
https://doi.org/10.1007/s00224-018-09908-6

Space-Efficient Algorithms for Longest Increasing
Subsequence

Masashi Kiyomi1 ·Hirotaka Ono2 ·Yota Otachi3 ·Pascal Schweitzer4 ·
Jun Tarui5

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Given a sequence of integers, we want to find a longest increasing subsequence of the
sequence. It is known that this problem can be solved in O (n log n) time and space.
Our goal in this paper is to reduce the space consumption while keeping the time
complexity small. For

√
n ≤ s ≤ n, we present algorithms that use O (s log n) bits

and O
(

1
s · n2 · log n

)
time for computing the length of a longest increasing subse-

quence, and O
(

1
s · n2 · log2 n

)
time for finding an actual subsequence. We also show

that the time complexity of our algorithms is optimal up to polylogarithmic factors
in the framework of sequential access algorithms with the prescribed amount of space.

Keywords Longest increasing subsequence · Patience sorting · Space-efficient
algorithm

1 Introduction

Given a sequence of integers (possibly with repetitions), the problem of finding a
longest increasing subsequence (LIS, for short) is a classic problem in computer sci-
ence which has many application areas including bioinfomatics and physics (see [38]
and the references therein). It is known that LIS admits an O(n log n)-time algorithm

This article is part of the Topical Collection on Special Issue on Theoretical Aspects of Computer
Science (2018)

Partially supported by MEXT/JSPS KAKENHI grant numbers JP17H01698, JP18H04091,
JP18K11168, JP18K11169, JP24106004. A preliminary version appeared in the proceedings of the
35th International Symposium on Theoretical Aspects of Computer Science (STACS 2018), vol. 96
of Leibniz International Proceedings in Informatics, pp. 44:1-44:15, 2018.

� Yota Otachi
otachi@cs.kumamoto-u.ac.jp

Extended author information available on the last page of the article.

Theory of Computing Systems (2020) 64: –522 45 1

Published online: 201922 January

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-018-09908-6&domain=pdf
http://orcid.org/0000-0002-0087-853X
mailto: otachi@cs.kumamoto-u.ac.jp

that uses O(n log n) bits of working space [2, 17, 37], where n is the length of the
sequence.

A wide-spread algorithm achieving these bounds is PATIENCE SORTING, devised
by Mallows [24–26]. Given a sequence of length n, PATIENCE SORTING partitions
the elements of the sequence into so-called piles. It can be shown that the number of
piles coincides with the length of a longest increasing subsequence (see Section 3 for
details). Combinatorial and statistical properties of the piles in PATIENCE SORTING

are well studied (see [2, 8, 33]).
However, with the dramatic increase of the typical data sizes in applications over

the last decade, a main memory consumption in the order of Θ(n log n) bits is exces-
sive in many algorithmic contexts, especially for basic subroutines such as LIS. We
therefore investigate the existence of space-efficient algorithms for LIS.

Our Results In this paper, we present the first space-efficient algorithms for LIS that
are exact. We start by observing that when the input is restricted to permutations,
an algorithm using O(n) bits can be obtained straightforwardly by modifying a pre-
viously known algorithm (see Section 3.3). Next, we observe that a Savitch type
algorithm [36] for this problem uses O

(
log2 n

)
bits and thus runs in quasipolyno-

mial time. However, we are mainly interested in space-efficient algorithms that also
behave well with regard to running time. To this end we develop an algorithm that
determines the length of a longest increasing subsequence using O

(√
n log n

)
bits

which runs in O
(
n1.5 log n

)
time. Since the constants hidden in the O-notation are

negligible, the algorithm, when executed in the main memory of a standard computer,
may handle a peta-byte input on external storage.

More versatile, in fact, our space-efficient algorithm is memory-adjustable in the
following sense. (See [3] for information on memory-adjustable algorithms). When
a memory bound s with

√
n ≤ s ≤ n is given to the algorithm, it computes with

O (s log n) bits of working space in O
(

1
s · n2 log n

)
time the length of a longest

increasing subsequence. When s = n our algorithm is equivalent to the previously
known algorithms mentioned above. When s = √

n it uses, as claimed above,
O

(√
n log n

)
bits and runs in O

(
n1.5 log n

)
time.

The algorithm only determines the length of a longest increasing subsequence.
To actually find such a longest increasing subsequence, one can run the length-
determining algorithm n times to successively construct the sought-after subse-

quence. This would give us a running time of O
(

1
s · n3 log n

)
. However, we show

that one can do much better, achieving a running time of O
(

1
s · n2 log2 n

)
without

any increase in space complexity, by recursively finding a near-mid element of a
longest increasing subsequence.

To design the algorithms, we study the structure of the piles arising in PATIENCE

SORTING in depth and show that maintaining certain information regarding the piles
suffices to simulate the algorithm. Roughly speaking, our algorithm divides the exe-
cution of PATIENCE SORTING into O(n/s) phases, and in each phase it computes
in O (n log n) time information on the next O(s) piles, while forgetting previous
information.

Theory of Computing Systems (2020) 64:522–541 523

Finally, we complement our algorithm with a lower bound in a restricted com-
putational model. In the sequential access model, an algorithm can access the input
only sequentially. We also consider further restricted algorithms in the multi-pass
model, where an algorithm has to read the input sequentially from left to right and
can repeat this multiple (not necessarily a constant number of) times. Our algorithm
for the length works within the multi-pass model, while the one for finding a subse-
quence is a sequential access algorithm. Such algorithms are useful when large data
is placed in an external storage that supports efficient sequential access. We show
that the time complexity of our algorithms is optimal up to polylogarithmic factors
in these models.

Related Work The problem of finding a longest increasing subsequence (LIS) is
among the most basic algorithmic problems on integer arrays and has been stud-
ied continuously since the early 1960’s. It is known that LIS can be solved in
O(n log n) time and space [2, 17, 37], and that any comparison-based algorithm
needs Ω(n log n) comparisons even for computing the length of a longest increasing
subsequence [17, 32]. For the special case of LIS where the input is restricted to per-
mutations, there are O(n log log n)-time algorithms [6, 12, 20]. PATIENCE SORTING,
an efficient algorithm for LIS, has been a research topic in itself, especially in the
context of Young tableaux [2, 8, 24–26, 33].

Recently, LIS has been studied intensively in the data-streaming model, where
the input can be read only once (or a constant number of times) sequentially from
left to right. This line of research was initiated by Liben-Nowell, Vee, and Zhu [22],
who presented an exact one-pass algorithm and a lower bound for such algorithms.
Their results were then improved and extended by many other groups [15, 18, 19,
28, 34, 35, 38]. These results give a deep understanding on streaming algorithms
with a constant number of passes even under the settings with randomization and
approximation. (For details on these models, see the recent paper by Saks and
Seshadhri [35] and the references therein). On the other hand, multi-pass algorithms
with a non-constant number of passes have not been studied for LIS.

While space-limited algorithms on both RAM and multi-pass models for basic
problems have been studied since the early stage of algorithm theory, research in
this field has recently intensified. Besides LIS, other frequently studied problems
include sorting and selection [7, 16, 27, 30], graph searching [4, 9, 14, 31], geometric
computation [1, 5, 10, 13], and k-SUM [23, 39].

2 Preliminaries

Let τ = 〈τ(1), τ (2), . . . , τ (n)〉 be a sequence of n integers, possibly with repeti-
tions. For 1 ≤ i1 < · · · < i� ≤ n, we denote by τ [i1, . . . , i�] the subsequence
〈τ(i1), . . . , τ (i�)〉 of τ . A subsequence τ [i1, . . . , i�] is an increasing subsequence
of τ if τ(i1) < · · · < τ(i�). If τ(i1) ≤ · · · ≤ τ(i�), then the sequence τ is non-
decreasing. We analogously define decreasing subsequences and non-increasing sub-
sequences. By lis(τ), we denote the length of a longest increasing subsequence of τ .

Theory of Computing Systems (2020) 64:522–541524

For example, consider a sequence τ1 = 〈2, 8, 4, 9, 5, 1, 7, 6, 3〉. It has an
increasing subsequence τ1[1, 3, 5, 8] = 〈2, 4, 5, 6〉. Since there is no increasing
subsequence of τ1 with length 5 or more, we have lis(τ1) = 4.

In the computational model in this paper, we use the RAM model with the fol-
lowing restrictions that are standard in the context of sublinear space algorithms. The
input is in a read-only memory and the output must be produced on a write-only
memory. We can use an additional memory that is readable and writable. Our goal is
to minimize the size of the additional memory while keeping the running time fast.
We measure space consumption in the number of bits used (instead of words) within
the additional memory.

3 Patience Sorting

Since our algorithms are based on the classic PATIENCE SORTING, we start by
describing it in detail and recalling some important properties regarding its internal
configurations.

Internally, the algorithm maintains a collection of piles. A pile is a stack of inte-
gers. It is equipped with the procedures push and top: the push procedure appends
a new element to become the new top of the pile; and the top procedure simply
returns the element on top of the pile, which is always the one that was added
last.

We describe how PATIENCE SORTING computes lis(τ). See Algorithm 1. The
algorithm scans the input τ from left to right (Line 2). It tries to push each newly
read element τ(i) to a pile with a top element larger than or equal to τ(i). If on the
one hand there is no such a pile, PATIENCE SORTING creates a new pile to which it
pushes τ(i) (Line 4). On the other hand, if at least one such pile exists, PATIENCE

SORTING pushes τ(i) to the oldest pile that satisfies the property (Line 6). After the
scan, the number of piles is the output, which happens to be equal to lis(τ) (Line 8).

Algorithm 1 Patience sorting.

1: set 0 and initialize the dummy pile 0 with the single element
2: for 1 to do
3: if top then
4: increment , let be a new empty pile, and set
5: else
6: set to be the smallest index with top

7: push to

8: return

We return to the sequence τ1 = 〈2, 8, 4, 9, 5, 1, 7, 6, 3〉 for an example. The fol-
lowing illustration shows the execution of Algorithm 1 on τ1. In each step the bold
number is the newly added element. The underlined elements in the final piles form

Theory of Computing Systems (2020) 64:522–541 525

a longest increasing subsequence τ1[1, 3, 5, 8] = 〈2, 4, 5, 6〉, which can be extracted
as described below.

2
P1

2 8
P1 P2

4
2 8
P1 P2

4
2 8 9
P1 P2 P3

4 5
2 8 9
P1 P2 P3

1 4 5
2 8 9
P1 P2 P3

1 4 5
2 8 9 7
P1 P2 P3 P4

1 4 5 6
2 8 9 7
P1 P2 P3 P4

3
1 4 5 6
2 8 9 7
P1 P2 P3 P4

Proposition 3.1 ([2, 17, 37]) Given a sequence τ of length n, PATIENCE SORTING

computes lis(τ) in O(n log n) time using O(n log n) bits of working space.

3.1 Correctness of Patience Sorting

It is observed in [8] that when the input is a permutation π , the elements of each pile
form a decreasing subsequence of π . This observation easily generalizes as follows.

Observation 3.2 Given a sequence τ , the elements of each pile constructed by
PATIENCE SORTING form a non-increasing subsequence of τ .

Hence, any increasing subsequence of τ can contain at most one element in each
pile. This implies that lis(τ) ≤ �.

Now we show that lis(τ) ≥ �. Using the piles, we can obtain an increasing
subsequence of length �, in reversed order, as follows [2]:

1. Pick an arbitrary element of P�;
2. For 1 ≤ i < �, let τ(h) be the element picked from Pi+1. Pick the element τ(h′)

that was the top element of Pi when τ(h) was pushed to Pi+1.

Since h′ < h and τ(h′) < τ(h) in each iteration, the � elements that are selected form
an increasing subsequence of τ . This completes the correctness proof for PATIENCE

SORTING.
The proof above can be generalized to show the following characterization for the

piles.

Proposition 3.3 ([8]) τ(i) ∈ Pj if and only if a longest increasing subsequence of τ
ending at τ(i) has length j .

3.2 Time and Space Complexity of Patience Sorting

Observe that at any point in time, the top elements of the piles are ordered increas-
ingly from left to right. Namely, top(Pk) < top(Pk′) if k < k′. This is observed in
[8] for inputs with no repeated elements. We can see that the statement holds also for
inputs with repetitions.

Observation 3.4 At any point in time during the execution of PATIENCE SORTING

and for any k and k′ with 1 ≤ k < k′ ≤ �, we have top(Pk) < top(Pk′) if Pk and
Pk′ are nonempty.

Theory of Computing Systems (2020) 64:522–541526

Proof We prove the statement by contradiction. Let i be the first index for which
PATIENCE SORTING pushes τ(i) to some pile Pj , so that the statement of the
observation becomes false.

First assume that top(Pj) ≥ top(Pj ′) for some j ′ > j . Let τ(i ′) be the element
in Pj pushed to the pile right before τ(i). By the definition of PATIENCE SORTING,
it holds that

τ(i ′) ≥ τ(i) = top(Pj) ≥ top(Pj ′).

This contradicts the minimality of i because τ(i ′) was the top element of Pj before
τ(i) was pushed to Pj .

Next assume that top(Pj ′) ≥ top(Pj) for some j ′ < j . This case contradicts
the definition of PATIENCE SORTING since τ(i) = top(Pj) ≤ top(Pj ′) and thus
τ(i) actually has to be pushed to a pile with an index smaller or equal to j ′.

The observation above implies that Line 6 of Algorithm 1 can be executed in
O(log n) time by using binary search. Hence, PATIENCE SORTING runs in O(n log n)

time.
The total number of elements in the piles is O(n). By storing its position in the

sequence, each element in the piles can be represented with O(log n) bits (instead of
O(log |�|) bits, where � is the alphabet from which the input elements are taken).
Thus PATIENCE SORTING consumes O(n log n) bits in total. If it maintains all ele-
ments in the piles, it can compute an actual longest increasing subsequence in the
same time and space complexity as described above. Note that to compute lis(τ), it
suffices to remember the top elements of the piles. However, the algorithm still uses
Ω(n log n) bits when lis(τ) ∈ Ω(n).

3.3 A Simple O(n)-bits Algorithm for Permutations

Here we observe that, when the input is a permutation π of {1, . . . , n}, lis(π) can be
computed in O(n2) time with O(n) bits of working space. The algorithm maintains a
used/unused flag for each element of {1, . . . , n} assuming that each element appears
exactly once in the sequence. Hence, this algorithm cannot be applied to general
inputs where repetitions may happen and the alphabet size |�| can be much larger
than the input length n.

Let τ be a sequence of integers without repetitions. A subsequence τ [i1, . . . , i�]
is the left-to-right minima subsequence if {i1, . . . , i�} = {i : τ(i) = min{τ(j) : 1 ≤
j ≤ i}}. In other words, the left-to-right minima subsequence is made by scanning
τ from left to right and greedily picking elements to construct a maximal decreasing
subsequence.

Burstein and Lankham [8, Lemma 2.9] showed that the first pile P1 is the left-
to-right minima subsequence of π and that the i th pile Pi is the left-to-right minima
subsequence of a sequence obtained from π by removing all elements in the previous
piles P1, . . . , Pi−1.

Algorithm 2 below uses this characterization of piles. The correctness follows
directly from the characterization. It uses a constant number of pointers of O(log n)

bits and a Boolean table of length n for maintaining “used” and “unused” flags. Thus

Theory of Computing Systems (2020) 64:522–541 527

it uses n + O(log n) bits working space in total. The running time is O(n2): each
for-loop takes O(n) time and the loop is repeated at most n times.

Algorithm 2 Computing lis with bits and in 2 time.

1: set 0 and mark all elements in as “unused”
2: while there is an “unused” element in do
3: increment and set
4: for 1 to do this for-loop constructs the next pile implicitly
5: if is unused and then
6: mark as “used” and set is currently on top of

7: return

4 An Algorithm for Computing the Length

In this section, we present our main algorithm that computes lis(τ) with O(s log n)

bits in O
(

1
s · n2 log n

)
time for

√
n ≤ s ≤ n. Note that the algorithm here out-

puts the length lis(τ) only. The next section discusses efficient solutions to actually
compute a longest sequence.

In the following, by Pi for some i we mean the i th pile obtained by (completely)
executing PATIENCE SORTING unless otherwise stated. (We sometimes refer to a
pile at some specific point of the execution). Also, by Pi (j) for 1 ≤ j ≤ |Pi | we
denote the j th element added to Pi . That is, Pi (1) is the first element added to Pi and
Pi (|Pi |) is the top element of Pi .

To avoid mixing up repeated elements, we assume that each element τ(j) of the
piles is stored with its index j . In the following, we mean by “τ(j) is in Pi” that
the j th element of τ is pushed to Pi . Also, by “τ(j) is Pi (r)” we mean that the j th
element of τ is the r th element of Pi .

We start with an overview of our algorithm. It scans over the input O(n/s) times.
In each pass, it assumes that a pile Pi with at most s elements is given, which has
been computed in the previous pass. Using this pile Pi , it filters out the elements in
the previous piles P1, . . . , Pi−1. It then basically simulates PATIENCE SORTING but
only in order to compute the next 2s piles. As a result of the pass, it computes a new
pile Pj with at most s elements such that j ≥ i + s.

The following observation, that follows directly from the definition of PATIENCE

SORTING and Observation 3.4, will be useful for the purpose of filtering out elements
in irrelevant piles.

Observation 4.1 Let τ(y) ∈ Pj with j 	= i . If τ(x) was the top element of Pi when
τ(y) was pushed to Pj , then j < i if τ(y) < τ(x), and j > i if τ(y) > τ(x).

Using Observation 4.1, we can obtain the following algorithmic lemma that plays
an important role in the main algorithm.

Theory of Computing Systems (2020) 64:522–541528

Lemma 4.2 Having stored Pi explicitly in the additional memory and given an index
j > i , the size |Pk | for all i + 1 ≤ k ≤ min{ j, lis(τ)} can be computed in O(n log n)

time with O((|Pi |+ j − i) log n) bits. If lis(τ) < j , then we can compute lis(τ) in the
same time and space complexity.

Proof Recall that PATIENCE SORTING scans the sequence τ from left to right and
puts each element to the appropraiate pile. We process the input in the same way
except that we filter out, and thereby ignore, the elements in the piles Ph for which
h < i or h > j .

To this end, we use the following two filters whose correctness follows from
Observation 4.1.

(Filtering Ph with h < i). To filter out the elements that lie in Ph for some h < i ,
we maintain an index r that points to the element of Pi read most recently in the scan.
Since Pi is given explicitly to the algorithm, we can maintain such a pointer r .

When we read a new element τ(x), we have three cases.

– If τ(x) is Pi (r + 1), then we increment the index r .
– Else if τ(x) < Pi (r), then τ(x) is ignored since it is in Ph for some h < i .
– Otherwise we have τ(x) > Pi (r). In this case τ(x) is in Ph for some h > i .

(Filtering Ph with h > j). The elements in Ph for h > j can be filtered with-
out maintaining additional information as follows. Let again τ(x) be the newly read
element.

• If no part of Pj has been constructed yet, then τ(x) is in Ph for some h ≤ j .
• Otherwise, we compare τ(x) and the element τ(y) currently on the top of Pj .

– If τ(x) > τ(y), then τ(x) is in Ph for some h > j , and thus ignored.
– Otherwise τ(x) is in Ph for some h ≤ j .

We simulate PATIENCE SORTING only for the elements that pass both filters
above. While doing so, we only maintain the top elements of the piles and addi-
tionally store the size of each pile. This requires at most O((j − i) log n) space, as
required by the statement of the lemma. For details see Algorithm 3.

The running time remains the same since we only need constant number of addi-
tional steps for each step in PATIENCE SORTING to filter out irrelevant elements. If
Pj is still empty after this process, we can conclude that lis(τ) is the index of the
newest pile constructed.

The proof of Lemma 4.2 can be easily adapted to also compute the pile Pj explic-
itly. For this, we simply additionally store all elements of Pj as they are added to the
pile.

Lemma 4.3 Given Pi and an index j such that i < j ≤ lis(τ), we can compute Pj
in O(n log n) time with O((|Pi | + |Pj | + j − i) log n) bits.

Assembling the lemmas of this section, we now present our first main result. The
corresponding pseudocode of the algorithm can be found in Algorithm 4.

Theory of Computing Systems (2020) 64:522–541 529

Theorem 4.4 There is an algorithm that, given an integer s satisfying
√
n ≤ s ≤ n

and a sequence τ of length n, computes lis(τ) in O
(

1
s · n2 log n

)
time with O(s log n)

bits of space.

Algorithm 3 Computing for all with 1 min lis when is
given.

1: set 0 points to the most recently read element in
2: set the largest index of the piles constructed so far
3: initialize to is the element currently on top of
4: initialize to 0 is the current size of
5: for 1 to do

filtering out irrelevant elements
6: if is then
7: increment and continue the for-loop
8: else if or (and) then
9: ignore the element and continue the for-loop

push to the appropriate pile
10: if then
11: increment and set
12: else
13: set to be the smallest index with

14: set and increment

Proof To apply Lemmas 4.2 and 4.3 at the beginning, we start with a dummy pile
P0 with a single dummy entry P0(1) = −∞. In the following, assume that for some
i ≥ 0 we computed the pile Pi of size at most s explicitly. We repeat the following
process until we find lis(τ).

Algorithm 4 Computing lis with log bits in 1 2 log time.

1: set 0 and initialize the dummy pile 0 with the single element
2: loop
3: compute the size of for all with 1 2
4: if we find lis 2 then
5: return lis

6: let be the largest index such that 1 2
7: compute and set

In each iteration, we first compute the size |Pk | for i +1 ≤ k ≤ i +2s. During this
process, we may find lis(τ) < i + 2s. In such a case we output lis(τ) and terminate.
Otherwise, we find an index j such that i + s + 1 ≤ j ≤ i + 2s and |Pj | ≤ n/s.
Since s ≥ √

n, it holds that |Pj | ≤ n/
√
n = √

n ≤ s. We then compute Pj itself to
replace i with j and repeat.

Theory of Computing Systems (2020) 64:522–541530

By Lemmas 4.2 and 4.3, each pass can be executed in O(n log n) time with a
working space of O(s log n) bits. There are at most lis(τ)/s iterations, since in each
iteration the index i increases by at least s or lis(τ) is determined. Since lis(τ) ≤ n,

the total running time is O
(

1
s · n2 log n

)
.

In the case of the smallest memory consumption we conclude the following
corollary.

Corollary 4.5 Given a sequence τ of length n, lis(τ) can be computed in
O

(
n1.5 log n

)
time with O

(√
n log n

)
bits of space.

5 An Algorithm for Finding a Longest Increasing Subsequence

It is easy to modify the algorithm in the previous section in such a way that it outputs
an element of the final pile Plis(τ), which is the last element of a longest increasing
subsequence by Proposition 3.3. Thus we can repeat the modified algorithm n times
(considering only the elements smaller than and appearing before the last output)
and actually find a longest increasing subsequence.1 The running time of this naı̈ve

approach is O
(

1
s · n3 log n

)
.

As we claimed before, we can do much better. In fact, we need only an additional
multiplicative factor of O(log n) instead of O(n) in the running time, while keep-
ing the space complexity as it is. In the rest of this section, we prove the following
theorem.

Theorem 5.1 There is an algorithm that, given an integer s satisfying
√
n ≤ s ≤ n

and a sequence τ of length n, computes a longest increasing subsequence of τ in
O(1

s · n2 log2 n) time using O(s log n) bits of space.

Corollary 5.2 Given a sequence τ of length n, a longest increasing subsequence of
τ can be found in O

(
n1.5 log2 n

)
time with O

(√
n log n

)
bits of space.

We should point out that the algorithm in this section is not a multi-pass algo-
rithm. However, we can easily transform it without any increase in the time and space
complexity so that it works as a sequential access algorithm.

5.1 High-Level Idea

We first find an element that is in a longest increasing subsequence roughly in the

middle. As we will argue, this can be done in O
(

1
s · n2 log n

)
time with O(s log n)

bits by running the algorithm from the previous section twice, once in the ordinary

1This algorithm outputs a longest increasing subsequence in the reversed order. One can access the input
in the reversed order and find a longest decreasing subsequence to avoid this issue.

Theory of Computing Systems (2020) 64:522–541 531

then once in the reversed way. We then divide the input into the left and right parts at
a near-mid element and recurse.

The space complexity remains the same and the time complexity increases only by an
O(log n) multiplicative factor. The depth of recursion is O(log n) and at each level of rec-

ursion the total running time is O
(

1
s · n2 log n

)
. To remember the path to the current

recursion, we need some additional space, but it is bounded by O
(
log2 n

)
bits.

5.2 A Subroutine for Short Longest Increasing Sequences

We first solve the base case in which lis(τ) ∈ O(n/s). In this case, we use the original
PATIENCE SORTING and repeat it O(n/s) times. We present the following general
form first.

Lemma 5.3 Let τ be a sequences of length n and lis(τ) = k. Then a longest
increasing subsequence of τ can be found in O(k · n log k) time with O(k log n) bits.

Proof Without changing the time and space complexity, we can modify the original
PATIENCE SORTING so that

– it maintains only the top elements of the piles;
– it ignores the elements larger than or equal to a given upper bound; and
– it outputs an element in the final pile.

We run the modified algorithm lis(τ) times. In the first run, we have no upper
bound. In the succeeding runs, we set the upper bound to be the output of the previous
run. In each run the input to the algorithm is the initial part of the sequence that ends
right before the last output. The entire output forms a longest increasing sequence of
τ .2

Since lis(τ) = k, modified PATIENCE SORTING maintains only k piles. Thus each
run takes O(n log k) time and uses O(k log n) bits. The lemma follows since this is
repeated k times and each round only stores O(log n) bits of information from the
previous round.

The following special form of the lemma above holds since n/s ≤ s when s ≥ √
n.

Corollary 5.4 Let τ be a sequence of length n and lis(τ) ∈ O(n/s) for some s with√
n ≤ s ≤ n. A longest increasing subsequence of τ can be found in O

(
1
s · n2 log n

)

time with O(s log n) bits.

5.3 A Key Lemma

As mentioned above, we use a reversed version of our algorithm. REVERSE

PATIENCE SORTING is the reversed version of PATIENCE SORTING: it reads the input

2Again this output is reversed. We can also compute the output in nonreversed order as discussed before.

Theory of Computing Systems (2020) 64:522–541532

from right to left and uses the reversed inequalities. (See Algorithm 5). REVERSE

PATIENCE SORTING computes the length of a longest decreasing subsequence in
the reversed sequence, which is a longest increasing subsequence in the original
sequence. Since the difference between the two algorithms is small, we can eas-
ily modify our algorithm in Section 4 for the length so that it simulates REVERSE

PATIENCE SORTING instead of PATIENCE SORTING.

Algorithm 5 Reverse patience sorting.

1: set 0 and initialize the dummy pile 0 with the single element
2: for to 1 do
3: if top then
4: increment , let to be a new empty pile, and set
5: else
6: set to be the smallest index with top

7: push to

8: return

Let Qi be the i th pile constructed by REVERSE PATIENCE SORTING as in Algo-
rithm 5. Using Proposition 3.3, we can show that for each τ(i) in Q j , the longest
decreasing subsequence of the reversal of τ ending at τ(i) has length j . This is
equivalent to the following observation.

Observation 5.5 τ(i) ∈ Q j if and only if a longest increasing subsequence of τ

starting at τ(i) has length j .

This observation immediately gives the key lemma below.

Lemma 5.6 Pk ∩ Q lis(τ)−k+1 	= ∅ for all k with 1 ≤ k ≤ lis(τ).

Proof Let 〈τ(i1), . . . , τ (i�)〉 be a longest increasing subsequence of τ . Proposi-
tion 3.3 implies that τ(ik) ∈ Pk . The subsequence 〈τ(ik), . . . , τ (i�)〉 is a longest
increasing subsequence of τ starting at τ(ik) since otherwise 〈τ(i1), . . . , τ (i�)〉 is not
longest. Since the length of 〈τ(ik), . . . , τ (i�)〉 is i� − k + 1 = lis(τ) − k + 1, it holds
that τ(k) ∈ Q lis(τ)−k+1.

Note that the elements of Pk and Q lis(τ)−k+1 are not the same in general. For exam-
ple, by applying REVERSE PATIENCE SORTING to τ1 = 〈2, 8, 4, 9, 5, 1, 7, 6, 3〉, we
get Q1 = 〈3, 6, 7, 9〉, Q2 = 〈1, 5, 8〉, Q3 = 〈4〉, and Q4 = 〈2〉 as below. (Recall that
P1 = 〈2, 1〉, P2 = 〈8, 4, 3〉, P3 = 〈9, 5〉, and P4 = 〈7, 6〉). The following diagram
depicts the situation. The elements shared by Pk and Q lis(τ)−k+1 are underlined.

3

Q1

6
3

Q1

7
6

3

Q1

7

6

3 1

Q1 Q2

7

6 5
3 1

Q1 Q2

9
7

6 5

3 1

Q1 Q2

9

7

6 5

3 1 4

Q1 Q2 Q3

9

7 8
6 5

3 1 4

Q1 Q2 Q3

9

7 8

6 5

3 1 4 2

Q1 Q2 Q3 Q4

3

1 4 5 6

2 8 9 7

P1 P2 P3 P4

Theory of Computing Systems (2020) 64:522–541 533

5.4 The Algorithm

We first explain the subroutine for finding a near-mid element in a longest increasing
subsequence.

Lemma 5.7 Let s be an integer satisfying
√
n ≤ s ≤ n. Given a sequence τ of

length n, the kth element of a longest increasing subsequence of τ for some k with

lis(τ)/2 ≤ k < lis(τ)/2+n/s can be found in O
(

1
s · n2 log n

)
time using O(s log n)

bits of space.

Proof We slightly modify Algorithm 4 so that it finds an index k and outputs Pk such
that |Pk | ≤ s and lis(τ)/2 ≤ k ≤ lis(τ)/2 + n/s. Such a k exists since the average of
|Pi | for lis(τ)/2 ≤ i < lis(τ)/2 + n/s is at most s. The time and space complexity of
this phase are as required by the lemma.

We now find an element in Pk ∩ Q lis(τ)−k+1. Since the size |Q lis(τ)−k+1| is not
bounded by O(s) in general, we cannot store Q lis(τ)−k+1 itself. Instead use the
reversed version of the algorithm in Section 4 to enumerate it. Each time we find an
element in Q lis(τ)−k+1, we check whether it is included in Pk . This can be done with
no loss in the running time since Pk is sorted and the elements of Q lis(τ)−k+1 arrive
in increasing order.

The next technical but easy lemma allows us to split the input into two parts
at an element of a longest increasing subsequence and to solve the smaller parts
independently.

Lemma 5.8 Let τ(j) be the kth element of a longest increasing subsequence of a
sequence τ . Let τL be the subsequence of τ [1, . . . , j − 1] formed by the elements
smaller than τ(j). Similarly let τR be the subsequence of τ [j + 1, . . . , |τ |] formed
by the elements larger than τ(j). Then, a longest increasing subsequence of τ can
be obtained by concatenating a longest increasing subsequence of τL , τ(j), and a
longest increasing subsequence of τR, in this order.

Proof Observe that the concatenated sequence is an increasing subsequence of τ . It
suffices to show that lis(τL) + lis(τR) + 1 ≥ lis(τ). Let τ [i1, . . . , ilis(τ)] be a longest
increasing subsequence of τ such that ik = j . From the definition, τ [i1, . . . , ik−1] is
a subsequence of τL , and τ [ik+1, . . . , ilis(τ)] is a subsequence of τR . Hence lis(τL) ≥
k − 1 and lis(τR) ≥ lis(τ) − k, and thus lis(τL) + lis(τR) + 1 ≥ lis(τ).

As Lemma 5.8 suggests, after finding a near-mid element τ(k), we recurse
into τL and τR . If the input τ ′ to a recursive call has small lis(τ ′), we directly
compute a longest increasing subsequence. See Algorithm 6 for details of the
whole algorithm. Correctness follows from Lemma 5.8 and correctness of the
subroutines.

Theory of Computing Systems (2020) 64:522–541534

Algorithm 6 Recursively finding a longest increasing subsequence of .

1: RECURSIVELIS()
2: procedure RECURSIVELIS(, lb, ub)
3: the subsequence of formed by the elements such that lb

ub
is not explicitly computed but provided by ignoring the

irrelevant elements
4: compute lis
5: if lis 3 then
6: output a longest increasing subsequence of Lemma 5.3
7: else
8: find the th element of a longest increasing subsequence of

for some with lis lis
9: RECURSIVELIS
10: output
11: RECURSIVELIS(, ub)

5.5 Time and Space Complexity

In Theorem 5.1, the claimed running time is O
(

1
s · n2 log2 n

)
. To prove this, we

first show that the depth of the recursion is O(log n). We then show that the total

running time in each recursion level is O
(

1
s · n2 log n

)
. The claimed running time is

guaranteed by these bounds.

Lemma 5.9 Given a sequence τ , the depth of the recursions invoked by RECUR-
SIVELIS of Algorithm 6 is at most log6/5 lis(τ

′), where τ ′ is the subsequence of τ

computed in Line 3.

Proof We proceed by induction on lis(τ ′). If lis(τ ′) ≤ 3|τ ′|/s, then no recursive
call occurs, and hence the lemma holds. In the following, we assume that lis(τ ′) =
� > 3|τ ′|/s and that the statement of the lemma is true for any sequence τ ′′ with
lis(τ ′′) < �.

Since � > 3|τ ′|/s, Algorithm 6 recurses into two branches on subsequences of τ ′.
From the definition of k in Line 8 of Algorithm 6, the length of a longest increasing
subsequence is less than �/2+|τ ′|/s in each branch. Since �/2+|τ ′|/s < �/2+�/3 =
5�/6, each branch invokes recursions of depth at most log6/5(5�/6) = log6/5 � − 1.
Therefore, the maximum depth of the recursions invoked by their parent is at most
log6/5 �.

Lemma 5.10 Given a sequence τ of length n, the total running time at each depth of

recursion excluding further recursive calls in Algorithm 6 takes O
(

1
s n

2 log n
)
time.

Theory of Computing Systems (2020) 64:522–541 535

Proof In one recursion level, we have many calls of RECURSIVELIS on pair-
wise non-overlapping subsequences of τ . For each subsequence τ ′, the algo-

rithm spends time O
(

1
s |τ ′|2 log |τ ′|

)
. Thus the total running time at a depth is

O
(∑

τ ′ 1
s |τ ′|2 log |τ ′|

)
, which is O

(
1
s n

2 log n
)

since
∑

τ ′ |τ ′|2 ≤ |τ |2 = n2.

Finally we consider the space complexity of Algorithm 6.

Lemma 5.11 Algorithm 6 uses O(s log n) bits of working space on sequences of
length n.

Proof We have already shown that each subroutine uses O(s log n) bits. Moreover,
this space of working memory can be discarded before another subroutine call occurs.
Only a constant number of O(log n)-bit words are passed to the new subroutine
call. We additionally need to remember the stack trace of the recursion. The size of
this additional information is bounded by O(log2 n) bits since each recursive call
is specified by a constant number of O(log n)-bit words and the depth of recur-
sion is O(log n) by Lemma 5.9. Since log2 n ∈ O(s log n) for s ≥ √

n, the lemma
holds.

6 Lower Bound for Algorithms with Sequential Access

An algorithm is a sequential access algorithm if it can access elements in the input
array only sequentially. In our situation this means that for a given sequence, access-
ing the i th element of the sequence directly after having accessed the j th element of
the sequence costs time at least linear in |i − j |. As opposed to the RAM, any Tur-
ing machine in which the input is given on single read-only tape has this property.
Note that any lower bound for sequential access algorithms in an asymptotic form
is applicable to multi-pass algorithms as well since every multi-pass algorithm can
be simulated by a sequential access algorithm with the same asymptotic behavior.
Although some of our algorithms are not multi-pass algorithms, it is straightforward
to transform them to sequential access algorithms with the same time and space
complexity.

To show a lower bound on the running time of sequential access algorithms with
limited working space, we need the concept of communication complexity (see [21]
for more details). Let f be a function. Given α ∈ A to the first player Alice and
β ∈ B to the second player Bob, the players want to compute f (α, β) together by
sending bits to each other (possibly multiple times). The communication complexity
of f is the maximum number of bits transmitted between Alice and Bob over all
inputs by the best protocol for f .

Consider the following variant of the LIS problem: Alice gets the first half of a
permutation π of {1, . . . , 2n} and Bob gets the second half. They compute lis(π)

together. It is known that this problem has high communication complexity [19, 22,
38].

Theory of Computing Systems (2020) 64:522–541536

Proposition 6.1 ([19, 38]) Let π be a permutation of {1, . . . , 2n}. Given the first half
of π to Alice and the second half to Bob, they need Ω(n) bits of communication to
compute lis(π) in the worst case (even with 2-sided error randomization).

Now we present our lower bound. Note that the lower bound even holds for the
special case where input is restricted to permutations.

Theorem 6.2 Given a permutation π of {1, . . . , 4n}, any sequential access (possibly
randomized) algorithm computing lis(π) using b bits takes Ω(n2/b) time.

Proof Given an arbitrary n > 1, let π ′ be a permutation of {1, . . . , 2n}. We con-
struct a permutation π of {1, . . . , 4n} as follows. Let π ′

1 = 〈π(1), . . . , π(n)〉
be the first half of π ′, define π ′

2 = 〈4n, 4n − 1, . . . , 2n + 2〉 and let π ′
3 =

〈π(n + 1), π(n + 2), . . . , π(2n)〉 be the second half of π ′. Then we define π to be
the concatenation of π ′

1, π ′
2, π ′

3 and the one element sequence π ′
4 = 〈2n + 1〉, in that

order.
It is not difficult to see that π is a permutation and that lis(π) = lis(π ′)+1. To see

the latter, observe that the concatenation of π ′
2 and π ′

4 is a decreasing subsequence
of π . Hence any increasing subsequence of π can contain at most one element not in
π ′. On the other hand, any increasing subsequence of π ′ of length � can be extended
with the element 2n + 1 of π ′

4 to an increasing subsequence of π of length � + 1.
We say a sequential access algorithm traverses the middle if it accesses a position

in π ′
1 and then accesses a position in π ′

3 or vice versa with possibly accessing ele-
ments in π ′

2 but only such elements in meantime. Since each traversal of the middle
takes Ω(n) time, it suffices to show that the number of traversals of the middle is
Ω(n/b).

Suppose we are given a sequential access algorithm M that computes lis(π) with t
traversals of the middle. Using M , we construct a two-player communication proto-
col for computing lis(π ′) with at most tb bits of communication. (A similar technique
is described for streaming algorithms in [38]).

Recall that the first player Alice gets the first half π ′
1 of π ′ and the second player

Bob gets the second half π ′
3 of π ′. They compute lis(π ′) together as follows.

• Before starting computation, Alice computes πA by concatenating π ′
1 and π ′

2 in
that order, and Bob computes πB by concatenating π ′

2, π ′
3, and π ′

4 in that order.
• They first compute lis(π) using M by repeating the following phases:

– Alice starts the computation by M and continues while M stays in
π [1, . . . , 3n − 1] = πA. When M tries to access π [3n, . . . , 4n], and
thus a traversal of the middle occurs, Alice stops and sends all b bits
stored by M to Bob.

– Bob restores the b bits received from Alice to the working memory of M
and continues computation while M stays in π [n + 1, . . . , 4n] = πB . A
traversal of the middle is occurred when M tries to access π [1, . . . , n].
Bob then stops and sends the b bits currently stored by M back to Alice.

• When M outputs lis(π) and terminates, the currently active player outputs
lis(π) − 1 as lis(π ′) and terminates the protocol.

Theory of Computing Systems (2020) 64:522–541 537

The two players correctly simulate M and, as a result, compute lis(π ′) together. Since
the algorithm M invokes t traversals, the total number of bits sent is at most tb. Since
tb ∈ Ω(n) holds by Proposition 6.1, we have t ∈ Ω(n/b) as required.

Recall that our algorithms for the LIS problem use O(s log n) bits and run in
O(1

s n
2 log n) time for computing the length and in O(1

s n
2 log2 n) time for finding a

subsequence, where
√
n ≤ s ≤ n. By Theorem 6.2, their time complexity is optimal

for algorithms with sequential access up to polylogarithmic factors of log2 n and
log3 n, respectively.

7 Concluding Remarks

Our results in this paper raise the following question:

Can we solve LIS with o
(√

n
)
-space in polynomial time?

Observe that an unconditional ‘no’ implies that SC 	= P ∩ PolyL, where SC (Steve’s
Class) is the class of problems that can be solved by an algorithm that simultane-
ously runs in polynomial-time and polylogarithmic-space [11, 29]. As a conditional
lower bound, we can use the (hypothetical) hardness of LONGEST COMMON SUB-
SEQUENCE (LCS). Given two strings, LCS asks to find a longest sequence that
is a subsequence of both strings. It is easy to see that a longest increasing subse-
quence of a sequence τ can be computed as a longest common subsequence of τ

and the sequence obtained by sorting τ . The other direction is not that obvious,
but there is a reduction from LCS on strings of length n to LIS on a string of
length at most n2 [20]. The reduction can be easily implemented in log-space. This
implies that an O(f (n))-space polynomial-time algorithm for LIS can be used as an
O(f (n2))-space polynomial-time algorithm for LCS. In particular, an O(

√
n 1−ε

)-
space polynomial-time algorithm for LIS gives an O(n1−ε)-space polynomial-time
algorithm for LCS for any ε > 0, and a log-space algorithm for LIS implies a
log-space algorithm for LCS.

To make the presentation simple, we used the length n of τ to bound lis(τ) in the
time complexity analyses of the algorithms. If we analyze the complexity in terms
of lis(τ) instead of n when possible, we can obtain the following output-sensitive
bounds.

Theorem 7.1 Let s be an integer satisfying
√
n ≤ s ≤ n, and let τ be a sequence

of length n with lis(τ) = k. Using O(s log n) bits of space, lis(τ) can be computed

in O
(

1
s · kn log k

)
time and a longest increasing subsequence of τ can be found in

O
(

1
s · kn log2 k

)
time.

Acknowledgments The authors are grateful to William S. Evans for bringing the reduction from LCS to
LIS mentioned in the concluding remarks to their attention.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Theory of Computing Systems (2020) 64:522–541538

References

1. Ahn, H.-K., Baraldo, N., Oh, E., Silvestri, F.: A time-space trade-off for triangulations of points in the
plane. In: COCOON 2017, pp. 3–12 (2017). https://doi.org/10.1007/978-3-319-62389-4 1

2. Aldous, D., Diaconis, P.: Longest increasing subsequences: from patience sorting to the Baik-
Deift-Johansson theorem. Bull. Am. Math. Soc. 36(4), 413–432 (1999). https://doi.org/10.1090/S0
273-0979-99-00796-X

3. Asano, T., Elmasry, A., Katajainen, J.: Priority queues and sorting for read-only data. In: TAMC 2013,
pp. 32–41 (2013). https://doi.org/10.1007/978-3-642-38236-9 4

4. Asano, T., Izumi, T., Kiyomi, M., Konagaya, M., Ono, H., Otachi, Y., Schweitzer, P., Tarui,
J., Uehara, R.: Depth-first search using O(n) bits. In: ISAAC 2014, pp. 553–564 (2014).
https://doi.org/10.1007/978-3-319-13075-0 44

5. Banyassady, B., Korman, M., Mulzer, W., Van Renssen, A.ndré., Roeloffzen, M., Seiferth, P., Stein,
Y.: Improved time-space trade-offs for computing Voronoi diagrams. In: STACS 2017, vol. 66,
pp. 9:1–9:14 (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.9

6. Bespamyatnikh, S., Segal, M.: Enumerating longest increasing subsequences and patience sorting.
Inf. Process. Lett. 76(1–2), 7–11 (2000). https://doi.org/10.1016/S0020-0190(00)00124-1

7. Borodin, A., Cook, S.: A time-space tradeoff for sorting on a general sequential model of computation.
SIAM J. Comput. 11(2), 287–297 (1982). https://doi.org/10.1137/0211022

8. Burstein, A., Lankham, I.: Combinatorics of patience sorting piles. Séminaire Lotharingien de
Combinatoire 54A, B54Ab (2006). http://www.mat.univie.ac.at/∼slc/wpapers/s54Aburlank.html

9. Chakraborty, S., Satti, S.R.: Space-efficient algorithms for maximum cardinality search, stack
BFS, queue BFS and applications. In: COCOON 2017, pp. 87–98 (2017). https://doi.org/10.1007/
978-3-319-62389-4 8

10. Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. Discret. Comput. Geom. 37(1), 79–102
(2007). https://doi.org/10.1007/s00454-006-1275-6

11. Cook, S.A.: Deterministic CFL’s are accepted simultaneously in polynomial time and log squared
space. In: STOC 1979, pp. 338–345 (1979). https://doi.org/10.1145/800135.804426

12. Crochemore, M., Porat, E.: Fast computation of a longest increasing subsequence and application. Inf.
Comput. 208(9), 1054–1059 (2010). https://doi.org/10.1016/j.ic.2010.04.003

13. Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2D convex-hull problem. In: ESA 2014,
pp. 284–295 (2014). https://doi.org/10.1007/978-3-662-44777-2 24

14. Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms. In: STACS 2015,
vol. 30, pp. 288–301 (2015). https://doi.org/10.4230/LIPIcs.STACS.2015.288

15. Ergun, F., Jowhari, H.: On the monotonicity of a data stream. Combinatorica 35(6), 641–653 (2015).
https://doi.org/10.1007/s00493-014-3035-1

16. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection. J Comput Syst
Sci 34(1), 19–26 (1987). https://doi.org/10.1016/0022-0000(87)90002-X

17. Fredman, M.L.: On computing the length of longest increasing subsequences. Discret. Math. 11(1),
29–35 (1975). https://doi.org/10.1016/0012-365X(75)90103-X

18. Gál, A., Gopalan, P.: Lower bounds on streaming algorithms for approximating the length of the
longest increasing subsequence. SIAM J. Comput. 39(8), 3463–3479 (2010). https://doi.org/10.113
7/090770801

19. Gopalan, P., Jayram, T.S., Krauthgamer, R., Kumar, R.: Estimating the sortedness of a data stream.
In: SODA 2007, pp. 318–327 (2007). http://dl.acm.org/citation.cfm?id=1283417

20. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common subsequences.
Commun. ACM 20(5), 350–353 (1977). https://doi.org/10.1145/359581.359603

21. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press, Cambridge
(1997)

22. Liben-Nowell, D., Vee, E., An, Z.: Finding longest increasing and common subsequences in streaming
data. J. Comb. Optim. 11(2), 155–175 (2006). https://doi.org/10.1007/s10878-006-7125-x

23. Lincoln, A., Williams, V.V., Wang, J.R., Ryan Williams, R.: Deterministic time-space trade-offs for
k-SUM. In: ICALP 2016, pp. 58:1–58:14 (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.58

24. Mallows, C.L.: Problem 62-2, patience sorting. SIAM Rev. 4(2), 143–149 (1962). http://www.jstor.
org/stable/2028371

25. Mallows, C.L.: Problem 62-2. SIAM Rev. 5(4), 375–376 (1963). http://www.jstor.org/stable/2028347

Theory of Computing Systems (2020) 64:522–541 539

https://doi.org/10.1007/978-3-319-62389-4_1
https://doi.org/10.1090/S0273-0979-99-00796-X
https://doi.org/10.1090/S0273-0979-99-00796-X
https://doi.org/10.1007/978-3-642-38236-9_4
https://doi.org/10.1007/978-3-319-13075-0_44
https://doi.org/10.4230/LIPIcs.STACS.2017.9
https://doi.org/10.1016/S0020-0190(00)00124-1
https://doi.org/10.1137/0211022
http://www.mat.univie.ac.at/~slc/wpapers/s54Aburlank.html
https://doi.org/10.1007/978-3-319-62389-4_8
https://doi.org/10.1007/978-3-319-62389-4_8
https://doi.org/10.1007/s00454-006-1275-6
https://doi.org/10.1145/800135.804426
https://doi.org/10.1016/j.ic.2010.04.003
https://doi.org/10.1007/978-3-662-44777-2_24
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.1007/s00493-014-3035-1
https://doi.org/10.1016/0022-0000(87)90002-X
https://doi.org/10.1016/0012-365X(75)90103-X
https://doi.org/10.1137/090770801
https://doi.org/10.1137/090770801
http://dl.acm.org/citation.cfm?id=1283417
https://doi.org/10.1145/359581.359603
https://doi.org/10.1007/s10878-006-7125-x
https://doi.org/10.4230/LIPIcs.ICALP.2016.58
http://www.jstor.org/stable/2028371
http://www.jstor.org/stable/2028371
http://www.jstor.org/stable/2028347

26. Mallows, C.L.: Patience sorting. Bulletin of the Institute of Mathematics and its Applications 9, 216–
224 (1973)

27. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theor. Comput. Sci. 12(3),
315–323 (1980). https://doi.org/10.1016/0304-3975(80)90061-4

28. Naumovitz, T., Saks, M.: A polylogarithmic space deterministic streaming algorithm for approx-
imating distance to monotonicity. In: SODA 2015, pp. 1252–1262 (2015). https://doi.org/10.113
7/1.9781611973730.83

29. Nisan, N.: RL ⊆ SC. In: STOC 1992, pp. 619–623 (1992). https://doi.org/10.1145/129712.129772
30. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: FOCS 1998, pp. 264–268 (1998).

https://doi.org/10.1109/SFCS.1998.743455
31. Pilipczuk, M., Wrochna, M.: On space efficiency of algorithms working on structural decomposi-

tions of graphs. In: STACS 2016, vol. 47, pp. 57:1–57:15 (2016). https://doi.org/10.4230/LIPIcs.
STACS.2016.57

32. Ramanan, P.: Tight Ω(n lg n) lower bound for finding a longest increasing subsequence. Int. J.
Comput. Math. 65(3–4), 161–164 (1997). https://doi.org/10.1080/00207169708804607

33. Romik, D.: The surprising mathematics of longest increasing subsequences. Cambridge University
Press, Cambridge (2015). https://doi.org/10.1017/CBO9781139872003

34. Saks, M., Seshadhri, C.: Space efficient streaming algorithms for the distance to monotonicity
and asymmetric edit distance. In: SODA 2013, pp. 1698–1709 (2013). https://doi.org/10.1137/1.9
781611973105.122

35. Saks, M., Seshadhri, C.: Estimating the longest increasing sequence in polylogarithmic time. SIAM
J. Comput. 46(2), 774–823 (2017). https://doi.org/10.1137/130942152

36. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Com-
put. Syst. Sci. 4(2), 177–192 (1970). https://doi.org/10.1016/S0022-0000(70)80006-X

37. Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13(2), 179–191 (1961).
https://doi.org/10.4153/CJM-1961-015-3

38. Su, X., Woodruff, D.P.: The communication and streaming complexity of computing the longest com-
mon and increasing subsequences. In: SODA 2007, pp. 336–345 (2007). http://dl.acm.org/citation.
cfm?id=1283383.1283419

39. Wang, J.R.: Space-efficient randomized algorithms for K-SUM. In: ESA 2014, pp. 810–829 (2014).
https://doi.org/10.1007/978-3-662-44777-2 67

Theory of Computing Systems (2020) 64:522–541540

https://doi.org/10.1016/0304-3975(80)90061-4
https://doi.org/10.1137/1.9781611973730.83
https://doi.org/10.1137/1.9781611973730.83
https://doi.org/10.1145/129712.129772
https://doi.org/10.1109/SFCS.1998.743455
https://doi.org/10.4230/LIPIcs.STACS.2016.57
https://doi.org/10.4230/LIPIcs.STACS.2016.57
https://doi.org/10.1080/00207169708804607
https://doi.org/10.1017/CBO9781139872003
https://doi.org/10.1137/1.9781611973105.122
https://doi.org/10.1137/1.9781611973105.122
https://doi.org/10.1137/130942152
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.4153/CJM-1961-015-3
http://dl.acm.org/citation.cfm?id=1283383.1283419
http://dl.acm.org/citation.cfm?id=1283383.1283419
https://doi.org/10.1007/978-3-662-44777-2_67

Affiliations

Masashi Kiyomi1 ·Hirotaka Ono2 ·Yota Otachi3 ·Pascal Schweitzer4 ·
Jun Tarui5

Masashi Kiyomi
masashi@yokohama-cu.ac.jp

Hirotaka Ono
ono@nagoya-u.jp

Pascal Schweitzer
schweitzer@cs.uni-kl.de

Jun Tarui
tarui@ice.uec.ac.jp

1 Yokohama City University, Yokohama, Japan
2 Nagoya University, Nagoya, Japan
3 Kumamoto University, Kumamoto, Japan
4 TU Kaiserslautern, Kaiserslautern, Germany
5 The University of Electro-Communications, Chofu, Japan

Theory of Computing Systems (2020) 64:522–541 541

http://orcid.org/0000-0002-0087-853X
mailto: masashi@yokohama-cu.ac.jp
mailto: ono@nagoya-u.jp
mailto: schweitzer@cs.uni-kl.de
mailto: tarui@ice.uec.ac.jp

	Space-Efficient Algorithms for Longest Increasing Subsequence
	Abstract
	Introduction
	Our Results
	Related Work

	Preliminaries
	Patience Sorting
	Correctness of Patience Sorting
	Time and Space Complexity of Patience Sorting
	A Simple O(n)-bits Algorithm for Permutations

	An Algorithm for Computing the Length
	An Algorithm for Finding a Longest Increasing Subsequence
	High-Level Idea
	A Subroutine for Short Longest Increasing Sequences
	A Key Lemma
	The Algorithm
	Time and Space Complexity

	Lower Bound for Algorithms with Sequential Access
	Concluding Remarks
	References
	Affiliations

