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Abstract

A few years ago, Blais, Brody, and Matulef: Comput. Complex. 21(2), 311-358
(2012) presented a methodology for proving lower bounds for property testing prob-
lems by reducing them from problems in communication complexity. Recently,
Bhrushundi, Chakraborty, and Kulkarni (2014) showed that some reductions of this
type can be deconstructed to two separate reductions, from communication com-
plexity to randomized parity decision trees and from the latter to property testing.
This work follows up on these ideas. We introduce a model called linear-access
algorithms, which is a generalization of randomized parity decision trees, and show
several methods to reduce communication complexity problems to problems for
linear-access algorithms and problems for linear-access algorithms to property test-
ing problems. This approach yields a new interpretation for several well-known
reductions, since we present these reductions as a composition of two steps with fun-
damentally different functionalities. Furthermore, we demonstrate the potential of
proving lower bounds on property testing problems by reducing them directly from
problems for linear-access algorithms. In particular, we provide an alternative and
simple proof for a known lower bound of €2 (k) queries on testing “k-linearity”; that
is, the property of k-sparse linear functions over [F». This alternative proof relies on
a theorem by Linial and Samorodnitsky: Combinatorica 22(4), 497-522 (2002). We
then extend this result to a new lower bound of €2(s) queries for testing s-sparse
degree-d polynomials over IF,, for any d € N. In addition we provide a simple proof
for the hardness of testing some families of linear subcodes.
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1 Introduction
1.1 Background

Property testing is the study of probabilistic algorithms that inspect a given object in
few selected locations, and try to decide whether the object has some predetermined
property or is significantly different from any object having that property. This is
a widely-studied model in theoretical computer science, which is closely related to
probabilistically checkable proofs, coding theory, computational learning theory and
more (for an exposition on property testing see, e.g., [11]).

A few years ago, Blais, Brody, and Matulef [3] discovered a connection between prop-
erty testing and communication complexity — another widely-studied model in theoretical
computer science. In communication complexity, two parties communicate with
each other to jointly compute some function of their inputs. Blais, Brody and Mat-
ulef presented a methodology, generalized later by Goldreich [10], to reduce any
communication complexity decision problem (where the parties compute a Boolean
function) to some corresponding property testing problem.

Loosely speaking, the methodology consists of having the two parties in a commu-
nication setting use a suitable combining function that combines their inputs into an
object for property testing. Both parties separately run identical copies of a tester for the
combined object, and provide it with virtual access to that object: Whenever the tester
wants to inspect the object at some location, the two parties communicate with each
other to compute the relevant part of the combined object, and answer the query
accordingly. At the end, the parties decide according to the decision of the tester.

This methodology has been useful in proving lower bounds for property testing
problems, relying on known lower bounds in communication complexity. That is,
a known “hard” problem in communication complexity is reduced, using a suitable
combining function, to a target property testing problem, thereby proving that the
latter problem is also “hard”. Further details can be found in [3, 10].

The main observation leading to this work is that in many known uses of this
methodology, the combining function is computationally very simple, scarcely using
the unlimited computational power of the communicating parties. In particular, in
several well-known reductions the two parties only need to compute linear functions
of their inputs during the communication protocol. In these cases, the same property
testing problem could be reduced from a weaker model, in which both parties are only
allowed to compute linear functions of their inputs (and not any arbitrary function,
as in standard communication complexity). The main question motivating this work
is therefore:

Can lower bounds in property testing be proved by reducing from a model in

which the algorithms involved only compute linear functions of their input?

Such reductions have the potential of proving lower bounds that are tighter than
currently known bounds, and of providing simpler proofs for known lower bounds.

1.2 The Current Study

In this study we examine one candidate for such a weaker model from which to
reduce to property testing. Towards introducing the model, consider a communication
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setting in which both parties can only compute and send each other linear functions
of their respective inputs. Since the parties only compute linear functions of the input
pair (x, y), this model is equivalent, up to a constant factor in the number of queries,
to a model outside the realm of communication complexity, in which a single party
computes linear functions of its input, w = x o y, and needs to decide whether w
belongs to some predetermined subset of strings W. This latter model is known as
randomized parity decision trees.

In fact, Bhrushundi, Chakraborty, and Kulkarni [2] recently showed two reduc-
tions from randomized parity decision trees to property testing, and suggested that
tighter lower bounds on property testing problems might be achieved by reducing to
them directly from the intermediary model. They further showed that some reduc-
tions from communication complexity to property testing can be deconstructed to two
separate reductions, from communication complexity to randomized parity decision
trees and from the latter to property testing.

This work follows up on these ideas. We consider a generalized intermediary
model in which, for a finite field I, a probabilistic algorithm tries to decide whether
an input w € F" belongs to a predetermined subset of strings YW C F” or does not
belong to it. The algorithm may only issue linear queries to its input, that is, queries
of the form g = (q1, ..., g») € F" to be answered by g(w) = Y 7, g;w; (over F) and
it tries to minimize the number of queries it makes. We call these probabilistic algo-
rithms linear-access algorithms, and the problem of deciding a subset W C {0, 1}*
with a linear-access algorithm is called a linear-access problem.

Indeed, when F = T, the linear-access model essentially coincides with the model
of randomized parity decision trees'. The latter is a probabilistic version of the known
model of deterministic parity decision trees, that has received much recent attention
(see, e.g., [8, 16, 19, 21]). We discuss the differences in the underlying techniques in
Section 6.2, after presenting our results.

Organization and Main Contributions After presenting basic definitions in Section 2,
including the definition of linear-access algorithms, in Section 3 we present several
methods to reduce communication complexity problems to linear-access problems
and linear-access problems to property testing problems. In particular, in Section 3.1
we show that all properties of low-degree rational functions over finite fields are
reducible from linear-access algorithms; and ditto with respect to all subcodes of
linear codes with constant relative distance. The main contributions of this paper are
presented in Sections 4 and 5:

1. In Section 4 we use the linear-access model to offer a new interpretation of sev-
eral existing results. Specifically, we deconstruct several well-known reductions
from communication complexity to property testing, presenting each of them as
the composition of two reductions with fundamentally different functionalities:

I'The equivalence of linear-access algorithms over F = Fy and randomized parity decision trees depends
on the definition of the latter. Specifically, randomized parity decision trees are sometimes defined as
arbitrary distributions over parity decision trees (cf., e.g., [2]), whereas we define linear-access algorithms
as randomized oracle machines (see Definition 2.5). A gap between the models exists when considering
distributions over parity decision trees that cannot be computed by randomized oracle machines.
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The first from a communication problem to a linear-access problem, and the
second from the linear-access problem to property testing.

2. In Section 5 we demonstrate the potential of proving lower bounds for prop-
erty testing problems by reducing them directly from linear-access problems.
We start by presenting, in Section 5.2, a simple technique for proving lower
bounds on linear-access problems, which relies on analysis of affine subspaces
in finite fields. This technique enables proving lower bounds on proper-
ties reducible from linear-access algorithms (e.g., all properties of low-degree
polynomials) by tackling a potentially simpler challenge of analyzing affine
subspaces.

In Sections 5.3 and 5.4 we use the aforementioned technique, followed by
reductions to property testing, to prove lower bounds in property testing. Specif-
ically, we provide an alternative and simple proof for a known lower bound of
Q (minfk, n — k}) queries for testing “k-linearity”; that is, the property of k-
sparse n-variate linear functions over ;. We then extend this result to a new
lower bound of Q2 ({s, (Z) — s}) queries for testing s-sparse n-variate polynomi-
als of total degree d over [F, for any d € N. In addition, we show an €2 (n) lower
bound on testing the property {C(x o y) : x, y € {0, 1}" A (x, y) = 1}, where C
is an arbitrary linear code with constant relative distance and (-, -) denotes inner
product mod 2.

3. In Section 5.1 we highlight a limitation of certain reductions from linear-access
algorithms to property testing. Following [2], we show that reductions of the
form corresponding to the Hadamard code are unlikely to be helpful in proving
lower bounds on target properties (where the target properties in this case are
properties of linear functions).

In Section 6 we present several open questions and suggest research directions
related to linear-access algorithms.

We stress that throughout the paper we focus on lower bounds for adaptive
algorithms and testers, and indeed all the lower bounds that are proved hold for
such algorithms and testers. However, the underlying techniques (i.e., the reduc-
tions to property testing from linear-access algorithms) can also be used to obtain
(potentially-stronger) lower bounds for non-adaptive testers, if starting from lower
bounds for non-adaptive linear-access algorithms.

2 Preliminaries

2.1 Standard Notations

Some standard notations that we will use include F” for an n-dimensional vector
space over a finite field F; and v; for the i"? coordinate of v € F”. When n = |F|”
(for some integer m), we sometimes identify F"”* with [n], and for x € F" we denote

by v, the x” coordinate of v € F”". When referring to a specific field with ¢ elements
we denote it by ;.
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We denote the addition mod 2 operator by &. For u, v € {0, 1}", we define (u, v)
to be their inner product mod 2, that is @}_,u;v;. We also define the Hamming

weight of w € {0, 1} to be |wll; = Y7, w;.
2.2 The Hadamard Code and the Reed-Muller Code

We define two standard linear error-correcting codes that will be used throughout the
paper — the Hadamard code and the Reed-Muller code.

Definition 2.1 (Hadamard code): Let n € N and F be a finite field. The Hadamard
code is a function H : F* — FIFI" guch that for w € F", the coordinates of H (w)
are the evaluations of (w, x) at any x € F". In other words, for any w, x € F",
H(w)y = (w, x).

Definition 2.2 (Reed-Muller code): For m,d € N, letn = (m;d) and FF be a finite
field. The [|F|, d, m]-Reed-Muller code is a function RMy,, : F" — FIFI" such
that the coordinates of RM, ,,(w) are the evaluations, at any x € F", of the m-
variate polynomial of total degree at most d whose coefficients are represented in
the coordinates of w. That is, fixing a bijection between the coefficients of m-variate
monomials of degree at most d and the set [r], denote by p,, the polynomial whose
coefficients are represented in w, and let RMy ,,,(w)y = pw(x) for any w € F" and
x e ™,

2.3 Three Computational Models

We define each of the three computational models referred to in this paper —
property testing, linear-access algorithms, and communication complexity protocols.
Since some of the reductions we will discuss involve promise problems, we present
all three models in this more general setting. We also define respective complexity
measures for each of the models.

Definition 2.3 (distance:) Let/ € N and let X be a finite set. Given two strings x, y €
>, we define the (relative) distance between x and ytobe A(x,y) = I{zewllﬂ
Given a string x € »! and a subset P C T/, we define the distance between x and P

to be A(x, P) = minyep{A(x, y)}. We say that x is e-far from P if A(x, P) > e.

For a finite set ¥ and a randomized oracle machine 7', we denote by 77(1%) the
random variable that is the output of 7' when given input 1/ and oracle access to z € X',

Definition 2.4 (property testing): For / € N and a finite set X, let i/, P € %! and
IT = U, P),and let € > 0. An e-tester for I is a randomized oracle machine 7 that
satisfies the following two conditions:

. IfzeUNPthen PriT(1) =1] > }
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2. Ifz € U is e-far from P, then Pr[T*(1') = 0] > %

The query complexity of T is the maximum (over all z € X/ and the internal coin
tosses of T') number of oracle queries that T makes. The query complexity of e-testing
I1, denoted PT(e, IT), is the minimum query complexity of all e-testers for IT.

Definition 2.5 (linear-access algorithms): For n € N and a finite field IF, let Q, W C
F" and ® = (Q, W). A linear-access algorithm solving ® is a randomized oracle
machine M that satisfies the following two conditions:

. Ifwe QNWthen PriMH™W (") =1] > 2

2. Ifwe Q\Wthen PriMI™(17) = 0] > 2

where H is the Hadamard code (as in Definition 2.1).

The query complexity of M is the maximum (over all w € F" and internal coin
tosses of M) number of oracle queries that M makes. The query complexity of ®,
denoted LA(®P), is the minimum query complexity of all linear-access algorithms
solving ®.

In defining the communication setting we refer to the standard setting of commu-
nication complexity and specifically to randomized two-party protocols in the model
of shared randomness (see [14] for details). We denote by P((x, y), r) the output of
the interaction between the two parties when the first party gets input x, the second
party gets input y, and both parties follow protocol P and have free access to shared
randomness r. Without loss of generality, we assume that the output of the interac-
tion is specified in [P (as a function of the exchanged communication and the shared
randomness) and need not be explicitly communicated between the two parties.

Definition 2.6 (two-party public-coin communication complexity): For n € N, let
R,S C {0,1}*" and ¥ = (R, S). A two-party protocol P solves W if it satisfies the
following two conditions:

L. If(x,y) € RNS, then Pr(P((x,y),r) = 1] > 3
2. If(x,y) € R\ S, then Pr[P((x, y),r) = 0] > 2

The communication complexity of P is the maximum (over all (x, y) € {0, 1}*"
and r € {0, 1}*) number of bits exchanged between the parties. The communication
complexity of W, denoted CC(W), is the minimum communication complexity of all

protocols solving W.

In Section 3 we shall also use the definition of deterministic communication com-
plexity of a function f : {0,1}** — X (for some finite set ¥). A deterministic
protocol P computes f if for any (x, y) € {0, 1}*" it holds that P(x, y) = f(x, y),
where P(x, y) is the output of the (deterministic) interaction between the two parties
when the first party gets input x and the second party gets input y.

In all three models, although we considered the general notion of promise prob-
lems, we will frequently consider the special case of decision problems where
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the promise equals the entire space of possible inputs. When this is the case we
will frequently abuse notation, and simply denote the problem by the set of “yes”
instances. For example, abusing notations for linear-access problems from Defini-
tion 2.5, we may consider a problem which consists of the trivial promise Q = F”"
and a set of “yes” instances ¥V C [F”. In this case, instead of denoting the prob-
lem by @ = (Q, W) we will simply denote it by VW, and its query complexity by
LA(W).

Additionally, in all three models we defined the two conditions on probabilistic
algorithms (or protocols) solving the described problems by fixing the required prob-
abilities to be % We also consider the notion of a probabilistic algorithm solving a
problem with (a constant) error n. For example, a linear-access algorithm satisfy-
ing the two conditions mentioned in Definition 2.5 with probability 1 — w (instead
of %) solves the linear-access problem @ with error w. Note that by standard error
reduction, the p-error query complexity of @ (i.e., the minimum query complexity
of all linear-access algorithms solving ® with error w), denoted LA, (P), satisfies
LA, (D) = O(LA(D)).

3 Reductions Between the Computational Models

In this section we set the stage for the rest of the paper by introducing methods
to reduce communication problems to linear-access problems and from them to
property testing problems. We also examine several forms of such possible reduc-
tions. In particular, we highlight error-correcting codes as appealing candidates for
reductions from linear-access algorithms to property testing, and linear functions as
appealing candidates for reductions from communication complexity to linear-access
algorithms.

This section generalizes ideas of [2, 16, 21], who showed a specific reduction
from communication complexity to parity decision trees, and ideas of [2, 6], who
considered two reductions from randomized parity decision trees to properties of
linear functions and of quadratic functions.

3.1 Reducing Linear-Access Problems to Property Testing Problems

Towards the first definition, consider a linear-access algorithm that transforms its
input w into a (possibly longer) input F'(w) for a tester and emulates oracle access to
F(w) for the tester. The linear-access algorithm has no direct access to its input w,
but has the ability to perform linear queries on w (i.e., it can query H (w)). Therefore,
a necessary condition for the algorithm to be able to provide the tester with oracle
access to F'(w) is that for any coordinate i of F'(w), the value F'(w); can be computed
based on a bounded number of linear queries on w. This gives rise to the following
definition.

Definition 3.1 (reductions from linear-access algorithms to property testing). For

n € N and a finite field F, let @, W C F" and ® = (9, W). For [ € N and a finite
set T, letUd,P C Sl and 1 = U, P). Fore > 0andk € Nwecall F : F* > %!
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an (e, k)-reduction of the linear-access problem ® to the property testing problem T1
if the following two conditions hold:

1. (F’s projections are computable with k linear queries): For every i € [l] there
exists a function, ¢; : F¥ — X, and k linear functions, ql(l), vy q,il) " — T,
such that for every w € F" it holds that F(w); = ¢i(q\” (w), ..., ¢\ (w)).

2. (F isane-reduction of @ to T1): If w € QN W, then F(w) € U N P; whereas
if we @\ W, then F(w) € U and F(w) is e-far from P (where distance is
measured as in Definition 2.3).

If the above holds, we say that IT is (e, k)-reducible from ®. A property is
reducible from @ if it is (¢, k)-reducible from it for some € > 0 and k € N.

We now show that if a property is reducible from a linear-access problem &, then
its query complexity is asymptotically lower bounded by the query complexity of ®.
Similar to [3, 10], we show this by proving that, given oracle access to H(w) for
some w € ", a linear-access algorithm M can emulate an execution of a tester for
F(w) by making a constant number of queries to its own (i.e., M's) oracle per each
query of the tester to F'(w).

Theorem 3.2 (property testing lower bounds via reductions from linear-access algo-
rithms). Let n,1, X, F, I1 and ® be as in Definition 3.1. If there exist ¢ > 0 and
k € N such that 1 is (e, k)-reducible from ® then LA(D) < k - PT(e, I1).

Note that a reduction with k = n exists for any non-trivial &, I1, and € > 0 (i.e.,
whenever Q N W # @and Q \ W # (4, and similarly &/ NP # ¢} and there exists
an input in U that is e-far from P). However, such a reduction only yields the trivial
upper-bound LA(P) < n; we will be interested in reductions with much smaller
values of k (e.g., k = O(1)).

Proof of Theorem 3.2 Given an (e, k)-reduction F of ® to IT and an e-tester T for
[T that makes at most PT (e, IT) queries, we show a linear-access algorithm M with
query complexity k - PT(e, IT) that solves ®.

We construct M in the straightforward manner: Given oracle access to H (w),
for w € F", machine M invokes T, feeding T its own (i.e., M’s) randomness,
and emulating oracle access to F(w) for it. Whenever T queries F(w);, for some
i € [l], machine M queries its own oracle for qfl)(w), ...,q,&”(w), computes
i (qfl)(w), oy q,ﬁl)(w)), and answers T accordingly. The output of M is simply the
output that 7' returns. Note that the query complexity of M is k times the query
complexity of T'.

By Condition (1) of Definition 3.1, M can indeed emulate oracle access to F'(w) as
described. By Condition (2) of Definition 3.1 and the hypothesis that T is an e-tester,

. fw e QN W then F(w) € U N P. Hence, PriMI™ 17y = 1] =
priTF®alh =11> 3.
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2. fw € Q\ W then F(w) € U and F(w) is e-far from P. Hence,
PriMHE® ") = 0] = PriTF™ (") = 0] > 3. O

As mentioned in the introduction, in this paper we focus on lower bounds for adap-
tive algorithms and testers. However, note that the proof of Theorem 3.2 would still
hold if we would limit our attention to non-adaptive linear-access algorithms and to
non-adaptive testers (non-adaptive algorithms and testers issue all the queries to their
input in the beginning of their execution and in parallel, before receiving an answer
to any particular query; this is in contrast to adaptive algorithms and testers, which
may decide which queries to issue depending on the answers to previous queries).

We turn to explore classes of properties that are reducible from linear-access prob-
lems, and classes of possible reductions. In particular, we prove that all properties of
low-degree rational functions over finite fields and all subcodes of linear codes with
constant relative distance are reducible from corresponding linear-access problems

Condition (2) of Definition 3.1 implies that error-correcting codes, and especially
linear codes, are appealing candidates for reductions from linear-access algorithms
to property testing. Indeed, most of the reductions from linear-access algorithms to
property testing that we show in this paper are variations on error-correcting codes.
Nevertheless, in Proposition 3.6 we will also demonstrate a useful reduction that is
not of this form; that is, a reduction that does not generate distance between pairs of
mputs.

Proposition 3.3 (subcodes of linear codes). For n,l € N and a finite field F, let
C : " — T be a linear code with constant relative distance € > 0. Then for any
W C F”, the property P = {C(w) eF:we W} is (€, 1)-reducible from V.

Proof We show that F(w) = C(w) is an (e, 1)-reduction of W to P.

1. F’s projections are computable with a single linear query. Let G, be a gen-
erator matrix for C. Since C(w) = Gw, it means that C(w); = (Gw);,

which is computable with a single linear query on w. Following the notations of

Definition 3.1, we define qfi)(w) def (Gw); and ¢; to be the identity function.

2. F is an e-reduction of VW to P. If w € W then by definition F(w) € P. If
w ¢ W, then by the fact that C has relative distance € it holds that F'(w) = C(w)
is e-far from P. O

As a simple corollary, we deduce that all properties of low-degree polynomials are
reducible from corresponding linear-access problems.

Corollary 3.4 (properties of low-degree polynomials). For m,d € N and a
finite field F, let n = (m;;d). Then for any W < F", the property P =
{RMdym(w) e FFI" .y e W} is (8, 1)-reducible from W, where § = 2 ifF =
Fo, and 8§ = 1— & otherwise. (Recall that according to Definition 2.2, RMg , (w) is

[F]
the evaluation of the degree-d m-variate polynomial associated with w, at all points

inlF™.)
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Corollary 3.4 follows directly from Proposition 3.3, since RMy ,, is a linear code
with relative distance §. Note that, since § depends on d, there is a trade-off between
the degree bound of the polynomials in the property and the proximity parameter for
which we can reduce the property from V. In the special case of d = 1, the reduction
is the Hadamard code and the property is one of linear functions.

If we are willing to make slightly stricter requirements with respect to the degree
bound, then we can generalize Corollary 3.4 and reduce all properties of rational
functions over F from linear-access problems. To prove this we use a reduction that
is a variant of the Reed-Muller code, but is not a linear code by itself; therefore, this
time we cannot simply rely on Proposition 3.3.

Proposition 3.5 (properties of low-degree rational functions). For m € N and a
finite field T, let P € (FU {ooD)FI" where 0o is a special symbol indicating division
l}y zero. If any z € P is the evaluations, at all points x € F", 01( a rational function

=, where f and g are polynomials of degree at most d < |4—‘, then P is (€, 2)-

g s
reducible from a corresponding linear-access problem W C F?*, where ¢ = 1 — %
andn = (m;,“d).

Proof The linear-access problem that we reduce to the property P is W =
{wlwz e F¥ : F(wiw») € P}, where F : F2" — (F U {oo}))FI" is defined as fol-
lows: For any wiw; € F2" and x € F™, let F(wiw)o)y def %. ‘We show that
F is an (e, 2)-reduction of W to P: '

1. F’s projections are computable with two linear queries. Given x € F™, for i =
1,2 let ¢ (wiws) = RMy,,(w;). Let ¢y be the division function in F (which
returns oo if the denominator is zero). Then, F(w), = ¢y (q)gl)(w), qﬁz) (w)) =

RMd,m(wl)x
RMd.m(WZ)X :

2. F is an €-reduction of W to P. By definition, if w € W then F(w) € P.
We show that any two distinct rational functions i, f—, : " — TF,, where all

polynomials are of degree at most d, are e-far from each other. From this it
follows that for any w ¢ W it holds that F(w) is e-far from P. To prove the
distance claim, we rely on the Schwartz-Zippel lemma to get

[ _ f'&)
gx) g

2-d
Pryepn [ | both g(x), g'(x) # 0] = Prifng'® = f'(0g)] = —=

IR

whereas on the other hand Prg(x) =0V g'(x) = 0] = Prlg(x)g’(x) =0] <
%. By union-bound, % and % are at least (1 — %)—far from each other. O

Corollary 3.4 and Proposition 3.5 present two “canonical” reductions of properties
of low-degree polynomials or rational functions from corresponding linear-access
problems, using variants of the Reed-Muller code. We finish this section by showing
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that useful reductions (to natural properties) need not be error-correcting codes at all.
Furthermore, they need not even generate distance between all pairs of inputs.

To show this we adapt a reduction from [3, Thm 1.8]; we reduce a linear-access
promise problem in which “yes” instances and “no” instances are guaranteed to be
sufficiently far, to a corresponding property testing problem, by a reduction that does
not generate distance between pairs of inputs. Loosely speaking, the property in this
case consists of all Boolean functions that are computable by decision trees of size
that is not too large.

Proposition 3.6 (reductions that do not generate distance). For a sufficiently large
integer n, let F be the set of functions [ : {0, 1}" — {0, 1} that are computable by
decision trees of size at most % 22" and P C {0, 1}*" be the set of truth tables of

F. Let W C {0, 1}2n_| be the set of vectors with Hamming weight exactly %, and
Q=WU{0* ). Then P is (%, 1)-reducible from ® = (Q, W).

Note that in this case each w € W is %-far from the single (zero) vector in Q \
W. The reduction we will present does not generate additional distance, but merely
preserves the existing absolute distance.

Proof We define a reduction F : {0, 1}2'171 — {0, 1}*" as follows. For
x € {0,1}", let Par(x) = eaf’zlx,-, and we fix some bijection ¢ between
{x € {0, 1} : Par(x) = 0} and the set [2"~']. Then for every w € {0, 1}2'171 and
every x € {0, 1}", we let

1 Par(x) =1
Fw), = { Wex) Par(x) =0
One may think of F as mapping vectors of the form (wy, ..., w,u-1)7 to vectors of
the form (1, ..., 1, wy, ..., Won—1 )T, where the first half of the coordinates in the 2"-bit
long vector correspond to the positions x € {0, 1} with Par(x) = 1. We show that
F reduces @ to P:

1. F’s projections are computable with a single linear query. If Par(x) = 1, then
¢x = 1. Otherwise, ¢ is the identity function, and the single query g7 satisfies
qf(w) = (e(p(x), w) (where ey(y) is the standard unit vector corresponding to
coordinate ¢ (x)).

2. F %-reduces ® toP. If w € W, then F(w) is computable by a decision tree

of size at most % - 2™ a proof of this fact, adapted from [3], appears below. If
w € Q\ W then w is the zero vector; in this case, F'(w) is the parity function,
which is %—far from any function computable by a decision tree of size % 2"

(the proof of the latter fact appears in [3, Lemma 5.3]). O

Lemma If w € W, then F(w), viewed as a function f,, : {0,1}" — {0, 1}, is

computable by a decision tree of size % -2,
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Proof Consider the complete binary decision tree of depth n, in which all nodes
at level i € [n] are labeled with the element i. This tree has 2" leaves, each
corresponding to some x € {0, 1}", and we label each leaf by f,(x).

The key observation is that if x, x” € {0, 1}"* correspond to a pair of sibling leaves
(where x corresponds to the left one), then Par(x) = 0 and Par(x’) = 1, and
in particular f,,(x’) = 1. Therefore every leaf corresponding to some x € {x :
Par(x) = 0} has a sibling x” such that f,,(x") = 1.

Since w € W, there are exactly % leaves corresponding to x € {x : Par(x) =
0} that are labeled with 1; in all these cases we can merge the leaf with its sibling,
reducing the size of the tree by one leaf. The resulting tree computes f,, and is of
size exactly % - 2n, O

Hence, F is a (%, 1)-reduction of & to P.

The query complexity of solving ® with one-sided error (i.e., by a linear-access
algorithm that accepts each “yes” instance with probability 1) is €2(n). The proof,
which we do not present fully here, is a straight forward adaptation of a reduction that
appeared in [3, Thm 1.8]; it consists of reducing ® from the communication problem
of Gap-Equality. It follows that the query complexity of solving P with one-sided
error is also Q(n).

3.2 Reducing Communication Problems to Linear-Access Problems

In this section we show a method to reduce communication complexity problems
to linear-access problems, again in the spirit of [3, 10]. Combined with Section 3.1,
this will allow us to transitively reduce communication problems to property testing
problems, via linear-access problems.

Definition 3.7 (reductions from communication complexity to linear-access algo-
rithms). For m € N, let R,S C {0, 1}2’" and ¥ = (R,S). Forn € N and
a finite field F, let @, W <€ F" and ® = (Q,W). For B € N, we say that
a function G : {0,1}*" — F" is a B-reduction of the communication com-
plexity problem ¥V to the linear-access problem @ if the following two conditions
hold:

1. (linear queries on G are computable using B bits of communication): For any
linear function g : F" — T, the deterministic communication complexity of the
function g o G : {0, 1}*" — T is at most B.

2. (G is a reduction of ¥ to ®): If (x, y) € RN S then G(w) € Q N W, whereas
ifwe R\ S then G(w) € Q\W.

If the above holds, we say that ® is B-reducible from W. A problem & is reducible
from a problem W if it is B-reducible from it for some B € N.

We now show (analogously to Theorem 3.2) that if a linear-access problem
@ is reducible from a communication problem W, then its query complexity is
asymptotically lower bounded by the communication complexity of W.
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Theorem 3.8 (lower bounds on linear-access algorithms via reductions from com-
munication complexity). Let m, n, F, ¥ and ® be as in Definition 3.7. If there exists
B € N such that ® is B-reducible from W, then CC(V) < B - LA(D).

Proof Let M be a linear-access algorithm solving ® with query complexity m. We
construct a two-party protocol IP solving ¥ with communication complexity B - m.

When receiving an input pair (x, y), both parties locally invoke identical copies of
M, feeding it the shared randomness and emulating oracle access to H (G (x, y)) for
it. That is, whenever M makes a linear query ¢ (to G(x, y)), both parties compute the
result by communicating B bits (via the protocol guaranteed for the function g o G)
and then answer the query accordingly. The protocol’s output is simply the output of
M.

For any (x,y) € R it holds that P outputs the correct answer if and only if
M outputs the correct answer; and the communication complexity of P is at most
B -m. O

Just as error-correcting codes are appealing candidates for reductions from the
linear-access model to the property testing model, linear functions are appealing can-
didates for reductions from communication complexity to linear-access algorithms.
Indeed, if each coordinate of G(x, y) is a linear combination of x and of y (viewed
as vectors over IF), then any linear query g : " — F on G(x, y) is computable by
communicating 2 - [log, |F|]| bits.

All the reductions from communication complexity to linear-access algorithms
that we will present in this paper are linear functions. Among them are the addition
function over F”, that is G(x, y) = x + y, and the concatenation function, G (x, y) =
x oy. We mention, however, that our formulation in Definition 3.7 is not restricted to
linear reductions.

3.3 Detour: A Communication Model Limited to Linear Functions

Recall (from the beginning of Section 1.2) that linear-access algorithms over [, are
equivalent, up to a factor of 2 in the number of queries, to communication proto-
cols in which both parties only compute linear functions of their respective inputs.
In this subsection we shortly discuss the latter model, which we call the linear com-
munication model. In particular, we prove the statement that this model is equivalent
to linear-access algorithms up to a factor of 2 in the number of queries, and show a
strong separation of this model from the standard communication model. After con-
cluding this subsection, we will not refer to the linear communication model again in
this paper.

We define the linear communication model as a special case of the standard
communication model (i.e., of Definition 2.6) that considers only communication
protocols that are limited to linear functions: These are communication protocols
in which in every round of communication, the communicating party chooses a lin-
ear function f according to the shared randomness and the communication history,
computes the value of f on its input, and communicates the result to the other party.
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The communication complexity of a problem W in the linear communication model,
denoted CC'i™ (W), is the minimum communication complexity of all probabilistic
communication protocols that are limited to linear functions and solve W. We start by
formally proving the statement about equivalence of this model to the linear-access
model in the case of F5.

Proposition 3.9 (equivalence of linear-access algorithms and the linear communi-
cation model): Forn € N, any sets R, S C {0, 1}?" and a problem ¥ = (R, S), the
communication complexity of V in the linear communication model is identical, up
to a factor of 2, to its query complexity as a linear-access problem. Specifically, it
holds that LA(W) < cctin(W) < 2. LA(W).

Proof Note that a linear-access algorithm M that gets input w = (x, y) € {0, 1}*"
can emulate the execution of a communication protocol that is limited to linear func-
tions on (x, y) using the same number of queries. Specifically, whenever the protocol
requires that one of the parties compute a linear function of its input (i.e., of either
x or y), machine M can compute the same function by making a single query to its
oracle.

On the other hand, a communication protocol that is limited to linear functions
and gets an input pair (x, y) can emulate the execution of any linear-access algorithm
M on w = (x, ), using twice the number of queries that M makes. This is since
for every linear query ¢ = (g1, ..., ¢2n) that M makes, the communication protocol
can compute the value g (x, y) by communicating two bits: The first party computes
@®/_,gix; and communicates the result to the second party, the second party computes
Gal.zin +19:Yi and sends it to the first party, and both parties compute @?ilq,- w; =
q(w). O

We now present a property of the linear communication model that does not hold
in the standard communication model. Recall that in the standard model, the com-
plexity of a problem S {0, 1}*" might be significantly different than the complexity
of the problem of deciding S when the bits of the input are distributed to the two
parties in a non-standard way; that is, when the first party gets some predetermined
subset of n bits of w € {0, 1}*" (rather than the n-bit prefix of w) and the second
party gets the remaining n bits (rather than the n-bit suffix of w). For example, con-
sider the inner-product communication problem; that is, ZP = {(x, y) € {0, 1)
(x,y) = 1}. The communication complexity of ZP is Q(n) (see, e.g., [7]); how-
ever, for n = 2k, if the first party gets x1, y1, ..., Xk, yx and the second party gets
Xk+1, Yk+15 ---» Xn» Yo then the parties can decide whether (x, y) € Z'P by communi-
cating two bits (since each party can compute the parity of x;y;’s that are part of its
input).

In contrast, in the linear communication model it does not matter which of the two
parties gets which bits of the input. Note that partitioning every input w € {0, 1}*"
to two n-bit subsets, using a predetermined partition, and giving the corresponding
bits as inputs to each of the parties, can be achieved by permuting the bits of w,
using a corresponding permutation, and giving the n-bit prefix of the permuted string
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to the first party and the n-bit suffix of the permuted string to the second party. We
prove that this action (i.e., permuting the bits of every input) can only change the
complexity of a given problem in the linear communication model by a constant
factor. Denote the symmetric group over [2n] by S»,, and, for 0 € S, and w =
wiwy...wy, € {0, 1}2", let o0 (W) = W (1) W (2)---Wo (2n)-

Proposition 3.10 (permutations on the input in the linear communication model):
Forn € N, let S C {0, 1}*". Then, up to a constant factor of 2, for every permutation
o € Sy, the communication complexity of S in the linear communication model is
identical to the communication complexity of Sy = {a(x, y) € {0, 1}% : (x,y) € S}
in the linear communication model.

Proof Let ¢ € S,. Note that the query complexity of S and S, as linear-access
problems is identical, because permuting the input bits does not affect the ability
of a linear-access algorithm to perform any linear query on these input bits. Rely-
ing on Proposition 3.9, the communication complexity of S and S, in the linear
communication model can only differ by a constant factor of 2. O

We now prove that there exist communication problems that have O (1) commu-
nication complexity in the standard model, yet €2(n) communication complexity in
the linear communication model.

Proposition 3.11 (separation of the linear communication model from the standard
communication model): For n € N and any communication problem S < {0, 1}*"
with communication complexity CC(S) in the standard model, there exists a corre-
sponding communication problem S’ such that the communication complexity of S’
in the standard communication model is O (1) but the communication complexity of
S’ in the linear communication model is lower bounded by CC(S)/2.

Proof Let 8" = {((x,x"), (y,¥")) € {0, 1}*" : (x, y) € S}. Note that the commu-
nication complexity of S” in the standard model is CC(S), since given inputs
((x, x), (v, y")) € {0, 1}* the two parties can consider the truncated inputs (x, y)
and execute any protocol for solving S; and on the other hand, given inputs (x, y) €
{0, 1}*" the two parties can pad them to ((x, 0), (y, 0")) € {0, 1}*" and execute any
protocol for solving S”. It follows that the complexity of S” in the linear communi-
cation model is lower bounded by CC(S), since communication protocols that only
compute linear functions are a special case of standard communication protocols.
Let &' = {((x,y), (*',y)) € {0, 1}*" : (x, y) € S}. Clearly, the communication
complexity of S in the standard model is O(1), since the first party can compute
the result by itself. However, according to Proposition 3.10, the communication com-
plexity of S’ in the linear communication model is identical to the communication
complexity of S” in the linear communication model, up to a factor of 2, and the
latter is lower bounded by CC(S). O

We finish this section by clarifying the implications of Proposition 3.11 on reduc-
tions from communication complexity to linear-access algorithms. Proposition 3.11
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contrasts the complexity of a set S’ in the standard communication model and the
complexity of the same set S’ in the linear communication model, which according
to Proposition 3.9 is equivalent to the linear-access model over F,. This perspec-
tive implicitly considers a reduction from communication complexity to linear-access
algorithms that is the concatenation function, G(x, y) = x o y. Therefore, from a
perspective of linear-access algorithms, Proposition 3.11 can be phrased as follows:
There exist sets S’ C {0, 1}" x {0, 1}"* that have communication complexity O (1) and
that can be reduced to corresponding linear-access problems with query complexity
Q(n) via concatenation.

We stress, however, that this statement does not rule out the possibility that there
exists another communication problem with higher complexity that can be reduced to
the linear-access problem S’ via a reduction that is not the concatenation reduction.
In particular, in the specific construction presented in the proof of Proposition 3.11,
the communication problem S can be reduced to the linear-access problem S’ (i.e., to
the set S’ when treated as a linear-access problem) via the linear reduction G (x, y) =
(x,y,0",0"). Indeed it is an interesting question whether there exists a set " such
that its query complexity as a linear-access problem is higher than the communication
complexity of any communication problem reducible to it, and we pose it as an open
question in Section 6.

4 Deconstructions of Reductions from Communication Complexity
to Property Testing

In this section we offer a new interpretation for known results, by deconstructing
known reductions from communication complexity to property testing, using linear-
access algorithms as an intermediary model. Bhrushundi, Chakraborty, and Kulkarni
[2] demonstrated one such deconstruction, and we re-examine it (and offer a new
interpretation of it) in Example 4.3.

4.1 The Deconstruction and a Generic Observation

We first note that the reductions underlying Theorems 3.8 and 3.2 can be composed
to yield:

Theorem 4.1 Let WV be a communication problem (as in Definition 2.6) and I1 be a
property (as in Definition 2.4). Suppose that for some B,k € N and € > 0 there exist
two reductions as follows:

1. A function G (as in Theorem 3.8) B-reducing \V to a linear-access problem .
2. A function F (as in Theorem 3.2) (€, k)-reducing ® to II.

Then, the query complexity of e-testing I1 is asymptotically lower bounded by ﬁ
times the communication complexity of V. That is, CC(V) < B -k - PT(e, I1). In this
case we say that F o G is a reduction from communication complexity to property
testing.
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Interestingly, deconstructing some well-known reductions in this manner reveals
G and F that have fundamentally different functionalities.

Observation 4.2 (informal). Some known reductions from communication com-
plexity to property testing can be presented as the composition of two reductions, as
in Theorem 4.1, each having a distinctly characterized functionality:

N ¢ ® F m

1. “Combining step”: The first reduction W N ® combines two inputs (x, y),
given to two parties in the communication setting, into a single input w for
a linear-access algorithm. This combination changes the nature of the compu-
tational problem: While (by definition) problems in two-party communication
complexity have a structure corresponding with two separate parties, linear-
access problems do not have such an apparent structure.

2. “Distance creation step”: The second reduction & L, Mtakes a problem that
consists of “yes” instances and “no” instances, and creates distance between
these instance sets, by mapping them to a (possibly larger) metric space. Follow-
ing this perspective, it is not surprising that many appealing examples of such
reductions involve error-correcting codes.

We do not claim that all reductions from communication complexity to prop-
erty testing may be deconstructed in this manner. Furthermore, even when such a
deconstruction is possible, we do not claim that the two steps can necessarily be char-
acterized as a “combining step” and a “distance creation step” (e.g., Proposition 3.6
demonstrates a useful reduction, adapted from [3], in which the second step does not
generate distance). Yet in several well-known cases such a deconstruction is possible,
and the two steps correspond to Observation 4.2.

4.2 Deconstructions of Known Results

The first example we present considers the property of k-linear functions, which
consists of all n-variate linear Boolean functions over [ that are k-sparse, meaning
that exactly k of their coefficients are non-zero. The first proof for an €2 (k) lower
bound? on the query complexity of this property was provided by Blais, Brody, and
Matulef [3], who proved it using a reduction from the communication complexity
of unique-%-set-disjointness. Later on, Blais and Kane [4] proved the lower bound
by analyzing the problem directly in property testing. In Section 5.4 we present an
alternative proof for this lower bound, relying on techniques presented in Section 5
(Proposition 5.1 and Technique 5.3). We now deconstruct the first proof (i.e., the
reduction from communication complexity).

2 The exact complexity of the problem is Q (min{k, n — k}); see Section 5.4 for further details
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Example 4.3 (k-linearity). Reducing the problem of testing k-sparse linear functions
from the communication problem of unique-%—set-disjointness, via the linear-access
problem of identifying vectors with Hamming weight k.

The communication problem called unique-%-set—disjoinmess is defined on
{0, 1}?" by setting the set of “yes” instances to be

k
S= {(x,y) € {0, 1"« llxlly = lIyll, = 5 and Vié€n]xiAyi =0}

That s, S consists of pairs that when treated as indicator strings represent disjoint sets
of cardinality % The promise R consists of all pairs of strings (x, y) € {0, 1}** such
that || x||; = Iyl = % having at most one coordinate i € [n] such that x; A y; = 1.
We denote this well-known promise problem by %—Z/{DIS J = (R, S), and note that
its communication complexity is €2 (k) (see, e.g., [3, 12, 17]).

1. “Combining step”: We reduce ’%-Z/l DISJ to a natural linear-access prob-
lem that requires identifying strings with Hamming weight exactly k; that is,
k-WT = {w € {0, 1}" : ||w||; = k} (with the trivial promise {0, 1}"*). The reduc-
tion is simply G(x, y) = x @ y. Indeed, if (x, y) represent disjoint %—sets then
lx @ yll; = k, and if they represent %-sets that intersect on a single coordinate
then ||x @ y||; = k — 2. Furthermore, any linear query on G (x, y) is computable
by 2 communication bits (since G is linear over {0, 1}).

2. “Distance creation step”: We reduce the problem of k-WWT to the property of
k-linear functions simply by using the Hadamard code. Indeed, treating vectors
as coefficients of linear functions, if the vector has Hamming weight k then the
function is k-linear, and otherwise it is a (k — 2)-linear function, which is %-far
from being k-linear.

Hence, in this case we have —

Dy H(w)
(x,y) ——=—— |wl; € {k, k=2 “

H (w) is k-linear or (k — 2)-linear

In this example, the first reduction takes a problem with a clear two-party struc-
ture — deciding whether sets held by two parties are disjoint — and reduces it to a
problem that has no such apparent structure: Deciding by linear queries if the Ham-
ming weight of a vector is k. The second reduction, on the other hand, is merely an
error-correcting code creating distance between “yes” instances (vectors of weight k)
and “no” instances (vectors of weight k — 2). These two functionalities reflect two
separate functional components that exist in the “composed” reduction F o G.

Interestingly, both “direct” proofs of a lower bound on testing k-sparse linear func-
tions, which do not involve a reduction from communication complexity (the one
provided by [4] and the one that appears in Section 5.4), can easily be adapted to
serve as a direct proof for a lower bound on the linear-access problem k-JV7 . A more
general explanation for this phenomena is provided after Proposition 5.1.

The next example is a deconstruction of a family of reductions that is similar
to two families of reductions presented in [10, Thms 4.1 and 4.2]. Loosely speak-
ing, for a linear error-correcting code C with constant relative distance € > 0 and
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a “hard” communication problem W = (R, §), we prove that e-testing the property
{C(xoy):(x,y) € RNS}is also “hard”. Since error-correcting codes are appeal-
ing candidates for reductions for the “distance creation step”, this property is an
appealing one to think of in the current context.

Example 4.4 For n € N, let ¥ = (R,S) be a communication problem over
{0, 1}*" with linear communication complexity; that is, CC(¥) = Q(n). For
I € N,let C : {0,1}* — {0,1}} be a linear code with constant relative
distance € > 0. Then the query complexity of e-testing the property P =
{Cxoy)€{0. 1} : (x,y) € SNR} is linear, that is PT(e, P) = Q(n).

1. “Combining step”: We reduce W to a corresponding linear-access problem W,
defined by W = {w =xoye{0,1}?: (x, y)esSn R}. The reduction G is
the concatenation function G (x, y) = x o y, and since it is linear in x and y, any
linear query on G(x, y) (over IF») is computable by communicating 2 bits.

2. “Distance creation step”: We reduce W to P with the code C. According to
Proposition 3.3 this is an (e, 1)-reduction.

This deconstruction demonstrates that the “combining step” does not have to
explicitly add x and y as vectors over some field in order to eliminate the origi-
nal two-party structure of the problem. Indeed, the problem of deciding W using
arbitrary linear queries does not have an apparent structure corresponding with two
separate parties. We will consider Example 4.4 again in Section 5.3, where we prove a
lower bound on a subfamily of properties from this family by reducing them directly
from the intermediary linear-access model.

The last example we present relies on the fact that we allowed linear-access algo-
rithms to operate over an arbitrary finite field IF (rather than only over IF», as in the
case of randomized parity decision trees). Specifically, we show a reduction from a
communication problem in {0, 1}" to a linear-access problem in %, and then to a
property of functions from % to 3.

We define the property of linear functions with {0, 1}-coefficients over 3 as the
set of functions from ]Fg to [F3 that are linear and whose coefficients are either
0 or 1. Goldreich proved [9] a lower bound of Q2(4/n) on testing this property
working directly in the property testing model, and Brais, Brody, and Matulef [3]
proved an Q(n) lower bound by a reduction from the communication problem of
set-disjointness. We now deconstruct the latter reduction.

Example 4.5 (linear functions over 3 with coefficients in {0, 1}). Reducing the
testing problem of linear functions over F3 with coefficients in {0, 1} from the com-
munication problem of set-disjointness, via the linear-access problem of identifying
vectors in I3 with coordinates in {0, 1}.

The communication problem of set-disjointness (a general version of unique-
g—set—disjointness, presented earlier) is defined on {0, 1}** by considering the
trivial promise and setting the set of “yes” instances to be DISJ =
{(x,y):Vi € [n], xi A y; = 0}. That is, DZS J consists of pairs of n-bit strings that
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when treated as indicators of subsets of [n] represent disjoint sets. The communica-
tion complexity of this well-known problem is Q2 (n) (see, e.g., [17]).

1. “Combining step”: We reduce DZSJ to a linear-access problem that requires
identifying vectors in 3 whose coefficients are 0 or 1. That is, {0, 1}-W =
{w e F} : Vi € [n], w; € {0, 1}} and the promise is the trivial one. The reduc-
tion G : {0, 1}2” — IF’3Z is G(x,y) = x + y over F3; that is, x and y are treated
as vectors in IF‘g’ and G is the component-wise addition of these vectors. Indeed,
any linear query on G(x, y) over F3 can be computed by communicating four
(.e.,2- |_10g2(3)-|) bits, and it is easy to see that G reduces DZSJ to {0, 1}-W.

2. “Distance creation step”: We reduce the problem of {0, 1}-WV to the property of
linear functions with coefficients in {0, 1} simply by using the Hadamard code
(over IF3).

In this example too, the first reduction takes a problem with a clear two-party
structure (the set-disjointness communication problem) and reduces it to a problem
that has no such apparent structure (the {0, 1}-)V linear-access problem). The second
reduction is a linear error-correcting code.

5 Proving Lower Bounds in Property Testing by Reductions
from Linear-access Algorithms

In this section we study the potential of proving lower bounds on property testing
problems by reducing them directly from linear-access problems. We start by show-
ing a limitation of this approach: Specifically, in Section 5.1, we show that reductions
that correspond to the Hadamard code are unlikely to be helpful in proving lower
bounds in property testing, since in this case any linear-access algorithm is essentially
a tester for the target property testing problem (see Proposition 5.1).

In contrast, we show that in other cases reducing property testing problems from
linear-access algorithms is beneficial. In Section 5.2 we show a simple technique
for proving lower bounds on linear-access algorithms, relying on the analysis of
affine subspaces in " (see Proposition 5.2 and Technique 5.3). We demonstrate
this technique in the following two subsections by proving lower bounds on natural
linear-access problems, and deriving corresponding lower bounds in property testing.

In particular, in Section 5.3 we show a lower bound of €2 (n) queries for testing the
property {C(xoy) : x,y € {0, 1} A (x, y) = 1}, where C is an arbitrary linear code
with constant relative distance. Furthermore, in Section 5.4 we provide an alternative
proof for the known lower bound of Q2 (min{k, n — k}) queries for testing k-sparse
linear Boolean functions over {0, 1}"*, which was presented in Example 4.3. We then
extend this result to a lower bound of 2 (min{s, (Z) — s}) queries for testing s-sparse
polynomials of degree d over {0, 1}", for any d € N.

5.1 Reductions of the form of the Hadamard Code

Bhrushundi, Chakraborty, and Kulkarni noted [2] that a randomized parity decision tree
of size m solving W C {0, 1}" exists if and only if a %-tester with query complexity
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m exists for the property P = {H(w) : w € W}, under the promise that the input
for the tester is the evaluation of a linear function. Buhrman et al. [6] also pointed
out this phenomena for the specific property of k-sparse linear functions. We present
a proof of the analogous result in the general setting of linear-access algorithms and
comment on its implications towards proving lower bounds for property testing.

Intuitively, this phenomena happens since performing a linear query on the coeffi-
cients of a linear function (which is what a linear-access algorithm does) is equivalent
to querying the linear function at a corresponding point (which is what a tester does).
In both cases the answers to these queries are encoded in the Hadamard code of the
coefficients of the linear function.

Proposition 5.1 For n € N and a finite field F, let W C F". Then there exists a
linear-access algorithm M that solves W if and only if there exists an e-tester T
with the same query complexity for the promise problem I1 = (U, P), where U =
(Hw) e FF" - w e F"} and P = {H(w) € FF" : w e W}and e < %.

Proof Note that an e-tester for IT and a linear-access algorithm for V are both oracle
machines that get access to an oracle of the form H (w), for some w € F”, and need
to decide with probability at least % whether w € W or w ¢ W. For a linear-access
algorithm this is true by definition, whereas for an e-tester this is true since any z € U
is of the form z = H(w), for some w € F"*, whereas H(w) € P if and only if
w € W, and the Hadamard code guarantees that any two codewords are e-far from
each other.

The only difference between an e-tester for IT and a linear-access algorithm for W
is that for w € F", the e-tester gets 1/FI" as input whereas the linear-access algorithm
gets 1" as input. It follows that any oracle machine that solves one problem can
be modified to an oracle machine that solves the other problem, by changing its
dependence on its explicit input (17 or 11F1"). O

Proposition 5.1 suggests that reductions of the form of the Hadamard code are
unlikely to be helpful in proving lower bounds on the query complexity of the target
property I1: Any analysis of linear-access algorithms solving WV can serve as an
analysis for e-testers solving I1, and vice versa. Furthermore, since hardness of the
promise problem IT implies hardness of the property P (without the promise), the
reduction from linear-access algorithms seems redundant also towards proving lower
bounds on the query complexity of e-testing P.3

A good demonstration of this phenomena is provided by two existing proofs for a
lower bound on testing k-sparse linear functions, which analyze the problem without
reducing it from a communication problem. Both the existing proof by Blais and
Kane [4] and the proof we provide in this paper (Theorems 5.6 and 5.8) can be easily
adapted to serve as lower bounds both for testers for k-sparse linear functions and

3Regarding upper bounds for P, to obtain a tester for P from an existing tester for IT one can add a
linearity test [5] and use self-correction (see, e.g., [2, Appendix A] for details). However, self-correction
may increase the tester’s query complexity by a logarithmic multiplicative factor.
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for linear-access algorithms solving the corresponding linear-access problem k-WT,
which can be reduced to the property via the Hadamard code (see Example 4.3 for
definitions of these problems).

As a last comment on this subject, we note that Proposition 5.1 can be slightly
generalized to account for artificial reductions that are similar to the Hadamard code.
For example, a similar proposition is true for reductions in which redundant informa-
tion is added to the code (e.g., F(w) = H(w) o H(w)) or in which a permutation on
F is applied coordinate-wise (e.g., F'(w), = H(w), + 1): In these cases an e-tester
for the property {F(w) : w € W} exists if and only if a linear-access algorithm for
W with the same query complexity exists (the two machines, however, do not issue
the exact same queries to their respective oracles). Since these are rather artificial
reductions, we chose not to highlight them in the proposition itself.

5.2 A Technique for Proving Lower Bounds on Linear-Access Algorithms

We now present a technique for proving lower bounds for linear-access problems.
We start by showing that the problem of proving lower bounds in the linear-access
model can be reduced to the analysis of affine subspaces of F".

Proposition 5.2 (deterministic linear-access algorithms partition F" to affine sub-
spaces). For n € N and a finite field F, let M be a deterministic oracle machine that,
when given input 1" and oracle access to an oracle of the form H(w) for w € F",
makes m queries and outputs either 0 or 1. Then M induces a partition of F" to
t < |F|™ affine subspaces (Vy, ..., V;) such that for any i € [t] and w, w' € V; it
holds thar MA@ (1") = MH(“’/)(I”) and during both executions the same queries
were issued and the same responses were given.

Note that in the case of F = [, a deterministic linear-access algorithm is a parity
decision tree, and the affine subspaces in the partition correspond to the leaves of the
tree.

Proof For w € ", denote the m queries issued by M) (1") during its execution
by Omxn (i.e., the queries are depicted in Rows(Q)) and the responses received by
r e . Let

Vor=1{w eF": Qu' =r}
be an affine subspace.

Clearly w € Vg . Let w’ € Vg . Since M is deterministic, the first query issued
by MHE@) (1) s identical to the first query issued by M) (17), and since w’ €
Vo.r, the first response is also identical in both cases. By induction, all m queries and
responses will be identical in both cases, and in particular the final output will also
be identical. We stress that this is true for both adaptive and non-adaptive machines.

To see that these subspaces are a partition of ”*, consider two subspaces V(Ql<)1)’r<1>

and V(QZ()z) L such that for i = 1,2, for every input w € ng,.) . it holds that
ME@ (1) executes queries Q(i) and receives responses @ If there exists w €

V(Ql(),)’r(l) N V(Q2<)2)’r(2> then it follows that Q) = 0@ and r(V' = r@, which implies
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that V8<)1>,,(1) = V(Qz()z)’r@). Also, any w € F” belongs to some affine subspace of this

form (induced by the queries and responses during the execution of MH®) (1)),
Further note that there are at most |IF|"”* subspaces in the partition. If we assume
that all queries made by M are linearly independent, then the response to M’s first
query induces a partition of " to || distinct subspaces; and on each of these sub-
spaces, the response to M’s second query will induce a partition of the subspace to
|F| smaller subspaces. By induction, the response to the m'”" query induces a parti-
tion of F” to |F|™ subspaces. In the general case, if some queries are dependent on
previous ones, then the number of subspaces in the partition can only be smaller. [

Using Proposition 5.2, we suggest a simple technique for proving lower bounds in
the linear-access model.

Technique 5.3 (a technique for showing lower bounds on linear-access algorithms).
For @, W C F" and ® = (Q, W), we show a lower bound of LA(®) = Q(m) as
follows:

1. (Standard reduction to deterministic algorithms): In order to lower bound the
error probability of any linear-access algorithm with query complexity m, it suf-
fices to lower bound the error probability of all deterministic oracle machines
of query complexity m over some (arbitrary) distribution on the inputs. We
therefore focus on lower bounding the latter.

2. (Partition to affine subspaces): Without loss of generality we assume that each
deterministic oracle machine we examine makes exactly m linearly independent
queries when given input 1” and oracle access to H (w), for any w € F"*. Accord-
ing to Proposition 5.2, any such machine induces a partition of " to |F|™ affine
subspaces of dimension n — m such that its output is fixed on each of them.

3. (Key step): Show a distribution over the inputs that assigns an €2 (1) probabilistic
mass to @ N W, and an 2 (1)-fraction of the probabilistic mass of every affine
subspace of dimension n — m to Q \ W (alternatively, the roles of @ N W and
O\ W in this requirement can be switched).

These steps yield a lower bound of m queries on linear-access algorithms solving
® with some constant error u, thatis LA, (®) > m. Using standard error-reduction,
it follows that LA(®) = @, (m).

To see that indeed these steps yield an Q2 (m) lower bound, assume that we
prove Step (3) by presenting a distribution D that satisfies both requirements (of the
first alternative). Consider an arbitrary deterministic linear-access algorithm M with
query complexity m. Since the probabilistic mass of “yes” instances is lower bounded
by some p € (0, 1), if M accepts subspaces of probabilistic mass at most %, then
it incorrectly rejects a probabilistic mass of % “yes” instances. On the other hand,
whenever M accepts a subspace V in its partition of ", it suffers an error of mag-
nitude u’ - D(V), for a fixed constant " > 0. Therefore, if M accepts subspaces of
probabilistic mass larger than L it suffers an error of at least p’ - %, due to incor-
rectly accepted “no” instances. Either way, the algorithm M suffers a constant error.
Proving Step (3) with the alternative formulation yields a symmetric argument.
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The key step in the technique is Step (3) — analyzing the intersection of large
affine subspaces in F”* with QNW or with Q\W. While analyzing affine subspaces is
a straight forward approach when trying to prove lower bounds for properties of lin-
ear functions (see, e.g., [4]), it follows from our results that lower bounds on broader
classes of properties (e.g., all properties of low-degree polynomials) can also be prov-
able with this technique. Indeed, we use Technique 5.3 in Section 5.3 to prove a lower
bound on testing subcodes of linear codes, and in Section 5.4 to prove lower bounds
on a property of polynomials over IF».

Technique 5.3 is reminiscent of a known lower bound technique in communication
complexity (see, e.g., [13, Method 1]). We stress, however, that in communication
complexity one needs to analyze products of arbitrary sets (of size that is not too
small), whereas here we just need to analyze affine subspaces of a fixed large size,
which is a potentially simpler challenge.

5.3 ALower Bound on Testing a Family of Linear Subcodes

In this section we apply Technique 5.3 to prove a lower bound on the inner-product
linear-access problem; that is, the problem of recognizing strings of the form x o y
such that (x, y) = 1. The proof is relatively easy, using only Technique 5.3 and
elementary linear algebra. Following this proof, for any linear code C with constant
relative distance, we show how to reduce the inner-product linear-access problem to
the property consisting of codewords of the form C(x o y), where (x, y) = 1. Thus,
we derive a lower bound on testing this family of properties, which is a family of
subcodes of linear codes.

A lower bound on similar families of properties was originally proved by Gol-
dreich [10, Thms 4.1 and 4.2] by reducing the properties from the inner-product
communication complexity problem, that requires identifying input pairs (x, y) such
that (x, y) = 1. The original proof for an €2(n) lower bound on the communica-
tion complexity of the inner-product problem was provided by Chor and Goldreich
[7] and relied on Lindsey’s lemma. In Example 4.4 we presented a deconstruction of
reductions from communication complexity to property testing of a corresponding
form. Here, we reduce the property directly from the intermediary model.

Proposition 5.4 (inner-product linear-access problem). For an even integer n € N
let W ={w = (x,y) € {0, 1}" : (x, y) = 1}. Then the query complexity of W as a
linear-access problem is Q (n).

Proof We prove that every affine subspace of dimension %‘ - n contains a balanced

proportion of vectors from ¥V and from {0, 1}"* \ W. This is a well-known result in
the area of randomness extraction, which follows from the fact that the inner-product
function (sometimes referred to as the Hadamard function) is an affine extractor. Two
proofs for this general fact were recently presented in writing by Cohen and Shinkar
[8], and we provide a third proof (with weaker parameters) using elementary linear
algebra. To finish the proof we consider the uniform distribution over {0, 1}"*, and
note that it translates the balanced proportions of “yes” instances and “no” instances
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inside every affine subspace of dimension ‘5‘ -n to an identically balanced probabilistic
mass assigned to both sets.

We therefore focus on showing that every affine subspace of dimension ‘5—1 - n con-
tains a balanced proportion of vectors from W and from {0, 1}*\WW. For a sufficiently
large even integer n = 2k and m = L%J, let V be an arbitrary affine subspace of
dimension n — m. We partition ) into 2" product subspaces and prove the claim for
each of these subspaces. The intuitive reason for this partition is that WV has a struc-
ture corresponding to two separate parts (x and y for input (x, y)), and hence it will
be easier to analyze its intersection with product subspaces.

To define these product subspaces, we present the affine subspace as V = {w €

{0, 1}* : Qw = r}, where Q is an m x n matrix and r € {0, 1}". We also denote

0 def (Q'1Q"), where Q' and Q" are of dimensions m x k. Now, for every s €

{0, 1}, let

. Q//y =r @ s
Note that w € V if and only if w € V® for some s € {0, 1}, and that for s # s’ it
holds that V® N V) = ¢, hence this is indeed a partition of V. Furthermore, note

that for any s € {0, 1} it holds that V) is the Cartesian product (i.e., external sum)
of the following two subspaces:

X9 ={xe{0,1}*: 0'x =5}

YW ={yelo, ) :Q"y=r@s)
That is, V&) = X x p&),

P def {u) = (x,y) € {0, 1}%*: Q'x =s }

Lemma For every s € {0, 1} it holds that |V N W| < % SV,

Proof 1£ V© = @ then the claim clearly holds. Otherwise, let m’ <= Rank(Q’) and

n def

m” == Rank(Q"), where both m’ and m” are upper bounded by m. Then |X©®)| =

2k=m" and |Y©)| = 2k=m" and |V | = 22k=m'=m" We upper bound [V N W] in

this case by upper bounding the size of the following two sets:

1. Dep = {(x,y) € V¥ : y € Span(Rows(Q'))}. Since |Span(Rows(Q"))| =
2" it holds that |Dep| < |X®)| . 27" = 2k,

2. Ind={(x,y) eV :y¢Span(Rows(Q") A (x,y) = 1}. Note that for any
fixed y € Y\ Span(Rows(Q")) there are exactly % - 12| vectors x such that
(x,y) € Ind. This is the case since for such y we can add the independent row

y to Q" and the coordinate 1 to s, enforcing the additional constraint (y, x) = 1
on X®). Therefore [Ind| < § - [X®]- [V = 1. [V,

Since V®) N W C Dep U Ind, it follows that
1 o !/ " 1 o 3 o
VAW =284 o PO = @ 4 ) < 2l
where the last inequality is since for n > 12 it holds that m < ’% — 1, implying that

m +m"’ <2m <k —-2. O
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Using a nearly identical argument we can deduce that [V \ W| < % V)|, Since
this is true for all V) in the partition of V, it is also true for V itself, and therefore

1 vnw| 3

L < =

4~ VI T 4
To finish the proof, let D be the uniform distribution over {0, 1}"*. Then it holds
that Alf < D%J @;V) < %, and hence also overall % <DW) < %. Therefore D satisfies
both requirements in Step (3) of Technique 5.3, and the proposition follows. [

Digest The lower bound on the linear-access inner-product problem follows from the
fact that the inner-product function I P(x, y) = (x, y) is an affine extractor (i.e., is
balanced on affine subspaces of sufficient dimension). This is analogous to a result by
Chor and Goldreich [7], who proved a lower bound on the communication complex-
ity of the inner-product function by showing that it is a two-source extractor (for a
definition and further details see, e.g., [7, 18]). Continuing the analogy, since commu-
nication complexity is a stronger computational model than linear-access algorithms,
the result used to prove a lower bound in communication complexity (i.e., that I P
is a two-source extractor) is stronger than the result used to prove a lower bound on
linear-access algorithms (i.e., that / P is an affine extractor).
Combining Proposition 5.4, Proposition 3.3, and Theorem 3.2 we get

Corollary 5.5 For an even integer n and | € N, let C : {0,1}" — {0, 1} be a
linear code of constant relative distance € > 0. Let P = {C(x o y) : (x, y) € {0, 1}*
A{x,y) = 1}. Then PT (e, P) = Q(n).

5.4 ALower Bound on Testing Sparse Linear Functions and Polynomials

We start this section by applying Technique 5.3 to lower bound the query complexity
of the linear-access problem k-WT, presented in Example 4.3 (recall that for k € [n]
we define k-WT = {w € {0, 1}" : ||w||; = k}). Specifically, we show that the query
complexity of k-WT is Q (min{k, n — k}). We then rely on Proposition 5.1 to show
that this lower bound is essentially equivalent to a property testing lower bound of
Q (min{k, n — k}) queries for testing “k-linearity”; that is, for testing the property of
k-sparse linear Boolean functions over {0, 1}"*. We thus provide an alternative proof
for this known result.

We finish the section by proving a new lower bound on a property that is a gen-
eralization of “k-linearity”; specifically, we show that 2 (min{s, (2) — s}) queries
are needed to test the property of s-sparse polynomials of degree d over {0, 1}", for
any d € N. This result too is proved via a reduction from the k-WWT linear-access
problem, with k = s.

Theorem 5.6 (the k-WT linear-access problem): For n,k € N, let k-WT be
the linear-access problem defined by the set of “yes” instances Wy = {w €
{0, 1}" : lwll; = k} and the trivial promise. Then the query complexity of k-WT is
Q (min{k, n — k}).
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We start by proving the result with parameter k = 7; that is, for 5-WT. Then,
we extend this to all values of k& € [0, 5] by reducing to the k = 7 case. For any
k € [n], the problems of k-WT and of (n — k)-WT are computationally equivalent,
and therefore it suffices to focus on k € [0, %]: The equivalence follows since w €
k-WT if and only if w @ 1" € (n — k)-WWT, and computing a linear query on either
of the vectors, w or w @ 17, is possible by performing only a single linear query on
the other vector (see [4, Apdx. B] for a full proof of a similar fact).

Recall that in the proof of Proposition 5.4 we considered the uniform distribution
and proved that every large affine subspace contains a balanced proportion of “yes”
entries and of “no” entries. In the case of 5-WVT this approach will not work, since
the overall fraction of “yes” instances (i.e., of vectors with Hamming weight 7) in
{0, 1}*is 0(\%). We therefore rely on a general result by Linial and Samorodnitsky
that states:

Linial and Samorodnitsky [15, Thm 4.4]: The fraction of vectors with the
same Hamming weight in every affine subspace of dimension A - n (for A > %)

is upper-bounded by O;, (\/iﬁ).

Proposition 5.7 (the 5-WT linear-access problem): For n € N, the query com-
plexity of the linear-access problem 5-WT, that is the problem defined by the set of
“yes” instances Wy = {w € {0, 1}"" : Jlw|; = %} and the trivial promise, is 2 (n).

Proof Let V be an arbitrary affine subspace of {0, 1}"" of dimension at least % -n. For
p € (0, 1), let D, be a distribution that with probability p is uniform over W2 and
is otherwise uniform over {0, 1}" \ W, 2. Note that for an arbitrary u € W2 and

v € {0, 1} \ W2 itholds that D, (1) = ‘W andD (V) = 1;";\,7”’»1/2\ Therefore
D 0,1} \ W,
p () _ p I{ A n/2| _ p O(ﬁ)
Dy(v) 1-p (W2l I—p
From this it follows that
Dp(V N Wn/2) _ Dp(u) 2Za Wn/2|
D,(V) Dp() - [V\ Wapal + Dpu) - [V N Wy 2|
- Dpu) VN Wapl
- D (v) V]
[V N Wyl
= .0 - = 1
1_ W s )

According to Linial and Samorodnitsky’s result it holds that (1) is upper bounded
1+2C € (0, 1) we get that W < %

The proposition follows. O

by % -c for some ¢ > 0. By setting p =

Recall that to complete the proof of Theorem 5.6 (i.e., extend the lower bound for
every k € [n]) it suffices to show a lower bound of Q2 (k) for any k € [0, %). We
prove this lower bound by a simple black-box reduction to the case of Proposition
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5.7. This black-box reduction is implicit in a padding argument presented in [4] for
similar purposes.

Proof of Theorem 5.6 For k € [0, %), let m = 2 -k < n. Assuming that there exists
a linear-access algorithm M’ for k-WT over {0, 1}, we construct a corresponding
algorithm for 7-WT over {0, 1}* with the same error probability and query com-
plexity. Since the query complexity of 5-WT is Q(m), it follows that the query
complexity of k-WT over {0, 1}" is Q (m) = (k). The construction itself is straight
forward: The algorithm M is given access to H (w), for some w € {0, 1}"*, and sim-
ulates the execution of M’ when M’ is given access to H (w’), where w’ = w o 0" ™™,
Note that M can answer any oracle query that M’ makes by making a single query to
its own oracle, and also that ||w||; = ||w’||; and therefore ||w||1 = % if and only if
lw'lli =% =k 0

Recall that according to Proposition 5.1, if a property IT is reducible from a
linear-access problem & via the Hadamard code, then both problems are essentially
equivalent. In Example 4.3 we showed that the Hadamard code reduces k-WT to the
property of k-sparse linear Boolean functions. Therefore, Theorem 5.6 is essentially
equivalent to the following proposition:

Theorem 5.8 (k-linearity, alternative formulation of Theorem 5.6): Forn,k € N,
the query complexity of testing the property of k-sparse linear Boolean functions over
{0, 1}" is Q (min{k, n — k}).

A self-contained proof of Theorem 5.8, using the argument presented in the proof
of Theorem 5.6 instead of relying on Proposition 5.1, appears in our technical report
[20].

Testing Sparse Polynomials We now extend Theorem 5.8 to a lower bound on a
broader family of properties. For integers n, s, and d, we define the property of s-
sparse degree-d polynomials as all n-variate polynomials over F; that are of total
degree d such that exactly s of their coefficients are non-zero. This problem is a
straightforward generalization of the problem of testing k-sparse linear functions
(i.e., of Theorem 5.8), which is the special case of d = 1.

A lower bound on a related property was proved by Blais, Brody, and Matulef [3]:
They considered the property that consists of all n-variate s-sparse polynomials, of
any degree, and showed that its query complexity is €2 (min{s, n — s}). Our formu-
lation is a parametrization of their problem, since we consider a property that only
consists of polynomials of a predetermined degree d € N. Furthermore, we show a
lower bound of £ (min({s, (}) — s}), which is stronger when s = w(n).*

4Note that one might expect a lower bound of € (min{s, ('Hd'd) — s}) for this property, since n-variate

degree-d polynomials have ("j;d) coefficients. However, since for a fixed d € N it holds that both (";d)

and (;) are ©(n4), the difference between such a lower bound and the one presented in Theorem 5.9 is
not significant.
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Theorem 5.9 Letn,s,d € Nwheren > d, and let s SP C {0, 1}2" be the property
of s-sparse degree-d polynomials. Then, the query complexity of (2~%)-testing the
property is Q(min(s, (') — s}).

We prove Theorem 5.9 by reducing from the linear-access problem of s-WT.
While the proof of Theorem 5.8 uses the Hadamard code as a reduction, in the
following proof we use a variant of the Reed-Muller code.

Proof of Theorem 5.9 Let m = (Z), and s-WT = {w € {0, 1} : ||lw||; = s}. By
Theorem 5.6, the query complexity of s-WT is 2 (min{s, m —s}). Let F : {0, 1} —
{0, 1}*" be defined as follows: Every w € {0, 1}’ represents the coefficients of a
polynomial that has total degree d and whose coefficients of all monomials of total
degree less than d are zero. Correspondingly, F(w) is the evaluations of this poly-
nomial on all points in F7. Note that for every w € s-WWT it holds that F(w) it
an s-sparse polynomial of total degree d, since it has exactly s non-zero coeffi-
cients and all of them correspond to monomials with d variables. By the properties
of the Reed-Muller code, for every w ¢ s-WT it holds that F(w) is (Z_d)-far
from being s-sparse, and in particular is (2~¢)-far from being an s-sparse degree-d
polynomial. Furthermore, the projections of F are computable with a single linear
query. Hence F is a (27¢, 1)-reduction of s-WT to the property of s-sparse degree-d
polynomials. O

6 Digest and Open Questions
6.1 Proving Lower Bounds in Property Testing via Linear-Access Algorithms

In this work we discussed two classes of properties that can be reduced from linear-
access algorithms: Properties of low-degree rational functions over finite fields (and
in particular, properties of low-degree polynomials), and subcodes of linear codes
with constant relative distance. Correspondingly, we proved lower bounds on testing
the sparsity of polynomials over 5 (Theorem 5.9) and on testing certain families of
linear subcodes (Corollary 5.5). These results lead to the following questions:

Open question 1: Can additional classes of natural properties be reduced from
linear-access algorithms?

Open question 2: Can additional new (or tighter) lower bounds on natural
properties be proved via reductions from linear-access algorithms?

We mention, however, that many natural properties of low-degree polynomials are
known to be testable in O (1) (and even testable with Proximity-Oblivious testers, see
[1]). Yet, as demonstrated by the lower bound on testing the sparsity of polynomials
over [, other properties of low-degree polynomials may admit significant lower
bounds.

Interestingly, all property testing lower bounds we showed in this work by
reductions from linear-access algorithms can also be proved by reductions from
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communication complexity: Theorem 5.8 was indeed proved in [3, Thm 1.1] using
a reduction from the set-disjointness communication problem (see Example 4.3);
Theorem 5.9 can be proved via a similar reduction from the set-disjointness commu-
nication problem (substituting the Hadamard code for the Reed-Muller code); and
Corollary 5.5 can be proved similar to [10, Thm 4.2], using a reduction from the
inner-product communication problem. A natural question is therefore whether this
represents a more general phenomena.

Open question 3: Is there a linear-access problem with higher query complex-
ity than the communication complexity of every communication problem that
is reducible to it?

In this work we were able to show (Proposition 3.11) that there exist sets
S’ € {0,1}" x {0, 1}"* that have communication complexity O (1) and that can be
reduced to corresponding linear-access problems with query complexity 2 (n) via
concatenation.

6.2 Linear-Access Algorithms and Parity Decision Trees

Lower bounds on deterministic parity decision trees follow from the fact that some
functions are affine dispersers, that is, are not constant on affine subspaces of suffi-
ciently large dimension. This is since a parity decision tree needs to partition the input
space into affine subspaces of sufficiently small dimension such that the function to
be computed is constant on every subspace in the partition.

However, when considering linear-access algorithms, which are a generalization
of randomized parity decision trees, affine dispersers do not yield lower bounds in
the same way. Technique 5.3 and Proposition 5.4 demonstrate that lower bounds on
linear-access algorithms follow from the fact that some functions are affine extrac-
tors, that is, are far from being constant on affine subspaces of sufficiently large
dimension. As Proposition 5.4 demonstrates, in this case we can reduce the prob-
lem to an analysis of deterministic testers and consider a uniform distribution on
the inputs. To prove a lower bound in this manner it suffices that the corresponding
function be a weak affine extractor: In particular, any fixed distance from being con-
stant on affine subspaces of any linear co-dimension (A - n for any constant A > 0)
suffices.

We stress that there are also other ways to show lower bounds on linear-access
algorithms (i.e., besides considering affine extractors and the uniform distribution).
For example, the proof of Theorem 5.6 relies on Technique 5.3 but considers a
distribution that is very different from the uniform distribution.

6.3 Investigating the Connection Between Communication Complexity
and Property Testing

In addition to proving lower bounds, the current work further investigates the con-
nection between communication complexity and property testing, continuing the line
of work started by Blais, Brody, and Matulef [3], and followed by Goldreich [10] and
by Bhrushundi, Chakraborty, and Kulkarni [2].
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The decomposition we suggested (of reductions from communication complexity
to property testing) will not necessarily work for all reductions between the mod-
els; specifically, as mentioned in the discussion following Theorem 3.8, our form of
decomposition is to a large extent appealing for reductions that only compute linear
functions of the inputs. Yet, since the decomposition sheds light on the functional-
ity of the two parts of these reductions, the question remains whether reductions of a
more general form can be deconstructed in a similar (or other) fashion.
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