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Abstract Weighted voting games (WVGs) are a class of cooperative games that cap-
ture settings of group decision making in various domains, such as parliaments or
committees. Earlier work has revealed that the effective decision making power, or
influence of agents in WVGs is not necessarily proportional to their weight. This
gave rise to measures of influence for WVGs. However, recent work in the algo-
rithmic game theory community have shown that computing agent voting power is
computationally intractable. In an effort to characterize WVG instances for which
polynomial-time computation of voting power is possible, several classes of WVGs
have been proposed and analyzed in the literature. One of the most prominent of these
are super increasing weight sequences. Recent papers show that when agent weights
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are super-increasing, it is possible to compute the agents’ voting power (as measured
by the Shapley value) in polynomial-time. We provide the first set of explicit closed-
form formulas for the Shapley value for super-increasing sequences. We bound the
effects of changes to the quota, and relate the behavior of voting power to a novel
function. This set of results constitutes a complete characterization of the Shapley
value in weighted voting games, and answers a number of open questions presented
in previous work.

Keywords Weighted voting games · Shapley values

1 Introduction

Weighted voting games (WVGs) are a class of cooperative games, commonly used to
model large group decision making systems, such as parliaments. In this setting, each
player i is identified with a political party; the weight of i is then the number of elec-
toral seats its party controls. The value of a group of parties is 1 if the total number of
seats they collectively control exceeds a certain threshold, and is 0 otherwise. Alter-
natively, one can think of each player as controlling some resource, with winning
coalitions being ones that have sufficient resources in order to complete a task. One
of the main challenges in the WVG setting is the measurement of player influence, or
power. It is a well known fact that one’s ability to affect decisions may not necessarily
be proportional to one’s weight. As an intuitive example, consider a parliament with
three parties, A, B and C: A and B both have 50 seats, while C has 20 (a government
must control a majority of the house, i.e., have at least 60 votes). If one equates voting
power with weight, then A and B are significantly more powerful than C. However,
a government can be formed by any two coalitions, and no single party can form a
government on its own. Based on this observation, it can be reasonably argued that
all parties have equal electoral power. Formal measures of voting influence, such as
the Shapley value, aim to capture exactly these effects, providing a formal measure
of player influence in WVGs. The Shapley value is considered by many to be a par-
ticularly appealing method of measuring voting power, as it satisfies several desired
properties. However, it is well-known that computing the Shapley value in WVGs is
computationally intractable [43]. This has naturally led to works identifying classes
of WVGs for which computing voting influence is computationally tractable. In par-
ticular, an interesting sufficient condition on weights has been identified, which, if
satisfied, guarantees the polynomial-time computability of the Shapley value. More
formally, polynomial-time computability of the Shapley value is guaranteed if player
weights are known to be super-increasing: a sequence of weights w1, . . . , wn is said
to be super-increasing if wi >

∑n
j=i+1 wj for all i ∈ {1, . . . , n − 1} [2].

1.1 Our Contributions

We provide a complete characterization of the Shapley values in a game in which the
weights form a super-increasing sequence (Section 3). We provide a closed-form for-
mula for the Shapley value when weights are super-increasing (extending techniques
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and observations on such games discussed in earlier work [2, 16, 63]). This for-
mula is derived by exploiting an interesting relation between general super-increasing
sequences, and the WVG obtained when weights are exponents of 2. We show sev-
eral implications of our analysis to the results by [2] and [63], as well as a relation
to a curious fractal function (Fig. 1). We significantly improve our understanding
of this function, showing its various analytical properties, and its relation to Shap-
ley values in WVGs with super-increasing weights. On a technical level, we employ
several non-trivial combinatorial techniques, as well as surprising insights on the bit
representation of fractions.

1.2 Related Work

We use the Shapley value [53] to measure voting power; this follows the extensive
literature in mathematical economics and, more recently, the AI community (see [17,
Chapter 4] and [18] for a literature review), on measuring influence in cooperative
games. The Shapley value (or as it is known in the context of voting, the Shapley–
Shubik power index [54]) is the only way of measuring influence in cooperative
games that satisfies certain desirable properties (see Section 2 for more details); [60]

Fig. 1 Examples Shapley values corresponding to super-increasing sequences
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presents an alternative characterization of the Shapley value, based on a monotonicity
property (see [59] for an overview).

1.2.1 Computing the Shapley Value in Specific Weight Classes

Our work generalizes several results appearing in [2, 16, 62, 63]. Aziz and Pater-
son [2] present algorithms for computing the Shapley value (or establish the
computational intractability) for various weight types. Like this work, [2] study
super-increasing weight sequences (though they refer to them as unbalanced weight
sequences): these are weights where for every i, wi >

∑
j<i wj ; they also study the

case where each weight is an integer multiple of the weight before it. We study gen-
eral super-increasing sequences of weights, showing more general algorithms and
relations. Chakravarty et al. [16] study similar classes of weights, but focus on the
problem of deciding whether a given player is pivotal for some set: is there a set S

of players such that S is losing, but S ∪ {i} is winning? A player that does not sat-
isfy this property for any set is called a dummy. Our analysis of the Shapley value in
WVGs can be thought of as a quota manipulation problem: a parliament has a fixed
set of weights (seats for each party), but the quota (the number of votes required in
order to pass a bill) may be more easily changed. Is it possible for a malicious entity
to choose a quota that maximizes or minimizes the influence of some specific party?
Zuckerman et al. [63] consider computational aspects of quota manipulation, and
establish some results for super-increasing weights, which we generalize in this paper
(see Corollary 1); [62] establish some properties of the quota manipulation problem
for general weight sequences, as well as some analysis of the case where weights are
powers of 2 (they establish the existence of a poly-time algorithm for this case); in
particular, they show that the Shapley value of a player is maximized when the quota
is set to their weight, but finding a quota minimizing a player’s value is computation-
ally intractable. Zick [61] study the variance of the Shapley value as a function of
the quota in WVGs, establishing both theoretical and empirical bounds on the vari-
ance. [4] analyze the expected Shapley–Shubik power index in WVGs, when players’
weights are sampled from various discrete weight distributions.

1.2.2 Computing the Shapley Value

In this work, we provide closed-form formulas for the Shapley value when weights
are super-increasing. The computational complexity of computing the Shapley value
is a well-studied problem, with several works on either establishing its intractability.
The first such attempt is probably by [42], who provide an (inefficient) algorithm
for computing the Shapley–Shubik power index for large WVGs using generating
functions. Another inefficient algorithm is proposed by [35], which uses multilinear
extensions of WVGs. Matsui and Matsui [43] establish that computing the Shapley
value for WVGs is #P complete; more precisely, they show that deciding whether
a given player has no voting power is NP-complete, and that deciding whether a
given player has more voting power than another given player is NP-complete. In
addition, they present a dynamic-programming pseudopolynomial time algorithm for
computing the Shapley value exactly: its running time is polynomial in the number of
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players (n) and the maximal weight of any player (maxi wi). A similar independent
analysis appears in [51]. Despite their seemingly nice structure, computing solution
concepts for WVGs is surprisingly hard. Elkind et al. [23] establishes the computa-
tional intractability of computing several solutions concepts for WVGs, such as the
least-core, ε-core and the nucleolus of WVGs; [22] shows that computing an opti-
mal coalition structure — i.e. a partition of the players into the maximum possible
number of disjoint winning coalitions — is computationally intractable as well. In
a related line of work, [24] show that given two weighted voting games, deciding
whether a player has more voting power in one than in the other is computationally
intractable. Given the slew of negative results on computing solution concepts for
WVGs, several authors turn to approximation. The first such attempt is by [41], who
present a Monte-Carlo method for computing the Shapley value; their analysis does
not provide any optimality guarantees — indeed, their analysis predates results on
concentration inequalities! [7] show that random sampling can be used to compute
an (ε, δ) approximation of the Shapley–Shubik power index for WVGs using con-
centration inequalities; other sampling approaches include [25], as well as [40] who
generalize the approach in [7] beyond WVGs. A similar strand of literature analyzes
the behavior of the Shapley value in the face of various types of uncertainty [8, 10,
11]. Rather than trying to approximate the Shapley value, other works propose algo-
rithms for computing it exactly for some specific class of cooperative games [3, 6, 9,
14, 20, 38, 57].

1.2.3 Measuring Influence and Power Using Power Indices

The Shapley value (or the Shapley–Shubik power index in the context of weighted
voting) has been used to measure individual influence in a broad gamut of domains.
Its first use case is most certainly voting; going back to canonical work of [54],
many works study voting power in various political contexts (see e.g. [29, 55] and [18,
26] for an overview). We mention that the Shapley value is not the only method
for measuring voting power; [13] proposed an alternative measure (later named the
Banzhaf power index) (see also [21, 44]), which was also independently proposed by
[49] (see [27] for an overview). Voting power is extensively studied in the context of
the EU electoral system [33, 39, 55], the IMF [34], and the US Electoral College [42, 44].

Beyond voting, the Shapley value is extensively used as the standard method of
dividing reveue fairly in cooperative games (see [17] for an overview). However,
more recent works use the Shapley value (and other cooperative solution concepts) to
measure influence in a variety of domains. These include graph centrality measures
in crowdsourcing [5], proof systems [12], social network analysis [28, 37, 45, 46, 50,
57, 58], explaining the behavior of black-box decision making algorithms [19], and
in biological applications [15, 30].

2 Preliminaries

We generally refer to vectors as lowercase, boldface letters and sets as uppercase
letters. Given a positive integer m we denote [m] = {1, . . . , m}.
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2.1 Weighted Voting Games

A weighted voting game (WVG) is given by a set of agents N = {1, . . . , n}, a non-
negative weight vector w = (w1, . . . , wn), where wi is the weight of player i ∈ N

(and we let w denote the length-n weight vector), and a quota (or threshold) q. Thus,
we refer to a WVG over N as the tuple 〈w; q〉. Unless otherwise specified, we assume
that w1 ≥ · · · ≥ wn. For a subset of agents S ⊆ N (also referred to as a coalition),
we define w(S) = ∑

i∈S wi .
A coalition S ⊆ N is called winning (has a value v(S) = 1) if w(S) ≥ q and

is called losing (has a value v(S) = 0) otherwise. To define the Shapley value, we
require the following notation. Given a coalition S ⊆ N and some i ∈ N \ S, we let
the marginal contribution of i to S be

mi(S) = v(S ∪ {i}) − v(S); (1)

for WVGs, mi(S) ∈ {0, 1}, and mi(S) = 1 iff w(S) < q but w(S) + wi ≥ q. If
mi(S) = 1 we say that i is pivotal for S. Given a permutation σ : N → N , we let
Pi(σ ) = {j ∈ N | σ(i) > σ(j)} be the set of i’s predecessors in σ . By letting
mi(σ ) = mi(Pi(σ )), we have that mi(σ ) = 1 iff i is pivotal for its predecessors in
σ , in which case we simply say that i is pivotal for σ . Let Symn be the set of all
permutations of N . The Shapley value of player i is the probability that i is pivotal
for a randomly selected permutation σ ∈ Symn:

ϕi(w; q) = 1

n!
∑

σ∈Symn

mi(σ ). (2)

For i ∈ N , we write ϕi(q) whenever w is clear from the context, and assume that
q ∈ (0, w(N)] (as otherwise ϕi(w; q) = 0).

2.2 The Shapley Value: a Unique Method of Value Distribution

In what follows, we provide a brief overview of the axiomatic approach that led to
the formulation (and subsequent popularity) of the Shapley value. We present the
axiomatic analysis here for purpose of exposition; in particular, the disinclined reader
may safely skip this subsection and proceed to Section 3.

As mentioned in Section 1.2, the Shapley value is the only measure satisfying cer-
tain desirable properties. We first point out that weighted voting games are a subclass
of a more general model of cooperative interaction called cooperative games. Much
like WVGs, cooperative games are defined over a set of players N = {1, . . . , n}; in
addition, there is some characteristic function v : 2N → R assigning a value v(S) to
every coalition S ⊆ N . Note that WVGs are cooperative games whose characteristic
function takes on a very specific form (defined via w and q). In cooperative games,
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one often assumes that the coalition N (known as the grand coalition) forms, and the
revenue v(N) is to be divided amongst the players. Within this framework, the Shap-
ley value is just one of many possible ways of dividing value amongst the players in a
cooperative game. It is certainly possible to come up with many other methods (also
referred to as solution concepts); these are mappings that take as input a cooperative
game v, and output a (possibly empty) set of possible payment vectors. In addition
to the Shapley value, other notable solution concepts include the core, the nucleo-
lus, the bargaining set and the Banzhaf value (see [48] for an overview). A value is
simply a mapping that takes as input a cooperative game v : 2N → R, and outputs a
single vector α(v) ∈ R

n, where the value αi(v) is the payment (or value) assigned to
player i. In his seminal work, Shapley [53] establishes that the value defined in (2) is
the only value satisfying the following properties:

Efficiency: a value α is efficient if the total payment to all players equals v(N):∑n
i=1 αi(v) = v(N).

Symmetry: two players i, j ∈ N are symmetric if mi(S) = mj(S) for all S ⊆
N \{i, j} (note that the definition of mi(S) in (1) still holds for general cooperative
games). A value α is symmetric if αi(v) = αj (v) for any two players i, j ∈ N

who are symmetric under v.
Dummy: a player i ∈ N is a dummy if mi(S) = 0 for all S ⊆ N \ {i}. A value α

satisfies the dummy property if αi(v) = 0 whenever i is a dummy under v.
Additivity: A value α satisfies the additivity property if for any two games v, v′

over N , and for any player i ∈ N , αi(v) + αi(v
′) = αi(v + v′), where v + v′

is the cooperative game defined with every coalition S ⊆ N having a value of
v(S) + v′(S).

If one accepts that the above axioms make sense, then the only way of dividing rev-
enue in cooperative games is using the Shapley value. Naturally, using different sets
of axioms will lead one to characterizing other cooperative solution concepts. While
[60] uses a different set of axioms to characterize the Shapley value, still other sets
of axioms can be used to uniquely characterize the Banzhaf index [36], the nucleolus
[56] and the core [47]. Axiomatic characterization of cooperative solution concepts
is often useful as a means of justifying one’s choice of method for revenue division
(or voting power). Cooperative solution concepts can be rather obscure: the formula
for the Shapley value given in (2) is not particularly meaningful in itself, and other
cooperative solution concepts can have even more complex formulations. However,
the axioms characterizing them are often quite easy to understand. For example, effi-
ciency simply means that a value should divide v(N), nothing more, nothing less;
symmetry states that equally contributive players should be paid the same. Axiomatic
analysis also provides one with a provably sound solution: any objections to the use
of, say, the Shapley value, require a well-reasoned objection to one of the axioms that
characterize it. Since the Shapley value axioms are all rather intuitive (the axioms
proposed in [60] even more so in the authors’ opinion), it has become one of the most
popular methods of distributing revenue in cooperative games.
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3 A Formula for the Shapley Value Under Super-Increasing Sequences

Given a vector of weights w = (w1, . . . , wn), we say that w is super-increasing (SI)
if wi >

∑n
j=i+1 wj for all i ∈ {1, . . . , n − 1}. We henceforth assume that w is a

super-increasing sequence.1

In Lemma 2, we show that computing the Shapley value for SI weight sequences
is essentially equivalent to doing so for the sequence β = (2n−1, 2n−2, . . . , 1) (for a
subset S ⊆ N , recall that β(S) = ∑

i∈S 2n−i). Given an integer value q ∈ (0, 2n −
1 = β(N)], we note that there exists a unique subset Sq ⊆ N such that β(Sq) = q.
Given an SI vector w, not every number q in the range (0, w(N)] can be written
as a sum of members of {w1, . . . , wn}; however, there are certain naturally defined
intervals that partition (0, w(N)], as we show later in this section.

We begin by proving the following two simple lemmas.

Lemma 1 Let w be an SI weight vector. For every S, T ⊆ N , β(S) < β(T ) if and
only if w(S) < w(T ).

Proof We first prove that β(S) < β(T ) implies that w(S) < w(T ). In order to prove
this claim, it suffices to consider sets S, T ⊆ N satisfying β(T ) = β(S) + 1. Let �

be the agent with the smallest weight that does not belong to S; that is, � = max{i ∈
N \ S}, and define C = S ∩ {1, . . . , � − 1}; that is, C is the set of all agents in S that
have weight greater than w�.

We claim that if β(T ) = β(S)+ 1, then S = C ∪ {�+ 1, . . . , n} and T = C ∪ {�}.
Indeed, suppose that S does not contain some agent j ∈ {� + 1, . . . , n}; then � is not
the agent with the smallest weight that does not belong to S. The fact that T = C∪{�}
is an immediate consequence of the fact that β(T ) = β(S) + 1.

Now, w(T )−w(S) = w� −w({�+1, . . . , n}); since w is super-increasing, it must
be the case that w� >

∑n
j=�+1 wj ; in particular w(T )−w(S) > 0, and β(S) < β(T )

implies w(S) < w(T ).
For the other direction, we arrange the 2n subsets of [N] according to β: ∅ =

β(S0) < · · · < β(S2n−1) = N . The preceding argument shows that w(S0) < · · · <

w(S2n−1). It follows that the orders induced by β and by w are isomorphic, and so
β(S) < β(T ) if and only if w(S) < w(T ).

For a non-empty set of agents S ⊆ N , we let S− ⊆ N be the unique subset of
agents satisfying β(S−) = β(S) − 1. For example, assuming n = 4, if S = {1, 3, 4},
then β(S) = 24−1 + 24−3 + 24−4 = 23 + 21 + 20 = 11; thus S− = {1, 3} since
β({1, 3}) = 24−1 + 24−3 = 23 + 21 = 10. Lemma 1 shows that for every quota q ∈
(0, w(N)] there exists a unique set A(q) ⊆ N such that q is in (w(A(q)−), w(A(q))].
Whenever we write A(q) = {a0, . . . , ar}, we will always assume that a0 < · · · < ar .

1Our definition actually results in super-decreasing weight sequences; for consistent notation with [2, 63]
and others, we refer to our sequences as super-increasing.
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Lemma 2 Given an SI vector w, then for every i ∈ N and q ∈ (0, w(N)],
ϕi(w; q) = ϕi(β; β(A(q))).

Proof Recall that Pi(σ ) is the set of agents appearing before agent i in a given per-
mutation σ ∈ Symn. The Shapley value ϕi(w; q) is the probability that w(Pi(σ )) ∈
[q − wi, q), or equivalently, that q ∈ (w(Pi(σ )), w(Pi(σ )) + wi]. The intervals
(w(C−), w(C)] partition (0, w(N)]; thus q is in (w(Pi(σ )), w(Pi(σ )) + wi] if and
only if w(Pi(σ )) ≤ w(A(q)−) and w(A(q)) ≤ w(Pi(σ ) ∪ {i}). Lemma 1 shows
that this is equivalent to checking whether β(Pi(σ )) ≤ β(A(q)−) and β(A(q)) ≤
β(Pi(σ ) ∪ {i}). Now, note that β(A(q)−) = β(A(q)) − 1, so the above condition
simply states that i is pivotal for σ under β when the quota is β(A(q)).

Lemma 2 implies that for any SI w, computing ϕi(w; q) only requires finding
A(q); this can be done using Algorithm 1.

Lemma 3 It is possible to find A(q) in polynomial-time.

Proof We claim that Algorithm 1 finds A(q). Let A(q) = {a0, . . . , ar}, so that we
have A(q)− = {a0, . . . , ar−1, ar + 1, . . . , n}. Denote by Ai the value of A in the
algorithm after i iterations of the loop. We prove by induction on i that Ai = A(q) ∩
{1, . . . , i}, which shows that the algorithm returns A(q).

The inductive claim trivially holds for i = 0. Assuming that Ai−1 = A(q) ∩
{1, . . . , i − 1}, we now prove that Ai = A(q) ∩ {1, . . . , i}. We consider two cases:
i /∈ A(q) and i ∈ A(q). If i /∈ A(q) then q ≤ w(A(q)) = w(Ai−1) + w(A(q) ∩
{i, . . . , n}) ≤ w(Ai−1)+w({i+1, . . . , n}), and so i is not added to Ai . Suppose now
that i ∈ A(q). If ar = i then q > w(A(q)−) = w(Ai−1) + w({i + 1, . . . , n}), and
so i is added to Ai . If ar > i then q > w(A(q)−) ≥ w(Ai−1) + wi > w(Ai−1) +
w({i + 1, . . . , n}), since w is super-increasing, and so i is added to Ai in this case as
well.

We now present our main result, a closed form formula for the Shapley values in
the super-increasing case. The resulting Shapley values are illustrated in Fig. 1a.

Theorem 1 Given an SI vector w and a threshold q, let A(q) = {a0, . . . , ar}.
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If i /∈ A(q) then:

ϕi(w; q) =
∑

t ∈ {0, . . . , r} :
at > i

1

at

(
at−1

t

) .

If i ∈ A(q), say i = as , then:

ϕi(w; q) = 1

as

(
as−1

s

) −
∑

t>s

1

at

(
at−1
t−1

) .

Proof Lemma 2 shows that ϕi(w; q) = ϕi(β; β(A(q))), where β = 2n−1, . . . , 1.
Therefore we can assume without loss of generality that w = β and that the threshold
is q∗ = ∑

j∈A(q) 2n−j .
Recall that ϕi(w; q) is the probability that w(Pi(σ )) ∈ [q − wi, q), where σ is

chosen randomly from Symn, and Pi(σ ) is the set of predecessors of i in σ . The idea
of the proof is to consider the maximal τ ∈ {1, . . . , r + 1} such that at ∈ Pi(σ ) for
all t < τ . We will show that when i /∈ A(q), each possible value of τ corresponds
to one summand in the expression for ϕi(w; q). When i ∈ A(q), say i = as , we will
show that the events that i is pivotal (w.r.t. σ ) when the threshold is q and that i is
pivotal when the threshold is q−wi are disjoint, and their union is an event occurring
w.p. 1

as(
as−1

s )
.

Suppose that i is pivotal for σ . We start by showing that τ ≤ r , ruling out the
case τ = r + 1. If τ = r + 1 then by definition β(Pi(σ )) ≥ ∑

j∈A(q) 2n−j = q∗,
contradicting the assumption β(Pi(σ )) < q∗. Thus τ ≤ r , and so aτ is well-defined.
We claim that if k ∈ Pi(σ ) for some agent k < aτ then k ∈ A(q). Indeed, otherwise:

β(Pi(σ )) ≥
τ−1∑

t=0

2n−at + 2n−k ≥
τ−1∑

t=0

2n−at + 2n−aτ +1

≥
τ−1∑

t=0

2n−at +
n∑

j=aτ

2n−j ≥ β(A(q)) = q∗,

again contradicting β(Pi(σ )) < q∗; thus, if k ∈ Pi(σ ) \ A(q), then k > aτ .
Furthermore, we claim that aτ ≥ i. Otherwise:

β(Pi(σ )) ≤
τ−1∑

t=0

2n−at +
n∑

j=aτ +1

2n−j − 2n−i

<

τ∑

t=0

2n−at − 2n−i ≤ q∗ − wi,

contradicting the assumption w(Pi(σ )) ≥ q∗ − wi .
Summarizing, we have that if i is pivotal for σ , then τ ≤ r , aτ ≥ i and

Pi(σ ) ∩ {1, . . . , aτ } = {a0, . . . , aτ−1}. (3)
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Denote this event Eτ , and call a τ ≤ r satisfying aτ ≥ i legal.
Recall that i /∈ A(q); we have shown above that if i is pivotal for σ then Eτ occurs

for some legal τ . We claim that the converse is also true; that is, if there exists some
legal τ such that (3) holds with respect to σ , then i is pivotal for σ . Indeed, given Eτ

defined with respect to a permutation σ , and for some legal τ , the weight of Pi(σ )

can be bounded as follows.

τ−1∑

t=0

2n−at ≤ β(Pi(σ )) ≤
τ−1∑

t=0

2n−at +
n∑

j=aτ +1

2n−j <

τ∑

t=0

2n−at ,

where the last expression is at most q∗. The second inequality follows from the
definition of τ . As i < aτ , the lower bound satisfies:

τ−1∑

t=0

2n−at ≥ q∗ −
n∑

j=aτ

2n−j > q∗ − 2n−aτ +1 ≥ q∗ − 2n−i ,

It remains to calculate Pr[Eτ ]. The event Eτ states that the restriction of σ to
{1, . . . , aτ } consists of the elements {a0, . . . , aτ−1} in some order, followed by i

(recall that i ≤ aτ ). For each of the τ ! possible orders, the probability of this is
1/aτ · · · (aτ − τ) = (aτ − τ − 1)!/aτ !, and so

Pr[Eτ ] = τ !(aτ − τ − 1)!
aτ ! = 1

aτ

(
aτ −1

τ

) . (4)

Summing over all legal τ , we obtain the formula in the statement of the theorem.
This completes the proof in the case i /∈ A(q).

Suppose next that i ∈ A(q), say i = as . Since aτ ≥ as = i and i /∈ Pi(σ ), we
deduce that τ = s. Therefore the event Es happens. Conversely, when Es happens,

β(Pi(σ )) ≤
s−1∑

t=0

2n−at +
n∑

j=as+1

2n−j <

s∑

t=0

2n−at ≤ q∗.

Therefore i is pivotal (with respect to σ ) if and only if Es happens and β(Pi(σ )) ≥
q∗ − 2n−i .

It is easy to check that A(q − wi) = A(q) \ {i} = {a0, . . . , as−1, as+1, . . . , ar}.
The argument above shows that if i is pivotal with respect to q∗ −2n−i then for some
τ ′ ≥ s + 1,

Pi(σ ) ∩ {1, . . . , aτ ′ } = {a0, . . . , as−1, as+1, . . . , aτ ′−1}.
In particular, the event Es happens. Conversely, when Es happens,

β(Pi(σ )) ≥
s−1∑

t=0

2n−at ≥ q∗ − 2n−as −
n∑

j=as+1

2n−j

> (q∗ − 2n−as ) − 2n−as .
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Therefore i is pivotal with respect to q∗ − 2n−i if and only if Es happens and
β(Pi(σ )) < q∗ − 2n−i . We conclude that

Pr[i is pivotal with respect to q∗] =
Pr[Es] − Pr[i is pivotal with respect to q∗ − 2n−i].

Above we have calculated Pr[Es] = 1/as

(
as−1

s

)
, from which the theorem follows.

Example 1 Consider a 10 agent game where wi = 2n−i . Let us compute the Shapley
value of agent 7 when the quota is q = 27. We can write q = 16 + 8 + 2 + 1 =
w6 + w7 + w9 + w10, hence A(q) = {a0 = 6, a1 = 7, a2 = 9, a3 = 10}. Since agent
7 is in A(q), it must be the case that: ϕ7(27) = 1

7(6
1)

− 1
9(8

1)
− 1

10(9
2)

≈ 0.007143.

4 The Properties of Shapley Values Under Super-Increasing Weights

Zuckerman et al. [63] prove a nice property of super-increasing sets (Lemma 19):

Theorem 2 (given in [63]) Suppose that n ≥ 3; if the weights w are SI, then for
every quota q ∈ (0, w(N)], either ϕn(q) = ϕn−1(q) or ϕn−1(q) = ϕn−2(q).

We generalize this result by leveraging Theorem 1. Our main technical result
for this section is Lemma 6, which describes how to determine in which cases
ϕi(q) = ϕi+1(q) under super-increasing weight sequences; Corollary 1 then shows
how Lemma 6 implies Theorem 2. We prove Lemma 6 using two combinatorial
identities.

Lemma 4 Let p, t be integers satisfying p > t ≥ 1. Then

1

p
(
p−1

t

) + 1

p
(
p−1
t−1

) = 1

(p − 1)
(
p−2
t−1

) .

Proof The proof is a simple calculation:

1

p
(
p−1

t

) + 1

p
(
p−1
t−1

) = t !(p − t − 1)! + (t − 1)!(p − t)!
p!

= (t − 1)!(p − t − 1)![t + (p − t)]
p!

= (t − 1)!(p − t − 1)!
(p − 1)!

= 1

(p − 1)
(
p−2
t−1

) .
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Lemma 5 Let p, t, k be integers satisfying p > t ≥ 0 and k ≥ 0. Then

1

p
(
p−1

t

) −
k∑

�=1

1

(p + �)
(
p+�−1
t+�−1

) = 1

(p + k)
(
p+k−1

t+k

) .

In particular,

1

p
(
p−1

t

) =
∞∑

�=1

1

(p + �)
(
p+�−1
t+�−1

) .

Proof The proof is by induction on k. If k = 0 then there is nothing to prove. For
k > 0 we have

1

p
(
p−1

t

) −
k∑

�=1

1

(p + �)
(
p+�−1
t+�−1

) = 1

(p + k − 1)
(
p+k−2
t+k−1

)

− 1

(p + k)
(
p+k−1
t+k−1

) = 1

(p + k)
(
p+k−1

t+k

) ,

using Lemma 4. The second expression of the lemma follows from rearranging the
first formula and taking the limit k → ∞.

Using Lemma 4 and Lemma 5, we are ready to prove Lemma 6.

Lemma 6 Given a quota q ∈ (0, w(N)], let A(q) = {a0, . . . , ar}. Given some
i ∈ N \ {n},
(a) if i, i + 1 ∈ A(q) or i, i + 1 /∈ A(q) then ϕi(q) = ϕi+1(q);
(b) if i /∈ A(q) and i + 1 ∈ A(q) then ϕi(q) ≥ ϕi+1(q), with equality if and only if

i + 1 = ar ;
(c) if i ∈ A(q) and i + 1 /∈ A(q) then ϕi(q) > ϕi+1(q).

Proof We write A(q) = {a1, . . . , ar}. Let us first assume that neither i nor i + 1 are
in A(q). For every t ∈ {0, . . . , r}, at > i if and only at > i + 1. Employing the
formula used in Theorem 1, we have that

ϕi(q) =
∑

t ∈ {0, . . . , r} :
at > i

1

at

(
at−1

t

)

=
∑

t ∈ {0, . . . , r} :
at > i + 1

1

at

(
at−1

t

) = ϕi+1(q).
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Next, if i, i +1 ∈ A(q) then there is some s such that i = as and i +1 = as+1, so:

ϕi(q) = 1

as

(
as−1

s

) −
∑

t ∈ {0, . . . , r} :
at > i

1

at

(
at−1
t−1

)

= 1

as

(
as−1

s

) − 1

as+1
(
as+1−1

s

) −
∑

t ∈ {0, . . . , r} :
at > i + 1

1

at

(
at−1
t−1

)

= 1

as

(
as−1

s

) − 1

(as + 1)
(
as

s

) −
∑

t ∈ {0, . . . , r} :
at > i + 1

1

at

(
at−1
t−1

)

According to Lemma 4 this equals:

1

(as + 1)
(

as

s+1

) −
∑

t ∈ {0, . . . , r} :
at > i + 1

1

at

(
at−1
t−1

) = 1

(as+1)
(as+1−1

s+1

)

−
∑

t ∈ {0, . . . , r} :
at > i + 1

1

at

(
at−1
t−1

) = ϕi+1(q),

where the last equality uses Theorem 1.
Now, suppose that i /∈ A(q) but i + 1 ∈ A(q); writing i + 1 = as , we have that

ϕi(q) − ϕi+1(q) equals

r∑

t=s

1

at

(
at−1

t

) −
⎡

⎣ 1

as

(
as−1

s

) −
r∑

t=s+1

1

at

(
at−1
t−1

)

⎤

⎦

=
r∑

t=s+1

[
1

at

(
at−1

t

) + 1

at

(
at−1
t−1

)

]

=
r∑

t=s+1

1

(at − 1)
(
at−2
t−1

) ,

using Lemma 4 again. Therefore, ϕi(q) ≥ ϕi+1(q), with equality if and only if s = r .
Finally, suppose that i ∈ A(q) and i+1 /∈ A(q). According to Theorem 1, ϕi(q) =
1

as(
as−1

s )
−∑r

t=s+1
1

at (
at −1
t−1 )

, and ϕi+1(q) = ∑
at>i+1

1
at (

at −1
t )

. If s = r , then the claim
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trivially holds. Since i + 1 /∈ A(q), it must be that as+1 ≥ as + 2, and in general
as+� ≥ as+�+1. First, we note that ϕi+1(q) = ∑

at>i+1
1

at (
at −1

t )
≤ ∑r

t=s+1
1

at (
at −1

t )
;

therefore:

ϕi(q) − ϕi+1(q) ≥ 1

as

(
as−1

s

) −
r∑

t=s+1

(
1

at

(
at−1
t−1

) + 1

at

(
at−1

t

)

)

= 1

as

(
as−1

s

) −
r∑

t=s+1

1

(at − 1)
(
at−2
t−1

)

= 1

as

(
as−1

s

) −
r−s∑

�=1

1

(as+� − 1)
(
as+�−2
s+�−1

)

The last transition uses Lemma 4. Now, since 1
(m−1)(m−2

k )
is monotone decreas-

ing in m, and since as+� ≥ as + � + 1, the last expression is at least 1
as(

as−1
s )

−
∑r−s

�=1
1

(as+�−1)(as+�−2
s+�−1 )

which equals 1
(as+r−s)(as+r−s−1

r )
> 0 by Lemma 5.

Next, we show that Lemma 6 generalizes Theorem 2. We can, in fact, show the
following stronger corollary.

Corollary 1 Let w be a vector of SI weights. Let A(q) = {a0, . . . , ar}. Then for all
i ≥ ar , either ϕi(q) = ϕi−1(q), or ϕi−1(q) = ϕi−2(q).

Proof Let I(i ∈ S) be the indicator function for the property i ∈ S. Lemma 6 states
that if I(i ∈ A(q)) = I(i − 1 ∈ A(q)) we have that ϕi(q) = ϕi−1(q), and that if
I(i − 1 ∈ A(q)) = I(i − 2 ∈ A(q)) we have that ϕi−1(q) = ϕi−2(q). Thus, if either
holds, we are done.

Suppose that neither case holds. First, we consider the case that i − 1 /∈ A(q) but
i ∈ A(q). Since i ≥ ar , it must be the case that ar = i. Invoking case (b) of Lemma 6
gives us that ϕi−1(q) = ϕi(q).

Finally, suppose that i − 1 ∈ A(q). This means that i − 2, i /∈ A(q). Since i − 1 ∈
A(q) but i /∈ A(q), it must be the case that ar = i − 1. We can again invoke case (b)
of Lemma 6 for i−2 and i−1. Therefore, it must be the case that ϕi−2(q) = ϕi−1(q),
which concludes the proof.

Invoking Corollary 1 with i = n gives Theorem 2. We mention that it may be the
case that ϕi−1(q) < ϕi(q) < ϕi+1(q) when weights are super-increasing.

Example 2 Let us observe the 10 agent game where for all i ∈ N = {1, . . . , 10},
wi = 2n−i . As shown in Example 1, ϕ7(27) ≈ 0.007143. However, ϕ8(27) ≈
0.005159, and ϕ9(27) ≈ 0.00119. The reason that ϕ7(27) < ϕ8(27) < ϕ9(27) is the
structure of A(27). Recall that A(27) = {6, 7, 9, 10}; that is, 8 /∈ A(27), but 7 and
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9 are in A(27). However, there exists an element whose index is greater than 9 in
A(27) (namely 10), so Corollary 1 does not hold.

Another interesting implication of Corollary 1 is the following. Suppose that
A(q) = {a0, . . . , ar}, then for all i, j > ar , ϕi(q) = ϕj (q).

It is often desirable that WVGs exhibit separability: if two players have different
weights, then they should have different voting power. Zuckerman et al. [63] show
that separability is not attainable under SI weights; Corollary 1 implies that some
quotas offer more separability than others: if A(q) does not consist of low-weight
agents, then low-weight agents are not separable under q. For example, if weights
are exponents of 2 and q = �2n−m, where � is an odd number, then ϕn−m+1 = · · · =
ϕn(q). Our results allow us to bound the difference in voting power that one may
achieve by changing the quota under SI weights. Recall that given a set S ⊆ N , S−
is the set for which β(S) = β(S−) + 1. As the Shapley values are constant in the
interval (w(S−), w(S)], in order to analyze the behavior of ϕi(q), one needs only
determine the rate of increase or decrease at quotas of the form w(S) for S ⊆ N .
These are given by the following lemma.

Lemma 7 For every S ⊆ N , and any i ∈ N , if i /∈ S− then ϕi(w(S−)) < ϕi(w(S)).
If i ∈ S− then ϕi(w(S−)) > ϕi(w(S)).

Moreover, |ϕi(w(S))−ϕi(w(S−))| = 1
n
if one of the following holds: (a) S = {n};

(b) i < n and S = {1, . . . , i} or S = {i, n}; or (c) i = n and S = {n− 1}. Otherwise,
|ϕi(w(S)) − ϕi(w(S−))| ≤ 1

n(n−1)
.

Proof Given a non-empty set S ⊆ N , we define ϕ+ = ϕi(w(S)) and ϕ− =
ϕi(w(S−)). Let S = {a0, . . . , ar}. We have S− = {a0, . . . , ar−1, ar + 1, . . . , n}.

Suppose first that i > ar , and let s be the index of i in the sequence S−. According
to Theorem 1, ϕ+ = 0 and

ϕ− = 1

i
(
i−1
s

) −
n−i∑

�=1

1

(i + �)
(
i+�−1
s+�−1

) = 1

n
(

n−1
s+n−i

) ;

thus ϕ− > ϕ+. Furthermore, |ϕ+ − ϕ−| ≤ 1
n(n−1)

, unless s + n − i ∈ {0, n − 1}. If
s + n − i = 0 then s = 0 and i = n, implying S− = {n} and so S = {n − 1}. If
s + n − i = n − 1 then s = i − 1 and so S− = {1, . . . , n}, which is impossible.

Suppose next that i = ar . Since i = ar , it must be the case that i /∈ S−. Moreover,
according to Theorem 1,

ϕ+ − ϕ− = 1

i
(
i−1
r

) −
n−i∑

�=1

1

(i + �)
(
i+�−1
r+�−1

) = 1

n
(

n−1
r+n−i

) .

thus ϕ+ > ϕ−. Furthermore, |ϕ+ − ϕ−| ≤ 1
n(n−1)

unless r + n − i ∈ {0, n − 1}. If
r + n − i = 0 then r = 0 and i = n, and so S = {n}. If r + n − i = n then r = i − 1
and so S = 1, . . . , i.
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Finally, suppose that i < ar . If i /∈ S then it cannot be the case that i ∈ S−.
Moreover,

ϕ+ − ϕ− = 1

ar

(
ar−1

r

) −
n−ar∑

�=1

1

(ar + �)
(
ar+�−1
r+�−1

) = 1

n
(

n−1
r+n−ar

) .

so ϕ+ > ϕ−. Furthermore, |ϕ+ − ϕ−| ≤ 1
n(n−1)

unless r + n − ar ∈ {0, n − 1}. If
r + n − ar = 0 then r = 0 and ar = n, and so S = {n}. If r + n − ar = n − 1
then ar = r + 1, which implies S = {1, . . . , r + 1}. However, this contradicts the
assumption that i /∈ S.

If i < ar and i ∈ S then i must be in S− as well. Therefore,

ϕ− − ϕ+ = 1

ar

(
ar−1
r−1

) −
n−ar∑

�=1

1

(ar + �)
(
ar+�−1
r+�−2

) = 1

n
(

n−1
r+n−ar−1

) .

and ϕ− > ϕ+. Furthermore, |ϕ+ −ϕ−| ≤ 1
n(n−1)

unless r +n−ar −1 ∈ {0, n−1}. If
r +n−ar −1 = 0 then r = 1 and ar = n, and so S = {i, n}. If r +n−ar −1 = n−1
then ar = r , which is impossible.

5 The Limiting Behavior of the Shapley Value under Super-Increasing
Weights

Given a super-increasing sequence w1, . . . , wn (where again, w1 > w2 > · · · > wn)
and some m ∈ N , let us write w|m for (w1, . . . , wm) and [m] for {1, . . . , m}. We
write ϕi(w|m; q) for the Shapley value of agent i ∈ [m] in the weighted voting game
in which the set of agents is [m], the weights are w|m, and the quota is q. We also
write A|m(q) for the set S ⊆ [m] such that q ∈ (w|m(S−), w|m(S)].

The following lemma relates ϕi(w; q) and ϕi(w|m; q).

Lemma 8 Let m ∈ N and i ∈ [m], and let q ∈ (0, w([m])]. Then
ϕi(w|m; q) = ϕi(w;w(A|m(q))).

Proof The proof makes use of Lemma 2. According to Lemma 2, ϕi(w; q) is only
a function of A(q). Namely, ϕi(w; q) = ϕi(β; β(A(q))). Now, on the one hand,
ϕi(w|m; q) = ϕi(beta; β(A|m(q))). On the other hand, when q = w(A|m(q)), then
A(q) under the weight vector w equals A|m(q). In particular, ϕi(w;w(A|m(q))) =
ϕi(β; β(A|m(q))), which concludes the proof.

Therefore the plot of ϕi(w|m; q) (as a function of q) can be readily obtained
from that of ϕi(w; q). This suggests looking at the limiting case of an infinite
super-increasing sequence (wi)

∞
i=1, which is a sequence satisfying wi > 0 and

wi ≥ ∑∞
j=i+1 wj for all i ≥ 1. In this section we make some normalizing assump-

tions that will be useful. Just like in the preceding subsections, we assume that
weights are arranged in decreasing order; furthermore, we assume that w1 = 1

2 . This
is no loss of generality: it is an easy exercise to see that given a weight vector w
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and some positive constant α, ϕi(w; q) = ϕi(αw; αq). Thus, instead of the weight
vector (2n−1, 2n−2, . . . , 1), we now have ( 1

2 , 1
4 , . . . , 1

2n−1 ). The super-increasing con-
dition implies that the infinite sequence sums to some value w(∞) ≤ 1. Lemma 8
suggests how to define ϕi(q) in this case. For q ∈ (0, w(∞)) and i ≥ 1, define:
ϕ

(∞)
i (q) = limn→∞ ϕi(w|n; q).

We show that the limit exists by providing an explicit formula for it, as given in
the main result of this section, Theorem 3. Under this definition, Lemma 8 easily
extends to the case n = ∞.

Lemma 9 Let m ≥ 1 be an integer, let i ∈ [m], and let q ∈ (0, w([m])]. Then
ϕi(w|m; q) = ϕ

(∞)
i (w(A|m(q))).

Proof Lemma 8 shows that for n ≥ m, ϕi(w|m; q) = ϕi(w|n; w(A|m(q))), and
therefore ϕi(w|m; q) = limn→∞ ϕi(w|n; w(A|m(q))) = ϕ

(∞)
i (w(A|m(q))).

Below, we consider possibly infinite subsets S = {a0, . . . , ar} of the positive
integers, ordered in increasing order; when r = ∞, the subset is infinite. Also, the
notation {a, . . . , ∞} (or {a, . . . , r} when r = ∞) means all integers larger than or
equal to a.

Given a finite sequence of integers S = {a0, . . . , ar}, such that a0 < a1 < · · · <

ar , we define S− to be {a0, . . . , ar−1}∪{ar+1, . . . , ∞}; note the analogy to the finite
case: when we had a finite sequence of agents N , S− was the maximal weight set such
that w(S−) < w(S). This is also the case for S− as defined above. For a (possibly
infinite) subset S of the positive integers, define β∞(S) = ∑

i∈S 2−i . First, we show
an analog of Lemma 1.

Lemma 10 Suppose that S, T ⊆ N are two subsets of the positive integers. Then
β∞(S) ≤ β∞(T ) if and only if w(S) ≤ w(T ). Further, if β∞(S) < β∞(T ) then
w(S) < w(T ).

Proof Suppose that β∞(S) ≤ β∞(T ) and S �= T . Let i = minj∈T \S j ; then

w(T ) − w(S) ≥ wi −
∞∑

j=i+1

wj ≥ 0.

Equality is only possible if maxj∈T j = i and S = T \{i}∪{i+1, . . . , ∞}. However,
in that case β∞(S) = β∞(T ).

There is a subtlety involved here: unlike the finite case explored in Lemma 1, we
can have β∞(S) = β∞(T ) for S �= T . This is because dyadic rationals (numbers of
the form a

2b for some positive integer a) have two different binary expansions. For

example, 1
2 = (0.1000 . . .)2 = (0.0111 . . .)2. The lemma states (in this case) that

w({1}) ≥ w({2, 3, 4, . . .}), but there need not be equality.
Next, we use the fact that any real r ∈ (0, 1) has a binary expansion with infinitely

many 0s (alternatively, a set Sr such that β∞(Sr) = ∑
n∈Sr

2−n = r and there are

Theory Comput Syst (2019) 63:150–174 167



infinitely many n /∈ Sr ), and a binary expansion with infinitely many 1s (alternatively,
a set Tr such that β∞(Tr) = ∑

n∈T 2−n = r and there are infinitely many n ∈ Tr ). If
r is not dyadic, then it has a unique binary expansion which has infinitely many 0s and
1s. If r is dyadic, say r = 1

2 , then it has one expansion (0.1000 . . .)2 with infinitely
many 0s and another expansion (0.0111 . . .)2 with infinitely many 1s. The following
lemma describes the analog of the intervals (w(S−), w(S)] in the infinite case.

Lemma 11 Let q ∈ (0, w(∞)). There exists a non-empty subset S of the posi-
tive integers such that either q = w(S) or S = {a0, . . . , ar} is finite and q ∈
(w(S−), w(S)].

Proof Since q < w(∞), there exists some finite m such that q ≤ w([m]). For any
n ≥ m, let A|n = A|n(q). Let Q|n be the subset of [n] preceding A|n, and let R|n be
the subset of [n + 1] preceding A|n; here “preceding” is in the sense of X �→ X−.
The interval (w(Q|n), w(A|n)] splits into (w(Q|n), w(R|n)] ∪ (w(R|n), w(A|n)],
and so A|n+1 ∈ {R|n, A|n}. Also β∞(A|n+1) ≤ β∞(A|n), with equality only if
A|n+1 = A|n. We consider two cases. The first case is when for some integer M ,
for all n ≥ M we have A|n = A = {a0, . . . , ar}. In that case for all n ≥ M∑r−1

t=0 wat + ∑n
t=ar+1 wt < q ≤ ∑r

t=0 wat , and taking the limit n → ∞ we obtain
q ∈ (w(A−), w(A)]. The other case is when A|n never stabilizes. The sequence
β∞(A|n) is monotonically decreasing, and reaches a limit b satisfying b < β∞(A|n)
for all n. Since w(A|m) ∈ (w(Q|n), w(A|n)] for all integers m ≥ n ≥ 1, Lemma 10
implies that b ∈ [β∞(Q|n), β∞(A|n)).

Let L be a subset such that b = β∞(L) and there are infinitely many i /∈ L, and
define L|n = L ∩ [n]. We have b ∈ [β∞(L|n), β∞(L|n) + 2−n). Thus Q|n = L|n,
and so q > w(Q|n) = w(L|n). Taking the limit n → ∞, we deduce that q ≥ w(L).
If n /∈ L then A|n = Q|n ∪ {n}, and so q ≤ w(A|n) = w(L|n) + wn. There are
infinitely many such n, so taking the limit n → ∞ we conclude that q ≤ w(L) and
so q = w(L).

We can now give an explicit formula for ϕ
(∞)
i . We extend our notation to accom-

modate the notions given in Lemma 11. The proof of Theorem 3 is similar in spirit
to the proof of Theorem 1, with one important subtlety: given some q ∈ (0, w(∞)),
we write A(q) ⊆ N to be an infinite set S such that q = w(S), or the finite set S for
which q ∈ (w(S−), w(S)]. In the first case there may be more than one set S such
that q = w(S); Theorem 3 holds for any of the possible representations of q using w.

Theorem 3 Let q ∈ (0, w(∞)) and let i be a positive integer. Let A(q) =
{a0, . . . , ar} be the set defined in Lemma 11. Then:

(a) the limit ϕ(∞)
i (q) = limn→∞ ϕi(w|n; q) exists.

(b) if i /∈ A(q) then

ϕ
(∞)
i (q) =

∑

t ∈ {0, . . . , r} :
at > i

1

at

(
at−1

t

) .
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If i ∈ A(q), say i = as , then

ϕ
(∞)
i (q) = 1

as

(
as−1

s

) −
∑

t ∈ {0, . . . , r} :
at > i

1

at

(
at−1
t−1

) .

Proof We comment that the convergence of the sums in the theorem is guaranteed
by Lemma 5. We again write A(q) = S = {a0, . . . , ar}.

Suppose first that S is finite; according to Lemma 10, q ∈ (w(S−), w(S)]. Let
j∗ be maxj∈S j ; then for all n > j∗, A|n(q) = S, and so Lemma 8 shows that

ϕ
w|n
i (q) = ϕ

w|j∗
i (q). Therefore the limit exists and equals the stated formula, which

is the same as the one given by Theorem 1. Thus, we have covered the case where S

is finite.
Suppose next that S is infinite; by Lemma 10, q = w(S). Consider first the case in

which we can also write q = w(Q) for some finite Q, say Q = {q0, . . . , qu} (think
again of the case of q = 1

2 , which can be represented by either {1} or {2, 3, 4, . . . }).
Then S = {q0, . . . , qu−1}∪ {qu + 1, qu + 2, . . . ,∞}. We now consider several cases.

If i < qu and i /∈ S, then i /∈ Q and

ϕ
(∞)
i (q) =

∑

t ∈ {0, . . . , u} :
qt > i

1

qt

(
qt−1

t

)

=
∑

t ∈ {0, . . . , u − 1} :
qt > i

1

qt

(
qt−1

t

) +
∞∑

�=1

1

(qu + �)
(
qu+�−1
t+�−1

) ,

using Lemma 5. The right-hand side is the expression we gave for ϕ
(∞)
i (w(S)).

If i < qu and i ∈ S, say i = qs , then i ∈ Q and

ϕ
(∞)
i (q) = 1

i
(
i−1
s

) −
∑

t ∈ {0, . . . , u} :
qt > i

1

qt

(
qt−1

t

)

= 1

i
(
i−1
s

) −
∑

t ∈ {0, . . . , u − 1} :
qt > i

1

qt

(
qt−1

t

) −
∞∑

�=1

1

(qu + �)
(
qu+�−1
t+�−1

) ,

using Lemma 5. The right-hand side is the expression we gave for ϕ
(∞)
i (w(S)).

If i = qu then i ∈ Q and i /∈ S. In that case

ϕ
(∞)
i (q) = 1

i
(
i−1
u

) =
∞∑

�=1

1

(i + �)
(
i+�−1
u+�−1

) ,

using Lemma 5. The right-hand side is the expression we gave for ϕ
(∞)
i (w(S)).
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Finally, if i > qu then i /∈ Q and i ∈ S. Suppose that i is the v-th member in S. In
that case

ϕ
(∞)
i (q) = 0 = 1

i
(
i−1
v

) −
∞∑

�=1

1

(i + �)
(
i+�−1
v+�−1

) ,

using Lemma 5. The right-hand side is the expression we gave for ϕ
(∞)
i (w(S)).

It remains to consider the case in which q cannot be written as q = w(Q) for
finite Q. In that case, there are infinitely many positive integers n such that n ∈ S

and infinitely many such that n /∈ S. This implies that for every positive integer n,
q ∈ (w(S ∩ [n]), w(S ∩ [n]) + wn), and so S|−n (q) = S ∩ [n]. Lemma 7 shows that
|ϕn(q) − ϕn(w(S ∩ [n]))| ≤ 1

n
. On the other hand, Theorem 1 readily implies that

ϕn(w(S ∩ [n])) tends to the expression we gave for ϕ
(∞)
i (w(S)). We conclude that

ϕn(q) tends to the same expression.

We conclude by showing that the limiting functions ϕ
(∞)
i are continuous.

Theorem 4 Let i be a positive integer. The function ϕ
(∞)
i is continuous on

(0, w(∞)), and limq→0 ϕ
(∞)
i (q) = limq→w(∞) ϕ

(∞)
i (q) = 0.

Proof Let q ∈ (0, w(∞)). We start by showing that ϕ
(∞)
i is continuous from the

right at q. Lemma 11 shows that we can find a subset P such that either q = w(P )

or q ∈ (w(P −), w(P )]. If q < w(P ) then since ϕ
(∞)
i is constant on (w(P −), w(P )]

according to Theorem 3, clearly ϕ
(∞)
i is continuous from the right at q. Therefore we

can assume that q = w(P ). Since q < w(∞), we can further assume that there are
infinitely many n /∈ P .

Suppose that we have a sequence qj tending to q strictly from the right. For each
j we can find a subset Pj such that either qj = w(Pj ) or qj ∈ (w(P −

j ), w(Pj )].
We can assume that the second case doesn’t happen by replacing qj with w(P −

j );
the new sequence still tends to q strictly from the right. So we can assume that qj =
w(Pj ) > w(P ). Let k(j) = min(Pj \ P), and let l(j) > k(j) be the smallest index
larger than k(j) such that l(j) /∈ P . Then

qj − q = w(Pj ) − w(P ) ≥ wk(j) −
⎛

⎝
∞∑

t=k(j)+1

wt − wl(j)

⎞

⎠ ≥ wl(j).

As j → ∞, l(j) → ∞ and so k(j) → ∞. Therefore we can assume without loss of
generality that k(j) > i for all j . Theorem 3 then implies that

|ϕ(∞)
i (qj ) − ϕ

(∞)
i (q)| ≤

∞∑

s=0

1

(k(j) + s)
(
k(j)+s−1

s

) = 1

k(j) − 1
,

using Lemma 5. Since k(j) → ∞, ϕ
(∞)
i (qj ) → ϕ

(∞)
i (q).

We proceed to show that ϕ
(∞)
i is continuous from the left at q. Lemma 11 shows

that we can find a subset P such that either q = w(P ) or q ∈ (w(P −), w(P )]. In
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the second case, since ϕ
(∞)
i is constant on (w(P −), w(P )] according to Theorem 3,

clearly ϕ
(∞)
i is continuous from the left at q. Therefore we can assume that q =

w(P ). Since q > 0, we can further assume that there are infinitely many n ∈ P .
Suppose that we have a sequence qj tending to q strictly from the left. For each j

we can find a subset Pj such that either qj = w(Pj ) or qj ∈ (w(P −
j ), w(Pj )], and

in both cases qj ≤ w(Pj ) < w(P ). Let k(j) = min(P \ Pj ), and let l(j) > k(j) be
the smallest index larger than k(j) such that l(j) ∈ P . Then

q − qj ≥ w(P ) − w(Pj ) ≥ wk(j) + wl(j) −
∞∑

t=k(j)+1

wt ≥ wl(j).

At this point we can prove that ϕ
(∞)
i (qj ) → ϕ

(∞)
i (q) as in the preceding case.

It remains to show that limq→0 ϕ
(∞)
i (q) = limq→w(∞) ϕ

(∞)
i (q) = 0. We start by

showing that limq→0 ϕ
(∞)
i (q) = 0. Let qj be a sequence tending to 0 strictly from

the right. As before, we can assume that qj = w(Pj ) for each j . Let k(j) = min Pj .
Since qj ≥ wk(j), k(j) → ∞. Therefore we can assume without loss of generality
that k(j) > i for all j . Theorem 3 then implies that

ϕ
(∞)
i (qj ) ≤

∞∑

s=0

1

(k(j) + s)
(
k(j)+s−1

s

) = 1

k(j) − 1
,

using Lemma 5. Since k(j) → ∞, ϕ
(∞)
i (qj ) → 0.

We finish the proof by showing that limq→w(∞) ϕ
(∞)
i (q) = 0. Let qj be a

sequence tending to M strictly from the left. As before, we can find subsets Pj such

that qj ≤ w(Pj ) and ϕ
(∞)
i (qj ) = ϕ

(∞)
i (w(Pj )). Let k(j) be the minimal k /∈ Pj .

Since qj ≤ w(∞) − wk(j), k(j) → ∞. Therefore we can assume without loss of
generality that k(j) > i for all j . Theorem 3 implies that

ϕ
(∞)
i (qj ) ≤ 1

i
(
i−1
i−1

) −
k(j)−1−i∑

�=1

1

(i + �)
(
i+�−1
i+�−2

) = 1

k(j) − 1
,

using Lemma 5. Since k(j) → ∞, ϕ
(∞)
i (qj ) → 0.

Summarizing, we can extend the functions ϕi(w|n; q) to a continuous function
ϕ

(∞)
i which agrees with ϕi(w|n; q) on the points w(S) for S ⊆ {1, . . . , n}.

When wi = 2−i the plot of ϕ(∞) has no flat areas, but when wi = d−i for
d > 2, the limiting function is constant on intervals (w(S−), w(S)]. This is reflected
in Fig. 1d. These flat areas highlight a curious phenomenon. When w1 >

∑∞
j=2 wj ,

we have w({2, 3, . . . , ∞}) < w({1}), which corresponds to the strict inequality
0.0111 . . . < 0.1 in binary, or 0.4999 . . . < 0.5 in decimal. The infinitesimal differ-
ence is expanded to an interval (w({1}−), w({1})] of non-zero width w1 −∑∞

j=2 wj .
When wi >

∑∞
j=i+1 wj for all i, this phenomenon happens around every dyadic

number.
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6 Conclusions and Future Work

In this paper we present a series of novel results characterizing the behavior of the
Shapley value in WVGs when weights are super-increasing. We derive an explicit
formula for the Shapley value in this case, and use it to gain several insights, bounding
the gain in value as the quota changes, and explaining our results via the behavior
of an interesting fractal function. While our technical results are interesting on their
own, they offer some instructive insights on the study of WVGs in the AI lens. In
particular, our analysis shows that when weights follow a nice enough pattern, it is
easy to infer players’ voting power; this is a useful insight if one is interested in
strategic manipulation of voting games via merging and weight splitting [1, 31, 32,
52]. These works analyze what happens when two parties (players) decide to merge
their weights (in the context of parliaments this would be equivalent to two small
parties deciding to vote together on all issues), or a bigger party deciding to split
its weights in order to artificially garner more political power. Our work presents an
extreme case where analyzing the effects of such manipulative behavior is easy.
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