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Abstract Let G = (V , E) be a simple graph and w ∈ Z
E
>0 assign each edge e ∈ E

a positive integer weight w(e). A subset of E that intersects every triangle of G is
called a triangle cover of (G,w), and its weight is the total weight of its edges. A col-
lection of triangles in G (repetition allowed) is called a triangle packing of (G,w) if
each edge e ∈ E appears in at most w(e) members of the collection. Let τt (G,w) and
νt (G,w) denote the minimum weight of a triangle cover and the maximum cardinal-
ity of a triangle packing of (G,w), respectively. Generalizing Tuza’s conjecture for
unit weight, Chapuy et al. conjectured that τt (G,w)/νt (G,w) ≤ 2 holds for every
simple graph G and every w ∈ Z

E
>0. In this paper, using a hypergraph approach, we

design polynomial-time combinatorial algorithms for finding triangle covers of small
weights. These algorithms imply new sufficient conditions for the conjecture of Cha-
puy et al. More precisely, given (G,w), suppose that all edges of G are covered by
the set TG consisting of edge sets of triangles in G. Let |E|w = ∑

e∈E w(e) and
|TG|w = ∑

{e,f,g}∈TG
w(e)w(f )w(g) denote the weighted numbers of edges and

triangles in (G,w), respectively. We show that a triangle cover of (G,w) of weight
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at most 2νt (G,w) can be found in strongly polynomial time if one of the follow-
ing conditions is satisfied: (i) νt (G,w)/|TG|w ≥ 1

3 , (ii) νt (G,w)/|E|w ≥ 1
4 , (iii)

|E|w/|TG|w ≥ 2.

Keywords Triangle cover · Triangle packing · Linear 3-uniform hypergraphs ·
Combinatorial algorithms

1 Introduction

Graphs considered in this paper are undirected, finite and may have multiple edges.
Given a graph G = (V , E) with vertex set V (G) = V and edge set E(G) = E, a
triangle in G is a 3-vertex complete subgraph. For convenience, we often identify a
triangle in G with its edge set. A subset of E is called a triangle cover if it intersects
each triangle of G. Let τt (G) denote the minimum cardinality of a triangle cover of
G, referred to as the triangle covering number of G. A set of pairwise edge-disjoint
triangles in G is called a triangle packing of G. Let νt (G) denote the maximum
cardinality of a triangle packing of G, referred to as the triangle packing number of
G. It is clear that 1 ≤ τt (G)/νt (G) ≤ 3 holds for every graph G. Our research is
motivated by the following conjecture of Tuza [1], and its weighted generalization of
Chapuy et al. [2].

Conjecture 1.1 (Tuza’s Conjecture [1]) τt (G)/νt (G) ≤ 2 holds for every simple
graph G.

To the best of our knowledge, the conjecture is still unsolved in general. If it is
true, then the upper bound 2 is sharp as shown by K4 and K5 – the complete graphs
of orders 4 and 5.

Related Work The only known universal upper bound smaller than 3 was given
by Haxell [3], who showed that τt (G)/νt (G) ≤ 66/23 = 2.8695. . . holds for all
simple graphs G. Haxell’s proof [3] implies a polynomial-time algorithm for finding
a triangle cover of cardinality at most 66/23 times that of a maximal triangle packing.
Other partial results on Tuza’s conjecture concern special classes of graphs.

Tuza [4] proved his conjecture holds for planar simple graphs, K5-free chordal
simple graphs, and simple graphs with n vertices and at least 7n2/16 edges. The
proof for planar graphs [4] gives an elegant polynomial-time algorithm for finding a
triangle cover in planar simple graphs with cardinality at most twice that of a maxi-
mal triangle packing. The validity of Tuza’s conjecture on the class of planar graphs
was later generalized by Krivelevich [5] to the class of simple graphs without K3,3-
subdivision. Haxell and Kohayakawa [6] showed that τt (G)/νt (G) ≤ 2 − ε for
tripartite simple graphs G, where ε is about 0.044. Haxell, Kostochka and Thomassé
[7] proved that every K4-free planar simple graph G satisfies τt (G)/νt (G) ≤ 1.5.

Regarding the tightness of the conjectured upper bound 2, Tuza [4] noticed that
infinitely many simple graphs G attain the conjectured upper bound τt (G)/νt (G) =
2. Cui, Haxell and Ma [8] characterized planar simple graphs G satisfying
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τt (G)/νt (G) = 2; these graphs are edge-disjoint unions of K4’s plus possibly some
vertices and edges that are not in triangles. Baron and Kahn [9] proved that Tuza’s
conjecture is asymptotically tight for dense simple graphs.

Fractional and weighted variants of Conjecture 1.1 were studied in literature. Kriv-
elevich [5] proved two fractional versions of the conjecture: τt (G) ≤ 2ν∗

t (G) and
τ ∗
t (G) ≤ 2νt (G), where τ ∗

t (G) and ν∗
t (G) are the values of an optimal fractional

triangle cover and an optimal fractional triangle packing of simple graph G, respec-
tively. The result was generalized by Chapuy et al. [2] to the weighted version.
Given a simple graph G and a positive integer edge weight function w ∈ Z

E(G)
>0 , the

weight of any subset S of E(G) is the total weight of its edges. A triangle packing
of (G,w) refers to a collection of triangles in G (repetition allowed) such that each
edge e ∈ E(G) appears in at most w(e) members of the collection. Let τt (G,w) and
νt (G,w) denote the minimum weight of a triangle cover and the maximum cardinal-
ity of a triangle packing of (G,w), respectively. The values of τt (G,w) and νt (G,w)

are often referred to as the weighted triangle covering number and weighted triangle
packing number of G, respectively. Observe that 1 ≤ τt (G,w)/νt (G,w) ≤ 3 holds
for every weighted graph (G,w). Chapuy et al. [2] studied the following weighted
(version of) Tuza’s conjecture:

Conjecture 1.2 ([2]) τt (G,w)/νt (G,w) ≤ 2 holds for every simple graph G and
every weight function w ∈ Z

E(G)
>0 .

The authors [2] showed that τt (G,w) ≤ 2ν∗
t (G,w) − √

ν∗
t (G,w)/6 + 1 and

τ ∗
t (G,w) ≤ 2νt (G,w), where τ ∗

t (G,w) and ν∗
t (G,w) are the (equal) values of an

optimal fractional triangle cover and an optimal fractional triangle packing of (G,w),
respectively, for which τt (G,w) ≥ τ ∗

t (G,w) = ν∗
t (G,w) ≥ νt (G,w) is guaran-

teed by the linear programming (LP) duality. Their arguments imply an LP-based
2-approximation algorithm for finding a minimum weighted triangle cover.

Our Contributions Along a different line, we establish new sufficient conditions
for validity of (weighted) Tuza’s conjecture by comparing the (weighted) triangle
packing number, the (weighted) number of triangles and the (weighted) number of
edges in graphs.

Given a graph G, we use TG = {E(T ) : T is a triangle in G} to denote the set
consisting of the (edge sets of) triangles in G. Without loss of generality, we focus
on the graphs in which every edge is contained in some triangle. These graphs are
called irreducible.

Theorem 1.3 Let G = (V , E) be an irreducible graph. Then a triangle cover of
G with cardinality at most 2νt (G) can be found in polynomial time, which implies
τt (G) ≤ 2νt (G), if one of the following conditions is satisfied:

(i) νt (G)/|TG| ≥ 1
3 ,

(ii) νt (G)/|E| ≥ 1
4 ,

(iii) |E|/|TG| ≥ 2.
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The primary idea behind the theorem is simple: any one of conditions (i) – (iii)
allows us to remove at most νt (G) edges from G to make the resulting graph G′
satisfy τt (G

′) = νt (G
′); the removed edges and the edges in a minimum triangle

cover of G′ form a triangle cover of G with size at most νt (G) + νt (G
′) ≤ 2νt (G).

The idea is realized by establishing new results on (linear) 3-uniform hypergraphs
(see Section 2); the most important one states that such a hypergraphs could be made
acyclic by removing a number of vertices that is no more than a third of the number
of its edges. A key observation here is that hypergraph (E, TG) is 3-uniform, and it
is linear when G is simple.

It is worthwhile pointing out that strengthening Theorem 1.3, our arguments
actually establish stronger results for 3-uniform hypergraphs (see Theorem 4.1).

Theoretically, weighted triangle packing and covering in (G,w) amounts to
(unweighted) triangle packing and covering in multigraph Gw which is obtained
from G by replacing each edge e ∈ E(G) with a number w(e) of multiple edges.1

However, from an algorithmic point of view, polynomial-time solvability of trian-
gle packing and covering in Gw does not necessarily imply the same for (G,w). By
more careful consideration on edge weights and utilization of unique properties of
(E,TG), we ensure strong polynomial-time computation for weighted graphs.

Theorem 1.4 Let G = (V , E) be an irreducible simple graph, w ∈ Z
E
>0, |E|w =∑

e∈E w(e) and |TG|w = ∑
{e,f,g}∈TG

w(e)w(f )w(g). Then a triangle cover of
(G, w) with weight at most 2νt (G,w) can be found in strongly polynomial time,
which implies τt (G,w) ≤ 2νt (G,w), if one of the following conditions is satisfied:

(i) νt (G,w)/|TG|w ≥ 1
3 ,

(ii) νt (G,w)/|E|w ≥ 1
4 ,

(iii) |E|w/|TG|w ≥ 2.

When w = 1, Theorem 1.4 is nothing but Theorem 1.3. To show the quality
of conditions (i) – (iii) in Theorems 1.3 and 1.4, we obtain the following result
which complements to the constants 1

3 , 1
4 and 2 in these conditions with 1

4 , 1
5 and 3

2 ,
respectively.

Theorem 1.5 Tuza’s conjecture holds for every simple graph (resp. multigraph) if
there exists some real δ > 0 such that Tuza’s conjecture holds for every irreducible
simple graph (resp. multigraph) G satisfying one of the following properties:

(i’) νt (G)/|TG| ≥ 1
4 − δ,

(ii’) νt (G)/|E| ≥ 1
5 − δ,

(iii’) |E|/|TG| ≥ 3
2 − δ.

Note that the statement of Theorem 1.5 for multigraphs can be converted to an
equivalent weighted version concerning with edge-weighted simple graphs.

1Sometimes we use the term “multigraph” to emphasize that the graph under investigation might not be
simple.
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This paper turns out to be a complete generalization and strengthening of the
recent work on unweighted simple graphs [10]. In the present paper, we study triangle
packing and covering not only for general multigraphs, but also for weighted simple
graphs from an algorithmic point of view. The strong polynomial-time algorithms we
design for the weighted case exhibit nice combinatorial properties. These efficient
algorithms strengthen the theoretical equivalence between packing and covering tri-
angles in multigraphs and that in weighted simple graphs. Regarding hypergraph
theory, we generalize previous results on linear 3-uniform graphs [10] to the ones
without the linearity requirement (see Section 2.1). In addition, we establish a new
upper bound on the transversal number of connected linear 3-uniform hypergraphs
(Theorem 2.10); the proof implies a faster 2-approximation algorithm for finding
minimum triangle cover in simple graph G provided νt (G)/|TG| ≥ 1/3 (see Algo-
rithm 2, Corollaries 2.11 and 3.10). Moreover, as an application of condition (ii)
in Theorem 1.3, we investigate Tuza’s conjecture on the classical Erdős-Rényi ran-
dom graph G(n, p), and prove that Pr[τt (G)/νt (G) ≤ 2] = 1 − o(1) provided
G ∈ G(n, p) and p >

√
3/2 (Theorem 3.14).

The rest of paper is organized as follows. Section 2 proves theoretical and
algorithmic results on 3-uniform hypergraphs concerning feedback sets and transver-
sals, which are main technical tools for establishing new sufficient conditions for
(weighted) Tuza’s conjecture in Section 3. Section 4 concludes the paper with
extensions and future research directions.

2 Hypergraphs

This section develops hypergraph tools for studying Tuza’s conjecture. The theoreti-
cal and algorithmic results are of interest in their own right.

Let H = (V, E) be a hypergraph with vertex set V and edge set E . For convenience,
we use ||H|| to denote the number |E | of edges in H. If a hypergraph H′ = (V ′, E ′)
satisfies V ′ ⊆ V and E ′ ⊆ E , we call H′ a subhypergraph of H, and write H′ ⊆ H.
For each v ∈ V , the degree dH(v) is the number of edges in E that contain v. We
say v is an isolated vertex of H if dH(v) = 0. Let k ∈ Z>0 be a positive integer.
A hypergraph H is called k-regular if dH(u) = k for each u ∈ V , and k-uniform if
|e| = k for each e ∈ E . A hypergraph H is linear if |e∩f | ≤ 1 for any pair of distinct
edges e, f ∈ E .

A vertex-edge alternating sequence v1e1v2 · · · vkekvk+1 of H is called a path (of
length k) between v1 and vk+1 if v1, v2, . . ., vk+1 ∈ V are distinct, e1, e2, . . ., ek ∈ E
are distinct, and {vi, vi+1} ⊆ ei for each i ∈ [k] = {1, . . . , k}. For each i ∈ [k], edges
ei and ei+1 are consecutive, where ek+1 = e1. We consider each vertex of H as a path
of length 0. A hypergraph H is said to be connected if there is a path between any
pair of distinct vertices in H. A maximal connected subhypergraph of H is called a
component of H. Obviously, H is connected if and only if it has only one component.

A vertex-edge alternating sequence C = v1e1v2e2 · · · vkekv1, where k ≥ 2, is
called a cycle (of length k) if v1, v2, . . ., vk ∈ V are distinct, e1, e2, . . ., ek ∈ E are
distinct, and {vi, vi+1} ⊆ ei for each i ∈ [k], where vk+1 = v1. We consider the cycle
C as a subhypergraph of H with vertex set ∪i∈[k]ei and edge set {ei : i ∈ [k]}. We call
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vertices v1, v2, . . . , vk join vertices of C, and the other vertices non-join vertices of
C. For any S ⊂ V (resp. S ⊂ E), we write H\S for the subhypergraph of H obtained
from H by deleting all vertices in S and all edges incident with some vertices in S
(resp. deleting all edges in S and keeping all the vertices). If S is a singleton set {s},
we write H\ s instead of H\ {s}. For any S ⊆ 2V , the hypergraph (V, E ∪S) is often
written as H � S, and as H ⊕ S if S ∩ E = ∅. A connected hypergraph without any
cycle is called a tree.

This section is divided into three subsections, discussing feedback sets of 3-
uniform hypergraphs, weighted hypergraphs, and transversals (i.e., vertex sets
covering all edges) of linear 3-uniform hypergraphs, respectively.

2.1 Feedback Sets

Let H = (V, E) be a hypergraph. A vertex (resp. edge) subset of H is called a
feedback vertex set or FVS (resp. feedback edge set or FES) of H if it intersects the
vertex (resp. edge) set of every cycle of H. A vertex subset of H is called a quasi-
FVS of H if it intersects every cycle of length at least 3 in H. Let τV

c (H), τE
c (H)

and τV◦ (H) denote, respectively, the minimum cardinalities of a FVS, a FES, and a
quasi-FVS of H. It is easy to see that τV◦ (H) ≤ τV

c (H) ≤ τE
c (H).

Our discussion will frequently use the trivial observation that if no cycle of H
contains any element of some subset S (with S ⊂ V or S ⊂ E), then H and H \ S
have the same set of quasi-FVS’s, and τV◦ (H) = τV◦ (H \ S). The following theorem
is one of main contributions of this paper.

Theorem 2.1 Let H be a 3-uniform hypergraph. Then τV◦ (H) ≤ ||H||/3.

Proof Suppose that the theorem failed. We take a counterexample H = (V, E) with
τV◦ (H) > |E |/3 such that ||H|| = |E | is as small as possible. Obviously |E | ≥ 3.
Without loss of generality, we can assume that H has no isolated vertices.

If there exists e ∈ E which does not belong to any cycle of H with length at least
3, then τV◦ (H) = τV◦ (H \ e). The minimality of H = (V, E) implies τV◦ (H \ e) ≤
(|E | − 1)/3, giving τV◦ (H) < |E |/3, a contradiction. So we have

(1) Every edge in E is contained in some cycle of H with length at least 3.

If there exists v ∈ V with dH(v) ≥ 3, then τV◦ (H \ v) ≤ (|E | − dH(v))/3 ≤
(|E |−3)/3, where the first inequality is due to the minimality of H. Given a minimum
quasi-FVS S of H \ v, it is clear that S ∪{v} is a quasi-FVS of H with size |S|+ 1 =
τV◦ (H \ v) + 1 ≤ |E |/3, a contradiction to τV◦ (H) > |E |/3. So we have

(2) dH(v) ≤ 2 for all v ∈ V .

If H has a pair of distinct edges e = {t, u, v} and f sharing two common vertices
u, v, then from (2) we see that u and v are incident with e and f only. In view of (1),
considering a cycle of length at least 3 that goes through e, we deduce that this cycle
goes through an edge g ∈ E − {e, f } which is incident with e at vertex t . See Fig. 1
for an illustration. Let S be a minimum quasi-FVS of H′ = H \ {e, f, g}. It follows
from (2) that H \ t ⊆ H \ {e, g} = H′ ⊕ f , and in H \ {e, g}, edge f intersects at
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Fig. 1 The case of nonlinearity

most one other edge, which avoids u and v. Therefore f is not contained in any cycle
in H\{e, g}. Thus S is a quasi-FVS of H\{e, g}, and hence a quasi-FVS of H\ t . So
{t} ∪ S is a quasi-FVS of H. We deduce that |E |/3 < τV◦ (H) ≤ |{t} ∪ S| ≤ 1 + |S|.
Therefore τV◦ (H′) = |S| > (|E | − 3)/3 = ||H′||/3 shows a contradiction to the
minimality of H.

Henceforth, we assume H is linear, and any cycle in H is of length at least 3. In
any subhypergraph H′ of H, all quasi-FVS are FVS, and τV◦ (H′) = τV

c (H′).
Suppose that there exists v ∈ V with dH(v) = 1. Let e1 ∈ E be the

unique edge that contains v. Recall from (1) that e1 is contained in a cycle C =
v1e1v2e2v3 · · · ekv1, where k ≥ 3. By (2), we have dH(vi) = 2 for all i ∈ [k]. In par-
ticular dH(v1) = dH(v2) = 2 > dH(v) implies v �∈ {v1, v2}, and in turn v1, v2, v ∈
e1 enforces e1 = {v1, v, v2}. Let S be a minimum FVS of H′ = H \ {e1, e2, e3}. It
follows from (2) that

H \ v3 ⊆ H \ {e2, e3} = H′ ⊕ e1,

and inH′⊕e1, edge e1 intersects at most one other edge, and therefore is not contained in
any cycle. Thus S is a FVS ofH′⊕e1, and hence a FVS of H\v3, implying that {v3}∪S
is a FVS of H. We deduce that |E |/3 < τV

c (H) ≤ |{v3} ∪ S| ≤ 1 + |S|. Therefore
τV
c (H′) = |S| > (|E | − 3)/3 = ||H′||/3 shows a contradiction to the minimality of
H. Hence the vertices of H all have degree at least 2, which together with (2) gives

(3) H is 2-regular.

Let C = (Vc, Ec) = v1e1v2e2 · · · vkekv1 be a shortest cycle in H, where k ≥ 3.
For each i ∈ [k], suppose that ei = {vi, ui, vi+1}, where vk+1 = v1.

Because C is a shortest cycle, for each pair of distinct indices i, j ∈ [k], we have
ei ∩ej = ∅ if and only if ei and ej are not adjacent in C, i.e., |i −j | �∈ {1, k−1}. This
fact along with the linearity of H says that v1, v2, . . . , vk, u1, u2, . . . , uk are distinct.
By (3), each ui is contained in a unique edge fi ∈ E \ Ec, i ∈ [k]. We distinguish
among three cases depending on the values of k (mod 3). In each case, we construct
a proper subhypergraph H′ of H with ||H′|| < ||H|| and τV

c (H′) > ||H′||/3 which
shows a contradiction to the minimality of H.
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CASE 1. k ≡ 0 (mod 3) Let S be a minimum FVS of H′ = H \ Ec. Setting V∗ =
{vi : i ≡ 0 (mod 3), i ∈ [k]} and E∗ = {ei : i ≡ 1 (mod 3), i ∈ [k]}, it follows
from (3) that

H \ V∗ ⊆ (H \ Ec) ⊕ E∗ = H′ ⊕ E∗,
and in H′ ⊕E∗, each edge in E∗ intersects exactly one other edge, and therefore is not
contained in any cycle. Thus (H′ ⊕ E∗) \ S is also acyclic, so is (H \ V∗) \ S, saying
that V∗ ∪ S is a FVS of H. We deduce that |E |/3 < τV

c (H) ≤ |V∗ ∪ S| ≤ k/3 + |S|.
Therefore τV

c (H′) = |S| > (|E | − k)/3 = ||H′||/3 shows a contradiction.

CASE 2. k ≡ 1 (mod 3) Consider the case where f1 �= f3 or f2 �= f4. Relabeling
the vertices and edges if necessary, we may assume without loss of generality that
f1 �= f3. Let S be a minimum FVS of H′ = H \ (Ec ∪ {f1, f3}). Set V∗ = ∅,
E∗ = ∅ if k = 4 and V∗ = {vi : i ≡ 0 (mod 3), i ∈ [k] − [3]}, E∗ = {ei : i ≡ 1
(mod 3), i ∈ [k] − [6]} otherwise. In any case we have |V∗| = (k − 4)/3 and

H \ ({u1, u3} ∪V∗) ⊆ (H \ (Ec ∪ {f1, f3})) ⊕ ({e2, e4} ∪ E∗) = H′ ⊕ ({e2, e4} ∪ E∗).

Note from (3) that in H′ ⊕ ({e2, e4} ∪ E∗), each edge in {e2, e4} ∪ E∗ can intersect
at most one other edge, and therefore is not contained in any cycle. Thus (H′ ⊕
({e2, e4}∪E∗))\S is also acyclic, so is (H\({u1, u3}∪V∗))\S. Thus {u1, u3}∪V∗∪S
is a FVS of H, and |E |/3 < τV

c (H) ≤ |{u1, u3} ∪ V∗ ∪ S| ≤ 2 + |V∗| + |S| =
(k+2)/3+|S|. This gives τV

c (H′) = |S| > (|E |−k−2)/3 = |H′|/3, a contradiction.
Consider the case where f1 = f3 and f2 = f4. As u1, u2, u3, u4 are distinct and

|f1| = |f2| = 3, we have f1 �= f2. Observe that u1e1v2e2v3e3u3f3u1 is a cycle in H
of length 4. The minimality of k enforces k = 4. Therefore Ec ∪ {f1, f2} consists of
6 distinct edges. Let S be a minimum FVS of H′ = H \ (Ec ∪ {f1, f2}). It follows
from (3) that

H \ {u2, u4} ⊆ (H \ (Ec ∪ {f1, f2})) ⊕ {e1, e3, f1} = H′ ⊕ {e1, e3, f1}.
In H′⊕{e1, e3, f1}, both e1 and e3 intersect only one other edge, which is f1, and any
cycle through f1 must contain e1 or e3. It follows that none of e1, e3, f1 is contained
in a cycle of H′ ⊕ {e1, e3, f1}. Thus (H′ ⊕ {e1, e3, f1}) \ S is acyclic, so is (H \
{u2, u4}) \ S, saying that {u2, u4} ∪ S is a FVS of H. Hence |E |/3 < τV

c (H) ≤
|{u2, u4} ∪ S| ≤ 2 + |S|. In turn τV

c (H′) = |S| > (|E | − 6)/3 = ||H′||/3 shows a
contradiction.

CASE 3. k ≡ 2 (mod 3) Let S be a minimum FVS of H′ = H\ (Ec ∪{f1}). Setting
V∗ = {vi : i ≡ 1 (mod 3), i ∈ [k] − [3]} and E∗ = {ei : i ≡ 2 (mod 3), i ∈ [k]}, we
have |V∗| = (k − 2)/3 and

H \ ({u1} ∪ V∗) ⊆ (H \ (Ec ∪ {f1})) ⊕ E∗ = H′ ⊕ E∗
In H′ ⊕ E∗, each edge in E∗ intersects at most one other edge, and therefore is not
contained in any cycle. Thus (H′ ⊕ E∗) \ S is acyclic, so is (H \ ({u1} ∪ V∗)) \ S.
Hence {u1} ∪ V∗ ∪ S is a FVS of H, yielding |E |/3 < τV

c (H) ≤ |{u1} ∪ V∗ ∪ S| ≤
1 + (k − 2)/3 + |S| and a contradiction τV

c (H′) = |S| > (|E | − k − 1)/3 = ||H′||/3.
The combination of the above three cases completes the proof.
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Corollary 2.2 Let H be a linear 3-uniform hypergraph. Then τV
c (H) ≤ ||H||/3.

We remark that the upper bound ||H||/3 in Theorem 2.1 and Corollary 2.2 is best
possible. See Fig. 2 for illustrations of five linear 3-uniform hypergraphs attaining
the upper bound. It is easy to prove that the maximum degree of every extremal
hypergraph (those linear 3-uniform H with τV

c (H) = ||H||/3) is at most three. It
would be interesting to characterize all extremal hypergraphs for Corollary 2.2.

The proof of Theorem 2.1 actually gives a recursive combinatorial algorithm for
finding in polynomial time a quasi-FVS (resp. FVS) of size at most ||H||/3 on a
3-uniform (resp. linear 3-uniform) hypergraph H.

Algorithm 1 Quasi-feedback vertex sets of 3-uniform hypergraphs
Input: 3-uniform hypergraph
Output: ALG1 , which is a quasi-FVS of with cardinality at most 3.

1. If 2 Then ALG1
2. Else If such that is not contained in any cycle of
3. Then ALG1 ALG1
4. If such that 3
5. Then ALG1 ALG1
6. If such that 2 and
7. Then ALG1 ALG1
8. If such that 1
9. Then Let be a cycle of such that

10. ALG1
11. Let be a shortest cycle in
12. For each let be such that

13. If 0 mod 3 Then ALG1 mod 3
ALG1

14. If 1 mod 3
15. Then If or
16. Then Relabel vertices and edges if necessary to make

17.
.81

19. Else ALG1 ALG1
20. If mod 3
21. Then ALG1 mod 3

ALG1
22. Output ALG1

Note that Algorithm 1 never visits isolated vertices (it only scans along the edges
of the current hypergraph). The number of iterations performed by the algorithm is
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Fig. 2 Extremal linear 3-uniform hypergraphs H with τV
c (H) = ||H||/3.

upper bounded by |E |. Since H is 3-uniform, the condition in any step is checkable
in O(|E |2) time. Any cycle in Step 9 or Step 11 can be found in O(|E |2) time.2 Thus
Algorithm 1 runs in O(|E |3) time.

Corollary 2.3 Given any linear 3-uniform (resp. 3-uniform) hypergraph H, Algo-
rithm 1 finds in O(||H||3) time a FVS (resp. quasi-FVS) of H with size at most
||H||/3.

The goal of the next two lemmas is to establish an upper bound on the size of
any minimal FES in a 3-uniform hypergraph H = (V, E). Since τV

c (H) ≤ τE
c (H), it

follows that both τV
c (H) and τE

c (H) are bounded above by this bound.

Lemma 2.4 IfH = (V, E) is a connected 3-uniform hypergraph without cycles, then
|V| = 2|E | + 1.

Proof We prove by induction on |E |. The base case where |E | = 0 is trivial. Induc-
tively, we assume that |E | ≥ 1 and the lemma holds for all connected acyclic
3-uniform hypergraph with fewer edges than H. Take arbitrary e ∈ E . Since H is
connected, acyclic and 3-uniform, H \ e contains exactly three components Hi =
(Vi , Ei ), i = 1, 2, 3. Note that for each i ∈ [3], hypergraph Hi with |Ei | < |E | is con-
nected, 3-uniform and acyclic. By the induction hypothesis, we have |Vi | = 2|Ei |+1
for i = 1, 2, 3. It follows that |V| = ∑3

i=1 |Vi | = 2
∑3

i=1 |Ei | + 3 = 2|E | + 1.

Given any hypergraph H = (V, E), we can easily find a minimal (not necessarily
minimum) FES in O(|E |2) time: Go through the edges of the trivial FES E in any
order, and remove the edge from the FES if the edge is redundant. The redundancy
test can be implemented using Depth First Search.

Lemma 2.5 LetH = (V, E) be a 3-uniform hypergraph with p components. IfF is a
minimal FES ofH, then |F | ≤ 2|E |−|V|+p. In particular, τE

c (H) ≤ 2|E |−|V|+p.

2A shortest path between any pair of vertices can be found in O(|E |) time using breadth first search. A
shortest cycle can be found by checking all O(|E |) possibilities.



Theory Comput Syst (2018) 62:1525–1552 1535

Proof Suppose that H \ F contains exactly k components Hi = (Vi , Ei ), i =
1, . . . , k. It follows from Lemma 2.4 that |Vi | = 2|Ei | + 1 for each i ∈ [k].
Thus |V| = ∑

i∈[k] |Vi | = 2
∑

i∈[k] |Ei | + k = 2(|E | − |F |) + k, which means
2|F | = 2|E | − |V| + k. To establish the lemma, it suffices to prove k ≤ |F | + p.

In case of |F | = 0, we have F = ∅ and k = p = |F | + p. In case of |F | ≥ 1,
suppose that F = {e1, . . ., e|F |}. Because F is a minimal FES of H, for each i ∈
[|F |], there is a cycle Ci in H \ (F \ {ei}) such that ei ∈ Ci , and Ci \ ei is a path in
H \ F connecting two of the three vertices in ei . Considering H \ F being obtained
from H be removing e1, e2, . . . , e|F | sequentially, for i = 1, . . . , |F |, since |ei | = 3,
the presence of path Ci \ ei implies that the removal of ei can create at most one more
component. Therefore we have k ≤ p + |F | as desired.

2.2 Vertex-Weighted Hypergraphs

As will be seen later, we will convert our problem of finding triangle covering and
packing numbers to the problem of weighted vertex covering and packing on an
acyclic 3-uniform hypergraph. The latter problem has been known to be solvable in
strongly polynomial time, for which we recall in this subsection some related results
on hypergraph theory and integer programming.

Given a hypergraph H = (V, E) with n vertices and m edges, and a weight func-
tion w ∈ Z

V
>0, the weight (also referred to as weighted cardinality) of any subset S

of V and that of any subset F of E are defined as

|S|w =
∑

s∈S
w(s) and |F |w =

∑

F∈F

∏

s∈F

w(s),

respectively. A transversal of H is a vertex subset of V that intersects each edge in E .
A w-matching of H is a collection of edges in H (repetition allowed) such that each
vertex v ∈ V appears in at most w(v) members of the collection. Let τ(H,w) and
ν(H,w) denote the minimum weight of a transversal and maximum cardinality of a
w-matching of H, respectively. It is well known that τ(H,w) ≥ ν(H,w).

Let MH be the V × E incidence matrix. From MH, we can construct a bipartite
graph GH with bipartition V, E such that there is an edge of GH between v ∈ V and
e ∈ E if and only if v ∈ e in H. Suppose that H is acyclic. It is easy to see that
GH is acyclic. Thus M = MH falls within the class of restricted totally unimodular
(RTUM) matrices defined by Yannakakis [11]. As the name indicates, RTUM matri-
ces are all totally unimodular. Hence the total unimodularity and LP duality give the
well-known result [12] that

τ(H,w) = min{wT x : MT x ≥ 1, x ≥ 0}= max{1T y : My ≤ w, y ≥ 0} = ν(H,w).

Moreover, since M is RTUM, both a minimum weighted transversal and a maxi-
mum weighted matching of H can be found in O(n(m + n log n) log n) time using
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Yanakakis’s combinatorial algorithm [11] based on the current best combinatorial
algorithms for the b-matching problem and the maximum weighted independent set
problem on a bipartite multigraph with n vertices and m edges, where the bipar-
tite b-matching problem can be solved with the minimum-cost flow algorithm in
O(n log n(m + n log n)) time (see Section 21.5 and page 356 of [13]) and the maxi-
mum weighted independent set problem can be solved with maximum flow algorithm
in O(nm log n) time (See pages 300-301 of [11]).

Theorem 2.6 ([11, 12]) Let H = (V, E) be a hypergraph with n non-isolated ver-
tices and m edges, and w ∈ Z

V
>0. If H has no cycle, then τ(H,w) = ν(H,w), and a

minimum weighted transversal and a maximum w-matching of (H,w) can be found
in O(n(m + n log n) log n) time.

In the case of unit weight (i.e., the unweighted case), 1-matching of H is often
referred to as a matching of H, which is a nonempty set of pairwise disjoint edges in
H. As usual, τ(H, 1) and τ(H, 1) are abbreviated as τ(H) and ν(H), respectively;
the symbol | · |1 is simply the traditional | · | representing cardinality. Clearly τ(H) ≥
τV
c (H).

2.3 Transversals

In this subsection, we will upper bound τ(H) for connected linear 3-uniform hyper-
graph H by (2||H|| + 1)/3. To this end, we first study some properties of cycles and
components in these hypergraphs. Then we establish the upper bound in Theorem 2.10.

A cycle in a hypergraph is minimal if every pair of nonconsecutive edges of the
cycle is vertex-disjoint. A pair of (minimal) cycles are called intersecting if these two
cycles have at least one vertex in common. A partition of a set into two parts is called
nontrivial if neither of the two parts is empty.

Lemma 2.7 Let C = (V, E) be a linear 3-uniform hypergraph that is a cycle. If C is
not minimal, then there exists a pair of intersecting cycles Ci = (Vi , Ei ), i = 1, 2, in
C such that |V1| < |V|, |V2| < |V|, E = E1∪E2, E1∩E2 �= ∅, and |E1|+|E2| ≤ |E |+2.

Proof We may order the vertices and edges of the cycle C so that C =
v1e1v2e2 · · · vkekv1 has two nonconsecutive edges e1 and ei that have a vertex v in
common, where 3 ≤ i ≤ k − 1. Recall that v1, v2, . . . , vk (resp. e1, e2, . . . , ek)
are all distinct. If v �∈ {v1, v2, . . . , vk}, then C properly contains cycles C1 =
ve1v2e2 · · · viv with length i < k = |V| and C2 = veivi+1 · · · vkekv1e1v with length
k − i + 2 < k = |V|. It is clear that C1 and C2 satisfy the conclusion of the lemma.
It remains to consider the case where either e1 or ei consists of three vertices from
{v1, v2, . . . , vk}. By symmetry, we may assume e1 = {v1, v2, vj } for some j ∈ [3, k].
The linearity of C enforces 4 ≤ j ≤ k − 1, giving C1 = vj e1v2e2 · · · ej−1vj and
C2 = vj ej vj+1 · · · vkv1e1vj as desired.
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Fig. 3 Two neighbors ai , bi (i = 1, 2) of v belong to the same component of H \ v

Corollary 2.8 A linear 3-uniform hypergraph H has a pair of intersecting cycles if
and only ifH has a pair of intersecting minimal cycles.

Proof Take C = (V, E) and C′ = (V ′, E ′) to be a pair of intersecting cycles in H such
that |E | + |E ′| is as small as possible. If one of C and C′, say C, is not minimal, then
by Lemma 2.7, C and hence H contain a pair of intersecting cycles Ci = (Vi , Ei ),
i = 1, 2, with |E1| + |E2| ≤ |E | + 2 < |E | + |E ′|, which gives a contradiction to the
minimality of |E | + |E ′|.

Lemma 2.9 Let H = (V, E) be a connected linear 3-uniform hypergraph. If H has
a pair of intersecting cycles, then there exists a vertex v ∈ V such that H \ v has at
most 2dH(v) − 2 components.

Proof By Corollary 2.8, there exists a pair of intersecting minimal cycles C1 =
v1e1v2e2 · · · vkekv1 and C2 = u1f1u2f2 · · · u�f�u1 in H. Since H is 3-uniform and
linear, forany vertexv ofH,we observe thatv has 2dH(v)neighbors inH.Theconnectivity
ofH implies each component ofH\v has to contain at least one of these 2dH(v)neighbors.

If C1 and C2 do not have any common edge, let v be an arbitrarily taken common
vertex of C1 and C2. For i = 1, 2, no matter v is a join vertex of Ci or not, v is
adjacent to exactly two join vertices of Ci , which we denote as ai, bi . See Fig. 3
for an illustration. Since Ci is minimal, v’s neighbors ai and bi belong to the same
component of H \ v. Hence H \ v has at most 2dH(v) − 2 components.

If C1 and C2 have some edge(s) in common, then, as C1 and C2 are distinct, we may
assume e1 ∈ C2 and e2 �∈ C2 as illustrated in Fig. 4. In case of v1, v2 both being join
vertices of C2 (Fig. 4a), we have v = v2 adjacent to exactly two join vertices of C2 –
one is v1 and the other written as u is not v3. So v1, v3, u are three distinct neighbors
of v which are contained in the same component of H \ v, and we are done. In case
of only one of v1 and v2 being join vertex of C2 (Fig. 4b), let v be the join vertex of
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Fig. 4 Three neighbors u, v1, vi (i = 2 or 3) of v belong to the same component of H \ v

C2 contained in e1 \ {v1, v2} and u be v’s neighbor which is a join vertex of C2 other
than v1 and v2. Now we see that v1, v2, u are three distinct neighbors of v that are
contained in the same component of H \ v. In either case, we reach the conclusion
that H \ v has at most 2dH(v) − 2 components.

Theorem 2.10 Let H be a connected linear 3-uniform hypergraph. Then τ(H) ≤
2||H||+1

3 .

Proof By contradiction, we take a counterexample H = (V, E) with τ(H) >
2||H||+1

3
such that ||H|| is minimum.

IfH is acyclic, then |V| = 2||H||+1 by Lemma 2.4 and τ(H) = ν(H) by Theorem 2.6,
implying a contradiction 2||H||+1

3 < τ(H) = ν(H) ≤ |V |
3 = 2||H||+1

3 . Thus we have

(1) H = (V, E) is not acyclic.

Suppose that there exists v ∈ V such that H \ v consists of k components
H1, . . . ,Hk , where k ≤ 2dH(v) − 2. The minimality of ||H|| implies τ(Hi ) ≤
2||Hi ||+1

3 for all i = 1, . . . , k. It follows that

τ(H)≤ 1+τ(H\v) =1+
k∑

i=1

τ(Hi )≤ 1+
k∑

i=1

2||Hi || + 1

3
= 2[||H|| − dH(v)] + k

3
+1,

which along with k ≤ 2dH(v) − 2 gives τ(H) ≤ 2||H||+1
3 , a contradiction. Therefore

for each vertex v ∈ V , hypergraph H \ v has at least 2dH(v) − 1 components. It
follows from Lemma 2.9 that H does not contain any pair of interesting cycles. In
turn by Lemma 2.7 we see that all cycles of H are minimal, and they are connected
by trees induced by edges of H not in any cycle. Let C denote the set of cycles in H,
and T denote the set of components (maximal subtrees) of the hypergraph induced
the edges of E not in any cycle of H. We associate H with a graph G on vertex set
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Fig. 5 Hypergraph H and its associated graph G, where C = {C1,C2,C3} and T = {T1,T2,T3,T4,T5}

C∪T in which vertex C ∈ C and vertex T ∈ T are joined by an edge if and only if in
H cycle C and tree T have some vertex in common. See Fig. 5 for an illustration.

Since all cycles of H are vertex-disjoint, it is not hard to see that G is a tree. If H is

simply a cycle, then τ(H) =
⌈ ||H||

2

⌉
, which shows a contradiction to τ(H) >

2||H||+1
3 .

Hence

(2) G is a tree of at least two vertices, and it is a bipartite graph with bipartition
(C,T).

Consider any nontrivial partition (E ′
1, E ′

2) of E . For i = 1, 2, let H′
i denote the

subhypergraph of H induced by E ′
i . If H′

1 and H′
2 are connected, then the minimality

of ||H|| implies τ(H′
i ) ≤ 2||H′

i ||+1
3 , i = 1, 2. Since the union of transversals of H′

1

and H′
2 must be a transversal of H, we have 2||H||+1

3 < τ(H) ≤ τ(H′
1) + τ(H′

2) ≤
2||H′

1||+1
3 + 2||H′

2||+1
3 = 2||H||+2

3 , which provides the following important property:

(3) If H′
1 and H′

2 are both connected, then τ(H′
i ) = 2||H′

i ||+1
3 for i = 1, 2.

Recalling (2), we consider a leaf of G, which is a minimal cycle in C or a tree in
T. We denote it as H1 = (V1, E1). As G has at least two vertices, E2 = E − E1 is
nonempty, and it induces a hypergraph H2 = (V2, E2). Because H1 is a leaf of G,
both H1 and H2 are connected. Thus (3) guarantees that

(4) τ(Hi ) = 2||Hi ||+1
3 = 2|Ei |+1

3 for i = 1, 2.

Note that H1 ∈ T for otherwise H1 ∈ C would be a cycle for which we have τ(H1) ≤⌈ ||H1||
2

⌉
<

2||H1||+1
3 . In G, the leaf H1 ∈ T is adjacent to a unique neighbor C, which

belongs to C. By the linearity of H, it is easy to see that tree H1 and cycle C intersect
at exactly one vertex of V , which we denote as v.

Let u1 ∈ V1 be a vertex in H1 which is at the maximum distance from v. If
u1 is not adjacent to v in H1, the unique path between u1 and v may be written
as u1e1u2e2u3 · · · v (see Fig. 6a for an illustration). Suppose e1 = {u1, v1, u2} and
e2 = {u2, v2, u3}. Because u1 is the farthest vertex from v in H1, it must be the
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Fig. 6 H1 and its neighboring structures

case that dH(u1) = dH(v1) = 1. Let E ′
1 be the set of edges in H incident with u2

or v2. The choice of u1 implies that all edges in E ′
1 − {e2} are pendant. It follows

that E ′
1 and E ′

2 = E − E ′
1 induce connected hypergraphs H′

1 and H′
2, respectively.

By (3), we have τ(H′
1) = 2|E ′

1|+1
3 . Since τ(H′

i ) is an integer, and E ′
1 contains e1 and

e2 which are distinct, we deduce that τ(H′
1) ≥ 3, which contradicts the fact that

{u2, v2} is a transversal of H′
1. The contradiction implies that u1 is adjacent to v in

H. Furthermore, the choice of u1 enforces that all vertices in V1 −{v} are adjacent to
v. Hence, {v} is a transversal of H1, which along with (4) enforces the following:

(5) E1 consists of only one edge e1.

Note that v is incident with one or two edges in C. We take e to be one of them. See
Fig. 6b and c for illustrations. Let hypergraphs H′

1 and H′
2 be induced by E ′

1 = {e, e1}
and E − E ′

1 respectively. Clearly,

(6) H′
1 is connected, and {v} is a transversal of H′

1.

Note that
2||H′

1||+1
3 = 2×2+1

3 is not an integer. The combination of (3) and (6)
implies that H′

2 is not connected. If v is a non-join vertex of C (as depicted in Fig. 6b),
then it can be easily seen from (5) that H′

2 is connected. The contradiction reduces us
to the case where v is a join-vertex of C, as depicted in Fig. 6c. Observe from (5) that
H′

2 can have at most two components. So H′
2 consists of exactly two components,

written as H3 and H4. The minimality of H guarantees τ(Hi ) ≤ 2||Hi ||+1
3 for i = 3, 4.

Since the union of minimum transversals of H′
1, H3, H4 is a transversal of H, and

τ(H′
1) = 1 by (6), we reach a contradiction 2||H||+1

3 < τ(H) ≤ τ(H′
1) + τ(H3) +

τ(H4) ≤ 1 + 2||H3||+1
3 + 2||H4||+1

3 = 2||H||+1
3 , where the last equation is implied by

||H3|| + ||H4|| = ||H′
2|| = ||H|| − ||H′

1|| = ||H|| − 2. This completes the proof of the
theorem.

The proof of Theorem 2.10 actually gives a recursive combinatorial algorithm for
finding in polynomial time a transversal of size at most (2||H|| + 1)/3 in a connected
linear 3-uniform hypergraph H = (V, E). For any nonempty F ⊆ E , we use H[F]
to denote the subhypergraph of H induced by F .
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Algorithm 2 Transversal of connected linear 3-uniform hypergraphs
Input: Connected linear 3-uniform hypergraph
Output: ALG2 , which is a transversal of with cardinality at most

1. If is acyclic,
2. Then ALG2 a minimum transversal computed by Yannakais’s

algorithm [11]
3. Else If there exists such that has components

with 2
4. Then ALG2 ALG2
5. Else cycles of
6. components of the hypergraph induced by edges not in

any cycle of
7. Construct tree with bipartition associated to
8. Let be a leaf of
9. If is a cycle in
10. Then ALG2 mod 2 ALG2

11. Else the unique neighbor of in
12. the unique common vertex of and in
13. a farthest vertex from in
14. If and are not adjacent in
15. Then Let be the unique path

between and in
teL.61 be such that

A.71 LG2 ALG2
edges of incident or 2

18. Else If 2 Then ALG2 ALG2

19. Else an edge in that is incident with

20. components of

A.12 LG2 ALG2

22. Output ALG2

By Theorem 2.6, the total running of for all iterations of Step 2 is O(|V|(|E | +
|V| log |V|) log |V|). Steps 3 – 4 are implemented at most |V| times, each taking
O(|V| · |E |) time. Steps 5 – 21 are implemented at most |V| times, each taking O(|E |)
time. Thus Algorithm 2 runs in O(|V|(|E | + |V| log |V|) log |V|) time.
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Corollary 2.11 Given any connected linear 3-uniform hypergraph H on n vertices
and m edges, Algorithm 2 finds in O(n(m + n log n) log n) time a transversal of H
with size at most (2m + 1)/3.

3 Triangle Packing and Covering

This section establishes several new sufficient conditions for Conjectures 1.1 and 1.2 as
well as their algorithmic implications on finding minimum triangle covers. Section 3.1
relates weighted triangle packing and covering in graphs to weighted matching and
transversal in triangle hypergraphs, and studies the strong polynomial-time com-
putation of weighted transversals in linear triangle hypergraphs. Section 3.2 deals
with graphs of large weighted triangle packing numbers. Section 3.3 investigates
irreducible graphs with large weighted numbers of edges.

3.1 Triangle Hypergraphs

To each graph G = (V , E), we associate a hypergraph HG = (E,TG), referred to
as triangle hypergraph of G, such that the vertices and edges of HG are the edges
and triangles of G, respectively. It is easy to see that HG is 3-uniform, ν(HG) =
νt (G) and τ(HG) = τt (G). Note that the number of non-isolated vertices of HG

is upper bounded by 3||HG|| = 3|TG|, and |E| ≤ 3|TG| if G is irreducible, i.e.,
∪T ∈TG

E(T ) = E.
In order to deal with polynomial-time computability of the weighted triangle cov-

ering of weighted graph (G,w) with G = (V , E) being simple and w ∈ Z
E
>0, we do

not work directly on the graph Gw obtained from G by replacing each edge e ∈ E

with a set Ee of w(e) edges of the same ends as e. Before proceeding to discuss the
algorithmic details, we make some easy but important observations which will be
used implicitly throughout the rest of this paper.

Observation 3.1 The following hold for every edge-weighted graph (G,w).

(i) The weighted triangle covering number τt (G,w) = τ(HG,w) equals
τt (Gw) = τ(HGw);

(ii) The weighted triangle packing number νt (G,w) = ν(HG,w) equals
νt (Gw) = ν(HGw);

(iii) The weighted number of triangles |TG|w = ∑
{x,y,z}∈TG

w(x)w(y)w(z)

equals |TGw |;
(iv) The weighted number of edges |E|w = ∑

e∈E(G) w(e) equals |E(Gw)|.

In our algorithms for finding a FVS in a vertex-weighted triangle hypergraph, at
the very beginning we treat each Ee as a single e by introducing to e a weighted
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degree in hypergraph H = (V, E), where V ⊆ E and E ⊆ TG. The weighted degree
dw
H(e) of e ∈ V in H is defined as

dw
H(e) =

∑

f,g:{e,f,g}∈E
w(f )w(g),

which can be computed in O(|V |2) time. It is worth noting that dw
HG

(e) equals
dHGw

(f ) for all f ∈ Ee. A crucial observation on Algorithm 1 is the following.

Observation 3.2 There exists an implementation of Algorithm 1 with input HGw

such that if an edge s ∈ E is found and removed from the hypergraph in Step 2 (resp.
Step 4), then all edges in Es are removed one by one in Step 2 (resp. Step 4) of the
following recursions.

The correctness of the observation is guaranteed by the fact that all f ∈ Ee have
the same degree in HGw and in each subhypergraph of HGw produced by Algorithm
1, and the deletion of an f ∈ Ee does not change the degree of other members of
Ee. By virtue of the observation, we can compute a FVS in a vertex-weighted linear
3-uniform hypergraph as in Algorithm 3.

Algorithm 3 Feedback vertex sets of vertex-weighted linear triangle hyper-
graphs

Input: linear triangle hypergraph , and w
Output: ALG3 , which is a FVS of with cardinality at most

1. If 2 Then ALG3
2. Else If such that is not contained in any cycle of
3. Then ALG3 ALG3
4. If such that 3
5. Then ALG3 ALG3
6.
7.

and
8. ALG1
9. ALG3 and

10. Output ALG3

Observation 3.3 After recursions at Steps 2-5 of Algorithm 3, we obtain a hyper-
graph H = (V, E) with w(e) ∈ {1, 2} for all e ∈ V .

Proof To see it, suppose the contrary: w(e) ≥ 3 for some e ∈ V . Let {e, f, g} ∈ E
be a triangle containing e. Then dw

H(f ) ≥ w(e) ≥ 3 says that f should have been
removed at Step 5.
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Now let us consider the implementation of Algorithm 1 with input HGw stated
in Observation 3.2. The hypergraph its Step 6 faces corresponds to the hypergraph
H reached by Step 6 of Algorithm 3. By Observation 3.3, the former hypergraph is
exactly the hypergraph H′ constructed at Step 7 of Algorithm 3. (Note that each pair
of x, x′ in H′ simulates a pair of parallel edges in Gw.) Hence Step 8 of Algorithm 3
simply conducts the computations done by Steps 6 – 21 of Algorithm 1. Furthermore,
from the construction of H′, it is straightforward that for any x ∈ X , if |S∩{x, x′}| =
1 then S − {x, x′} is a quasi-FVS of H′. It follows that the setting in Step 9 of
Algorithm 3 does provide a FVS of the linear 3-uniform hypergraph H.

Theorem 3.4 Given any linear triangle hypergraph H = (V, E) and any w ∈ Z
V
>0,

Algorithm 3 finds in O(||H||3) time a FVS S of H whose weight |S|w = ∑
s∈S w(s)

is at most 1
3 |E |w = 1

3

∑
{x,y,z}∈E w(x)w(y)w(z).

Proof Suppose that a simple graph G satisfies H = HG and Sw is the output of
Algorithm 1 with input Gw. It is not hard to check that

∑
s∈S w(s) = |Sw| and∑

{x,y,z}∈E w(x)w(y)w(z) = ||HGw ||. The result is instant from Corollary 2.3.

In case of finding a minimal FES in HGw , we remove redundant triangles (edges
of HGw ) from any given FES. Using a similar idea to Observation 3.2, once a triangle
is removed we may remove all the triangles on the same vertex set as the removed
triangle. This fact in combination with Lemma 2.5 implies strong polynomial-time
computation for a minimal FES F in HG whose weighted cardinality |F |w satisfies
the following corollary.

Corollary 3.5 Given any linear triangle hypergraph H = (V, E) and any w ∈ Z
V
>0,

if H consists of p components, then a FES F of H with |F |w ≤ 2|E |w − |V|w + p

can be found in O(|E |2) time.

3.2 Graphs with Large Weighted Triangle Packing Numbers

We investigate (weighted) Tuza’s conjecture for graphs with large weighted packing
numbers, which are firstly compared with the weighted number of triangles, and then
with the weighted number of edges.

3.2.1 Comparing with the Weighted Number of Triangles

Theorem 3.6 Let G be a simple graph and w ∈ Z
E(G)
>0 . If real number c ∈ (0, 1]

satisfies νt (G,w)/|TG|w ≥ c, then a triangle cover of (G,w) with weight at most
3c+1

3c
νt (G,w) can be found in O(|TG|3) time. Consequently, τt (G,w)/νt (G,w) ≤

3c+1
3c

.

Proof We consider the triangle hypergraph HG = (E, TG) of G, which is 3-
uniform and linear. By Theorem 3.4, we can find in O(|TG|3) time a FVS S of
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HG with |S|w ≤ |TG|w/3. Since ν(HG,w) = νt (G,w) ≥ c|TG|w, it follows that
|S|w ≤ ν(HG,w)/(3c). As HG \ S is acyclic, Theorem 2.6 enables us to find in
O(|TG|2 log2 |TG|) time a minimum weighed transversal R of HG \ S such that
|R|w = τ(HG \ S,w|E−S) = ν(HG \ S,w|E−S). We observe that S ∪ R ⊆ E and
G \ (S ∪ R) is triangle-free. Hence S ∪ R is a triangle cover of G with weight

|S∪R|w ≤ ν(HG,w)

3c
+ν(HG\S,w|E−S) ≤ 3c + 1

3c
ν(HG,w) = 3c + 1

3c
νt (G,w),

which proves the theorem.

The special case of c = 1/3 in the above theorem gives the following result
providing a new sufficient condition for the weighted version of Tuza’s conjecture.

Corollary 3.7 If simple graph G and edge weight w ∈ Z
E(G)
+ satisfy the inequality

νt (G,w)/|TG|w ≥ 1/3, then τt (G,w)/νt (G,w) ≤ 2.

The Unweighted Case In the special case of unit weight, the condition νt (G) ≥
|TG|/3 in Corollary 3.7 applies, in some sense, only to the class of large scale sparse
simple graphs (which, e.g., does not include complete graphs on four or more ver-
tices). The mapping from the real number c in the condition νt (G) ≥ c|TG| to the
coefficient 3c+1

3c
in the conclusion τt (G) ≤ 3c+1

3c
νt (G) of Theorem 3.6 shows the

trade-off between conditions and conclusions. As in Corollary 3.7, c = 1
3 maps to

3c+1
3c

= 2 hitting the boundary of Tuza’s conjecture. It remains to study graphs G

with νt (G)/|TG| < 1
3 . The next theorem (Theorem 3.8) tells us that actually we only

need to take care of graphs G with νt (G)/|TG| ∈ ( 1
4 − ε, 1

3 ), where ε can be any
arbitrarily small positive number. So, in some sense, to solve Tuza’s conjecture as
well as its weighted generalization, we only have a gap of 1

3 − 1
4 = 1

12 to be bridged.
Interestingly, for c = 1

4 , we have 3c+1
3c

= 7
3 = 2.333. . ., which is much better than

the best known general bound 2.87 due to Haxell [3]. Only when c ≤ 1
6 does 3c+1

3c
state a trivial bound equal to or greater than 3.

Theorem 3.8 If there exists some real δ > 0 such that Conjecture 1.1 holds for every
simple graph (resp. multigraph) G with νt (G)/|TG| ≥ 1/4 − δ, then Conjecture 1.1
holds for every simple graph (resp. multigraph).

Proof If δ ≥ 1
4 , the theorem is trivial. We consider 0 < δ < 1

4 . As the set of rational
numbers is dense, we may assume δ ∈ Q and 1/4 − δ = i/j for some i, j ∈ Z>0.
Therefore i/j < 1/4 gives 4i + 1 ≤ j , i.e., 4 + 1/i ≤ j/i. It remains to prove that
for any graph G with νt (G) < (i/j)|TG| there holds τt (G) ≤ 2νt (G).

Write k for the positive integer i|TG| − j · νt (G). Let G′ be the disjoint union
of G and k copies of K4. Clearly, |TG′ | = |TG| + k|TK4 | = |TG| + 4k, τt (G

′) =
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τt (G) + k · τt (K4) = τt (G) + 2k and νt (G
′) = νt (G) + k · νt (K4) = νt (G) + k. It

follows that

(i/j)|TG′ | = (i/j)(|TG| + 4k)

= (i/j)((k + j · νt (G))/i + 4k)

= (i/j)(j · νt (G)/i + (4 + 1/i)k)

≤ νt (G) + k

= νt (G
′)

where the inequality is guaranteed by 4 + 1/i ≤ j/i. So νt (G
′) ≥ (1/4 − δ)|TG′ |

together with the hypothesis of the theorem implies τt (G
′) ≤ 2νt (G

′), i.e., τt (G) +
2k ≤ 2(νt (G) + k), giving τt (G) ≤ 2νt (G) as desired.

In the proof of the above theorem, the properties of K4 that νt (K4)/|TK4 | = 1/4
and τt (K4)/νt (K4) = 2 plays an important role. It helps to reduce the general
(weighted) Tuza’s conjecture to the special case where νt (G) ≥ (1/4 − δ)|TG|.
We emphasize that the statement for multigraphs in Theorem 3.8 amounts to an
equivalent result for Conjecture 1.2, because Conjecture 1.1 true for multigraphs is
equivalent to Conjecture 1.2 true for weighted simple graphs.

More Efficient Computation for Unweighted Simple Graphs Given a graph G

and an edge subset F ⊆ E(G), we use G[F ] to denote the subgraph G induced by
F . We call G triangle-divisible if E(G) admits a nontrivial partition (E1, E2) such
that (TG[E1], TG[E2]) is a nontrivial partition of TG, and call G triangle-indivisible,
otherwise. For example, in Fig. 7, the left graph is triangle-indivisible, but the right
graph is not (where partitioning edges into thick ones and bold ones shows its triangle
divisibility). The following are straightforward observations.

Observation 3.9 (i) An irreducible nonempty graph G = (V , E) is triangle-
indivisible if and only if its associated triangle hypergraph HG = (E, TG) is
connected.

(ii) Conjecture 1.1 is true if the conjectured inequality holds for every triangle-
indivisible simple graph.

Fig. 7 Examples for triangle (in)divisibility
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For simple graphs G, with the help of Algorithm 2 we can improve the O(|TG|3)
time complexity stated in Theorem 3.6.

Corollary 3.10 Let G = (V , E) be a simple triangle-indivisible graph, if
νt (G)/|TG| ≥ 1/3, then a triangle cover of G with cardinality at most 2νt (G) can
be found in O(|E|(|TG| + |E| log |E|) log |E|) time.

Proof We consider the triangle hypergraph HG = (E, TG) of G, which is 3-uniform
and linear. Note from Observation 3.9(i) that HG = (E, TG) is connected. Thus by
Corollary 2.11, we obtain in O(|E|(|TG|+ |E| log |E|) log |E|) time a triangle cover
of G with cardinality at most 2|TG|+1

3 ≤ 2νt (G) + 1
3 .

3.2.2 Comparing with the Weighted Number of Edges

The sufficient condition that compares the weighted triangle packing number with
the weights of edges is based on the fact that every edge-weighted simple graph
(G,w) has a bipartite subgraph whose edges have a total weight at least |E(G)|w/2,
and such a bipartite subgraph can be found in strongly polynomial time. Since this
subgraph does not contain any triangle, we deduce that τt (G,w) ≤ |E|w/2, which
implies the following result.

Corollary 3.11 Let G = (V , E) be a graph with edge weight w ∈ Z
E
>0. If

νt (G,w)/|E|w ≥ c for some c > 0, then τt (G,w)/νt (G,w) ≤ 1/(2c). In particular,
if νt (G,w)/|E|w ≥ 1/4, then τt (G,w)/νt (G,w) ≤ 2.

Thus if νt (G,w)/|E|w ≥ c for some c > 0, then a triangle cover of G with weight
at most νt (G,w)/(2c) can be found in strongly polynomial time. When restricted to
unweighted simple graphs, complementary to Corollary 3.7 whose condition mainly
takes care of sparse graphs, the second statement of Corollary 3.11 applies to many
dense graphs, including all complete graphs of order at least 3 other than K5 (see
Theorem 2 in [14]).

Similarly to Corollary 3.7 and Theorem 3.8, by which our future investiga-
tion space on (weighted) Tuza’s conjecture shrinks to interval ( 1

4 − ε, 1
3 ) w.r.t.

νt (G,w)/|TG|w, Corollary 3.11 and the following Theorem 3.12 narrow the interval
w.r.t. νt (G,w)/|E|w to ( 1

5 − ε, 1
4 ). Moreover, when taking c = 1

5 in Corollary 3.11.
we obtain 1

2c
= 2.5, still better than Haxell’s general bound 2.87 for unweighted

simple graphs [3].

Theorem 3.12 If there exists some real δ > 0 such that Conjecture 1.1 holds
for every simple graph (resp. multigraph) G with νt (G)/|E(G)| ≥ 1/5 − δ, then
Conjecture 1.1 holds for every simple graph (resp. multigraph).

Proof We use a similar trick to that in proving Theorem 3.8; we add a number of
complete graphs on five (instead of four) vertices. We may assume δ ∈ (0, 1

5 ) ∩ Q
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and 1/5 − δ = i/j for some i, j ∈ Z>0. Therefore i/j < 1/5 and the integrality
of i, j imply 5 + 1/i ≤ j/i. To prove Tuza’s conjecture for each graph G with
νt (G) < (i/j)|E|, we write k = i|E| − j · νt (G) ∈ Z>0. Let G′ = (V ′, E′) be
the disjoint union of G and k copies of K5’s. Then |E′| = |E| + 10k, τt (G

′) =
τt (G) + k · τt (K5) = τt (G) + 4k, νt (G

′) = νt (G) + k · νt (K5) = νt (G) + 2k, and

(i/j)|E′|= (i/j)(|E|+10k)= (i/j)(j ·νt (G)/i+(10+1/i)k) ≤ νt (G)+2k = νt (G
′)

where the inequality is guaranteed by 10 + 1/i ≤ 2j/i. So νt (G
′) ≥ (1/5 − δ)|E′|

together with the hypothesis the theorem implies τt (G
′) ≤ 2νt (G

′), i.e., τt (G)+4k ≤
2(νt (G) + 2k), giving τt (G) ≤ 2νt (G) as desired.

Erdős-Rényi Graphs with High Densities As an application of Corollary 3.11 we
investigate Tuza’s conjecture on random graphs. Let n be a positive integer and let
p ∈ [0, 1]. The Erdős-Rényi random graph model [15] is a probability space over the
set G(n, p) of simple graphs G = (V , E) on the vertex set V = {1, . . ., n}, where
an edge between vertices i and j is included in E with probability p independently
from every other possible edge, i.e.,

Pr[ij ∈ E] = p for each pair of distinct i, j ∈ V.

The G(n, p) model is often used in the probabilistic method for tackling problems in
various areas such as graph theory and combinatorial optimization.

The following result on the triangle packing numbers of complete graphs [16] is
useful in deriving a good estimation for the triangle packing numbers of graphs in
G(n, p).

Theorem 3.13 ([16]) νt (Kn) = |E(Kn)|/3 if and only if n ≡ 1, 3 (mod 6).

Theorem 3.14 Suppose that p >
√

3/2 and G = (V , E) ∈ G(n, p). Then
Pr[νt (G) ≥ |E|/4] = 1 − o(1) and Pr(τt (G) ≤ 2νt (G)) = 1 − o(1).

Proof Let Kn denote the complete graph on V . For each edge e ∈ Kn, let Xe be
the indicator variable satisfying: Xe = 1 if e ∈ E and Xe = 0 otherwise. Thus
E[Xe] = p, X = ∑

e∈Kn
Xe = |E|, E[X] = n(n − 1)p/2. Since Xe, e ∈ Kn, are

independent 0-1 variables, by Chernoff Bounds [15], for each ε ∈ (0, 1], Pr[X >

(1 + ε)E[X]] ≤ exp(−ε2E[X]/3) = exp(−ε2n(n − 1)p/6) = o(1). So

Pr[X ≤ (1 + ε)E[X]] = Pr(X ≤ (1 + ε)n(n − 1)p/2) = 1 − o(1).

On the other hand, by Theorem 3.13, we can make Kn have an edge-disjoint tri-
angle decomposition by deleting at most three vertices, which implies that νt (Kn) is
lower bounded by k = �(n − 3)(n − 4)/6�. Thus we can take k edge-disjoint trian-
gles T1, . . . , Tk from Kn. For each i ∈ [k], let Yi be the indicator variable satisfying:
Yi = 1 if Ti ⊆ G and Yi = 0 otherwise. Note that E[Yi] = p3 for each i ∈ [k],
νt (G) ≥ Y = ∑k

i=1 Yi and E[Y ] = kp3. Because T1, . . . , Tk are edge-disjoint,
Y1, . . . , Yk are independent 0-1 variables. By Chernof f Bounds, for each ε ∈ (0, 1),



Theory Comput Syst (2018) 62:1525–1552 1549

Pr[Y < (1 − ε)E[Y ]] ≤ exp(−ε2E[Y ]/2) ≤ exp(−ε2(n − 3)(n − 4)p3/12) =
o(1).Thus

Pr[νt (G) ≥ (1−ε)(n−3)(n−4)p3/6] ≥ Pr[νt (G) ≥ (1−ε)kp3] ≥ Pr[Y ≥ (1−ε)E[Y ]] = 1−o(1).

Recall that p >
√

3/2. We can take ε ∈ (0, 1) such that

limn→∞ (1−ε)(n−3)(n−4)p3/6
(1+ε)n(n−1)p/8 = 4p2(1−ε)

3(1+ε)
> 1. So for sufficient large n, we

have (1 − ε)(n − 3)(n − 4)p3/6 > (1 + ε)n(n − 1)p/8. Since we have
νt (G) ≥ (1 − ε)(n − 3)(n − 4)p3/6 with probability 1 − o(1) and have
|E| = X ≤ (1 + ε)n(n − 1)p/2 with probability 1 − o(1), we obtain
νt (G) ≥ |E|/4 with probability 1 − o(1). It follows from Corollary 3.11 that
Pr(τt (G) ≤ 2νt (G)) = 1 − o(1).

3.3 Graphs with Large Weighted Numbers of Edges

Each graph has a unique maximum irreducible subgraph. Tuza’s conjecture, as well
as its weighted generalization, is valid for a graph if and only if the conjecture is valid
for its maximum irreducible subgraph. In this section, we study sufficient conditions
for (weighted) Tuza’s conjecture on irreducible graphs that bound the (weighted)
number of edges below in terms of the (weighted) number of triangles.

Theorem 3.15 Let G be an irreducible simple graph and w ∈ Z
E(G)
>0 . If

|E|w/|TG|w ≥ 2, then a triangle cover of (G,w) with weight at most 2νt (G,w) can
be found in O(|TG|2 log2 |TG|) time. Consequently, implies τt (G,w)/νt (G,w) ≤ 2.

Proof Recall that the irreducibility of G implies |E| ≤ 3|TG|. Suppose that the
linear 3-uniform hypergraph HG = (E, TG) associated to G has exactly p com-
ponents. By Corollary 3.5, we can find in O(|TG|2) time a minimal FES F of HG

such that |F |w ≤ 2|TG|w − |E|w + p ≤ p. Since G is irreducible, we see that HG

has no isolated vertices, i.e., every component of HG has at least one edge. Thus
ν(HG,w) ≥ p ≥ |F |w. For the acyclic hypergraph HG \F , by Theorem 2.6 we may
find in O(|TG|2 log2 |TG|) time a minimum weighted transversal R of HG \F such
that

|R|w = τ(HG \ F,w) = ν(HG \ F,w).

Observe that R ⊆ E and F ⊆ TG. For each F ∈ F , take eF ∈ E with eF ∈ F , and
set S = {eF : F ∈ F}. It is clear that R∪S is a transversal of H (i.e., a triangle cover
of G) with weight |R ∪ S|w ≤ ν(HG \ F,w) + |F |w ≤ 2ν(HG,w) = 2νt (G,w),
establishing the theorem.

We observe that the unweighted simple graphs G which consist of a number of
triangles sharing a common edge satisfy |E(G)| ≥ 2|TG|, but νt (G) < |TG|/3 when
|TG| ≥ 4. So in some sense, Theorem 3.15 works a supplement of Corollary 3.7 for
unweighted sparse simple graphs.
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Along the same line as in the preceeding subsection, regarding weighted Tuza’s
conjecture on graph G, Theorem 3.15 and the following Theorem 3.16 jointly narrow
the interval w.r.t. |E(G)|w/|TG|w to (1.5 − ε, 2) for future study.

Theorem 3.16 If there exists some real δ > 0 such that Conjecture 1.1 holds for
every irreducible simple graph (resp. multigraph) G = (V , E) with |E|/|TG| ≥
3/2 − δ, then Conjecture 1.1 holds for every irreducible simple graph (resp.
multigraph), and therefore holds for every simple graph (resp. multigraph).

Proof Again we apply the trick of adding copies of K4. We may assume δ ∈
(0, 3/2)∩Q and 3/2−δ = i/j for some i, j ∈ Z>0. Therefore 2i+1 ≤ 3j , implying
(i/j)(4 + 1/i) ≤ 6.

For any irreducible graph G with |E| < (i/j)|TG|, we write k = i|TG| − j |E| ∈
Z>0. Let G′ be the disjoint union of G and k copies of K4. Then G′ is irreducible, and

(i/j)|TG′ | = (i/j)(|TG| + 4k) = (i/j)(j |E|/i + (4 + 1/i)k) ≤ |E| + 6k = |E′|.
It follows from the hypothesis of the theorem that τt (G

′) ≤ 2νt (G
′), i.e., τt (G) +

2k ≤ 2(νt (G) + k), giving τt (G) ≤ 2νt (G) as desired.

4 Conclusion

Using tools from hypergraphs, we design strongly polynomial-time algorithms for
finding small (weighted) triangle covers in graphs, which particularly imply several
sufficient conditions for Tuza’s conjecture (Conjecture 1.1) and its weighted version
(Conjecture 1.2).

Triangle Packing and Covering In this paper, we have established new sufficient
conditions νt (G,w)/|TG|w ≥ 1/3 and |E|w/|TG|w ≥ 2 for weighted Tuza’s con-
jecture on packing and covering triangles in graphs G. We prove the sufficiency by
designing polynomial-time combinatorial algorithms for finding a triangle cover of
G whose weight (i.e., weighted cardinality) is upper bounded by 2νt (G,w). The
high level idea of these algorithms is to remove some edges from G so that the tri-
angle hypergraph of the remaining graph is acyclic (see the proofs of Theorems 2.1
and 3.15), which guarantees that the remaining graph has equal weighted triangle
covering number and weighted triangle packing number, and a minimum weighted
triangle cover of the remaining graph is computable in strongly polynomial time (see
Theorem 2.6). It is well known that the acyclic condition in Theorem 2.6 could be
weakened to odd-cycle-freeness [11]. So the lower bound 1/3 and 2 in the sufficient
conditions could be (significantly) improved if we can remove edges of a (much)
less total weight from G such that the triangle hypergraph of the remaining graph is
odd-cycle free.

In view of Theorems 3.8, 3.12, and 3.16, the study on the graphs (G,w) satisfy-
ing νt (G,w)/|TG|w ≥ 1/4 or νt (G,w)/|E|w ≥ 1/5 or |E|w/|TG|w ≥ 3/2 might
suggest more insight and foresight for resolving (weighted) Tuza’s conjecture. These
graphs are critical in the sense that they are standing on the border of the resolution.
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Regarding Theorem 3.6, Corollary 3.11, and Theorem 3.15, Gregory J. Puleo
made a nice observation that νt (G)/|TG| ≤ 1/3, νt (G)/|E| ≤ 1/4, and |E|/|TG| ≤
2 hold for every irreducible extremal graph G = (V , E) – simple graphs satisfying
Tuza’s conjecture with tight ratio τt (G)/νt (G) = 2. So studying extremal graphs
might lead to interesting results.

Another intermediate step toward resolving Tuza’s conjecture is investigating its
validity for the classical Erdős-Rényi random graph model G(n, p). In this paper, we
have shown that Tuza’s conjecture holds with high probability for graphs in G(n, p)

when p >
√

3/2. It would be nice to prove the same result for p ∈ (0,
√

3/2].

The Generalization to Linear 3-Uniform Hypergraphs Our work has shown very
close relations between triangle packing and covering in graphs and edge (resp.
cycle) packing and covering in linear 3-uniform hypergraphs. The theoretical and
algorithmic results on linear 3-uniform hypergraphs (Corollary 2.3 and Lemma 2.5)
are crucial for us to establish sufficient conditions for Tuza’s conjecture, and to find
in polynomial time a “small” triangle cover under the conditions (see Corollary 3.7
and Theorem 3.15). Recall that, for any simple graph G, its triangle hypergraph HG

is linear 3-uniform, and Tuza’s conjecture is equivalent to τ(HG) ≤ 2ν(HG). As
a natural generalization, one may ask: Does τ(H) ≤ 2ν(H) hold for all linear 3-
uniform hypergraphs H? The answer is negative – as Zbigniew Lonc noticed, the
hypergraph of Fano plane is a linear 3-uninform hypergraph with transversal number
3 and matching number 1.

Last but not the least, the arguments in this paper have actually proved the
following stronger result on 3-uniform hypergraphs.

Theorem 4.1 Let H = (V, E) be a linear 3-uniform hypergraph without isolated
vertices, and w ∈ Z

V
>0. Then a transversal of H with weight at most 2ν(H,w) can

be found in strongly polynomial time, which implies τ(H,w) ≤ 2ν(H,w), if one of
the following conditions is satisfied:

(i) ν(H,w)/|E |w ≥ 1/3,
(ii) |V|w/|E |w ≥ 2.

Comparing the above result on linear 3-uniform hypergraphs H with its counter-
part on simple graphs presented in Theorem 1.4, one might notice that the condition
on the lower bound of ν(H,w)/|V|w is missing. This reason is that we do not have
a nontrivial constant upper bound on τ(H,w)/|V|w. Again, Theorem 4.1 implies the
same result for unit-weighted 3-uniform hypergraphs H which may not be linear.
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