix if i = 1 and a suffix if j = |S|. For two strings S and T ,
we denote their concatenation by S · T (ST in short).

For a string S of length n, by LCE(i, j) = lcp(S[i . . n], S[j . . n]) we denote the
length of the longest common prefix of suffixes S[i . . n] and S[j . . n]. This value
lets us easily determine the longest common prefix lcp(S[i . . i′], S[j . . j ′]) of any
two factors starting at positions i and j , respectively. The following fact specifies a
well-known efficient data structure answering LCE queries; see [8] for details.

Fact 2.1 Let S be a string of length n over an integer alphabet of size σ = nO(1).
After O(n)-time preprocessing, in O(1) time one can compute LCE(i, j) for any
indices i, j .
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The Hamming distance between two strings X and Y of the same length, denoted
by dH (X, Y ), is the number of positions where the strings differ.

2.1 Model of Computations

For problems on weighted sequences, we assume the word-RAM model with word
size w = �(log n + log z) and integer alphabet of size σ = nO(1). We consider the
log-probability model of representations of weighted sequences, that is, we assume
that probabilities in the weighted sequences and the threshold probability 1

z
are all of

the form c
p

2dw , where c and d are constants and p is an integer that fits in a constant
number of machine words. Additionally, the probability 0 has a special representa-
tion. The only operations on probabilities in our algorithms are multiplications and
divisions, which can be performed exactly in O(1) time in this model. Our solutions
to the MULTICHOICE KNAPSACK problem only assume the word-RAM model with
word size w = �(log S + log a), where S is the sum of integers in the input instance;
this does not affect the O∗ running time.

3 PROFILE MATCHING

In the PROFILE MATCHING problem, we consider a scoring matrix (a profile) P of
size m × σ . For i ∈ {1, . . . , m} and j ∈ {1, . . . , σ }, we denote the integer score of
the letter j at the position i by P [i, j ]. The matching score of a string S of length m

with the matrix P is

Score(S, P ) =
m

∑

i=1

P [i, S[i]].

If Score(S, P ) ≥ Z for an integer threshold Z, then we say that the string S matches
the matrix P above threshold Z. We denote the family of strings S that match P

above threshold Z by MZ(P ).
For a string T and a scoring matrix P , we say that P occurs in T at position i with

threshold Z if T [i . . i + m − 1] matches P above threshold Z. Then OccZ(P, T ) is
the set of all positions where P occurs in T . These notions let us define PROFILE

MATCHING:

3.1 Solution to PROFILE MATCHING

For a scoring matrix P , the heavy string of P , denoted H(P ), is constructed by
choosing at each position the heaviest letter, that is, the letter with the maximum



Theory of Computing Systems (2019) 63:506–542 513

score (breaking ties arbitrarily). In other words, H(P ) is a string that matches P with
the maximum score.

Observation 3.1 If Score(S, P ) ≥ Z for a string S of length m and an m×σ scoring
matrix P , then dH (H(P ), S) ≤ 
log |MZ(P )|�.

Proof Let d = dH (H(P ), S). We can construct 2d strings of length |S| that match P

with a score above Z by taking either of the letters S[j ] or H(P )[j ] at each position
j such that S[j ] �= H(P )[j ]. Hence, 2d ≤ |MZ(P )|, which concludes the proof.

Our solution for the PROFILE MATCHING problem works as follows. We first con-
struct P ′ = H(P ) and the data structure for lcp-queries in P ′T . Let the variable
s store the matching score of P ′. In the p-th step, we calculate the matching score
of T [p . . p + m − 1] by iterating through subsequent mismatches between P ′ and
T [p . . p + m − 1] and making adequate updates in the matching score s. The mis-
matches are found using lcp-queries: If P ′[i] is aligned against T [j ], we compute
� = lcp(P ′[i . . m], T [j . . n]). Then, P ′[i . . i + � − 1] = T [j . . j + � − 1], but
P ′[i + �] �= T [j + �] yields a mismatch (assuming i + � ≤ m and j + � ≤ n).
To locate the next mismatch, we need to repeat the procedure above with i and j

increased by � + 1. This process terminates when the score drops below Z or when
all the mismatches have been found. In the end, we include p in OccZ(P, T ) if the
final matching score is above Z. A pseudocode is given in the ProfileMatching(P ,
T , Z) procedure.

We obtain the following result.

Theorem 1.1 PROFILE MATCHING can be solved in O(mσ + n log M) time.

Proof Let us bound the time complexity of the presented algorithm. The heavy string
P ′ can be computed in O(mσ) time. The data structure for lcp-queries in P ′T can be
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constructed in O(n + m) time by Fact 2.1. Finally, for each position p in the text T

we will consider at most 
log M� + 1 mismatches between P ′ and T , as afterwards
the score s′ drops below Z due to Observation 3.1.

4 WEIGHTED PATTERN MATCHING

A weighted sequence X = X[1] · · · X[n] of length |X| = n over alphabet � is a
sequence of sets of pairs of the form X[i] = {(j, π

(X)
i (j)) : j ∈ �}. Here, π

(X)
i (j)

is the occurrence probability of the letter j at the position i ∈ {1, . . . , n}. These
values are non-negative and sum up to 1 for a given i. For all our algorithms, it is
sufficient that the probabilities sum up to at most 1 for each position. Also, the algo-
rithms sometimes produce auxiliary weighted sequences with sum of probabilities
being smaller than 1 on some positions.

We denote the maximum number of letters occurring at a single position of the
weighted sequence (with non-zero probability) by λ and the total size of the repre-
sentation of a weighted sequence by R. The standard representation consists of n

lists with up to λ elements each, so R = O(nλ). However, the lists can be shorter
in general. Also, if the threshold probability 1

z
is specified, at each position of a

weighted sequence it suffices to store letters with probability at least 1
z
, and clearly

there are at most z such letters for each position. This reduction can be performed
in linear time, so we shall always assume that λ ≤ z. Moreover, the assumption
that � is an integer alphabet of size σ = nO(1) lets us assume without loss of
generality that the entries (j, π

(X)
i (j)) in the lists representing X[i] are ordered by

increasing j : if this is not the case, we can simultaneously sort these lists in linear
time.

The probability of matching of a string S with a weighted sequence X, |S| =
|X| = n, is

P(S, X) =
n

∏

i=1

π
(X)
i (S[i]).

We say that a string S matches a weighted sequence X with probability at least 1
z
, de-

noted byS ≈ 1
z

X, if P(S, X)≥ 1
z
. We also denote Mz(X) = {S ∈ �n : P(S, X) ≥ 1

z
}.

Given a weighted sequence T , by T [i . . j ] we denote a weighted sequence, called
a factor of T , equal to T [i] · · · T [j ] (if i > j , then the factor is empty). We say that a
string P of length m occurs in T at position i if P matches the factor T [i . . i+m−1].
The set of positions where P occurs in T is denoted by Occ 1

z
(P , T ).
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4.1 Weighted Sequences versus Profiles

As shown below, profiles and weighted sequences are essentially equivalent objects.

Fact 4.1 1. Given a weighted sequence X of length n over an alphabet of size σ

and a probability 1
z
, one can construct in O(nσ) time an n × σ profile P and a

threshold Z such that MZ(P ) = Mz(X).
2. Given an m × σ profile P and a threshold Z, one can construct in O(mσ) time

a weighted sequence X and a probability 1
z

such that Mz(X) = MZ(P ).

Proof Given a weighted sequence X, one can construct an equivalent profile P set-
ting P [i, s] = − log π

(X)
i (s) for each position i and character s. If π

(X)
i (s) = 0, we

set P [i, s] = ∞ (which can be replaced by a sufficiently large finite value after we
fix the threshold Z). The profile P satisfies MZ(P ) = Mz(X) for Z = log z.

To construct an inverse mapping, we need to normalise the scores first. For this,
we construct a normalised profile P ′ setting P ′[i, s] := P [i, s]+ log(

∑

s∈�2−P [i,s]).
As a result, we have MZ(P ) = MZ′(P ′) for Z′ = Z + ∑m

i=1 log(
∑

s∈�2−P [i,s]).
Now, we can build an equivalent weighted sequence X by setting π

(X)
i (s) = 2−P ′[i,s].

Note that

∑

s∈�

π
(X)
i (s)=

∑

s∈�

2−P [i,s]−log(
∑

s′∈�2−P [i,s′]) =
(

∑

s∈�

2−P [i,s]
)

·2− log(
∑

s∈�2−P [i,s]) = 1

holds as required. Moreover, Mz(X) = MZ′(P ′) = MZ(P ) for z = 2Z′
.

In the light of Fact 4.1, it may seem that the results for profiles and weighted
sequences should coincide. However, we use different parameters to study the com-
plexity of the algorithmic problems in these models: for profiles this is the number
|MZ(P )| of matching strings, while for weighted sequence this is the inverse z of the
threshold probability 1

z
. These parameters are related by the following observation:

Observation 4.2 A weighted sequence X satisfies |Mz(X)| ≤ z for every threshold.

However, the bound |Mz(X)| ≤ z is not tight in general, which gives more power
to algorithms parameterised by z. Moreover, z is a part of the input (as opposed to
|MZ(P )| for profiles). Furthermore, it is natural to consider a common threshold
probability 1

z
for multiple weighted sequences, e.g., factors of a weighted text T as

in WEIGHTED PATTERN MATCHING.
A more technical difference lies in the representation of profiles and weighted

sequences, which we have chosen consistently with the literature. A profile is stored
as a dense m × σ matrix, while in a weighted sequence of the same length we do
not explicitly keep entries with π

(X)
i (s) = 0, so the input size R can be smaller than

m · σ . This allows for faster algorithms—because reading the input takes less time—
but at the same time poses some challenges—because π

(X)
i (s) cannot be accessed in

constant time, unless σ = O(1) or we allow randomisation. This is illustrated below
in case of the WEIGHTED PATTERN MATCHING problem and also in Section 6.
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4.2 Solution toWEIGHTED PATTERN MATCHING

The approach from our solution to PROFILE MATCHING can be used for WEIGHTED

PATTERN MATCHING. In a natural way, we extend the notion of a heavy string
to weighted sequences. This lets us restate Observation 3.1 in the language of
probabilities instead of scores.

Observation 4.3 If a string P matches a weighted sequence X of the same length
with probability at least 1

z
, then dH (H(X), P ) ≤ 
log z�.

Comparing to the solution to PROFILE MATCHING, we compute the heavy string
of the text instead of the pattern. An auxiliary variable α stores the matching proba-
bility between a factor of H(T ) and the corresponding factor of T ; it is updated when
we move to the next position of the text. The rest of the algorithm is basically the
same as previously; see the pseudocode of WeightedPatternMatching(P , T , 1

z
).

Implementation for large alphabets The algorithm above takes O(n log z) time for
σ = O(1). In the general case, we need to efficiently implement the following
operations on the weighted sequence:

– finding the letter with the maximum probability at a given position,
– computing the probability of a given letter at a given position.

For a weighted sequence in the standard list representation, we can compute the
maximum-probability letter at each position in O(R) time which lets us perform
the former operation in O(1) time. We also explicitly store the probabilities of the
heaviest letters so that π

(T )
j (T ′[j ]) can be retrieved in constant time for any index j .
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To implement the latter operation for an arbitrary character, we store each T [j ] in a
weight-balanced binary tree [21], with the weight of (s, π

(T )
j (s)) equal to π

(T )
j (s). As

a result, any π
(T )
j (s) can be retrieved in O(− log π

(T )
j (s)) = O(log z) time. During

the course of the p-th step of the algorithm, α′ is a product of some probabilities
including all the retrieved probabilities π

(T )
j (s) with s �= T ′[j ]. The while loop is

executed only when α′ ≥ 1
z
, so the product of these probabilities (excluding the one

retrieved in the final iteration) is at least 1
z
. Consequently, the overall retrieval time

in the p-th step is O(log z).
This way, we can implement the algorithm in O(R + n log z) time.

Theorem 1.2 WEIGHTED PATTERN MATCHING can be solved inO(R+n log z) time.

Remark 4.4 In the same complexity one can solve GWPM with a solid text.

5 PROFILE CONSENSUS andMULTICHOICE KNAPSACK

Let us start with a precise statement of the MULTICHOICE KNAPSACK problem.

For a fixed instance of MULTICHOICE KNAPSACK, we say that S is a partial
choice if |S ∩ Ci | ≤ 1 for each class. The set D = {i : |S ∩ Ci | = 1} is called its
domain. For a partial choice S, we define v(S) = ∑

c∈Sv(c) and w(S) = ∑

c∈Sw(c).

5.1 PROFILE CONSENSUS versus MULTICHOICE KNAPSACK

As shown below, PROFILE CONSENSUS and MULTICHOICE KNAPSACK are essen-
tially equivalent problems.

Fact 5.1 1. Consider an instance of PROFILE CONSENSUS with two m×σ profiles
P , Q and a common threshold Z. In O(mσ) time one can construct an equivalent
instance of MULTICHOICE KNAPSACK with m classes of σ items each, AV =
|MZ(P )|, and AW = |MZ(Q)|.

2. Consider an instance of MULTICHOICE KNAPSACK with n classes of at most λ

items each. In O(nλ) time one can construct an equivalent instance of PROFILE
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CONSENSUS with two n × λ profiles P , Q and a common threshold Z such that
|MZ(P )| = AV and |MZ(Q)| = AW .

Proof Given an instance (P, Q, Z) of the PROFILE CONSENSUS problem, we con-
struct an equivalent instance of MULTICHOICE KNAPSACK with m classes of σ items
each, denoted ci,j for 1 ≤ i ≤ m and 1 ≤ j ≤ σ , each with value v(ci,j ) = −P [i, j ]
and weight w(ci,j ) = −Q[i, j ]. We set both thresholds to V = W = −Z.
It is straightforward to verify that the constructed instance satisfies the required
conditions.

This construction is easily reversible if V = W and the size of each class is λ. In
general, we add dummy items (with infinite or very large weight and value), decrease
the weight of each item by 1

n
(W − V ), and decrease the weight threshold to V .

The only technical difference between MULTICHOICE KNAPSACK and PROFILE

CONSENSUS is that the profiles are stored as dense m × σ matrices while the classes
in MULTICHOICE KNAPSACK can be of different size so the input size N can be
smaller than the number of classes n times the bound λ on the class size.

Below, we formulate our results in the more established language of MULTI-
CHOICE KNAPSACK.

5.2 Overview of the Solution

The classic O(2n/2)-time solution to the KNAPSACK problem [12] is based on a
meet-in-the-middle approach. The set D = {1, . . . , n} is partitioned into two domains
D1, D2 of size roughly n/2, and for each Di , all partial choices S are generated
and ordered by v(S). This reduces the problem to an instance of MULTICHOICE

KNAPSACK with two classes, which is solved using a folklore linear-time solution
(described for completeness in Section 5.5).

The meet-in-the-middle approach to KNAPSACK generalises directly to a solution
to MULTICHOICE KNAPSACK. The partition may be chosen as to balance the number
of partial choices in each domain, and so the worst-case time complexity is O(

√
Qλ),

where Q = ∏n
i=1 |Ci | is the number of choices.

Our aim in this section is to replace Q with the parameter a (which never exceeds
Q). The overall running time is going to be O(N + √

aλ log A).
Again, we will partition the set of classes into two groups, for each group we

will generate a subset of all partial choices, and then we will check if two partial
choices can be joined into a feasible solution. However, several questions arise with
this approach in order to obtain the desired complexity:

(1) How to partition the set of classes?
(2) In what order should the partial choices be generated?
(3) How many partial choices should be generated, given that the value of the

parameter a is not known in advance?

As for question (1), we consider all partitions of the form D = {1, . . . , j} ∪ {j +
1, . . . , n} for 1 ≤ j ≤ n. This results in an extra O(n) factor in the time complexity.
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However, in Section 5.7 we introduce preprocessing which reduces the general case

to the case when n = O
(

log A
log λ

)

.

A natural idea to deal with question (2) is to consider only partial choices with
small values v(S) or w(S). This is close to our actual solution, which is based on a
notion of ranks of partial choices that we introduce in Section 5.3.

Finally, to tackle question (3), we generate the partial choices batch-wise until
either a solution is found or we can certify that it does not exist. The idea of this
step is presented also in Section 5.3, while the generation procedure is detailed in
Section 5.4. While dealing with these issues, a careful implementation is required to
avoid several further extra factors in the running time.

In the end, we show that the number of partial choices that need to be generated
is indeed O(

√
aλ). Our final solution to MULTICHOICE KNAPSACK is presented in

Section 5.6 without the instance size reduction and in Section 5.8 using the reduction.

5.3 Ranks of Partial Choices

For a partial choice S, we define rankv(S) as the number of partial choices S′ with
the same domain for which v(S′) ≤ v(S). We symmetrically define rankw(S). For
simplicity, if c ∈ Ci , we denote rankv(c) = rankv({c}) and rankw(c) = rankw({c}).
Ranks are introduced as an analogue of match probabilities in weighted sequences.
Probabilities are multiplicative, while for ranks we have submultiplicativity:

Fact 5.2 If S = S1 ∪ S2 is a decomposition of a partial choice S into two disjoint
subsets, then rankv(S1) rankv(S2) ≤ rankv(S) (and same for rankw).

Proof Let D1 and D2 be the domains of S1 and S2, respectively. For every partial
choices S′

1 over D1 and S′
2 over D2 such that v(S′

1) ≤ v(S1) and v(S′
2) ≤ v(S2), we

have v(S′
1 ∪ S′

2) = v(S′
1) + v(S′

2) ≤ v(S). Hence, S′
1 ∪ S′

2 must be counted while
determining rankv(S).

For 0 ≤ j ≤ n, let Lj be the list of partial choices with domain {1, . . . , j} ordered
by value v(S), and for 
 > 0 let Lj [
] be the 
-th element of Lj . Analogously, for
1 ≤ j ≤ n + 1, we define Rj as the list of partial choices over {j, . . . , n} ordered
by v(S), and for r > 0, Rj [r] as the r-th element of Rj . If any of the partial choices
Lj [
], Rj [r] does not exist, we assume that its value is ∞.

The following two observations yield a decomposition of each choice into a single
item and two partial solutions of a small rank. Observe that we do not need to know
AV in order to check if the ranks are sufficiently large.

Lemma 5.3 Let 
 and r be positive integers such that v(Lj [
])+v(Rj+1[r]) > V for
each 0 ≤ j ≤ n. For every choice S with v(S) ≤ V , there is an index j ∈ {1, . . . , n}
and a decomposition S = L ∪ {c} ∪ R such that v(L) < v(Lj−1[
]), c ∈ Cj , and
v(R) < v(Rj+1[r]).
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Proof Let S = {c1, . . . , cn} with ci ∈ Ci and, for 0 ≤ i ≤ n, let Si = {c1, . . . , ci}. If
v(Sn−1) < v(Ln−1[
]), we set L = Sn−1, c = cn, and R = ∅, satisfying the claimed
conditions.

Otherwise, we define j as the smallest index i such that v(Si) ≥ v(Li[
]), and we
set L = Sj−1, c = cj , and R = S\Sj . The definition of j implies v(L) < v(Lj−1[
])
and v(L ∪ {c}) ≥ v(Lj [
]). Moreover, we have v(L ∪ {c}) + v(R) = v(S) ≤ V <

v(Lj [
]) + v(Rj+1[r]), and thus v(R) < v(Rj+1[r]).

Fact 5.4 Let 
, r > 0. If v(Lj [
]) + v(Rj+1[r]) ≤ V for some j ∈ {0, . . . , n}, then

 · r ≤ AV .

Proof Let L and R be the 
-th and r-th entry in Lj and Rj+1, respectively. Note
that v(L ∪ R) ≤ V implies rankv(L ∪ R) ≤ AV by definition of AV . Moreover,
rankv(L) ≥ 
 and rankv(R) ≥ r (the equalities may be sharp due to draws). Now,
Fact 5.2 yields the claimed bound.

5.4 Generating Partial Choices of Small Rank

Note that Lj can be obtained by interleaving |Cj | copies of Lj−1, where each copy
corresponds to extending the choices from Lj−1 with a different item. If we were to
construct Lj having access to the whole Lj−1, we could apply the following standard
procedure. For each c ∈ Cj , we maintain an iterator on Lj−1 pointing to the first
element S on Lj−1 for which S ∪ {c} has not yet been added to Lj . The associated
value is v(S ∪ {c}). All iterators initially point at the first element of Lj−1. Then
the next element to append to Lj is always S ∪ {c} corresponding to the iterator
with minimum value. Having processed this partial choice, we advance the iterator
(or remove it, once it has already scanned the whole Lj−1). This process can be
implemented using a binary heap Hj as a priority queue, so that initialisation requires
O(|Cj |) time and outputting a single element takes O(log |Cj |) time. Each partial
choice S ∈ Lj is stored in O(1) space using a pointer to a partial choice S ′ ∈ Lj−1
such that S = S′ ∪ {c} for some c ∈ Cj .

For r ≥ 0, let L(i)
j be the prefix of Lj of length min(i, |Lj |) and R(i)

j be the prefix
of Rj of length min(i, |Rj |). A technical transformation of the procedure stated above

leads to an online algorithm that constructs the prefixes L(i)
j and R(i)

j , as shown in
the following lemma. Along with each reported partial choice S, the algorithm also
computes w(S).

Lemma 5.5 After O(N)-time initialisation, one can compute L1[i], . . . ,Ln[i]
knowing L(i−1)

1 , . . . ,L(i−1)
n in O(n log λ) time. Symmetrically, one can construct

R1[i], . . . ,Rn[i] from R(i−1)
1 , . . . ,R(i−1)

n in the same time complexity.

Proof Our online algorithm is going to use the same approach as the offline
computation of lists L(i)

j . The order of computations will be different, though.
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At each step, for j = 1 to n we shall extend lists L(i−1)
j with a single element

(unless the whole Lj has already been generated) from the top of the heap Hj . We
keep an invariant that each iterator in Hj always points to an element that is already

in L(i−1)
j−1 or to Lj−1[i]: the first element that has not been yet added to Lj−1, which

is represented by the top of the heap Hj−1.
We initialise the heaps as follows: we introduce H0 which represents the empty

choice ∅ with v(∅) = 0. Next, for j = 1, . . . , n we build the heap Hj representing
|Cj | iterators initially pointing to the top of Hj−1. The initialisation takes O(N) time
in total since a binary heap can be constructed in time linear in its size.

At each step, the lists L(i−1)
j are extended for consecutive values j from 1 to n.

Since L(i−1)
j−1 is extended before L(i−1)

j , by the invariant, all iterators in Hj point to

the elements of L(i)
j−1 while we compute Lj [i]. We take the top of Hj and move it

to L(i)
j . Next, we advance the corresponding iterator and update its position in the

heap Hj . After this operation, the iterator might point to the top of Hj−1. If Hj−1 is
empty, this means that the whole list Lj−1 has already been generated and traversed
by the iterator. In this case, we remove the iterator.

This way we indeed simulate the previous offline solution. A single phase
makes O(1) operations on each heap Hj . The running time is bounded by
O(

∑

j log |Cj |) = O(n log λ) at each step of the algorithm.

5.5 MULTICHOICE KNAPSACK for n = 2 Classes

Let us recall the final processing of the meet-in-the-middle solution to the KNAP-
SACK problem [12]. We formulate it in terms of MULTICHOICE KNAPSACK with
two classes.

An item c ∈ Cj is irrelevant if there is another item c′ ∈ Cj that dominates c,
i.e., such that v(c) ≥ v(c′) and w(c) ≥ w(c′). Observe that removing an irrelevant
item leads to an equivalent instance of the MULTICHOICE KNAPSACK problem, and
it may only decrease the parameters AV and AW .

Lemma 5.6 The MULTICHOICE KNAPSACK problem can be solved in O(N) time if
n = 2 and the elements c of C1 and C2 are sorted by v(c).

Proof Since the items of C1 and C2 are sorted by v(c), a single scan through these
items lets us remove all irrelevant elements. Next, for each c1 ∈ C1 we compute
c2 ∈ C2 such that v(c2) ≤ V − v(c1) but otherwise v(c2) is largest possible. As we
have removed irrelevant elements from C2, this item also minimises w(c2) among
all elements satisfying v(c2) ≤ V − v(c1). Hence, if there is a feasible solution
containing c1, then {c1, c2} is feasible. If we process elements c1 by non-decreasing
values v(c1), the values v(c2) do not increase, and thus the items c2 can be computed
in O(N) time in total.
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5.6 MULTICHOICE KNAPSACK Parameterised by a

Combining the procedures of Lemmas 5.5 and 5.6 with the combinatorial results of
Section 5.3, we obtain the first algorithm for MULTICHOICE KNAPSACK parame-
terised by a.

Proposition 5.7 MULTICHOICE KNAPSACK can be solved in O(n(λ + √
aλ) log λ)

time.

Proof Below, we give an algorithm working in O(n(λ + √
AV λ) log λ) time. The

final solution runs it in parallel on the original instance and on the instance with v

and V swapped with w and W , waiting until at least one of them terminates.
We increment an integer r starting from 1, maintaining 
 = ⌈

r
λ

⌉

and the lists L(
)
j

and R(r)
j+1 for 0 ≤ j ≤ n, as long as v(Lj [
]) + v(Rj+1[r]) ≤ V for some j (or until

all the lists have been completely generated). By Fact 5.4, we stop at r = O(
√

AV λ)

and due to Lemma 5.5, the process takes O(n
√

AV λ log λ) time.
According to Lemma 5.3, every feasible solution S admits a decomposition

S = L ∪ {c} ∪ R with L ∈ L(
)
j−1, c ∈ Cj , and R ∈ R(r)

j+1 for some index
j . We consider all possibilities for j . For each of them we will reduce searching
for S to an instance of the MULTICHOICE KNAPSACK problem with 2 classes of
O(

√
AV λ) items. By Lemma 5.6, these instances can be solved in O(n

√
AV λ) time

in total.
The items of the j -th instance are going to belong to classes L(
)

j−1 �Cj and R(r)
j+1,

where L(
)
j−1 �Cj = {L∪{c} : L ∈ L(
)

j−1, c ∈ Cj }. The set L(
)
j−1 �Cj is constructed

by merging |Cj | ≤ λ sorted lists, each of size 
 = O(1 + √
AV /λ). This takes

O((λ + √
AV λ) log λ) time, which results in O(n(λ + √

AV λ) log λ) time over all
indices j .

Clearly, each feasible solution of the constructed instances represents a feasible
solution of the initial instance, and by Lemma 5.3, every feasible solution of the
initial instance has its counterpart in one of the constructed instances.

5.7 Preprocessing to Reduce Instance Size

In order to improve the running time for MULTICHOICE KNAPSACK, we develop two
reductions and run them as preprocessing to the procedure of Proposition 5.7. First,
we observe that items c with rankv(c) > AV or rankw(c) > AW cannot belong to
any feasible solution. Moreover their removal results in λ ≤ a, which lets us hide the
O(nλ log λ) term in the running time. Our second reduction decreases the number of

classes n to O
(

log A
log λ

)

. For this, we repeatedly remove irrelevant items (as defined in

Section 5.5) and merge small classes into their Cartesian product (so that the class
sizes are more balanced).
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For each class Ci , let vmin(i) = min{v(c) : c ∈ Ci}. Also, let Vmin =
∑n

i=1vmin(i); note that Vmin is the smallest possible value v(S) of a choice S. We
symmetrically define wmin(i) and Wmin.

Lemma 5.8 Given an instance I of the MULTICHOICE KNAPSACK problem, one can
compute in O(N) time an equivalent instance I ′ with N ′ ≤ N , n′ = n, A′

V = AV ,
A′

W = AW , and λ′ ≤ min(λ, a).

Proof From each class Ci we remove all items c such that Vmin + v(c) − vmin(i) >

V or Wmin + w(c) − wmin(i) > W . Afterwards, for each item c ∈ Ci one can
obtain a choice S such that c ∈ S and v(S) ≤ V (or w(S) ≤ W ) by choosing the
elements with the minimal value (minimal weight, respectively) in all the remaining
classes.

Our second preprocessing consists of several steps. First, we quickly reduce the
number of classes to n = O(log A).

Lemma 5.9 Given an instance I of the MULTICHOICE KNAPSACK problem, one
can compute in linear time an equivalent instance I ′ with N ′ ≤ N , A′

V ≤ AV ,
A′

W ≤ AW , λ′ ≤ λ, and n′ ≤ 2 log A.

Proof Observe that if a class Ci contains an item c for which both v(c) = vmin(i)

and w(c) = wmin(i), then we can greedily include it in the solution S. Hence, we can
remove such a class, setting V := V − vmin(i) and W := W − wmin(i). We execute
this reduction rule exhaustively, which clearly takes O(N) time in total and may only
decrease the parameters AV and AW . After the reduction, the minima vmin(i) and
wmin(i) must be attained by distinct items of every class Ci .

We shall prove that now we can either find out that A ≥ 2n/2 or that we are dealing
with a NO-instance. To decide which case holds, let us define �V (i) as the difference
between the second smallest value in the multiset {v(c) : c ∈ Ci} and vmin(i). We set
�mid

V as the sum of the
⌈

n
2

⌉

smallest values �V (i) for 1 ≤ i ≤ n; we define �mid
W

analogously.

Claim If Vmin +�mid
V ≤ V , then AV ≥ 2n/2; if Wmin +�mid

W ≤ W , then AW ≥ 2n/2;
otherwise, we are dealing with a NO-instance.

Proof First, assume that Vmin + �mid
V ≤ V . This means that there is a choice S with

v(S) ≤ V containing at least n
2 items c such that rankv(c) ≥ 2. Hence, Fact 5.2

yields rankv(S) ≥ 2�n/2� and consequently AV ≥ 2n/2, as claimed. Symmetrically,
if Wmin + �mid

W ≤ W , then AW ≥ 2n/2.
Now, suppose that there is a feasible solution S. As no class contains a single item

minimising both v(c) and w(c), there are at least
⌈

n
2

⌉

classes for which S contains
an item not minimising v(c), or at least

⌈
n
2

⌉

classes for which S contains an item
not minimising w(c). Without loss of generality, we assume that the former holds.
Let D be the set of at least

⌈
n
2

⌉

classes i satisfying the condition. If c ∈ Ci does not
minimise v(c), then v(c) ≥ vmin(i) + �V (i). Consequently, V ≥ v(S) = Vmin +
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∑

i∈D �V (i). However, observe that
∑

i∈D �V (i) ≥ �mid
V , so V ≥ Vmin + �mid

V , as
claimed.

The conditions from the claim can be verified in O(N) time using a linear-time
selection algorithm to compute �mid

V and �mid
W . If any of the first two conditions

holds, we return the instance obtained using our reduction. Otherwise, we output a
dummy NO-instance.

In the improved reduction we use two basic steps. The first one is expressed in the
following lemma.

Lemma 5.10 Consider a class of items in an instance of the MULTICHOICE KNAP-
SACK problem. In linear time, we can remove some irrelevant items from the class
so that the resulting class C satisfies max(rankv(c), rankw(c)) > 1

3 |C| for each item
c ∈ C.

Proof First, note that using a linear-time selection algorithm, we can determine for
each item c whether rankv(c) ≤ 1

3 |C| and whether rankw(c) ≤ 1
3 |C|. If there is

no item satisfying both conditions, we keep C unaltered. Otherwise, we have an
item which dominates at least |C| − rankv(c) − rankw(c) ≥ 1

3 |C| other items. We
scan through all items in C and remove those dominated by c. Next, we repeat the
algorithm. The running time of a single phase is clearly linear, and since |C| decreases
geometrically, the total running time is also linear.

The second reduction step decreases the number of classes by replacing two dis-
tinct classes Ci , Cj with their Cartesian product Ci × Cj , assuming that the value
(weight) of a pair (ci, cj ) is the sum of values (weights) of ci and cj . This clearly
leads to an equivalent instance of the MULTICHOICE KNAPSACK problem, does not
alter the parameters AV , AW , and decreases n. On the other hand, N and λ may
increase; the latter happens only if |Ci | · |Cj | > λ.

These two reduction rules let us implement our preprocessing procedure.

Lemma 5.11 Given an instance I of the MULTICHOICE KNAPSACK problem, one
can compute in O(N + λ log A) time an equivalent instance I ′ with A′

V ≤ AV ,

A′
W ≤ AW , λ′ ≤ λ, and n′ = O

(
log A
log λ

)

.

Proof First, we apply Lemma 5.9 to make sure that n ≤ 2 log A and N =
O(λ log A). We may now assume that λ ≥ 36, as otherwise we already have

n = O
(

log A
log λ

)

.

Throughout the algorithm, whenever there are two distinct classes of size at most√
λ, we shall replace them with their Cartesian product. This may happen only n − 1

times, and a single execution takes O(λ) time, so the total running time needed for
this part is O(λ log A).

Furthermore, for every class that we get in the input instance or obtain as a Carte-
sian product, we apply Lemma 5.10. The total running time spent on this is also
O(λ log A).
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Having exhaustively applied these reduction rules, we are guaranteed that we have

max(rankv(c), rankw(c)) > 1
3

√
λ ≥ λ

1
3 for items c from all but one class. Without

loss of generality, we assume that the classes satisfying this condition are C1, . . . , Ck .
Recall that vmin(i) and wmin(i) are defined as minimum values and weights of

items in class Ci and that Vmin and Wmin are their sums over all classes. For 1 ≤
i ≤ k, we define �V (i) as the difference between the

⌈

λ
1
3

⌉

-th smallest value in the

multiset {v(c) : c ∈ Ci} and vmin(i). Next, we define �mid
V as the sum of the

⌈
k
2

⌉

smallest values �V (i). Symmetrically, we define �W(i) and �mid
W . We shall prove a

claim analogous to that in the proof of Lemma 5.9.

Claim If Vmin + �mid
V ≤ V , then AV ≥ λ

1
6 k; if Wmin + �mid

W ≤ W , then AW ≥ λ
1
6 k;

otherwise, we are dealing with a NO-instance.

Proof First, suppose that Vmin + �mid
V ≤ V . This means that there is a choice S with

v(S) ≤ V which contains at least k
2 items c with rankv(c) ≥ λ

1
3 . By Fact 5.2, the

rank of this choice is at least λ
1
6 k , so AV ≥ λ

1
6 k , as claimed. The proof of the second

case is analogous.
Now, suppose that there is a feasible solution S = {c1, . . . , cn}. For 1 ≤ i ≤ k,

we have rankv(ci) ≥ λ
1
3 or rankw(ci) ≥ λ

1
3 . Consequently, rankv(ci) ≥ λ

1
3 holds

for at least
⌈

k
2

⌉

classes or rankw(ci) ≥ λ
1
3 holds for at least

⌈
k
2

⌉

classes. Without
loss of generality, we assume that the former holds. Let D be the set of (at least
⌈

k
2

⌉

) classes i satisfying the condition. For each i ∈ D, we clearly have v(ci) ≥
vmin(i) + �V (i), while for each i /∈ D, we have v(ci) ≥ vmin(i). Consequently,
V ≥ v(S) ≥ Vmin + ∑

i∈D�V (i) ≥ Vmin + �mid
V . Hence, V ≥ Vmin + �mid

V , which
concludes the proof.

The condition from the claim can be verified using a linear-time selection algo-
rithm: first, we apply it for each class to compute �V (i) and �W(i), and then,
globally, to determine �mid

V and �mid
W . If one of the first two conditions holds,

we return the instance obtained through the reduction. It satisfies A ≥ λ
1
6 k , i.e.,

n ≤ 1 + k ≤ 1 + 6 log A
log λ

. Otherwise, we construct a dummy NO-instance.

5.8 Main Result

We apply the preprocessing of the previous section to arrive at our final algorithm.

Theorem 1.3 MULTICHOICE KNAPSACK can be solved in O(N +√
aλ log A) time.

Proof Before running the algorithm of Proposition 5.7, we apply the reductions of
Lemmas 5.8 and 5.11. With this order of reductions, we already have λ ≤ a during
the execution of Lemma 5.11, so the O(λ log A) term is dominated by O(

√
aλ log A).
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6 WEIGHTED CONSENSUS and GENERAL WEIGHTED PATTERN MATCHING

The WEIGHTED CONSENSUS problem is formally defined as follows.

Due to Facts 4.1 and 5.1, the WEIGHTED CONSENSUS problem is essentially
equivalent to MULTICHOICE KNAPSACK. The only difference is that we study MUL-
TICHOICE KNAPSACK with respect to unknown parameters a and A, whereas in
WEIGHTED CONSENSUS we know the parameter z. By Observation 4.2, these values
for equivalent instances satisfy a ≤ A ≤ z, so Theorem 1.3 immediately yields:

Proposition 6.1 WEIGHTED CONSENSUS can be solved in O(R + √
zλ log z) time.

In Sections 6.2 and 6.3 we show that the O(log z) term can be reduced to
O(log λ+ log log z). Such an improvement is possible because the bound a ≤ A ≤ z

is not tight in general.
If two weighted sequences admit a consensus, we write X ≈ 1

z
Y and say that X

matches Y with probability at least 1
z
. With this definition of a match, we extend

the notion of an occurrence and the notation Occ 1
z
(P , T ) to arbitrary weighted

sequences.

In the case of the GWPM problem, it is more useful to provide an oracle that
finds witness strings that correspond to the respective occurrences of the pattern.
Such an oracle, given i ∈ Occ 1

z
(P , T ), computes a string that matches both P and

T [i . . i + m − 1].

6.1 Reduction toWEIGHTED CONSENSUS on Short Sequences

The GWPM problem clearly can be reduced to n + m − 1 instances of WEIGHTED

CONSENSUS. This leads to a naı̈ve O(nR + n
√

zλ log z)-time algorithm. In this
subsection, we remove the first term in this complexity.

Our solution applies the tools developed in Section 4 for WEIGHTED PATTERN

MATCHING and uses an observation that is a consequence of Observation 4.3.
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Observation 6.2 If X and Y are weighted sequences that match with threshold 1
z
,

then dH (H(X),H(Y )) ≤ 2 
log z�. Moreover, there exists a consensus string S such
that S[i] = H(X)[i] = H(Y )[i] unless H(X)[i] �= H(Y )[i].

Proof The fact that X ≈ 1
z

Y means that there exists a string P such that P ≈ 1
z

X

and P ≈ 1
z

Y . Let the set A1 represent the positions of mismatches between H(X)

and P and the set A2 represent the positions of mismatches between H(Y ) and P .
By Observation 4.3, |A1|, |A2| ≤ 
log z�. Let A be the set of mismatches between
H(X) and H(Y ). We have A ⊆ A1 ∪ A2 and thus |A| ≤ 2 
log z�. Finally, observe
that for each i ∈ A \ (A1 ∪ A2) we may replace P [i] with H(X)[i] = H(Y )[i] to
obtain a string S such that S ≈ 1

z
X and S ≈ 1

z
Y and S[i] = H(X)[i] = H(Y )[i]

unless i ∈ A.

The algorithm starts by computing P ′ = H(P ) and T ′ = H(T ) and the data struc-
ture for lcp-queries in P ′T ′. We try to match P against every factor T [p . . p+m−1]
of the text. Following Observation 6.2, we check if dH (T ′[p . . p + m − 1], P ′)
≤ 2 
log z�. If not, then we know that no match is possible. Otherwise, let D be
the set of positions of mismatches between T ′[p . . p + m − 1] and P ′. Assume that
we store α = ∏m

j=1 π
(T )
p+j−1(T

′[p + j − 1]) and β = ∏m
j=1 π

(P )
j (P ′[j ]). Now, we

only need to check what happens at the positions in D. If D = ∅, it suffices to
check if α ≥ 1

z
and β ≥ 1

z
.

Otherwise, we construct two weighted sequences X and Y by selecting only the
positions from D in T [p . . p + m − 1] and in P . In O(|D|) time we can compute
α′ = ∏

j /∈D π
(T )
p+j−1(T

′[p + j − 1]) and β ′ = ∏

j /∈D π
(P )
j (P ′[j ]). We multiply the

probabilities of all letters at the first position in X by α′ and in Y by β ′. It is clear
that X ≈ 1

z
Y if and only if T [p . . p + m − 1] ≈ 1

z
P .

Thus, we reduced the GWPM problem to at most n−m+ 1 instances of the prob-
lem of WEIGHTED CONSENSUS for sequences of length O(log z). If we memorise
the solutions to all those instances together with the underlying sets of mismatches D,
we can also implement the oracle for the GWPM problem with O(m)-time queries.
We obtain the following reduction.

Lemma 6.3 The GWPM problem and the computation of its oracle can be reduced
in O(R + (n − m + 1) log z) time to at most n − m + 1 instances of the WEIGHTED

CONSENSUS problem for weighted sequences of length O(log z).

By Proposition 6.1, each of the resulting instances of WEIGHTED CONSENSUS

can be solved in O(λ log z + √
zλ log z) = O(

√
zλ log z) time (due to z ≥ λ).

Proposition 6.4 GWPM problem can be solved in O(n
√

zλ log z) time. An oracle
for the GWPM problem using O(n log z) space and supporting queries in O(m) time
can be computed within the same time complexity.

In the remainder of this section, we design a tailor-made solution which lets us
improve the O(log z) factors in Propositions 6.1 and 6.4 to O(log log z + log λ).
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6.2 Reduction to SHORT DISSIMILAR WEIGHTED CONSENSUS

Let us notice that in the previous section we actually reduced GWPM to instances
of WEIGHTED CONSENSUS that satisfy an additional dissimilarity requirement, as
stated in the following problem.

In the SDWC problem, we further require an ordering of letters according to their
probabilities. This assumption is trivial if σ = O(1); otherwise, we use the pre-
processing of Section 5.7 to expedite sorting. The following result refines Lemma
6.3.

Lemma 6.5 The GWPM problem and the computation of its oracle can be reduced
in O(R + (n − m + 1)λ log z) time to at most n − m + 1 instances of SDWC.

Proof The reduction of Section 6.1 in O(R + (n − m + 1) log z) time results in
n − m + 1 dissimilar instances of length at most 2 log z. However, the characters are
not ordered by non-increasing probabilities. Before we sort them, we apply Lemma
5.11 in order to reduce the length to O(

log z
log λ

); this takes O(λ log z) time. Note that
both removing irrelevant characters and merging two positions into their Cartesian
product preserves the property that the probabilities at each position sum up to at
most one, so the resulting instance of MULTICHOICE KNAPSACK can be interpreted
back as an instance of WEIGHTED CONSENSUS. Finally, we sort the probabilities in
O(λ log λ) time per position, i.e., in O(λ log z) time per instance of SDWC.

6.3 Solving SHORT DISSIMILAR WEIGHTED CONSENSUS

6.3.1 Overview

We follow the same general meet-in-the-middle scheme as the algorithm for MUL-
TICHOICE KNAPSACK presented in Proposition 5.7. The latter relies on Lemma 5.3,
whose analogue in terms of weighted sequences and probabilities is much simpler.

Observation 6.6 Consider weighted sequences X and Y of length n and z, z
, zr ∈
R+ such that z
 · zr ≥ z. Any S ∈ Mz(X) ∩ Mz(Y ) admits a decomposition S =
L · c · R, where:

– P(L, X[1 . . |L|]) ≥ 1
z


,
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– c is a single letter,
– P(R, X[n − |R| + 1 . . n]) ≥ 1

zr
.

Motivated by this formulation, we employ a notion of 1
z
-solid prefixes of a

weighted sequence X—strings S such that S ≈ 1
z

X[1 . . |S|]—and a symmetric

notion of 1
z
-solid suffixes. By Observation 4.2, the number of 1

z
-solid prefixes of

weighted sequence X of length n is at most nz. A direct application of the approach
of Proposition 5.7, using solid prefixes and suffixes as partial choices, would result
in generating up to nz
 solid prefixes and nzr solid suffixes of X. Recall that, in case
of SDWC, n = O(log z).

However, 1
z
-solid prefixes have more structure than prefix partial choices of rank at

most z. We exploit this structure by introducing a notion of light 1
z
-solid prefixes, that

is, 1
z
-solid prefixes that end with a non-heavy letter in X, that are the key ingredient

in our solution. We show that the number of light 1
z
-solid prefixes of X is at most z.

Our algorithm for SDWC applies this fact to limit the number of generated 1
z


-solid

prefixes and 1
zr

-solid suffixes to z
 and zr , respectively.
The following subsections correspond to subsequent subsections of Section 5:

– In Section 6.3.2 (corresponds to Section 5.3) we show the O(z) bound on the
number of light 1

z
-solid prefixes (or sufixes) and prove a decomposition property

for them that is similar to Observation 6.6 (but more complex).
– Section 6.3.3 (corresponds to Section 5.4) contains an algorithm for generating

light 1
z′ -solid prefixes of X that are simultaneously 1

z
-solid prefixes of Y . Intu-

itively, light solid prefixes of a given length k ≤ n can be obtained from light
solid prefixes of any length smaller than k by extending them with any charac-
ter. This gives O(nλ) lists of solid prefixes to be merged by probabilities which
multiplies the complexity by O(log(nλ)) = O(log log z + log λ).

– Section 6.3.4 (corresponds to Section 5.5) shows how to compute a solution
based on sorted lists of common solid prefixes and suffixes of lengths summing
up to n.

– Section 6.3.5 (corresponds to Section 5.6) implements the meet-in-the-middle
approach. Because of the more complicated decomposition property this part of
the algorithm is the most complex. It consists of O(log n) = O(log log z) phases.

6.3.2 Combinatorics of Light Solid Prefixes (Counterpart of Section 5.3)

We define a light 1
z
-solid prefix of a weighted sequence X as a 1

z
-solid prefix S of

length k such that k = 0 or S[k] �= H(X)[k].
We say that a string P is a maximal 1

z
-solid prefix of a weighted sequence X if P

is a 1
z
-solid prefix of X and no string P ′ = Ps, for s ∈ �, is a 1

z
-solid prefix of X.

Maximal solid prefixes have following simple property, originally due to Amir et al. [1].

Fact 6.7 ([1]) A weighted sequence has at most z maximal 1
z
-solid prefixes, that is,

1
z
-solid prefixes which cannot be extended to any longer 1

z
-solid prefix.
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Fact 6.7 lets us bound the number of light solid prefixes.

Fact 6.8 A weighted sequence has at most z different light 1
z
-solid prefixes.

Proof We show a pair of inverse mappings between the set of maximal 1
z
-solid pre-

fixes of a weighted sequence X and the set of light 1
z
-solid prefixes of X. If P is a

maximal 1
z
-solid prefix of X, then we obtain a light 1

z
-solid prefix by removing all

trailing letters of P that are heavy letters at the corresponding positions in X. For the
inverse mapping, we extend each light 1

z
-solid prefix by heavy letters as long as the

prefix is 1
z
-solid.

With this notion and its symmetric counterpart, light 1
z
-solid suffixes, we can state

a stronger version of Observation 6.6. Note that this is where the dissimilarity is
crucial.

Lemma 6.9 Consider an instance (X, Y, 1
z
) of the SDWC problem, and let z
, zr ≥ 1

be real numbers such that z
 · zr ≥ z. If X ≈ 1
z

Y , then every consensus string S can

be decomposed into S = L · c ·C ·R such that the following conditions hold for some
U, V ∈ {X, Y }:
– L is a light 1

z

-solid prefix of U ,

– c is a single letter,
– all letters of C are heavy in V ,
– R is a light 1

zr
-solid suffix of V .

Proof We set L as the longest proper prefix of S which is a 1
z


-solid prefix of both

X and Y , and we define k := |L|. Note that L is a light 1
z


-solid prefix of X or Y ,
because H(X) and H(Y ) are dissimilar. If k = n − 1, we conclude the proof setting
c = S[n] and C = R to empty strings.

Otherwise, we have P(S[1 . . k + 1], V [1 . . k + 1]) < 1
z


for V = X or V = Y .

Since P(S, V ) ≥ 1
z

and z
 · zr ≥ z, this implies P(S[k + 2 . . n], V [k + 2 . . n]) ≥ 1
zr

,

i.e., that S[k + 2 . . n] is a 1
zr

-solid suffix of V . We set c = S[k + 1], C as the longest
prefix of S[k + 2 . . n] composed of letters heavy in V , and R as the remaining suffix
of S[k + 2 . . n]. Then R is clearly a light 1

zr
-solid suffix of V .

6.3.3 Generating Solid Prefixes (Counterpart of Section 5.4)

We say that a string P is a common 1
z
-solid prefix (suffix) of weighted sequences X

and Y if it is a 1
z
-solid prefix (suffix) of both X and Y . Let (X, Y, 1

z
) be an instance

of the SDWC problem. A standard representation of a common 1
z
-solid prefix P of

length k of X and Y is a triple (P, p1, p2) such that p1 and p2 are the probabilities
p1 = P(P, X[1 . . k]) and p2 = P(P, Y [1 . . k]).

If σ is constant, the string P can be directly represented using O(log z) bits due
to |P | = O(log z). Otherwise, P is written using variable-length encoding so that
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a letter that occurs at a given position with probability p in X has a representation
that consists of O(log 1

p
) bits. For every position i, the encoding can be constructed

by assigning subsequent integer identifiers to letters according non-increasing order
of π

(X)
i (c). Note that an instance of SDWC problem provides us with the desired

sorted order of letters. This lets us store a 1
z
-solid prefix using O(log z) bits: we

concatenate the variable-length representations of its letters and we store a bit mask of
size O(log z) that stores the delimiters between the representations of single letters.

In either case, our assumptions on the model of computations imply that the stan-
dard representation takes constant space. Moreover, constant time is sufficient to
extend a common 1

z
-solid prefix by a given letter. An analogous representation can

be used also to store common 1
z
-solid suffixes.

The following observation describes longer light solid prefixes in terms of shorter
ones.

Observation 6.10 Let P be a non-empty light 1
z
-solid prefix of X. If one removes

its last letter and then removes all the trailing letters which are heavy at the respective
positions in X, then a shorter light 1

z
-solid prefix of X is obtained.

We build upon Observation 6.10 to derive an efficient algorithm for generating
light solid prefixes.

Lemma 6.11 Let (X, Y, 1
z
) be an instance of the SDWC problem and let z′ ≤ z. The

standard representations of all common 1
z
-solid prefixes of X and Y being light 1

z′ -
solid prefixes of X, sorted first by their length and then by the probabilities in X, can
be generated in O(z′(log log z + log λ) + log2 z) time.

Proof For k ∈ {0, . . . , n}, let Bk be a list of the requested solid prefixes of length k

sorted by their probabilities p1 in X. Fact 6.8 guarantees that
∑n

k=0|Bk| ≤ z′.
We compute the lists Bk for subsequent lengths k. We start with B0 containing

the empty string with its probabilities p1 = p2 = 1. To compute Bk for k > 0, we
use Observation 6.10. For a given i ∈ {0, . . . , k − 1}, we iterate over all elements
(P, p1, p2) of Bi ordered by the non-increasing probabilities p1 and try to extend
each of them by the heavy letters in X at positions i + 1, . . . , k − 1 and by the letter
s at position k. We process the letters s ordered by π

(X)
k (s), ignoring the first one

(H(X)[k]) and stopping as soon as we do not get a 1
z′ -solid prefix of X.

More precisely, with X′ = H(X), we compute

p′
1 := p1 ·

k−1
∏

j=i+1

π
(X)
j (X′[j ]) ·π(X)

k (s) and p′
2 := p2 ·

k−1
∏

j=i+1

π
(Y)
j (X′[j ]) ·π(Y)

k (s),

check if p′
1 ≥ 1

z′ and p′
2 ≥ 1

z
, and, if so, insert (P · X′[i + 1 . . k − 1] · s, p′

1, p
′
2)

at the beginning of a new list Li,s , indexed both by the letter s and by the length
i of the shorter light 1

z′ -solid prefix. When we encounter an element (P, p1, p2) of

Bi and a letter s for which p′
1 < 1

z′ , we proceed to the next element of Bi . If this
happens for the heaviest letter s �= H(X)[k], we stop considering the current list Bi
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and proceed to Bi−1. The final step consists in merging all the kλ lists Li,s in the
order of probabilities in X; the result is Bk .

Let us analyse the time complexity of the k-th step of the algorithm. If an element
(P, p1, p2) and letter s that we consider satisfy p′

1 ≥ 1
z′ , this accounts for a new light

1
z′ -solid prefix of X. Hence, in total (over all steps) we consider O(z′) such elements.
Note that some of these elements may be discarded due to the condition on p′

2.
For each inspected element (P, p1, p2), we also consider at most one letter s for

which p′
1 is not sufficiently large. If this is not the only letter considered for this

element, such a candidate can be charged to the previously considered letter. The
opposite situation may happen once for each list Bi , which may give O(k) additional
operations in the k-th step, O(log2 z) in total.

Thanks to the order in which the lists are considered, we can store products of
probabilities

∏k−1
j=i+1 π

(X)
j (X′[j ]), ∏k−1

j=i+1 π
(Y)
j (X′[j ]) and factors X′[i +1 . . k−1]

so that the representation of each subsequent light 1
z′ -solid prefix of length k

is computed in O(1) time. Finally, the merging step in the k-th phase takes
O(|Bk| log(kλ)) = O(|Bk|(log log z + log λ)) time if a binary heap of O(kλ)

elements is used.
The time complexity of the whole algorithm is

O

(

log2 z +
n

∑

k=1

|Bk|(log log z + log λ)

)

.

By the already mentioned Fact 6.8, this is O(log2 z + z′(log log z + log λ)).

6.3.4 Merging Solid Prefixes with Suffixes (Counterpart of Section 5.5)

Next, we provide an analogue of Lemma 5.6.

Lemma 6.12 Let L and R be lists containing, for some k ∈ {0, . . . , n}, standard
representations of common 1

z
-solid prefixes of length k and common 1

z
-solid suf-

fixes of length n − k of X and Y , respectively. If the elements of the lists are sorted
according to non-decreasing probabilities in X and Y , respectively, one can check
in O(|L| + |R|) time whether the concatenation of any 1

z
-solid prefix from L and

1
z
-solid suffix from R yields a consensus string S for X and Y .

Proof First, we filter out dominated elements of the lists, i.e., elements (P, p1, p2)

such that there exists another element (P ′, p′
1, p

′
2) with p′

1 ≥ p1 and p′
2 ≥ p2. This

can be done in linear time. After this operation, the list R is ordered according to
non-increasing probabilities in X, so we reverse the list so that now both both lists
are ordered with respect to the non-decreasing probabilities in X.

For every element (P, p1, p2) of L, we compute the leftmost element (P ′, p′
1, p

′
2)

of R such that p1p
′
1 ≥ 1

z
. This element maximises p′

2 among all elements satisfying

the latter condition. Hence, it suffices to check if p2p
′
2 ≥ 1

z
, and if so, report the

result S = PP ′. As the lists are ordered by p1 and p′
1, respectively, all such elements

can be computed in O(|L| + |R|) total time.
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6.3.5 Merge-in-the-Middle Implementation (Counterpart of Section 5.6)

In this section, we solve the SDWC problem based on Lemma 6.9. We generate all
candidates for L · c and R using Lemma 6.11, and we apply a divide-and-conquer
procedure to fill this with C. Our procedure works for fixed U, V ∈ {X, Y }; the
algorithm repeats it for all four choices.

Let Li denote a list of all common 1
z
-solid prefixes of X and Y obtained by extend-

ing a light
√

λ√
z

-solid prefix of U of length i − 1 by a single letter s at position i, and

let Ri denote a list of all common 1
z
-solid suffixes of X and Y of length n − i + 1

that are light 1√
zλ

-solid suffixes of V . We assume that the lists Li and Ri are sorted

according to the probabilities in U and V , respectively. We assume that Ln+1 = ∅,
whereas Rn+1 contains only a representation of an empty string.

The following lemma shows how to compute the lists Li and Ri and bounds their
total size. In case of σ = O(1) it is a direct consequence of Lemma 6.11. Otherwise,
one needs to exercise caution when computing the lists Li .

Lemma 6.13 The total size of lists Li and Ri for i ∈ {1, . . . , n+ 1} is O(
√

zλ); they
can be computed in O(

√
zλ(log log z + log λ)) time.

Proof O(
√

zλ(log log z + log λ))-time computation of the lists Ri is directly due to

Lemma 6.11. As for the lists Li , we first compute in O
( √

z√
λ
(log log z + log λ)

)

time

the lists of all light
√

λ√
z

-solid prefixes of U , sorted by the lengths of strings and then

by the probabilities in U , again using Lemma 6.11. Then for each length i−1 and for
each letter s at the i-th position, we extend all these prefixes by a single letter. This
way we obtain λ lists for a given i−1 that can be merged according to the probabilities

in U to form the list Li . Generation of the auxiliary lists takes O
( √

z√
λ

· λ
)

= O(
√

zλ)

time in total, and merging them using a binary heap takes O(
√

zλ log λ) time. This
way we obtain an O(

√
zλ(log log z + log λ))-time algorithm.

Let L∗
a,b be a list of common 1

z
-solid prefixes of X and Y of length b obtained by

taking a common 1
z
-solid prefix from Li for some i ∈ {a, . . . , b} and extending it by

b − i letters that are heavy at the respective positions in V . Similarly, R∗
a,b is a list of

common 1
z
-solid suffixes of length n − a + 1 obtained by taking a common 1

z
-solid

suffix from Ri for some i ∈ {a, . . . , b} and prepending it by i − a letters that are
heavy in V . Again, we assume that each of the lists L∗

a,b and R∗
a,b is sorted according

to the probabilities in U and V , respectively.
A basic interval is an interval [a, b] represented by its endpoints 1 ≤ a ≤ b ≤

n + 1 such that 2j divides a − 1 and b = min(n + 1, a + 2j − 1) for some integer j

called the layer of the interval. For every j = 0, . . . , �log(n + 1)�, there are �
(

n
2j

)

basic intervals in the j -th layer and they are pairwise disjoint.

Example 6.14 For n = 7, the basic intervals are [1, 1], . . . , [8, 8], [1, 2], [3, 4], [5, 6],
[7, 8], [1, 4], [5, 8], [1, 8].
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Lemma 6.15 The total size of the lists L∗
a,b and R∗

a,b for all basic intervals [a, b] is
O(

√
zλ log log z) and they can all be constructed in O(

√
zλ(log log z + log λ)) time.

Proof We compute all the lists L∗
a,b and R∗

a,b for basic intervals [a, b] of subsequent
layers j = 0, . . . , �log(n + 1)�. For j = 0, we have L∗

a,a = La and R∗
a,a = Ra . All

these lists can be computed in O(
√

zλ(log log z + log λ)) time via Lemma 6.13.
Suppose that we wish to compute L∗

a,b for a < b at layer j (the computation of

R∗
a,b is symmetric). Take c = a + 2j−1 − 1. Let us iterate through all the elements

(P, p1, p2) of the list L∗
a,c, extend each string P by H(V )[c + 1 . . b], and multiply

the probabilities p1 and p2 by

b
∏

i=c+1

π
(X)
i (H(V )[i]) and

b
∏

i=c+1

π
(Y)
i (H(V )[i]),

respectively. If a common 1
z
-solid prefix is obtained, it is inserted at the end of an aux-

iliary list L. The resulting list L is merged with L∗
c+1,b according to the probabilities

in U ; the result is L∗
a,b.

Thus, we can compute L∗
a,b in time proportional to the sum of lengths of L∗

a,c

and L∗
c+1,b. (Note that the necessary products of probabilities can be computed in

O(n) = O(log z) total time.) For every j = 1, . . . , �log n�, the total length of the
lists from the j -th layer does not exceed the total length of the lists from the (j −1)-th
layer. By Lemma 6.13, the lists at the 0-th layer have size O(

√
zλ). The conclusion

follows from the fact that log n = O(log log z).

Finally, we are ready to apply a divide-and-conquer approach to solve the SDWC
problem:

Lemma 6.16 The SDWC problem can be solved in O(
√

zλ(log log z + log λ)) time.

Proof The algorithm goes along Lemma 6.9, considering all choices of U and V . For
each of them, we proceed as follows.

First, we compute the lists Li , Ri for all i = 1, . . . , n and L∗
a,b, R∗

a,b for all basic

intervals. By Lemmas 6.13 and 6.15, this takes O(
√

zλ(log log z + log λ)) time.
Note that, in order to find out if there is a feasible solution, it suffices to attempt

joining a common 1
z
-solid prefix from Lj with a common 1

z
-solid suffix from Rk for

some indices 1 ≤ j < k ≤ n + 1 by heavy letters of V at positions j + 1, . . . , k − 1.
We use a recursive routine to find such a pair of indices j, k ∈ [a, b] which has
positive length and therefore can be decomposed into two basic subintervals [a, c]
and [c+1, b]. Then either j ≤ c < k, or both indices j , k belong to the same interval
[a, c] or [c + 1, b]. To check the first case, we apply the algorithm of Lemma 6.12 to
L = L∗

a,c and R = R∗
c+1,b. The remaining two cases are solved by recursive calls for

the subintervals. The recursive routine is called first for the basic interval [1, n + 1].
The computations performed by the routine for the basic intervals at the j -

th level take at most the time proportional to the total size of lists L∗
a,b, R∗

a,b

at the (j − 1)-th level. Lemma 6.15 shows that the total size of the lists at all
levels is O(

√
zλ log log z). Consequently, the whole recursive procedure works
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in O(
√

zλ log log z) time. Together with the computation of the lists, this gives
O(

√
zλ(log log z + log λ)) time in total.

Lemma 6.16 combined with Lemma 6.5 provides an efficient solution for GEN-
ERAL WEIGHTED PATTERN MATCHING. It also gives a solution to WEIGHTED

CONSENSUS (which is a special case of GWPM with n = m). Note that λ log z =
O(

√
zλ log z) due to z ≥ λ.

Theorem 1.4 The GENERAL WEIGHTED PATTERN MATCHING problem can be
solved inO(n

√
zλ(log log z+log λ)) time, and the WEIGHTED CONSENSUS problem

can be solved in O(R + √
zλ(log log z + log λ)) time.

7 Conditional Hardness of GWPM

The following reduction from MULTICHOICE KNAPSACK to WEIGHTED CONSEN-
SUS immediately yields that any significant improvement in the dependence on z and
λ in the running time of our algorithm would lead to breaking long-standing barriers
for special cases of MULTICHOICE KNAPSACK.

Lemma 7.1 Given an instance I of the MULTICHOICE KNAPSACK problem with n

classes C1, . . . , Cn of maximum size λ, in linear time one can construct an equiva-
lent instance of the WEIGHTED CONSENSUS problem with z = O(

∏n
i=1 |Ci |) and

sequences of length O(n) over alphabet of size λ.

Proof We construct a pair of weighted sequences X, Y of length n over alphabet
� = {1, . . . , λ}. Let Ci = {ci,1, . . . , ci,|Ci |}. Intuitively, choosing letter j at position
i will correspond to taking ci,j to the solution S.

Without loss of generality, we assume that weights and values are non-negative.
Otherwise, we may subtract vmin(i) from v(ci,j ) and wmin(i) from w(ci,j ) for each
item ci,j , as well Vmin from V and Wmin from W .

We set M to the smallest power of two such that M ≥ max(n, V , W). For j ∈
{1, . . . , |Ci |}, we set:

p
(X)
i (j) = −�M log |Ci |� + v(ci,j )

M
, p

(Y )
i (j) = −�M log |Ci |� + w(ci,j )

M
.

We then define log π
(X)
i (j) = p

(X)
i (j) and log π

(Y)
i (j) = p

(Y)
i (j) for j ∈ �.

Moreover, we set

log zX = 1

M

(

V +
n

∑

i=1

�M log |Ci |�
)

, log zY = 1

M

(

W +
n

∑

i=1

�M log |Ci |�
)

.

The following claim holds.

Claim
∑|Ci |

j=1π
(X)
i (j) ≤ 1,

∑|Ci |
j=1π

(Y)
i (j) ≤ 1, and max(zX, zY ) ≤ 4

∏n
i=1 |Ci |.
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Proof As for the first inequality, we have:

|Ci |∑

j=1

π
(X)
i (j) =

|Ci |∑

j=1

2−�M log |Ci |�/M2−v(ci,j )/M ≤
|Ci |∑

j=1

2− log |Ci | =
|Ci |∑

j=1

1

|Ci | ≤ 1.

The second inequality is analogous. Finally, by the choice of M , we have

max(zX, zY ) ≤ 2
1
M

(max(V ,W)+n)
n

∏

i=1

|Ci | ≤ 4
n

∏

i=1

|Ci |.

This way, for a string P of length n, we have

logP(P, X) = − 1

M

(
n

∑

i=1

�M log |Ci |� +
n

∑

i=1

v(ci,P [i])
)

≥ − log zX

⇐⇒
n

∑

i=1

v(ci,P [i]) ≤ V,

logP(P, Y ) = − 1

M

(
n

∑

i=1

�M log |Ci |� +
n

∑

i=1

w(ci,P [i])
)

≥ − log zY

⇐⇒
n

∑

i=1

w(ci,P [i]) ≤ W .

Thus, P is a solution to the constructed instance of the WEIGHTED CONSEN-
SUS problem with two threshold probabilities, 1

zX
and 1

zY
, if and only if S = {ci,j :

P [i] = j} is a solution to the underlying instance of the MULTICHOICE KNAPSACK

problem. To have a single threshold z = max(zX, zY ), we append an additional posi-
tion n + 1 with symbol 1 only, with p

(X)
n+1(1) = 0 and p

(Y)
n+1(1) = log zY − log zX

provided that zX ≥ zY , and symmetrically otherwise.
If one wants to make sure that the probabilities at each position sum up to exactly

one, two further letters can be introduced, one of which gathers the remaining proba-
bility in X and has probability 0 in Y , and the other gathers the remaining probability
in Y , and has probability 0 in X.

For completeness, let us recall the folklore reductions that show that SUBSET SUM

and 3-SUM are special cases of MULTICHOICE KNAPSACK. To express an instance
of SUBSET SUM with integers a1, . . . , an and threshold R as an instance of MULTI-
CHOICE KNAPSACK, we introduce n classes of two items each, which correspond to
taking and omitting the respective elements. The first item has value ai and weight
−ai , while for the other these are both 0. The thresholds are V = R and W = −R.

Similarly, given an instance of 3-SUM with classes a1,1, . . . , a1,λ, a2,1, . . . , a2,λ,
and a3,1, . . . , a3,λ, we can create an instance of MULTICHOICE KNAPSACK with the
same three classes of items with values ai,j and weights −ai,j . The thresholds are
V = W = 0.
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Theorem 1.6 WEIGHTED CONSENSUS is NP-hard and cannot be solved in:

1. O∗(zε) time for every ε > 0, unless the exponential time hypothesis (ETH) fails;
2. O∗(z0.5−ε) time for some ε > 0, unless there is an O∗(2(0.5−ε)n)-time algorithm

for the SUBSET SUM problem;
3. Õ(R + z0.5λ0.5−ε) time for some ε > 0 and for n = O(1), unless the 3-SUM

conjecture fails.

Proof We use Lemma 7.1 to derive algorithms for the MULTICHOICE KNAPSACK

problem based on hypothetical solutions for WEIGHTED CONSENSUS. SUBSET SUM

is a special case of MULTICHOICE KNAPSACK with λ = 2, i.e.,
∏

i |Ci | = 2n.
Hence, an O∗(zo(1))-time solution for WEIGHTED CONSENSUS would yield an
O∗(2o(n))-time algorithm for SUBSET SUM, which contradicts ETH by the results
of Etscheid et al. [9] and Gurari [11]. Similarly, an O∗(z0.5−ε)-time solution for
WEIGHTED CONSENSUS would yield an O∗(2(0.5−ε)n)-time algorithm for SUBSET

SUM. Moreover, 3-SUM is a special case of MULTICHOICE KNAPSACK with n = 3
and

∏

i |Ci | = λ3. Hence, an Õ(R + z0.5λ0.5−ε)-time solution for WEIGHTED CON-
SENSUS with n = O(1) yields an Õ(λ + λ1.5+0.5−ε) = Õ(λ2−ε)-time algorithm for
3-SUM.

Nevertheless, it might still be possible to improve the dependence on n in the
GWPM problem. For example, one may hope to achieve Õ(nz0.5−ε + z0.5) time for
λ = O(1).

8 Multivariate Analysis of MULTICHOICE KNAPSACK and GWPM

In Section 5, we gave an O(N+a0.5λ0.5 log A)-time algorithm for the MULTICHOICE

KNAPSACK problem. Improvement of either exponent to 0.5 − ε would result in a
breakthrough for the SUBSET SUM and 3-SUM problems, respectively. Nevertheless,
this does not refute the existence of faster algorithms for some particular values (a, λ)

other than those emerging from instances of SUBSET SUM or 3-SUM. Indeed, in this
section we show an algorithm that is superior if log a

log λ
is a constant other than an odd

integer. We also argue that it is optimal (up to lower order terms) for every constant
log a
log λ

unless the k-SUM conjecture fails.
We analyse the running times of algorithms for the MULTICHOICE KNAPSACK

problem expressed as O(nO(1) ·T (a, λ)) for some function T monotone with respect
to both arguments. The algorithm of Theorem 1.3 proves that achieving T (a, λ) =√

aλ is possible. On the other hand, if we assume that SUBSET SUM does not
admit an O∗(2(0.5−ε)n)-time solution, then we immediately get that we cannot have
T (a, 2) = O(a0.5−ε) for any ε ≥ 0. Similarly, the 3-SUM conjecture implies that
T (λ3, λ) = O(λ2−ε) is impossible. While this already refutes the possibility of hav-
ing T (a, λ) = O(a0.5λ0.5−ε) across all arguments (a, λ), such a bound may still hold
for some special cases covering an infinite number of arguments. For example, we
may potentially achieve T (a, λ) = O((aλ)0.5−ε) = O(λ1.5−ε) for a = λ2.
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Before we prove that this is indeed possible, let us see the consequences of the con-
jectured hardness of 3-SUM and, in general, (2k−1)-SUM. For a non-negative integer
k, the (2k − 1)-SUM conjecture refutes T (λ2k−1, λ) = O(λk−ε). By monotonicity
of T with respect to the first argument, we conclude that T (λc, λ) = O(λk−ε) is
impossible for c ≥ 2k − 1. On the other hand, monotonicity with respect to the sec-

ond argument shows that T (λc, λ) = O(λc k
2k−1 −ε) is impossible for c ≤ 2k − 1. The

lower bounds following from (2k − 1)-SUM and (2k + 1)-SUM turn out to meet at
c = 2k − 1 + 1

k+1 ; see Figure 1.
Consequently, we have some room between the lower and the upper bound of√
aλ. In the aforementioned case of a = λ2, the upper bound is λ

3
2 , compared to

the lower bound of λ
4
3 −ε. Below, we show that the upper bound can be improved to

meet the lower bound. More precisely, we show an algorithm whose running time is

O(N + (a
k+1

2k+1 + λk) log λ · nk) for every positive integer k. Note that a
k+1

2k+1 + λk =
λc k+1

2k+1 + λk , so for 2k − 1 ≤ c ≤ 2k + 1 the running time indeed matches the lower
bounds up to the nk term.

Due to Lemma 5.11, the extra nk term reduces to O((
log A
log λ

)k). Finally, we study
the complexity of the GWPM problem.

8.1 Algorithm for MULTICHOICE KNAPSACK

Let us start by discussing the bottleneck of the algorithm of Theorem 1.3 for large
λ. The problem is that the size of the classes does not let us partition every choice S

into a prefix L and a suffix R with ranks both O(
√

AV ). Lemma 5.3 leaves us with

Fig. 1 Illustration of the upper bound (dotted) and lower bound (solid) on logλ T (λc, λ)
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an extra letter c between L and R, and in the algorithm we append it to the prefix
(while generating L(
)

j−1 � Cj ).
We provide a workaround based on reordering of classes. Our goal is to make sure

that items with large rank appear only in a few leftmost classes. For this, we guess
the classes of the k items with largest rank (in a feasible solution) and move them to
the front. Since this depends on the sought feasible solution, we shall actually verify
all

(
n
k

)

possibilities.
Now, our solution considers two cases: For j > k, the reordering lets us assume

rankv(c) < 

1
k , so we do not need to consider all items from Cj . For j ≤ k, on the

other hand, we exploit the fact that |L(
)
j−1 � Cj | ≤ λj , which at most λk .

The underlying combinatorial foundation is formalised as a variant of Lemma 5.3:

Lemma 8.1 Let 
 and r be positive integers such that v(Lj [
]) + v(Rj+1[r]) > V

for every 0 ≤ j ≤ n. Let k ∈ {1, . . . , n} and suppose that S is a choice with v(S) ≤
V such that rankv(S ∩ Ci) ≥ rankv(S ∩ Cj ) for i ≤ k < j . There is an index

j ∈ {1, . . . , n} and a decomposition S = L∪{c}∪R such that L ∈ L(
)
j−1, R ∈ R(r)

j+1,

c ∈ Cj , and either rankv(c) < 

1
k or j ≤ k.

Proof We claim that the decomposition constructed in the proof of Lemma 5.3
satisfies the extra condition on rankv(c) if j > k. Let S = {c1, . . . , cn} and
Si = {c1, . . . , ci}. Obviously rankv(ci) ≥ 1 for k < i < j and, by the extra assump-
tion, rankv(ci) ≥ rankv(c) for 1 ≤ i ≤ k. Hence, Fact 5.2 yields rankv(Sj−1) ≥
rankv(c)

k . Simultaneously, we have v(Sj−1) < v(Lj−1[
]), so rankv(Sj−1) < 
.
Combining these inequalities, we immediately get the claimed bound.

Theorem 1.7 For every positive integer k = O(1), the MULTICHOICE KNAPSACK

problem can be solved in O(N + (a
k+1

2k+1 + λk) log A(
log A
log λ

)k) time.

Proof As in the proof of Theorem 1.3, we actually provide an algorithm whose run-
ning time depends on AV rather than a. Moreover, Lemmas 5.8 and 5.11 let us
assume that n = O(

log A
log λ

).
We first guess the k positions where items with largest ranks rankv are present in

the solution S and move these positions to the front. This gives
(
n
k

) = O((
log A
log λ

)k)

possible selections. For each of them, we proceed as follows.

We increment an integer r starting from 1, maintaining 
 = �r k
k+1 � and all the

lists L(
)
j and R(r)

j+1 for 0 ≤ j ≤ n, as long as v(Lj [
]) + v(Rj+1[r]) ≤ V for some

j . By Fact 5.4, we stop with r = O(A
k+1
2k+1
V ) and thus the total time of this phase is

O(A
k+1

2k+1
V log A) due to the online procedure of Lemma 5.5.

By Lemma 8.1, every feasible solution S for some j admits a decomposition S =
L∪{c}∪R, where L ∈ L(
)

j−1, R ∈ R(r)
j+1, c ∈ Cj , and either rankv(c) < 


1
k or j ≤ k;

we consider all possibilities for j . For each of them, we shall reduce searching for S
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to an instance of the MULTICHOICE KNAPSACK problem with N ′ = O(A
k+1

2k+1
V + λk)

and n′ = 2. By Lemma 5.6, these instances can be solved in O((A
k+1

2k+1
V + λk)

log A
log λ

)

time in total.
For j ≤ k, the items of the j -th instance are going to belong to classes L(
)

j−1 � Cj

and R(r)
j+1. The set L(
)

j−1 � Cj can be sorted by merging |Cj | sorted lists of size at

most λj−1 each, i.e., in O(λk log λ) time. On the other hand, for j > k, we take

{L ∪ {c} : L ∈ L(
)
j−1, c ∈ Cj , rankv(c) ≤ 


1
k } and R(r)

j+1. The former set can be

constructed by merging at most min(

1
k , λ) = min(O(r

1
k+1 ), λ) sorted lists of size


 = O(r
k

k+1 ) each, i.e., in O(r log λ) = O(A
k+1
2k+1
V log λ) time.

Summing up over all indices j , this gives O((A
k+1

2k+1
V + λk) log A) time for a single

selection of the k positions with largest ranks, and O((A
k+1

2k+1
V + λk) log A(

log A
log λ

)k) in
total.

Clearly, each solution of the constructed instances represents a solution of the
initial instance, and by Lemma 8.1, every feasible solution of the initial instance has
its counterpart in one of the constructed instances.

Before we conclude the proof, we need to note that the optimal k does not need to
be known in advance. To deal with this issue, we try consecutive integers k and stop
the procedure if Fact 5.4 yields that AV > λ2k+1, i.e., if r is incremented beyond
λk+1. If the same happens for the other instance of the algorithm (operating on rankw

instead of rankv), we conclude that a > λ2k+1, and thus we shall better use larger
k. The running time until this point is O(λk+1 log λ(

log A
log λ

)k) due to Lemma 5.5. On

the other hand, if r ≤ λk+1, the algorithm behaves as if a ≤ λ2k+1, i.e., runs in
O(λk+1 log λ(

log A
log λ

)k) time. This workaround (considering all smaller values k) adds

extra O(λk log λ(
log A
log λ

)k−1) to the time complexity for the optimal value k, which is
less than the upper bound on the running time we have for this value k.

8.2 Algorithm for GENERAL WEIGHTED PATTERN MATCHING

If we are to bound the complexity in terms of A only, the running time becomes

O(N + (A
k+1
2k+1 + λk) log A(

log A
log λ

)k).

Assumptions that A ≤ λ2k+1 and k = O(1) let us get rid of the (
log A
log λ

)k term, which

can be bounded by (2k + 1)k = O(1).

Corollary 8.2 Let k = O(1) be a positive integer such that A ≤ λ2k+1. The

MULTICHOICE KNAPSACK problem can be solved in O(N + (A
k+1
2k+1 + λk) log λ)

time.

This leads to the following result for GENERAL WEIGHTED PATTERN MATCHING:
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Theorem 1.8 If λ2k−1 ≤ z ≤ λ2k+1 for some positive integer k = O(1), then the

WEIGHTED CONSENSUS problem can be solved in O(R + (z
k+1
2k+1 + λk) log λ) time,

and the GWPM problem can be solved in O(n(z
k+1

2k+1 + λk) log λ) time.

As we noted at the beginning of this section, Lemma 7.1 implies that any improve-
ment of the dependence of the running time on z or λ by zε (equivalently, by λε)
wound contradict the k-SUM conjecture.
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