
Theory Comput Syst (2018) 62:337–348

Shortest Augmenting Paths for Online Matchings
on Trees

Bartłomiej Bosek1 · Dariusz Leniowski2 ·
Piotr Sankowski2 · Anna Zych-Pawlewicz2

Published online: 24 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract The shortest augmenting path (SAP) algorithm is one of the most classi-
cal approaches to the maximum matching and maximum flow problems, e.g., using
it Edmonds and Karp (J. ACM 19(2), 248–264 1972) have shown the first strongly
polynomial time algorithm for the maximum flow problem. Quite astonishingly,
although it has been studied for many years already, this approach is far from being
fully understood. This is exemplified by the online bipartite matching problem. In
this problem a bipartite graph G = (W � B, E) is being revealed online, i.e., in each
round one vertex from B with its incident edges arrives. After arrival of this vertex
we augment the current matching by using shortest augmenting path. It was con-
jectured by Chaudhuri et al. (INFOCOM’09) that the total length of all augmenting
paths found by SAP is O(n log n). However, no better bound than O(n2) is known

The work of all authors was supported by Polish National Science Center grant
2013/11/D/ST6/03100. Additionally, the work of P. Sankowski was partially supported by the project
TOTAL (No 677651) that has received funding from ERC.

� Bartłomiej Bosek
bosek@tcs.uj.edu.pl

Dariusz Leniowski
d.leniowski@mimuw.edu.pl

Piotr Sankowski
sank@mimuw.edu.pl

Anna Zych-Pawlewicz
anka@mimuw.edu.pl

1 Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

2 Institute of Computer Science, University of Warsaw, Warsaw, Poland

https://doi.org/10.1007/s00224-017-9838-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9838-x&domain=pdf
mailto:bosek@tcs.uj.edu.pl
mailto:d.leniowski@mimuw.edu.pl
mailto:sank@mimuw.edu.pl
mailto:anka@mimuw.edu.pl

338 Theory Comput Syst (2018) 62:337–348

even for trees. In this paper we prove an O(n log2 n) upper bound for the total length
of augmenting paths for trees.

Keywords Online matchings · Bipartite matchings · Approximate matchings ·
Shortest augmenting paths · Dynamic graph algorithms

1 Introduction

The shortest augmenting path (SAP) algorithm is one of the most classical approaches
to the maximum matching and maximum flow problems. Using this idea Edmonds
and Karp in 1972 have shown the first strongly polynomial time algorithm for the
maximum flow problem [5]. Quite astonishingly, although this idea is one of the
most basic algorithmic techniques, it is far from being fully understood. It is easier to
talk about it by introducing the online bipartite matching problem. In this problem a
bipartite graph G = (W � B, E) is being revealed online, i.e., in each round one ver-
tex from B with its incident edges arrives. After arrival of this vertex we augment this
matching by using shortest augmenting path. It was conjectured by Chaudhuri et al.
[4] that the total length of augmenting paths found by SAP is O(n log n). However,
no better bound than O(n2) is known even for trees. Proving this conjecture would
have quite striking consequences even for maximum flow problem, as it would show
that the total length of augmenting paths in unit capacity networks in Edmonds-Karp
algorithm is O(m log n). This consequence is obtained via the bipartite line graph
construction that is used to reduce the max-flow problem to maximum matching
problem [10]. The obtained bipartite line graph has 2m vertices.

Our paper contributes to the study of SAP algorithm by showing that in the case
of trees the total length of all augmenting paths is bounded by O(n log2 n). This
result is obtained via the application of the heavy-light decomposition of trees [16]
combined with charging technique that carefully assigns shortest augmenting paths
to the structure of the tree. Although, this result seems to be restricted only to trees
we be believe that it constitutes the first nontrivial progress towards resolving the
above conjecture. Moreover, we actually conjecture here that trees are the worst-case
examples for this problem. It seems that adding more edges can only help the SAP

algorithm. In addition to that we explain why SAP is harder to analyze than other
augmenting path algorithms, even though it seems way more natural.

2 Related Work

The online bipartite matching problem with augmentations has recently received
increasing research attention [3, 4, 6, 7]. There are several reasons to study this
problem. First of all, it provides a simple solution to the online bipartite matching
algorithms used in many modern applications such as online advertising (e.g., Google
Ads) [12] or client-server assignment [4]. Secondly, they could give rise to new effec-
tive offline bipartite matching algorithms as in [3]. Those new algorithms provide
new insights to the old problem that was studied for decades.

Theory Comput Syst (2018) 62:337–348 339

In this paper we concentrate on bounding the total length of augmenting paths
and not on the running time. With this respect, it was shown that if the vertices of B

appear in a random order, the expected total paths’ length for SAP is O(n log n) [4].
The worst-case total length of paths remains an open question even for trees. In the
class of trees the authors of [4] proposed a different augmenting path algorithm that
achieves total paths’ length of O(n log n). On the other hand, for general bipartite
graphs greedy ranking algorithm [3] guarantees O(n

√
n) total length of paths.

First of all, the above study of online bipartite matching with augmentations
should be related to the work of Gupta et al. [7] which shows an O(n) bound on the
total length of paths, but allows to exceed the capacity of each server by a constant
factor.

Another point of view is given by the dynamic matching algorithms. Most papers
in this area consider edge updates in a general fully-dynamic model which allows for
both insertions and deletions intermixed with each other. We note, however, that the
exact results in this model [9, 15] do not imply any bound on the number of changes
to the matching. Much faster update times can be achieved by constant approxi-
mate algorithms, for example [1, 14], which achieve polylogarithmic and logarithmic
update times. Yet, the 2-approximation can be obtained in our setting by trivial greedy
algorithm that preforms no changes at all.

Better approximation factor of 3
2 was achieved by [13] in O(

√
m) update time, and

then improved by Gupta and Peng to (1 + ε) in O(
√

mε−2) [8]. The O(
√

m) barrier
was broken by Bernstein and Stein who gave a (3

2 + ε)-approximation algorithm
that achieves O(m1/4ε−2.5) update time [2]. The same paper proposes an (1 + ε)-
approximation algorithm in very fast O(α(α + log n)+ε−4(α + log n)+ε−6) update
time for the special case of bipartite graphs with constant arboricity. However, when
allowing approximation in our model a much better results are possible. An (1 + ε)

approximation in O(mε−1) total time and with O(nε−1) total length of paths was
shown in [3].

3 Preliminaries

We consider the following matching problem. Let W and B be two sets of vertices
over which the bipartite graph will be formed. The set W (called white vertices)
is given up front to the algorithm, whereas the vertices in B (black vertices) arrive
online. We denote by Gt = 〈W � Bt , Et 〉 the bipartite graph after the t’th black
vertex has arrived. The graph Gt is constructed online in the following manner. We
start with G0 = 〈W � B0, E0〉 = 〈W � ∅, ∅〉. In turn t a new vertex bt ∈ B together
with all its incident edges E(bt) is revealed and Gt is defined as:{

Et = Et−1 ∪ E(bt),

Bt = Bt−1 ∪ {bt }.
The goal of our algorithm is to compute for each Gt the maximum size matching
Mt . For simplicity we assume that we add in total |W | black vertices. The final graph
G|W | which is obtained in this process will be denoted by G = (W � B, E). We
denote n = |W | = |B| and m = |E|.

340 Theory Comput Syst (2018) 62:337–348

For every t ∈ [n], we add orientation to edges of the graph Gt . This orientation
is induced by matching Mt : the matched edges are oriented towards black vertices,
while the unmatched edges are oriented towards white vertices. When a new vertex
bt arrives, we get an intermediate orientation Gint

t = (Eint
t , Bt), where the edges of

bt are oriented towards its neighbors, and the rest of the edges is oriented according
to Mt−1. Note that Gint

t and Gt−1 differ only by one vertex bt . Any simple directed
path in Gint

t from bt to some unmatched white vertex is an augmenting path. In turn
t , if bt can be matched, the edges of Gint

t are reoriented along augmenting path πt

chosen by the algorithm, and the resulting orientation is Gt . The unmatched white
vertices are called seeds. We denote the set of seeds after turn t as:

St = {w ∈ W : wb /∈ Mt for any b ∈ B}.
So in turn t the augmenting paths in Gint

t are the directed paths from bt to some
s ∈ St−1. We refer to the seed of the path πt from turn t as st , where st ∈ St−1.
We represent a path as a graph consisting of path vertices and path edges. We use
the notation v

π−→ v′ to denote that a (directed) path π starts in v and ends in v′,
and v −→ v′ to denote a connection via a directed edge. We use the notation v ∈ π

and ρ ⊆ π to state that a vertex v ∈ V (π) and that a path ρ is a subgraph of π ,
respectively. We also denote the length of a path π as |π |. Throughout the paper,
when we write “at time t”, what we formally mean is “in Gint

t”.
The next thing we define is a set of vertices Dt called dead at time t . The set Dt

is defined as the set of vertices in Gint
t that cannot reach St−1 via a directed path

in Gint
t . Observe, that if at some point there is no directed path from a vertex to a

seed, never again there will be such a path. If a vertex is dead, all vertices reachable
from it are dead as well. Hence, no alternating path can enter such a dead region and
reorient its edges to make some vertices alive. In other words, Dt ⊆ Dt+1 for every
time moment t . Detailed matching-independent proof of this fact can be found in
Section 1.2.2 of [11]. The vertices of Dt are called dead, while the remaining vertices
are called alive.

We now define the effective degree of a black vertex b in turn t as the number of
it’s non-dead out-neighbors:

degefft (b) = |�t(b) \ Dt |
where �t(b) is the set of vertices v such that b −→ v in Gint

t , referred to sometimes as
out-neighbours of b. In particular degefft (bt) is the number of all non-dead neighbors
(in the undirected sense) of bt , as all the edges adjacent to bt are directed towards its
neighbors.

Since we consider in this paper the special case when Gt is a tree at any time t ,
from now on we will refer to G as T , and to Gt as Tt .

4 Shortest Paths on Trees

In this section we study the shortest augmenting path (SAP) algorithm, which in each
turn chooses the shortest among all available augmenting paths. We start by giving

Theory Comput Syst (2018) 62:337–348 341

an easy argument, that the total length of augmenting paths for SAP is O(n log n) if
all vertices bt satisfy degefft (bt) > 1. This shows that the difficult case is to deal
with vertices of effective degree 1.

Lemma 1 If for each t ∈ [n] it holds that degefft (bt) > 1, then the total length of
all augmenting paths applied by SAP is bounded by O(n log n).

Proof Due to the definition of effective degree, every vertex bt connects at least two
trees T1 and T2 that contain a directed path connecting bt with a seed. Let T1 be a
smaller of the two trees. The length of the shortest path πt from bt to a seed is at
most the size of T1. We charge the cost of πt to |πt | arbitrary vertices of T1. During
the course of the SAP algorithm, every vertex can be charged at most O(log n) times,
as each time it is charged, the size of its tree doubles. The total charge is hence
O(n log n).

The main result of this paper and the subject of the remainder of this section is the
bound for the general case, stated in the following theorem.

Theorem 1 The total length of augmenting paths applied by SAP is O(n log2 n).

In order to prove Theorem 1 we introduce a few definitions and observations. The
core of our proof is the concept of a dispatching vertex.

Definition 1 A black vertex b ∈ B is called dispatching at time t if b is the closest
vertex to bt on the path πt that satisfies degefft (b) > 1. If there is no such vertex at
time t we define st to be the dispatching vertex. We denote a dispatching vertex in
time t as dis(πt). Moreover, for every dispatching black vertex b we define tlast(b)

as the moment when b is dispatching for the last time.

So every path πt applied by SAP has a uniquely defined dispatching vertex dis(πt)

assigned to it. The first observation we make is that we only have to care about
suffixes of πt ’s starting with dis(πt).

Definition 2 We split path πt into two segments πt = μtρt , where ρt is the suffix of

πt such that dis(πt)
ρt−→ st . Path μt = πt \ ρt is the remaining part of πt (a possibly

empty prefix that ends in a vertex preceding dis(πt)). We refer to the above defined
suffixes as dispatching paths.

Lemma 2 The total length of paths μt is linear in the size of the tree T , i.e.,∑
t∈[n] |μt | ∈ O(n).

Proof The lemma holds due to Observation 2, proven below, which states that ver-
tices of μt die at the time t when πt is applied. With this observation it is clear that
the time μt passes through a vertex is the last time SAP visits that vertex. So every
vertex in the tree is visited by μt for any t at most once.

342 Theory Comput Syst (2018) 62:337–348

Observation 2 Vertices of μt die at the time t when πt is applied.

Proof At the time when πt is applied, all vertices on μt have effective degree equal
to 1, i.e., they have only one alive directed out-neighbour – their successor on μt .
If we reverse the edges, the only chance for the vertices of μt to be alive is the last
vertex bt . This vertex, however, becomes dead because its only alive out-neighbour
is removed. As a consequence the whole path dies.

To bound the total length of augmenting paths πt , it remains to bound the total
length of dispatching paths:

∑
t∈[n] |ρt |. Consider the case when dis(πt) = st . Then

the path ρt consists of a single vertex st . The total sum of paths ρt satisfying this case
is thus O(n). It remains to consider the sum over all dispatching paths ρt that start in
a black dispatching vertex. These non-trivial dispatching paths will be, from now on,
the focus of our attention. In other words, our goal is to bound the following sum.

Lemma 3 The total length of non-trivial dispatching paths is O(n log2 n):∑
t∈[n]:

dis(πt)∈B

|ρt | ∈ O(n log2 n).

For the sake of clarity, we split the proof of Lemma 3 into two steps, presented
as Lemmas 5 and 6. More precisely, we partition the dispatching paths depending
on whether t < tlast(dis(πt)) or t = tlast(dis(πt)), that is, if the dispatching path in
question, is the last for its dispatching vertex (cf. Definition 1). In what follows, paths
that satisfy the former condition are called non-final and their total length is bounded
in Lemma 5, while final paths start at b ∈ B when b is a dispatching vertex for the
last time; their total length is the subject of Lemma 6.

These results will complete the proof of Theorem 1. However, before we jump
into their proofs, we first briefly recall the heavy-light decomposition introduced by
Sleator and Tarjan in [16] and state a related technical result, Lemma 4.

For a tree T rooted at r , the original technique partitions its edges into heavy and
light, depending on whether the size of the subtree is strictly bigger than half of the
size of the subtree rooted at parent. More precisely, let v be any vertex of T other
than root r and set pv to be its parent, then an edge {v, pv} is heavy if and only
if |subtree(v)| > 1

2 |subtree(pv)|, where subtree(x) is a subtree of T rooted in
x ∈ V (T). Non-heavy edges are called light.

Observe, that because of the size requirements, each time we traverse a light edge
away from the root r , the size of the current subtree halves. In other words, for any
vertex v of T there are at most

⌊
log2 |T |⌋ light edges on the simple path from r

to v. Note that each vertex can have at most two heavy incident edges, thus heavy
edges form vertex-disjoint paths. Moreover, paths are of much simpler structure
than arbitrary trees, hence allow for more efficient handling despite being possibly
numerous.

For convenience, in this paper, we use a slightly modified version, that is, each
non-leaf node selects exactly one heavy edge – the edge to the child that has the
greatest number of descendants (breaking ties arbitrarily). In particular an edge may

Theory Comput Syst (2018) 62:337–348 343

be considered heavy, even if the subtree is strictly smaller than half of the size of
the current tree. Just like in the original technique, the selected edges form the paths
of the decomposition (each non-leaf vertex has at least one and at most two heavy
edges), which we call heavy paths. By heavy-path(v) we denote the heavy path to
which vertex v belongs, while level : V (T) → N is the number of light edges on
the simple path from a vertex to the root. Observe that level(v) ≤ ⌊

log2 |T |⌋ for any
vertex v of T .

Lemma 4 Let T be any unrooted tree of size n. For any vertex v let Sv =
〈Sv

0 , Sv
1 , . . .〉 be the sequence of subtrees of v (i.e., the connected components of

T \ {v}) ordered descending by their size, that is, |V (Sv
i)| ≥ |V (Sv

i+1)|. Then for:

�(v) = ∑|Sv |−1
i=2 |V (Sv

i)|,
we have

∑
v∈V (T) �(v) ∈ O(n log n).

Proof Let r be a centroid point of T , that is, a vertex such that |V (Sr
0)| ≤ 1

2 |V (T)|.
We root T at r , and perform the heavy-light decomposition of T . Observe that for
all vertices v �= r we have that Sv

0 contains r (it corresponds to the parent of v) and
Sv

1 corresponds to the biggest child of v. In other words, at most Sv
0 and Sv

1 can be
connected by heavy edges, all the other subtrees Sv

2 , Sv
3 , . . . are connected by light

edges.
Now we take an arbitrary vertex w and calculate how many times it can appear in∑
v∈V (T) �(v). Suppose v is a vertex that counts w in �(v), then the first edge on

the path from v to w has to be light. Moreover, Sv
0 is not counted in �(v), so that path

cannot pass through the parent of v. Because of that v has to be an ancestor of w.
However, there are at most O(log n) light edges on any path from w to the root r for
any w. In other words, there can be at most O(log n) vertices that count w in its sum
of �. Summing that for all vertices of T we get the desired bound of O(n log n).

With the help of Lemma 4 we can tackle the first part of Lemma 3, that is, the sum
of the lengths of non-final dispatching paths.

Lemma 5 The total length of non-final dispatching paths is O(n log n):∑
t∈[n]:

b=dis(πt)∈B
t<tlast(b)

|ρt | ∈ O(n log n)

Proof Recall that the path πt starts in the newly added vertex bt . So in turn t either bt

is dispatching, or it dies. At any later time t ′ > t at which bt is dispatching πt ′ does
not begin with bt and hence one of bt ’s neighbours dies based on Observation 2.

Consider a fixed vertex b and let WD
b ⊆ W be the set of neighbors of b that die in

turns when b is dispatching. The first time b is dispatching no neighbour of b dies, so
Dt ∩ WD

b = ∅. The second time b is dispatching, it has at least one dead neighbour
and set Dt ∩ WD

b has exactly one element, namely the white vertex that preceded b

on μt . More generally, the k-th time b is dispatching, Dt ∩ WD
b has k − 1 elements.

344 Theory Comput Syst (2018) 62:337–348

Suppose that the total number of times b is dispatching equals l, in particular we know
that at some point of time Dt ∩ WD

b will have l − 1 elements. When b is dispatching
for the k-th time set Dt ∩ WD

b has only k − 1 members. In other words, b has l − k

neighbors which are at that turn not yet in Dt ∩ WD
b , and thus alive. Furthermore b

has at least two white neighbors that do not belong to WD
b and are alive at the time

when b is dispatching for the last time. Therefore, in total b has at least l −k+2 alive
white out-neighbours.

We say that a subtree hangs from the neighbour w of b, if it is obtained by the
removal of b from T and it contains w. Suppose that we discard two neighbors of
b with the heaviest trees hanging from them, i.e., two heaviest neighbours. Then for
k = l − 1 we have at least one alive neighbor, for k = l − 2 we have at least two
alive neighbors, that is, at least one alive neighbor other than the neighbor used at
k = l − 1, and so on. In other words, for any k < l we can find a distinct, not already
assigned, alive neighbor w different than the two heaviest neighbors of b. However,
the size of the subtree hanging from that neighbour bounds the length of the shortest
augmenting path starting at b. Therefore, we can bound the total length of non-final
paths dispatching at b by the total size of all subtrees of b except the two heaviest.
Summing that up over the whole tree gives us a O(n log n) upper bound, as shown
by the previous lemma, Lemma 4.

We now move on to the second part of Lemma 3, namely we bound the total length
of final dispatching paths.

Lemma 6 The sum of lengths of ρt such that t = tlast(dis(πt)) is bounded from
above by O(n log2 n): ∑

t∈[n]:
b=dis(πt)∈B

t=tlast(b)

|ρt | ∈ O(n log2 n).

To prove the above statement we will need a more fine-grained analysis than
before. The problem with the shortest path approach is that its structure and the struc-
ture of matchings are very different. To close this gap we introduce yet another family
of augmenting paths that relies much more on the structure of the tree. Obviously,
because the shortest paths are shorter than any other path, any upper bound on the
total length of the aforementioned new family of augmenting paths is an upper bound
for the shortest paths as well.

Proof Similarly to Lemma 4, we root T at a centroid point and preform the heavy-
light decomposition of the tree. That is, each vertex selects an edge to its largest
subtree, which we call heavy, while all other edges are considered light.

We define λt as one of the Mt−1-augmenting paths that connect the newly-
added vertex bt to an unmatched white vertex. To be more precise, for each path λ

connecting bt with a free white vertex in turn t let the tuple

〈level(v0), level(v1), level(v2), . . .〉

Theory Comput Syst (2018) 62:337–348 345

represent λ, where v0, v1, v2, . . . is the sequence of vertices of λ. We define λt as the
path represented by the lexicographically last tuple. Observe that λt leaves any heavy
path as soon as possible.

Now note that all Mt−1-augmenting paths starting in bt are the same up to dis(πt)

and let dis(λt) = dis(πt). To bound the length of λt , we split it into three parts as
follows:

λ′
t = μt ,

λ′′
t = (λt \ λ′

t) ∩ heavy-path(dis(λt)),

λ′′′
t = (λt \ λ′

t) \ heavy-path(dis(λt)).

Then λ′′
t follows heavy-path (dis(λt)) at most up to the closest vertex b such that

tlast(b) > t , namely:∣∣λ′′
t

∣∣ ≤ min {dist(b, dis(λt)) | b ∈ B (heavy-path(dis(λt))) , tlast(b) > t} . (1)

The reason for this is that any vertex b with tlast(b) > t has at least three
alive neighbors, with at least two of them reachable from b in Gint

t , and at least
one not on heavy-path (dis(λt)). Any such b is a vertex at which λ′′

t can leave
heavy-path(dis(λt)).

Consider an arbitrary heavy path H and the set D of vertices on H that are
ever dispatching in the entire run of the algorithm. Using D0 = D we split H

into at least d0 = |D0| non-empty fragments h0, h1, . . . , hd0−1. Each such part
h ∈ {h0, h1, . . . , hd0−1} has at least one of its endpoints in D0, and usually both,
unless h is the first or the last fragment. Thus, we can assign h to one of its end-
ing vertices with preference for earlier turn tlast if there are two available. Formally
f0 : {h0, h1, . . . , hd0−1} → D0, where:

f0(h) = arg min
b ∈V (h) ∩ D0

tlast(b).

Due to Inequality (1) in the previous paragraph we have:∣∣∣λ′′
tlast(f0(hi))

∣∣∣ ≤ |hi | for any 0 ≤ i < d0.

This means that the length of H bounds the total length of λ′′’s related to the dis-
patching vertices in the image of f0. However, as at most two hi’s can be assigned to
the same vertex of D0, the image of f0 constitutes at least a half of D0.

To take care of the rest of D0, we iterate this reasoning. We construct a sequence
of sets D0 ⊇ D1 ⊇ . . ., each step halving the size of Di . More precisely, we set:

Di = Di−1 \
{
fi−1

(
hi−1

j

)
| 0 ≤ j < di−1

}
,

where hi
0, h

i
1, . . . , h

i
di−1 are the parts of H after the split by Di and functions

fi : {hi
0, h

i
1, . . . , h

i
di−1} → Di are defined as:

fi(h
i) = arg min

b ∈V (hi) ∩ Di

tlast(b).

346 Theory Comput Syst (2018) 62:337–348

In other words, at most log n copies of H cover all λ′′ paths related to H . Summing
this up over all heavy paths gives us:∑

t∈[n]:
b=dis(πt)
t=tlast(b)

∈B

∣∣λ′′
t

∣∣ ∈ O(n log n).

Furthermore, it also means that for any v ∈ V (H) at most log n of λ′′′ paths may start
in v. That is, log n copies of all non-heavy subtrees of v ∈ V (H) cover all λ′′′ paths
starting in v, which, by Lemma 4, implies∑

t∈[n]:
b=dis(πt)∈B

t=tlast(b)

∣∣λ′′′
t

∣∣ ∈ O(n log2 n).

From the last two bounds we infer the statement of the Lemma 6. This also completes
the proof of Theorem 1.

5 Playing Against an Adversary

In the last section of this paper we discuss a quite surprising characteristic of Theo-
rem 1 and its implications. Namely, nowhere in the proofs of Lemmas 3, 4, 5 and 6
we rely on the shape of any particular matching at any given turn, or even on the fact
that these matchings are related to each other. To be more specific, we depend only
on the structure of the tree, the properties of the dead and alive vertices, and the car-
dinality of the matchings. This leads us to a generalization of the setting in question
and a respective counterpart of Theorem 1.

We define the adversarial dynamic augmenting path setting as a setup similar to
the one from Section 3 in which, as before, each turn we are given a single black
vertex with all its edges. However, the matching we use to calculate the shortest aug-
menting path is not the one produced by the algorithm in the previous turn, but some
arbitrary matching of the same cardinality provided by the adversary. In particular,
the edges might be oriented, wherever possible, away from the newly added vertex,
thus making the augmenting paths the longest possible. Nonetheless, because we do
not depend on the structure of the matching, the total length of all such augmenting
paths is still small.

Corollary 1 If the graph in the above setting is a tree, then the total length of all the
shortest augmenting paths is O(n log2 n).

It seems that this is true also in general bipartite graphs, and thus we form the
following conjecture.

Conjecture 1 The total length of all the shortest augmenting paths in the setting
above, that is, with the matching changing arbitrarily each turn, is still O(n log n)

worst case for any bipartite graph.

Theory Comput Syst (2018) 62:337–348 347

The ramifications of that conjecture are twofold. First, it suggests a new perspec-
tive and a new research angle in which we are allowed to change the matching to fit
into some schema. That could possibly lengthen the paths in the process, but it might
make the problem a bit more predictable and less dynamic, hence, in some aspects,
easier. Second, it might allow for better algorithms. A matching procedure based on
the above idea could alter the calculated matching during some turns in a random
way, thus perhaps making its worst case less bad. As the reasons behind this phe-
nomenon are far from clear, in authors’ opinion Conjecture 1 is an interesting open
problem.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Baswana, S., Gupta, M., Sandeep, S.: Fully dynamic maximal matching in O(N) update time. In:
Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
’11, pp. 383–392. IEEE Computer Society, Washington, DC (2011)

2. Bernstein, A., Stein, C.: Fully dynamic matching in bipartite graphs. 2015 to appear at ICALP (2015)
3. Bosek, B., Leniowski, D., Sankowski, P., Zych, A.: Online Bipartite Matching in Offline Time. In:

55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pp. 384–393. IEEE
Computer Society, Philadelphia (2014)

4. Chaudhuri, K., Daskalakis, C., Kleinberg, R.D., Lin, H.: Online bipartite perfect matching with aug-
mentations. In: 28th IEEE International Conference on Computer Communications, Joint Conference
of the IEEE Computer and Communications Societies INFOCOM 2009, pp. 1044–1052. IEEE, Rio
De Janeiro (2009)

5. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow
problems. J. ACM 19(2), 248–264 (1972)

6. Grove, E.F., Kao, M.-Y., Krishnan, P., Vitter, J.S.: Online perfect matching and mobile computing. In:
Akl, S.G., Dehne, F., Sack, J.-R., Santoro, N. (eds.) Algorithms and Data Structures, volume 955 of
Lecture Notes in Computer Science, pp. 194–205. Springer, Berlin (1995)

7. Gupta, A., Kumar, A., Stein, C.: Maintaining assignments online: matching, scheduling, and flows.
In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, pp. 468–479. SIAM, Portland (2014)

8. Gupta, M., Peng, R.: Fully dynamic (1 + e)-approximate matchings. In: 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, vol. 0, pp. 548–557 (2013)

9. Ivković, Z., Lloyd, E.L.: Fully dynamic maintenance of vertex cover. In: Leeuwen, J. (ed.) Graph-
Theoretic Concepts in Computer Science, volume 790 of Lecture Notes in Computer Science, pp. 99–
111. Springer, Berlin (1994)

10. Karp, R.M., Upfal, E., Wigderson, A.: Constructing a perfect matching is in random nc. Combinator-
ica 6(1), 35–48 (1986)

11. Leniowski, D.: On Maintaining Online Bipartite Matchings with Augmentations. PhD thesis, Univer-
sity of Warsaw (2015)

12. Mehta, A., Saberi, A., Vazirani, U.V., Vazirani, V.V.: Adwords and Generalized On-Line Matching.
In: 46Th Annual IEEE Symposium on Foundations of Computer Science FOCS 2005, pp. 264–273
(2005)

13. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic maximal matching.
In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13,
pp. 745–754. ACM, New York (2013)

http://creativecommons.org/licenses/by/4.0/

348 Theory Comput Syst (2018) 62:337–348

14. Onak, K., Rubinfeld, R.: Property Testing. Chapter Dynamic Approximate Vertex Cover and
Maximum Matching, pp. 341–345. Springer, Berlin (2010)

15. Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: Proceedings of the Eigh-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 07, pp. 118-126. Society for
Industrial and Applied Mathematics, Philadelphia (2007)

16. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391
(1983)

	Shortest Augmenting Paths for Online Matchings on Trees
	Abstract
	Introduction
	Related Work
	Preliminaries
	Shortest Paths on Trees
	Playing Against an Adversary
	Open Access
	References

