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Abstract We present a general technique, based on a primal-dual formulation, for
analyzing the quality of self-emerging solutions in weighted congestion games. With
respect to traditional combinatorial approaches, the primal-dual schema has at least
three advantages: first, it provides an analytic tool which can always be used to prove
tight upper bounds for all the cases in which we are able to characterize exactly
the polyhedron of the solutions under analysis; secondly, in each such a case, the
complementary slackness conditions give us a hint on how to construct matching
lower bounding instances; thirdly, proofs become simpler and easy to check. For the
sake of exposition, we first apply our technique to the problems of bounding the price
of anarchy and stability of exact and approximate pure Nash equilibria, as well as the
approximation ratio of the strategy profiles achieved after a one-round walk starting
from the empty state, in the case of affine latency functions and we show how all the
known upper bounds for these measures (and some of their generalizations) can be
easily reobtained under a unified approach. Then, we use the technique to attack the
more challenging setting of polynomial latency functions. In particular, we obtain
the first known upper bounds on the price of stability of pure Nash equilibria and
on the approximation ratio of the strategy profiles achieved after a one-round walk
starting from the empty state for unweighted players in the cases of quadratic and
cubic latency functions.
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vittorio.bilo@unisalento.it

1 Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Provinciale
Lecce-Arnesano, P.O. Box 193, 73100, Lecce, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9826-1&domain=pdf
mailto:vittorio.bilo@unisalento.it


Theory Comput Syst (2018) 62:1288–1317 1289

Keywords Price of anarchy and stability · Performance of one-round walks ·
(Approximate) Nash equilibria · Congestion games · Primal-dual analysis

1 Introduction

Characterizing the quality of self-emerging solutions in non-cooperative systems is
one of the leading research directions in Algorithmic Game Theory. Given a game
G, a social function F measuring the quality of any strategy profile which can be
realized in G, and the definition of a set E of certain self-emerging solutions, we are
asked to bound the ratio Q(G, E,F) := F(K)/F(O), where K is some solution in
E(G) (usually either the worst or the best one with respect to F) and O is the strategy
profile optimizing F .

In such a setting, Roughgarden [40] proposes the so-called “smoothness argu-
ment” as a unifying technique for proving tight upper bounds on Q(G, E,F) for
several notions of self-emerging solutions E , when G satisfies some general proper-
ties, K is the worst solution in E(G) and F is sum-bounded, that is, upper bounded
by the sum of the players’ payoffs. He also gives a more refined interpretation of
this argument and stresses also its intrinsic limitations, in a subsequent work with
Nadav [37], by means of a primal-dual characterization which shares lot of similar-
ities with the primal-dual framework we provide in this paper. Anyway, there is a
subtle, yet substantial, difference between the two approaches and we believe that
the one we propose is more general and powerful. Both techniques formulate the
problem of bounding Q(G, E,F) via a (primal) linear program and, then, an upper
bound is achieved by providing a feasible solution for the related dual program. But,
while in [37] the variables defining the primal formulation are yielded by the strate-
gic choices of the players in both K and O (as one would expect), in our technique
the variables are the parameters defining the players’ payoffs in G, while K and O

play the role of fixed, but arbitrary, constants.
As it will be clarified later, such an approach, although preserving the same degree

of generality, applies to a broader class of games and allows for a simple analysis
facilitating the proof of tight results. In fact, as already pointed out in [37], the Strong
Duality Theorem assures that each primal-dual framework can always be used to
derive the exact value of Q(G, E,F) provided that, for any strategy profile S which
can be realized in G, F(S) can be expressed through linear programming and

(i) the polyhedron defining E(G) can be expressed through linear programming,
when K is the worst solution in E(G) with respect to F ,

(ii) the polyhedron defining K can be expressed through linear programming,
when K is the best solution in E(G) with respect to F .

Moreover, in all such cases, by applying the “complementary slackness conditions”,
we can figure out which pairs of strategy profiles (K, O) yield the exact value
of Q(G, E,F), thus being able to construct quite systematically matching lower
bounding instances.
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In this work, we consider three sets of solutions E (see Section 2 for their formal
definitions), namely,

(i) (1+ ε)-approximate pure Nash equilibria (PNEε), that is, outcomes in which
no player can improve her situation by a factor of more than ε by unilaterally
changing the adopted strategy (i.e., no player possesses an ε-approximate
improving deviation). In this case, Q(G, E,F) is called the ε-approximate
price of anarchy of G, denoted as PoAε(G), when K is the worst strategy
profile in E(G), while it is called the ε-approximate price of stability of G,
denoted as PoSε(G), when K is the best strategy profile in E(G);

(ii) pure Nash equilibria (PNE), that is, the set of outcomes in which no player
can improve her situation by unilaterally changing the adopted strategy (i.e.,
no player possesses an improving deviation). By definition, each PNE0 is a
PNE and the terms price of anarchy (PoA(G)) and price of stability (PoS(G))
are used in this case;

(iii) strategy profiles achieved after a one-round walk starting from the empty
state [36], that is, the set of outcomes which arise when, starting from an
initial configuration in which no player has done any strategic choice yet,
each player is asked to select, sequentially and according to a given ordering,
her best possible current strategy. In this case, K is always defined as the
worst strategy profile in E(G) and Q(G, E,F) is denoted as Apx1∅(G).

We observe that approximate pure Nash equilibria (resp. pure Nash equilibria) can
also be intended as the output of an algorithm which repeatedly allows players to per-
form approximate improving deviations (resp. improving deviations) until a steady
state is finally reached. Similarly, strategy profiles achieved after a one-round walk
starting from the empty state can be seen as the output of a greedy-like online algo-
rithm which aims at minimizing F by assigning to each player, upon her arrival,
the strategy currently minimizing her cost. These relationships are at the basis of
our approach: to exploit linear programming, and in particular the duality theory, to
bound the efficiency of self-emerging solutions, in the same spirit as for the approx-
imation ratio of polynomial time algorithms and for the competitive ratio of online
algorithms.

1.1 Our Contribution

Our method reveals to be particularly powerful when applied to the class of weighted
congestion games. In these games, there are n weighted players competing for a set
of resources. Each resource has a latency function which only depends on its conges-
tion, i.e., the sum of the weights of its users. These games have a particular appeal
since, from the one hand, they are general enough to model a variety of situations
arising in real life applications and, from the other one, they are structured enough to
allow a systematic theoretical study. For example, for the case in which all players
have the same weight (unweighted players), Rosenthal [41] proved through a poten-
tial function argument that PNE are always guaranteed to exist, while, in general,
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weighted congestion games are guaranteed to possess PNE if and only if the latency
functions are either affine or exponential [29–31, 39].

In order to illustrate the versatility and usefulness of our technique, we first con-
sider the well-known and studied case in which the latency functions are affine and
F is the sum of the players’ payoffs and show how all the known results (as well as
some of their generalizations) can be easily reobtained under a unifying approach.
For the PoAε and the PoSε in the unweighted case and for the Apx1∅ in the weighted
case, we reobtain the known upper bounds given in [4, 23, 25, 26] with significatively
shorter and simpler proofs (where, by simple, we mean that only basic notions of cal-
culus are needed in the arguments), while for the generalizations of the PoAε and the
PoSε in the weighted case, we give the first upper bounds known in the literature.

After having introduced the technique, we show how it can be used to attack the
more challenging case of polynomial latency functions. In such a scenario, the PoA
and the PoAε were already studied and characterized in [1] and [25], respectively, and
both papers pose the achievement of upper bounds on the PoS and the PoSε as a major
open problem in the area. For unweighted players, we show that, for any congestion
game G with quadratic latency functions, 2.1859 ≤ PoS(G) ≤ 2.362 and Apx1∅(G) ≤
37.5888 and that, for any congestion game G with cubic latency functions, 2.7558 ≤
PoS(G) ≤ 3.322 and Apx1∅(G) ≤ 527.323. Recently, and after the publication of
the conference version of this paper, Christodoulou and Gairing [22] gave an exact
characterization of the PoS for polynomial latency functions of maximum degree
equal to d. In particular, they showed that the two upper bounds we give in this paper
for the cases of d = 2, 3 are tight.

What we would like to stress here is that, rather than the novelty of the results
achieved in this paper, what makes our method interesting is its capability of being
easily adapted to a variety of particular situations and we are more than sure of the
fact that it will prove to be a powerful tool to be exploited in the analysis of the effi-
ciency achieved by different classes of self-emerging solutions in other contexts as
well (see, Section 1.3 for a discussion on some recent application of our technique).
To this aim, we show how the method applies also to other social functions, such as
the maximum of the players’ payoffs, where the smoothness argument cannot even
be applied. Moreover, in the case of polynomial latency functions, the primal-dual
technique proposed in [37] cannot be used, since the players’ costs are not linear in
the variables of the problem.

Although most of the times our method may look like a reinterpretation of known
techniques (as the use of Nash inequalities and potential inequalities), there is a
feature that makes it preferable to classical combinatorial approaches: once the prop-
erties possessed by the target solution are suitably modeled as linear constraints and
embedded within the formulation, then, by computing its optimal solution, we are
guaranteed to determine the best possible upper bound on the worst-case efficiency
of the target solution which can be obtained by making use of these properties. Put in
other words, we do not need to “optimize” the proof of the upper bound: the method
does it all for us, all we need to do is to find the optimal solution of the formula-
tion. Not by chance, in fact, after the publication of the conference version of this
paper [7], the primal-dual method has been exploited to provide the exact solution to
some open problems in this research field (see, Section 1.3 for a detailed discussion).
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1.2 Related Work

The study of the quality of self-emerging solutions in non-cooperative systems initi-
ated with the seminal papers of Koutsoupias and Papadimitriou [32] and Anshelevich
et al. [2] which introduced, respectively, the notions of price of anarchy and price of
stability.

A lot of results have been achieved since then and we recall here only the ones
which are closely related to our scenario of application, that is, weighted congestion
games with polynomial latency functions.

For affine latency functions and F defined as the sum of the players’ payoffs,
Christodoulou and Koutsoupias [23] show that the PoA is exactly 5/2 for unweighted
players, while Awerbuch, Azar and Epstein [4] show that it rises to exactly (3+√

5)/2
in the weighted case. These bounds keep holding also when considering the price
of anarchy of generalizations of PNE such as mixed Nash equilibria and correlated
equilibria, as shown by Christodoulou and Koutsoupias in [24]. Similarly, for poly-
nomial latency functions with maximum degree equal to d, Aland et al. [1] prove
that the price of anarchy of all these equilibria is exactly �d+1

d in the weighted case

and exactly (k+1)2d+1−kd+1(k+2)d

(k+1)d+1−(k+2)d+(k+1)d−kd+1 in the unweighted case, where �d is the

unique non-negative real solution to (x + 1)d = xd+1 and k = ��d�. These interde-
pendencies have been analyzed by Roughgarden [40], who proves that unweighted
congestion games with non-negative and non-decreasing latency functions belong to
the class of games for which a so-called “smoothness argument” applies and that
such a smoothness argument directly implies that, when F is the sum of the players’
payoffs, the price of anarchy stays the same, independently of which solution con-
cept among PNE, mixed Nash equilibria, correlated equilibria and coarse correlated
equilibria is adopted. Such a result has been extended also to the weighted case by
Bhawalkar, Gairing and Roughgarden in [6]. For the alternative model in which F is
defined as the maximum of the players’ payoffs, Christodoulou and Koutsoupias [23]
show a PoA of �(

√
n) in the case of affine latency functions.

For the PoS, only the case of unweighted players, affine latency functions and F
defined as the sum of the players’ payoffs, has been considered so far. The upper
and lower bounds achieved by Caragiannis et al. [20] and by Christodoulou and
Koutsoupias [24], respectively, set the PoS to exactly 1 + 1/

√
3.

As to the PNEε , in the case of unweighted players, polynomial latency func-
tions and F defined as the sum of the players’ payoffs, Christodoulou, Koutsoupias

and Spirakis [25] show that the PoAε is exactly (1+ε)((z+1)2d+1−zd+1(z+2)d )

(z+1)d+1−zd+1−(1+ε)((z+2)d−(z+1)d )
,

where z is the maximum integer satisfying zd+1

(z+1)d
< 1 + ε, and that, for affine

latency functions, the PoSε is at least 2(3+ε+θε2+3ε3+2ε4+θ+θε)

6+2ε+5θε+6ε3+4ε4−θε3+2θε2
, where θ =√

3ε3 + 3 + ε + 2ε4, and at most (1 + √
3)/(ε + √

3).
Finally, for affine latency functions and F defined as the sum of the players’ pay-

offs, the Apx1∅ has been shown to be exactly 2 + √
5 in the unweighted case as a

consequence of the upper and lower bounds provided, respectively, by Christodoulou,
Mirrokni and Sidiropoulos [26] and by Bilò et al. [10], while, for weighted players,
Caragiannis et al. [20] give a lower bound of 3 + 2

√
2 and Christodoulou, Mirrokni
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and Sidiropoulos [26] give an upper bound of 4+2
√
3. For F being the maximum of

the players’ payoffs, Bilò et al. [10] show that the Apx1∅ is �(
4
√

n3) in the unweighted
case and affine latency functions.

Strategy profiles realized after a one-round walk starting from the empty state
can be reinterpreted as the output of an online greedy algorithm for the problem
of minimizing the social function F . Under this perspective, the bounds given by
Awerbuch et al. [5], Caragiannis et al. [20] and Suri, Tóth, and Zhou [42] on the
competitive ratio of greedy algorithms for the problem of minimizing the total
latency in online load balancing can be seen as bounds for the Apx1∅ in the special
case of affine congestion games in which the strategies of all players are singleton
sets.

The use of primal-dual analysis, and in particular of factor-revealing linear pro-
grams, for bounding the performance of greedy-like algorithms has been introduced
in the seminal paper by Jain et al. [33] and later exploited by Athanassopoulos et
al. [3] for variants of set cover, by Mahdian and Yan [34] for online matching,
by Feige and Jozeph [27] for maximum directed cut, and by Caragiannis [17] for
wavelength routing.

1.3 Subsequent Work

After the publication of the conference version of this paper [7], the primal-dual
method has been fruitfully used in a variety of situations.

Bilò, Flammini and Gallotti [12] consider congestion games with affine latency
functions under the assumption that the players’ knowledge is restricted by the pres-
ence of an underlying social knowledge graph. In particular, each player is only aware
of her choice and of the choices of all the players representing her neighborhood in
the social knowledge graph, whereas in the traditional model each player has full
knowledge of the strategic choices of all the other players in the game. By exploit-
ing the primal-dual method, tight bounds on the price of anarchy and almost tight
bounds on the price of stability are determined for the case in which the social knowl-
edge graph has a special topology allowing for a “bidimensional” reinterpretation of
congestion games with restricted social knowledge.

Bilò et al. [13] exploit the primal-dual method to extrapolate a matching (and
unexpected) lower bounding instance for the sequential price of anarchy, that is the
price of anarchy of subgame perfect equilibria in sequential games [38], of cut games.
This contribution, in particular, illustrates an application of our method to a class of
self-emerging solutions not considered in this paper.

The primal-dual method has been used by Bilò [8] to derive tight bounds on
the worst-case price of stability of pure Nash equilibria in congestion games with
affine latency functions and altruistic players, thus solving an open problem risen
by Caragiannis et al. [19]; by Bilò and Paladini [14] to derive tight bounds on the
approximation ratio of the strategy profiles achieved after a one-round walk of (1+ε)-
approximate best-responses starting from any initial strategy profile in cut games,
for any ε ≥ 0, thus solving an open problem left by Christodoulou, Mirrokni and
Sidiropoulos [26]; by Bilò, Fanelli and Moscardelli [11] to derive significant upper
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bounds on the price of anarchy of lookahead equilibria in congestion games with
affine latency functions, thus improving on a previous result by Mirrokni, Thain and
Vetta [35]; and by Bilò and Vinci [15] to obtain exact bounds on the price of anar-
chy of Stackelberg strategies in congestion games with affine latency functions, thus
solving an open problem left by Fotakis [28].

Recently, building on the primal-dual method, Bilò and Vinci [16] design efficient
tax functions for weighted congestion games with polynomial latency functions, thus
generalizing and extending previous results achieved by Caragiannis et al. [18].

Moreover, very recently, Bilò [9] used the primal-dual method to show that, for
a variety of (even non-sum-bounded) social functions and for a broad generalization
of the class of weighted congestion games with non-negative (and possibly decreas-
ing) latency functions, the worst-case price of anarchy of (1+ ε)-approximate coarse
correlated equilibria still coincides with that of (1+ ε)-approximate pure Nash equi-
libria, for any ε ≥ 0, thus significantly generalizing the tightness result obtained by
Bhawalkar, Gairing and Roughgarden in [6] by making use of the smoothness argu-
ment (delving into a detailed discussion about differences and similarities between
the smoothness argument and the primal-dual method is, in our opinion, beyond the
scope of this paper; however, the interested reader can fully satisfy his/her curiosity
by looking at [9]).

1.4 Paper Organization

In the next section, we give all the necessary definitions and notation, while, in
Section 3, we briefly outline the primal-dual method. Then, in Section 4, we illustrate
how it applies to affine latency functions and, in Section 5, we use it to address the
case of quadratic and cubic latency functions. In Section 6, we show how the method
applies to the social function defined as the maximum of the players’ payoffs. Finally,
in the last section, we discuss further research and open problems.

2 Definitions

For a given integer n > 0, we denote as [n] the set {1, . . . , n}.
A weighted congestion game G = ([n], E, (�i)i∈[n], (�e)e∈E, (wi)i∈[n]

)
is a non-

cooperative strategic game in which there is a set E of m resources to be shared
among the players in [n], where n ≥ 2. Each player i has an associated weight wi ≥ 0
and the special case in which wi = 1 for any i ∈ [n] is called the unweighted case.
The strategy set �i , for any player i ∈ [n], is a non-empty subset of resources, i.e.,
�i ⊆ 2E \ {∅}. The set � = ×i∈[n]�i is called the set of strategy profiles (or strategy
profiles) which can be realized in G. Given a strategy profile s = (s1, s2, . . . , sn) ∈ �

and a resource e ∈ E, the sum of the weights of all the players using e in s, called
the congestion of e in s, is denoted by Le(s) = ∑

i∈[n]:e∈si
wi . A latency function

�e : R≥0 
→ R≥0 associates each resource e ∈ E with a latency depending on the
congestion of e in s. The cost of player i in the strategy profile s is given by ci(s) =∑

e∈si
�e(Le(s)). This work is concerned only with polynomial latency functions of
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maximum degree d, i.e., the case in which �e(x) = ∑d
i=0 αe,ix

i with αe,i ∈ R≥0, for
any e ∈ E and 0 ≤ i ≤ d. We denote as WCG and UCG the class of weighted and
unweighted congestion games, respectively.

Given a strategy profile s ∈ � and a strategy t ∈ �i for player i, we denote
with s−i � t = (s1, . . . , si−1, t, si+1, . . . , sn) the strategy profile obtained from s

when player i changes unilaterally her strategy from si to t . A strategy t ∈ �i is an
improving deviation for player i in s, if ci(s−i � t) < ci(s).

Definition 1 Given an ε ≥ 0, a strategy profile s is a (1+ε)-approximate pure Nash
equilibrium (NEε) if, for any i ∈ [n] and t ∈ �i , ci(s) ≤ (1 + ε)ci(s−i � t).

Note that the set of 1-approximate pure Nash equilibria collapses to that of
pure Nash equilibria (PNE), that is, the set of strategy profiles in which no player
possesses an improving deviation.

Consider the social function SUM : � 
→ R≥0 defined as the sum of the players’
costs, that is, SUM(s) = ∑

i∈[n] ci(s) and let s∗ be the strategy profile minimizing
it. Given an ε ≥ 0 and a weighted congestion game G, let Eε(G) be the set of (1 +
ε)-approximate Nash equilibria of G.

Definition 2 The ε-approximate price of anarchy of G is defined as PoAε(G) =
maxs∈Eε (G)

{
SUM(s)
SUM(s∗)

}
, while the ε-approximate price of stability of G is defined as

PoSε(G) = mins∈Eε (G)

{
SUM(s)
SUM(s∗)

}
.

Definition 3 Given a strategy profile s and a player i ∈ [n], a strategy t∗ ∈ �i is a
best-response for player i in s if ci(s−i � t∗) ≤ ci(s−i � t) for any t ∈ �i .

Let s∅ be the empty state, i.e., the profile in which no player has performed any
strategic choice yet.

Definition 4 A one-round walk starting from the empty state is an (n + 1)-tuple of
strategy profiles W = (sW

0 , sW
1 , . . . , sW

n ) such that sW
0 = s∅ and, for any i ∈ [n],

sW
i = sW

i−1 � t∗, where t∗ is a best-response for player i in sW
i−1. The profile sW

n is
called the strategy profile achieved after the one-round walk W .

Clearly, depending on how the players are ordered from 1 to n and on which best-
response is selected at step i when more than one best-response is available to player
i in sW

i−1, different one-round walks can be generated. LetW(G) denote the set of all
possible one-round walks which can be generated in game G.

Definition 5 The approximation ratio of the strategy profiles achieved after a
one-round walk starting from the empty state in G is defined as Apx1∅(G) =
maxW∈W(G)

{
SUM(sW

n )

SUM(s∗)

}
.
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3 The Primal-Dual Technique

Fix a weighted congestion game G, a social function F and a class of self-emerging
strategy profiles E . Let s∗ = (s∗

1 , . . . , s
∗
n) be the strategy profile optimizing F and

s = (s1, . . . , sn) ∈ E(G) be the worst-case strategy profile in E(G) with respect to F .
For any e ∈ E, we set, for the sake of brevity, Oe = Le(s

∗) and Ke = Le(s). Note
that both Oe and Ke belong to the set of non-negative integers when G is unweighted,
while, otherwise, they belong to the set of non-negative reals.

Since s∗ and s are fixed, we can maximize the inefficiency yielded by the pair of
profiles (s, s∗) by suitably choosing the coefficients αe,i , for each e ∈ E and 0 ≤ i

≤ d, so that F(s) is maximized, F(s) is normalized to one1 and s meets all the con-
straints defining the set E(G). For the sets E and social functions F considered in this
paper, this task can be easily achieved by creating a suitable linear program LP(s, s∗),
(see, for instance, the linear program LP(s, s∗) defined at page 9 for bounding PoAε ,
or the linear program LP(s, s∗) defined at page 16 for bounding Apx1∅).

By providing a feasible solution for the dual program DLP(s, s∗), we can obtain
an upper bound on the optimal solution of LP(s, s∗). Our task is to uncover, among
all possibilities, the pair (s, s∗) yielding the highest possible optimal solution for
LP(s, s∗). To this aim, the study of the dual formulation plays a crucial role. Since
the set of variables of LP(s, s∗) is given by the set of coefficients αe,i , for each e ∈ E

and 0 ≤ i ≤ d, we shall have a dual constraint for each e ∈ E and 0 ≤ i ≤ d.
Any such constraint will depend on the identities of the players using e in both s and
s∗ (see, for instance, the linear program DLP(s, s∗) defined at page 10 for bounding
PoAε , or the linear program DLP(s, s∗) defined at page 16 for bounding Apx1∅). Since
the power set of a set of n elements has cardinality 2n, and we have two possible
subsets of users (the one in s and the one in s∗), for a game with n players, we can
have up to 4n different dual constraint for each fixed e ∈ E and 0 ≤ i ≤ d, some of
which might be “harder” to satisfy than the others. Hence, if we are able to detect the
nature of the “worst-case” dual constraints, then we can easily figure out the form
of the pair (s, s∗) maximizing the inefficiency of the class of strategy profiles E . Put
in other words, our task is to determine suitable dual variables, in particular the ones
minimizing the dual objective function, which are able to satisfy each of the infinitely
many dual constraints (obtained by considering all possible values for the number of
players n) that can be generated by our formulation, when varying the pair (s, s∗).
The worst-case dual constraints we are looking for, then, will be the ones which are
tight, i.e., satisfied at equality.

Clearly, by the complementary slackness conditions, if we find the optimal dual
solution, then we can quite systematically construct the matching primal instance by
choosing a suitable set of players and resources so as to implement all the tight dual
constraints. This task is much more complicated to be achieved in the weighted case,

1It is not difficult to see that such an assumption is without loss of generality, since, given any weighted
congestion game G, one can always scale the coefficients αe,i so as to obtain another game G′ possessing
the same set of strategy profiles of G and verifying F(s) = 1 as well as Q(G, E, F ) = Q(G′, E, F ).
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because, once established the congestion values Ke and Oe for any e ∈ E, there are
still infinitely many ways to split them among the players using resource e in both s

and s∗, whereas, in the unweighted case, such a splitting is univocal.

4 Application to Affine Latency Functions

In order to easily illustrate our primal-dual technique, in this section we consider the
well-known and studied case of affine latency functions and social function SUM and
show how the results for the PoAε , the PoSε and the Apx1∅ already known in the litera-
ture can be reobtained in a unified manner for both weighted and unweighted players.
Before proceeding with the application of the primal-dual method, we show how to
simplify the parameters defining the general expression of affine latency functions
without losing in generality.

Game G′ = ([n], E′, (�′
i )i∈[n], (�′

e)e∈E, (wi)i∈[n]) is equivalent to game G =
([n], E, (�i)i∈[n], (�e)e∈E, (wi)i∈[n]) if there exist n bijections ϕi : �i 
→ �′

i , one
for each i ∈ [n], such that, for any strategy profile s = (s1, . . . , sn) ∈ �, it holds that
ci(s) = ci(ϕ1(s1), . . . , ϕn(sn)) for any i ∈ [n].

Lemma 1 For each weighted congestion game with affine latency functions G =
([n], E, (�i)i∈[n], (�e)e∈E, (wi)i∈[n]) there always exists an equivalent weighted
congestion game with linear latency functions G′ = ([n], E′, (�′

i )i∈[n], (�′
e)e∈E,

(wi)i∈[n]), i.e., such that �′
e(x) = αe,1x := αex for any e ∈ E′.

Proof Consider the weighted congestion game G = ([n], E, (�i)i∈[n], (�e)e∈E,

(wi)i∈[n]) with latency functions �e(x) = αex + βe for any e ∈ E. For each
ẽ ∈ E such that βẽ > 0, let Nẽ be the set of players who can choose ẽ, that is,
Nẽ = {i ∈ [n] : ∃s ∈ �i : ẽ ∈ s}. The set of resources E′ is obtained by replicating
all the resources in E and adding a new resource ei

ẽ for any ẽ ∈ E and any i ∈ Nẽ,
that is, E′ = E ∪ ⋃

ẽ∈E,i∈Nẽ
{ei

ẽ}. The latency functions are defined as �′
e(x) = αex

for any e ∈ E′ ∩ E and �′
ei
ẽ

(x) = βẽ

wi
x for any ẽ ∈ E and any i ∈ Nẽ. Finally, for

each i ∈ [n], the bijection ϕi is defined as follows: ϕi(s) = s ∪ ⋃
ẽ∈s{ei

ẽ}. It is not
difficult to see that for any s = (s1, . . . , sn) ∈ � and for any i ∈ [n], it holds that
ci(s) = ci(ϕ1(s1), . . . , ϕn(sn)).

As a consequence of Lemma 1, throughout this section, we restrict to latency
functions of the form �e(x) = αex, for any e ∈ E. In such a setting, we can rewrite
the social value of a strategy profile as SUM(s) = ∑

e∈E(αeLe(s)
2).

4.1 Bounding the Approximate Price of Anarchy

Since s is a PNEε , it follows that, for any i ∈ [n],
ci(s) =

∑

e∈si

(αeKe) ≤ (1 + ε)ci(s−i � s∗
i ) ≤ (1 + ε)

∑

e∈s∗
i

(αe(Ke + wi)).
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Thus, the primal formulation LP(s, s∗) assumes the following form.

maximize
∑

e∈E

(
αeK

2
e

)

subject to
∑

e∈si

(αeKe) − (1 + ε)
∑

e∈s∗
i

(αe(Ke + wi)) ≤ 0, ∀i ∈ [n]
∑

e∈E

(
αeO

2
e

)
= 1,

αe ≥ 0, ∀e ∈ E

The dual program DLP(s, s∗) is

minimize γ

subject to
∑

i:e∈si

(yiKe) − (1 + ε)
∑

i:e∈s∗
i

(yi(Ke + wi)) + γO2
e ≥ K2

e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

Define ψ = 1+ε+
√

ε2+6ε+5
2 and z = �ψ�. For unweighted players, we reobtain the

upper bound proved by Christodoulou, Koutsoupias and Spirakis in [25] with a much
simpler and shorter proof, while, for the weighted case, we give the first known upper
bound.

Theorem 1 For any fixed ε ≥ 0, PoAε(G) ≤ (1+ε)(z2+3z+1)
2z−ε

for any G ∈ UCG and

PoAε(G) ≤ ψ2 for any G ∈ WCG.

Proof For G ∈ UCG, since wi = 1 for each i ∈ [n], by choosing yi = 2z+1
2z−ε

for

any i ∈ [n] and γ = (1+ε)(z2+3z+1)
2z−ε

(note that the definition of z guarantees that
2z − ε > 0, so that yi ≥ 0 for each i ∈ [n]), the first dual constraint becomes of the
form

2z + 1

2z − ε

(
K2

e − (1 + ε)(Ke + 1)Oe

)
+ (1 + ε)(z2 + 3z + 1)

2z − ε
O2

e ≥ K2
e

which is equivalent to

K2
e − (2z + 1)(KeOe + Oe) + (z2 + 3z + 1)O2

e ≥ 0. (1)

Easy calculations show that this is always satisfied for any pair of non-negative inte-
gers (Ke, Oe). In fact, for Oe = 0, inequality (1) becomes K2

e ≥ 0 which is always
true. For Oe = 1, inequality (1) becomes K2

e − (2z + 1)Ke + z2 + z ≥ 0 which is
always satisfied for any Ke ≤ z and Ke ≥ z + 1 and, since z is a positive integer,
it follows that inequality (1) is satisfied for any integer Ke. Finally, for Oe ≥ 2, the
equation associated with inequality (1) has no real solution when solved for Ke (its
discriminant is negative), which implies that inequality (1) is satisfied for any value
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of Ke. For an illustration on how the dual variables can be computed, see Section I
in the Appendix.

For G ∈ WCG, by choosing yi =
(
1 +

√
1+ε√
5+ε

)
wi for any i ∈ [n] and γ = ψ2,

the first dual constraint is satisfied when
(

1 +
√
1 + ε√
5 + ε

)(
K2

e − (1 + ε)
(
KeOe + O2

e

))
+ ψ2O2

e ≥ K2
e

which is equivalent to
√
1 + ε√
5 + ε

K2
e −

(

1 +
√
1 + ε√
5 + ε

)

(1 + ε)(KeOe + O2
e ) + ψ2O2

e ≥ 0. (2)

Note that, since
√
1+ε√
5+ε

(
1 +

√
1+ε√
5+ε

)
(1+ ε) = 2ψ and

√
1+ε√
5+ε

ψ2 −2ψ = ψ , inequality

(2) can be rewritten as K2
e −2ψKeOe +ψ2O2

e = (Ke −ψOe)
2 ≥ 0 which is always

satisfied for any pair of reals (Ke, Oe).

When ε = 0, we reobtain the well-known price of anarchy of 5/2 and (3+√
5)/2

which hold for PNE in the unweighted and weighted case, respectively. Note that,

when ψ = z, it holds that ψ2 = (1+ε)(z2+3z+1)
2z−ε

. Hence, interestingly enough,
the PoAε in the weighted and unweighted cases coincide for all ε ≥ 0 such that
1+ε+

√
ε2+6ε+5
2 is a natural number.

4.1.1 Analysis of the Dual Constraints

We now illustrate how the dual formulation can be also used to discover a matching
lower bounding instance or to figure out its general structure.

Unweighted case For PNE, that is the case of ε = 0, the dual constraints (1)
get tight only for pairs (Ke, Oe) of the form (1, 1) and (2, 1). Thus, if the 5/2
upper bound is tight, the complementary slackness conditions assure us that, in the
matching lower bounding instance, only resources implementing the pairs (1, 1) and
(2, 1) are needed. This can be easily achieved through a game using 3 players and
3 resources and defined as follows: �1 = {{e1, e2}, {e3}}, �2 = {{e1}, {e2, e3}},
�3 = {{e2}, {e3}} and α1 = 5, α2 = 2, α3 = 3. For such an instance, we have
s = ({e1, e2}, {e2, e3}, {e3}) and s∗ = ({e3}, {e1}, {e2}) for a price of anarchy of 5/2.
Clearly, this instance can be extended to any number of players n > 3 by adding a
fourth resource e4 with α4 = 0 and setting �i = {e4} for any i ∈ [n] with i ≥ 4. Note
that these are minimal lower bounding instances (the previous known lower bound-
ing instances presented by Christodoulou and Koutsoupias in [23] used 2n resources
for any n ≥ 3).

More generally, for PNEε , the dual constraints (1) get tight only for pairs of the
form (z, 1) and (z + 1, 1). Thus, in order to obtain a matching lower bounding
instance, we only need to implement this family of dual constraints, that is, we need
an instance with at least z + 2 players and a set of resources such that Oe = 1 and
Ke ∈ {z, z + 1} for any e ∈ E. In fact, the matching lower bounding instances given
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by Christodoulou, Koutsoupias and Spirakis in [25] use z + 2 players and 2z + 4
resources, half of which hasKe = z and the other half hasKe = z+1. It is easy to see
that these instances are not minimal. In fact, they produce a dual program with z + 3
variables and 2z+4 constraints, where only z+3 constraints are sufficient to exactly
characterize the optimal dual solution. Unfortunately, this set of constraints changes
as a function of ε and so it is not easy to achieve a general scheme of minimal lower
bounding instances.

Weighted case The dual constraints (2) get tight only for pairs (Ke, Oe) such that
Ke = ψOe. For PNE, that is the case ε = 0, consider the game with 3 players
and 3 resources with w1 = 1, w2 = w3 = (1 + √

5)/2, �1 = {{e1}, {e2, e3}},
�2 = {{e2}, {e1, e3}}, �3 = {{e3}, {e2}}, α1 = 2, α2 = √

5−1 and α3 = 3−√
5. We

have s = ({e2, e3}, {e1, e3}, {e2}) and s∗ = ({e1}, {e2}, {e3}) for a price of anarchy
equal to (3 + √

5)/2. Again, we have identified a minimal lower bounding instance
which is slightly simpler than the previous one given by Awerbuch, Azar and Epstein
in [4] which used 4 players and 3 resources.

For general values of ε, we are able to provide tight lower bounds only for a
subset, although having infinite cardinality, of values of ε. Let t and y be two positive

integers such that 1 ≤ y ≤ t + 1. We set ε(t, y) = (t−1)
√

t2+4y+2y+t2−t−2√
t2+4y+t+2

, which

is always non-negative since y ≥ 1 and yields ψ = t+
√

t2+4y
2 > t . We create an

instance with t + 2 players and 2(t + 1) resources, where wi = 1 for any i ∈ [t + 1]
and wt+2 = ψ − t . The first t + 1 resources (ej )j∈[t+1] have latency �(x) = x, while
the last t + 1 resources (e′

j )j∈[t+1] have latency �(x) = x/y. The set of strategies for
each player i ∈ [t + 1] is �i = {{ei}, ⋃j∈[t]{ei+j } ∪ ⋃

j∈[y]{e′
i+j }}, with the sum

of the indices taken circularly, while �t+2 = {⋃j∈[t+1]{e′
j },

⋃
j∈[t+1]{ej }}. The first

strategy of each player is the optimal one, while the second strategy is the one played
at the PNEε(t,y). Note that, for any e, we have Ke = ψOe, thus implying PoAε = ψ2.
It is not difficult to show that s is a (1 + ε(t, y)) − PNE by exploiting the equality
2ψ = t + √

t2 + 4y.
Deriving a tight lower bound for any possible value of ε remains an interesting

open problem.

4.2 Bounding the Approximate Price of Stability

In this case, we have two different approaches for unweighted and weighted games,
respectively.

4.2.1 Unweighted Case

Recall that, since the PoSε is a best-case measure, the primal-dual approach guar-
antees a tight analysis only if we are able to exactly characterize the polyhedron
defining the set of the best quality PNEε . It is not known how to do this at the moment,
thus all the approaches used so far in the literature approximate the best quality PNEε

with a PNEε minimizing a certain potential function. Christodoulou, Koutsoupias and



Theory Comput Syst (2018) 62:1288–1317 1301

Spirakis [25] showed that, for unweighted players, any strategy profile s which is a
local minimum of the function

�ε(s) = 1

2

∑

e∈E

(
αe

(
Le(s)

2 + 1 − ε

1 + ε
Le(s)

))
,

called ε-approximate potential, is a PNEε . Thus, it is possible to get an upper bound
on the PoSε by bounding the PoAε of the global minimum of �ε .

We now illustrate our approach which yields the same 1+√
3

ε+√
3
upper bound achieved

by Christodoulou, Koutsoupias and Spirakis in [25]. Assume that s is the global
minimum of �ε . We can use the inequality �ε(s) ≤ �ε(s

∗) which results in the
constraint

∑

e∈E

(
αe

(
K2

e + 1 − ε

1 + ε
Ke − O2

e − 1 − ε

1 + ε
Oe

))
≤ 0. (3)

Moreover, it also holds that
∑

i∈[n]
(
�ε(s) − �ε(s−i � s∗

i )
) ≤ 0. Such an inequality

can be expressed as a function of Ke, Oe and ε as follows:

�ε(s) − �ε(s−i � s∗
i )

= 1

2

∑

e∈si\s∗
i

(
αe

(
K2

e + 1 − ε

1 + ε
Ke − (Ke − 1)2 − 1 − ε

1 + ε
(Ke − 1)

))

+1

2

∑

e∈s∗
i \si

(
αe

(
K2

e + 1 − ε

1 + ε
Ke − (Ke + 1)2 − 1 − ε

1 + ε
(Ke + 1)

))

=
∑

e∈si\s∗
i

(
αe

(
Ke − ε

1 + ε

))
−

∑

e∈s∗
i \si

(
αe

(
Ke + 1

1 + ε

))
.

Now, for each e ∈ E, define e = | {i ∈ [n] : e ∈ si ∩ s∗
i

} |. By summing up for
each i ∈ [n], we obtain

∑

i∈[n]

(
�ε(s) − �ε(s−i � s∗

i )
)

=
∑

i∈[n]

⎛

⎝
∑

e∈si\s∗
i

(
αe

(
Ke − ε

1 + ε

))
−

∑

e∈s∗
i \si

(
αe

(
Ke + 1

1 + ε

))⎞

⎠

=
∑

e∈E

(
αe

((
Ke − ε

1 + ε

)
(Ke − e) −

(
Ke + 1

1 + ε

)
(Oe − e)

))

≥
∑

e∈E

(
αe

(
K2

e − ε

1 + ε
Ke − KeOe − 1

1 + ε
Oe

))
,

which implies

∑

e∈E

(
αe

(
K2

e − ε

1 + ε
Ke − KeOe − 1

1 + ε
Oe

))
≤ 0. (4)
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Thanks to (3) and (4), the dual formulation becomes:

minimize γ

subject to

K2
e (y + z) + Ke

1+ε
(y(1 − ε) − zε)

−
(
yO2

e + zKeOe + Oe

1+ε
(y(1 − ε) + z)

)
+ γO2

e ≥ K2
e , ∀e ∈ E

y, z ≥ 0

Thus, for unweighted players, we obtain the following result for any ε ∈ [0, 1) (this
is the only interesting case, since Christodoulou, Koutsoupias and Spirakis [25] show
that, for any ε ≥ 1, PoSε(G) = 1 for any G).

Theorem 2 For any fixed ε ∈ [0, 1), PoSε(G) ≤ 1+√
3

ε+√
3
for any G ∈ UCG.

Proof By choosing y = 2ε+√
3(1+ε)

2(ε+√
3)

, z = 1−ε

ε+√
3
and γ = 1+√

3
ε+√

3
, the first dual

constraint becomes of the form

(ε − 1)((
√
3 − 2)K2

e + (2Oe − √
3)Ke + (2 + √

3)(Oe − O2
e )) ≥ 0. (5)

Easy calculations show that this is always satisfied for any pair of non-negative inte-
gers (Ke, Oe). In fact, forOe = 0, inequality (5) becomesKe((2−√

3)Ke+
√
3)(1−

ε) ≥ 0 which is always satisfied for any non-negative integer Ke since ε < 1. For
Oe = 1, inequality (5) becomes Ke(Ke − 1)(1− ε) ≥ 0 which is always satisfied for
any non-negative integer Ke since ε < 1. Finally, for any Oe ≥ 2, the equation asso-
ciated with inequality (5) has no real solution when solved for Ke (its discriminant is
negative), which implies that inequality (5) is satisfied for any value of Ke.

Analysis of the Dual Constraints The dual constraint (5) gets tight only for pairs
(Ke, Oe) of the form (0, 1) and (1, 1) which are clearly insufficient to achieve a PoSε

greater than 1, since Ke ≤ Oe for any e ∈ E. What is going on here? The answer is
that the lower bound on the PoSε can be achieved only asymptotically, that is, when n

tends to infinity. Thus, we must also check what happens when both Ke and Oe goes
to infinity and their ratio remains constant. We obtain that the dual constraint (5) is
asymptotically tight for pairs of the form (Ke, Oe) such that Ke = (2 + √

3)Oe and
Oe goes to infinity. The lower bounding instances proposed by Christodoulou, Kout-
soupias and Spirakis in [25] have n1 resources of type (0, 1), n1(n1 − 1) resources

of type (1, 1) and one resource of type

(
n1,

√
2ε4+3ε3+ε+3+2ε2+2ε−1√
2ε4+3ε3+ε+3+ε2+ε+1

n1

)
with n1

going to infinity. Thus, such lower bounding instances possess all the combinatorics
needed to implement the worst-case dual constraints, but still there is a remarkable
gap between upper and lower bounds. Hence, the intuition should suggest that the
upper bound is not tight and that additional constraints should be used in the primal
formulation so as to better characterize the polyhedron defining the best PNEε . Note
that the inequalities stating the s is a PNEε is of no use here since they are dominated
by the inequality

∑
i∈[n]

(
�ε(s) − �ε(s−i � s∗

i )
) ≤ 0.
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4.2.2 Weighted Case

In order to deal with the weighted case, it is possible to rephrase the approach of
Christodoulou, Koutsoupias and Spirakis [25] to turn the potential given by Fotakis,
Kontogiannis and Spirakis in [29] for weighted linear congestion games into an ε-
potential function for this class of games so as to use the same approach as in the
unweighted case.

We define the following ε-potential function.

�ε(s) = 1

2

∑

e∈E

(
αeLe(s)

2
)

+ 1 − ε

2(1 + ε)

∑

e∈E

∑

i:e∈si

(
αew

2
i

)
.

Lemma 2 Any profile which is a local minimum of �ε is a PNEε .

Proof Consider a profile s = (s1, . . . , sn). We want to compute the change in the
ε-potential function when player i changes her strategy from si to t . The resulting
profile s−i � t has

Le(s−i � t) =
⎧
⎨

⎩

Le(s) − wi, e ∈ si \ t,

Le(s) + wi, e ∈ t \ si,

Le(s), otherwise.

From this we can compute the difference

�ε(s−i � t) − �ε(s)

=
∑

e∈t\si

(

αe

(

wiLe(s) + w2
i

1 + ε

))

−
∑

e∈si\t

(

αe

(

wiLe(s) − εw2
i

1 + ε

))

.

We can rewrite this as

�ε(s−i � t) − �ε(s)

=
∑

e∈t

(

αe

(

wiLe(s)+ w2
i

1 + ε

))

−
∑

e∈t∩si

(
αew

2
i

)
−

∑

e∈si

(

αe

(

wiLe(s)− εw2
i

1 + ε

))

.

Suppose now that s is a local minimum of �ε which implies �ε(s) ≤ �ε(s−i � t)

for any i ∈ [n] and t ∈ �i . The cost of player i before the change is ci(s) =∑
e∈si

(αeLe(s)) and after the change is ci(s−i �t) = ∑
e∈t (αeLe(s−i � t)). We show

that s is a PNEε , that is, ci(s) ≤ (1 + ε)ci(s−i � t).
By exploiting the two different parts defining the ε potential function, we obtain

ci(s) =
∑

e∈si

(αeLe(s)) ≤
∑

e∈si

(
αe(1 + ε)

(
Le(s) − εwi

1 + ε

))
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which holds because Le(s) ≥ wi when e ∈ si , and

ci(s−i � t) =
∑

e∈t

(αe(Le(s−i � t) + wi)) −
∑

e∈t∩si

(αewi)

≥
∑

e∈t

(
αe

(
Le(s) + wi

1 + ε

))
−

∑

e∈t∩si

(αewi) .

which holds for any ε ≥ 0.
It follows immediately that ci(s) ≤ (1 + ε)ci(s−i � t), thus s is a PNEε .

Using the constraint �ε(s) − �ε(s
∗) ≤ 0 in our formulation, we can easily prove

the following theorem.

Theorem 3 For any fixed ε ∈ [0; 1], PoSε(G) ≤ 2
1+ε

for any G ∈ WCG.

Proof In such a case, by choosing yi = 0 for any i ∈ [n], z = 1 and yn+1 = 2
1+ε

,
the first dual constraint becomes of the form

1 − ε

1 + ε
Ke ≥ 0

which is always satisfied for any pair of non-negative reals (Ke, Oe).

In this case, no specific lower bounds are known, besides the ones with unweighted
players.

4.3 Bounding the Approximation Ratio of One-Round Walks

For a one-round walk W , we set s = sW
n . Define Ke(i) as the sum of the weights

of the players using resource e in s before player i performs her choice. LP(s, s∗) in
this case has the following form, where the first constraint comes from the fact that,
when player i enters the game and strategy profile sW

i−1 is already constructed, this
player chooses si instead of s∗

i .

maximize
∑

e∈E

(
αeK

2
e

)

subject to
∑

e∈si

(αe(Ke(i) + wi)) −
∑

e∈s∗
i

(αe(Ke(i) + wi)) ≤ 0, ∀i ∈ [n]
∑

e∈E

(
αeO

2
e

)
= 1

αe ≥ 0, ∀e ∈ E
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DLP(s, s∗) is as follows.

minimize γ

subject to
∑

i:e∈si

(yi(Ke(i) + wi)) −
∑

i:e∈s∗
i

(yi(Ke(i) + wi)) + γO2
e ≥ K2

e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]
For both unweighted and weighted players we easily reobtain the upper bounds on
the Apx1∅ given by Christodoulou, Mirrokni and Sidiropoulos in [26].

Theorem 4 For any G ∈ UCG, Apx1∅(G) ≤ 2 + √
5 and, for any G ∈ WCG,

Apx1∅(G) ≤ 4 + 2
√
3.

Proof For G ∈ UCG, by choosing yi = 1 + √
5 for any i ∈ [n] and γ = 2 + √

5,
since for any i such that e ∈ s∗

i it holds that Ke(i) ≤ Ke, the first dual constraint is
satisfied when

(
1 + √

5
) (

Ke(Ke + 1)

2
− (Ke + 1)Oe

)
+

(
2 + √

5
)

O2
e ≥ K2

e

which is equivalent to
(√

5 − 1

2

)

K2
e +

(
1 + √

5
) (

Ke

2
− KeOe − Oe

)
+ (2 + √

5)O2
e ≥ 0. (6)

Easy calculations show that this is always satisfied for any pair of non-negative inte-
gers (Ke, Oe). In fact, for Oe = 0, inequality (6) becomes Ke((

√
5 − 1)Ke + √

5 +
1) ≥ 0 which is always satisfied for any non-negative integer Ke. For Oe = 1,
inequality (6) becomes Ke((

√
5−1)Ke −√

5−1) ≥ −2 which is always satisfied for
any integer Ke. Finally, for any Oe ≥ 2, the equation associated with inequality (6)
has no real solution when solved for Ke (its discriminant is negative), which implies
that inequality (6) is satisfied for any non-negative integer value of Ke.

For G ∈ WCG, by choosing yi =
(
2 + 2√

3

)
wi for any i ∈ [n] and γ = 4+2

√
3,

since for any i such that e ∈ s∗
i it holds that Ke(i) ≤ Ke, the first dual constraint is

satisfied when

(
2 + 2√

3

)
⎛

⎜
⎝

∑

i≤j :e∈sK
i ∩sK

j

(wiwj ) −
∑

i:e∈sO
i

(wi(Ke + wi))

⎞

⎟
⎠ +

(
4 + 2

√
3
)

O2
e ≥ K2

e

which is true if

1√
3
K2

e −
(
2 + 2√

3

)
KeOe +

(
2 + 4√

3

)
O2

e ≥ 0. (7)

Note that, after rearranging of the terms, inequality (7) becomes (Ke − (1 +√
3)Oe)

2 ≥ 0 which is clearly satisfied for any pair of reals (Ke, Oe).
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4.3.1 Analysis of the Dual Constraints

For the unweighted case, the dual constraints get tight for pairs of the form (1, 1),

while the asymptotical dual constraints get tight for pairs of the form
(
3+√

5
2 Oe, Oe

)
.

These pairs exactly characterize the structure of the lower bounding instance derived
by Bilò et al. in [10]. For the weighted case, the worst case dual constraints occur
when all players using resource e in the walk have weight 1, while only one player
uses e in the optimal strategy profile. Moreover, the asymptotical dual constraints
get tight for pairs of the form ((1 + √

3)Oe, Oe). In this case, the best known lower
bound, equal to 3 + 2

√
2, has been given by Caragiannis et al. in [20].

5 Application to Quadratic and Cubic Latency Functions

In this section, we show how to use the primal-dual method to bound the PoS and
the Apx1∅ in the case of polynomial latency functions of maximum degree d and
unweighted players. We only consider the case d ≤ 3, that is, quadratic and cubic
latency functions. As we will see, it is not difficult to extend the approach to any
particular value of d, but it is quite hard to obtain a general result as a function of d

because we do not have simple closed formulas expressing some of the summations
we need in our analysis for any value of d.

First of all note that, by using the same argument exploited in the proof of Lemma
1, we can assume without loss of generality that, in all games we will consider
throughout this section, the latency functions are of the form �e(x) = ∑d

i=1αe,ix
i ,

that is, without the term αe,0.

5.1 Bounding the Price of Stability

Recall that, for any G ∈ UCG, Rosenthal [41] shows that any strategy profile s which
is a local minimum of the potential function

�(s) =
∑

e∈E

Le(s)∑

x=1

�e(x) =
∑

e∈E

Le(s)∑

x=1

d∑

i=1

(αe,ix
i)

is a PNE.
Let us denote with �i(s) = ∑

e∈E

∑Le(s)
x=1 (αe,ix

i) the contribution of the term
αe,ix

i to �(s). We have already seen in the previous section that

�1(s) = 1

2

∑

e∈E

(
αe,1(Le(s)

2 + Le(s))
)

.

Moreover,

�2(s) = 1

6

∑

e∈E

(αeLe(s)(Le(s) + 1)(2Le(s) + 1))
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and

�3(s) = 1

4

∑

e∈E

(
αe (Le(s)(Le(s) + 1))2

)
.

According to this decomposition of �(s), the constraint �(s) ≤ �(s∗) becomes

d∑

i=1

�i(s) ≤
d∑

i=1

�i(s
∗)

and the constraint
∑

i∈[n]
(
�(s) − �(s−i � s∗

i )
) ≤ 0 becomes

d∑

i=1

⎛

⎝
∑

j∈[n]

(
�i(s) − �i(s−j � s∗

j )
)
⎞

⎠ ≤ 0.

Again, as shown in the previous section,
∑

i∈[n]

(
�1(s) − �1(s−i � s∗

i )
) =

∑

e∈E

(
αe,1

(
K2

e − KeOe − Oe

))
.

Moreover, using the same derivation as in the previous section, we obtain
∑

i∈[n]

(
�2(s) − �2(s−i � s∗

i )
) =

∑

e∈E

(
αe,2

(
K3

e − Oe(Ke + 1)2
))

and ∑

i∈[n]

(
�3(s) − �3(s−i � s∗

i )
) =

∑

e∈E

(
αe,3

(
K4

e − Oe(Ke + 1)3
))

.

Hence, for the case of d = 2, DLP(s, s∗) is the following.
minimize γ

subject to

K2
e (

y
2 + z) + y

2Ke

− ( y
2O2

e + zKeOe + Oe

( y
2 + z

)) + γO2
e ≥ K2

e , ∀e ∈ E
y
6 (Ke(Ke + 1)(2Ke + 1) − Oe(Oe + 1)(2Oe + 1))

+z(K3
e − Oe(Ke + 1)2) + γO3

e ≥ K3
e , ∀e ∈ E

y, z ≥ 0

By analyzing the dual formulation, we obtain the following upper bound on the PoS.

Theorem 5 For any G ∈ UCG with quadratic latency functions, PoS(G) ≤ 2.362.

Proof The claim follows by setting y = 1.908, z = 0.453 and γ = 2.362.
Let us denote as f1(Ke, Oe) and f2(Ke, Oe), respectively, the first and second

constraint of DLP(s, s∗).
For the first constraint, f1(0, Oe) = 1408O2

e − 1407Oe ≥ 0 is always satisfied
for any integer Oe ≥ 0, while the equation f1(Ke, Oe) = 0 has no solution (its
discriminant is negative) when Ke ≥ 1. Hence, the first constraint is always satisfied
for any pair of non-negative integers (Ke, Oe).
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For the second constraint, note that δf2
δOe

(Ke, Oe) = −3(151K2
e + 302Ke −

1726O2
e + 636Oe + 257) implies that, for any fixed value of Ke, f2 is increasing in

Oe when Oe ≥ 1. Hence, we just need to show that f2(Ke, Oe) ≥ 0 for Oe ∈ {0, 1}.
It holds that f2(Ke, 0) = 89K3

e + 954K2
e + 318Ke ≥ 0 which is always satisfied for

any Ke ≥ 0 and f2(Ke, 1) = 89K3
e + 501K2

e − 588Ke + 1 ≥ 0 which is always
satisfied for any non-negative integer. Hence, also the second constraint is always
satisfied for any pair of non-negative integers (Ke, Oe).

For the case d = 3, DLP(s, s∗) is the following.

minimize γ

subject to

K2
e (

y
2 + z) + y

2Ke

− ( y
2O2

e + zKeOe + Oe

( y
2 + z

)) + γO2
e ≥ K2

e , ∀e ∈ E
y
6 (Ke(Ke + 1)(2Ke + 1) − Oe(Oe + 1)(2Oe + 1))

+z(K3
e − Oe(Ke + 1)2) + γO3

e ≥ K3
e , ∀e ∈ E

y
4 (K2

e (Ke + 1)2 − O2
e (Oe + 1)2)

+z(K4
e − Oe(Ke + 1)3) + γO4

e ≥ K4
e , ∀e ∈ E

y, z ≥ 0

By analyzing the dual formulation, we obtain the following upper bound on the PoS.

Theorem 6 For any G ∈ UCG with cubic latency functions, PoS(G) ≤ 3.322.

Proof The claim follows by setting y = 2.99, z = 0.331 and γ = 3.322.
Let us denote as fi(Ke, Oe) the ith constraint of DLP(s, s∗).
For the first constraint, f1(0, Oe) = 1827O2

e − 1826Oe ≥ 0 is always satisfied
for any integer Oe ≥ 0, while the equation f1(Ke, Oe) = 0 has no solution when
Ke ≥ 1 (its discriminant is negative). Hence, the first constraint is always satisfied
for any pair of non-negative integers (Ke, Oe).

For the second constraint, note that δf2
δOe

(Ke, Oe) = −933K2
e − 1986Ke +

20928O2
e −8970Oe −2488 implies that, for any fixed value of Ke, f2 is increasing in

Oe when Oe ≥ 1. Hence, we just need to show that f2(Ke, Oe) ≥ 0 for Oe ∈ {0, 1}.
It holds that f2(Ke, 0) = 983K3

e + 4485K2
e + 1495Ke ≥ 0 which is always satis-

fied for any Ke ≥ 0 and f2(Ke, 1) = 983K3
e + 3492K2

e − 491Ke + 3 ≥ 0 which
is always satisfied for any non-negative integer. Hence, also the second constraint is
always satisfied for any pair of non-negative integers (Ke, Oe).

For the third constraint, note that δf3
δOe

(Ke, Oe) = −2(331K3
e +993K2

e +933Ke −
10298O3

e + 4485O2
e + 1495Oe + 331) implies that, for any fixed value of Ke, f3 is

increasing in Oe when Oe ≥ 1. Hence, we just need to show that f3(Ke, Oe) ≥ 0 for
Oe ∈ {0, 1}. It holds that f3(Ke, 0) = 157K2

e +2990Ke +1495 ≥ 0 which is always
satisfied for any Ke ≥ 0 and f3(Ke, 1) = 157K4

e + 2328K3
e − 491K2

e − 1986Ke +
2 ≥ 0 which is always satisfied for any non-negative integer. Hence, also the third
constraint is always satisfied for any pair of non-negative integers (Ke, Oe).
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By extending the instance given by Christodoulou, Koutsoupias and Spirakis
in [25] for lower bounding the PoS in the case of affine latency functions, the
following lower bounds can be easily achieved.

Theorem 7 For any δ > 0, there exist G1 ∈ UCG with quadratic latency functions
and G2 ∈ UCG with cubic latency functions such that PoS(G1) ≥ 2.1859 − δ and
PoS(G2) ≥ 2.7558 − δ.

Proof Consider a game G ∈ UCG with n = n1 +n2 players divided into two sets P1
and P2 with |P1| = n1 and |P2| = n2. Each player i ∈ P1 has two strategies si and
s∗
i , while all players in P2 have the same strategy s.
There are three types of resources:

• n1 resources ri , i ∈ [n1], each with latency function �ri (x) = rxd , where the
parameter r will be specified later. Resource ri belongs only to s∗

i ;• n1(n1 − 1) resources r ′
i,j , i, j ∈ [n1] with i �= j , each with latency func-

tion �r ′
ij
(x) = r ′xd , where the parameter r ′ will be specified later. Resource r ′

ij

belongs only to si and to s∗
j ;

• one resource r ′′ with latency function �r ′′(x) = xd . Resource r ′′ belongs to si for
each i ∈ [n1] and to s;

The cost of each player i ∈ P1 adopting strategy si when there are exactly k players in
P1 adopting the strategy played in s (and thus there are n1 − k players in P1 adopting
the strategy played in s∗) is costs(k) = (4n1 − 3k − 1)r ′ + (n2 + k)2 when d = 2
and it is costs(k) = (8n1 − 7k − 1)r ′ + (n2 + k)3 when d = 3. Similarly, the cost
of each player i ∈ P1 adopting strategy s∗

i when there are exactly k players in P1
adopting the strategy played in s is costs∗(k) = r + (n1 + 3k − 1)r ′ when d = 2 and
it is costs∗(k) = r + (n1 + 7k − 1)r ′ when d = 3.

We now want to select the parameters r and r ′ so that s is the unique PNE of the
game. This is true if, for any k ∈ [n1], it holds that costs∗(k − 1) > costs(k). Such a
condition is always satisfied for the following values of r and r ′:

• r = 2n22+(n1+1)(n1+2n2)
2 + γ and r ′ = n1+2n2

6 , when d = 2,

• r = 2n32+(n1+1)(n21+3n1n2+3n22)
2 + γ and r ′ = n21+3n1n2+3n22

14 , when d = 3,

where γ is an arbitrarily small positive value.
Next step is to select n1 and n2 so as to maximize the ratio SUM(s)

SUM(s∗) =
r ′n1(n1−1)+(n1+n2)

d+1

rn1+r ′n1(n1−1)+nd+1
2

for d = 2, 3. By choosing n1 = 1.5595n2 when d = 2 and

n1 = 1.0988n2 when d = 3 and letting n2 go to infinity, we obtain the claim.

A recent paper by Christodoulou and Gairing [22] shows that PoS = 2.362 when
d = 2 and PoS = 3.322 when d = 3, i.e., our upper bounds are tight, while
our lower bounds are not. In particular, while our lower bounds hold for the more
restricted notion of dominant strategy equilibria, Christodoulou and Gairing con-
struct instances for which there exists a unique PNE which is not a dominant strategy
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equilibria. Hence, an interesting research problem is that of determine the price of
anarchy/stability2 of dominant strategy equilibria.

5.2 Bounding the Approximation Ratio of One-Round Walks

For the case d = 2, DLP(s, s∗) is defined as follows.
minimize γ

subject to
∑

i:e∈si

(yi(Ke(i) + 1)) −
∑

i:e∈s∗
i

(yi(Ke(i) + 1)) + γO2
e ≥ K2

e , ∀e ∈ E

∑

i:e∈si

(
yi(Ke(i) + 1)2

)
−

∑

i:e∈s∗
i

(
yi(Ke(i) + 1)2

)
+ γO3

e ≥ K3
e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]
From the above formulation, we obtain the following upper bound.

Theorem 8 For any G ∈ UCG with quadratic latency functions, Apx1∅(G) ≤
37.5888.

Proof The worst-case dual constraints occur when each player i using resource e in
s∗ enters the game after all players using e in s have entered the game yet. The claim
follows by choosing yi = 5.2944 for any i ∈ [n] and γ = 37.5888.

According to these choices, the dual constraints, namely f1(Ke, Oe) and
f2(Ke, Oe), become

2059K2
e + 3309Ke(1 − 2Oe) + 6Oe(7831Oe − 1103) ≥ 0

and

956K3
e + 3309K2

e (1 − 2Oe) + 1103Ke(1 − 12Oe) + 42986O3
e − 6618Oe ≥ 0.

For the first constraint, it holds that f1(Ke, 0) = 2059K2
e + 3309Ke ≥ 0 which is

always satisfied for any Ke ≥ 0. Moreover, the equation f1(Ke, Oe) = 0 has no
solution for any Oe ≥ 1 (its discriminant is negative). Hence, the first constraint is
always satisfied for any pair of non-negative integers (Ke, Oe).

For the second constraint, note that δf2
δOe

(Ke, Oe) = −6(1103K2
e + 2206Ke −

23493O2
e +1103) implies that, for any fixed value of Ke, f2 is increasing in Oe when

Oe ≥ 1. Hence, we just need to show that f2(Ke, Oe) ≥ 0 for Oe ∈ {0, 1}. It holds
that f2(Ke, 0) = 956K3

e + 3309K2
e + 1103Ke ≥ 0 which is always satisfied for

any Ke ≥ 0 and f2(Ke, 1) = 956K3
e − 3309K2

e − 12133Ke + 40368 ≥ 0 which is
always satisfied for any non-negative integer. Hence, the second constraint is always
satisfied for any pair of non-negative integers (Ke, Oe).

2These two metrics coincide in the case of dominant strategy equilibria.
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For the case d = 3, DLP(s, s∗) is defined as follows.

minimize γ

subject to
∑

i:e∈si

(yi(Ke(i) + 1)) −
∑

i:e∈s∗
i

(yi(Ke(i) + 1)) + γO2
e ≥ K2

e , ∀e ∈ E

∑

i:e∈si

(
yi(Ke(i) + 1)2

)
−

∑

i:e∈s∗
i

(
yi(Ke(i) + 1)2

)
+ γO3

e ≥ K3
e , ∀e ∈ E

∑

i:e∈si

(
yi(Ke(i) + 1)3

)
−

∑

i:e∈s∗
i

(
yi(Ke(i) + 1)3

)
+ γO4

e ≥ K4
e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]
From the above formulation, we obtain the following upper bound.

Theorem 9 For any G ∈ UCG with cubic latency functions, Apx1∅(G) ≤ 17929
34 ≈

527.323.

Proof The worst-case dual constraints occur when each player i using resource e in
s∗ enters the game after all players using e in s have entered the game yet. The claim
follows by choosing yi = 369

34 for any i ∈ [n] and γ = 17929
34 .

According to these choices, the dual constraints, namely f1(Ke, Oe), f2(Ke, Oe)

and f3(Ke, Oe), become

301K2
e + 3699Ke(1 − 2Oe) + 35858O2

e − 738Oe ≥ 0,

178K3
e + 369K2

e (1 − 2Oe) + 123Ke(1 − 12Oe) + 35858O3
e − 738Oe ≥ 0

and

233K4
e +738K3

e (1−2Oe)+369K2
e (1−12Oe)−4428KeOe+71716O4

e −1476Oe ≥ 0.

For the first constraint, it holds that f1(Ke, 0) = 301K2
e + 369Ke ≥ 0 which is

always satisfied for any Ke ≥ 0. Moreover, the equation f1(Ke, Oe) = 0 has no
solution for any Oe ≥ 1 (its discriminant is negative). Hence, the first constraint is
always satisfied for any pair of non-negative integers (Ke, Oe).

For the second constraint, note that δf2
δOe

(Ke, Oe) = −6(123K2
e + 246Ke −

17929O2
e + 123) implies that, for any fixed value of Ke, f2 is increasing in Oe when

Oe ≥ 1. Hence, we just need to show that f2(Ke, Oe) ≥ 0 for Oe ∈ {0, 1}. It holds
that f2(Ke, 0) = 178K3

e + 369K2
e + 123Ke ≥ 0 which is always satisfied for any

Ke ≥ 0 and f2(Ke, 1) = 178K3
e − 369K2

e − 1353Ke + 35120 ≥ 0 which is always
satisfied for any non-negative integer. Hence, the second constraint is always satisfied
for any pair of non-negative integers (Ke, Oe).

For the third constraint, note that δf3
δOe

(Ke, Oe) = −4(369K3
e + 1107K2

e +
1107Ke −71716O3

e +369) implies that, for any fixed value of Ke, f3 is increasing in
Oe when Oe ≥ 1. Hence, we just need to show that f3(Ke, Oe) ≥ 0 for Oe ∈ {0, 1}.
It holds that f3(Ke, 0) = 233K4

e + 738K3
e + 369K2

e ≥ 0 which is always satisfied
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for any Ke ≥ 0 and f3(Ke, 1) = 233K4
e −738K3

e −4059K2
e −4428Ke +70240 ≥ 0

which is always satisfied for any non-negative integer. Hence, the third constraint is
always satisfied for any pair of non-negative integers (Ke, Oe).

6 Further Applications: the PoA Under the Social Function Max

In this section, we show how the primal-dual technique can be adapted also to the
case in which the social function is the maximum of the players’ payoffs. For the
sake of brevity, we consider only the problem of bounding the PoA in unweighted
congestion games with affine latency functions. In order to deal with the maximum
social function, we assume, without loss of generality, that player n is the one paying
the highest cost in s and impose that, in s∗, no player pays more than one.

Thus, LP(s, s∗) has the following form.

maximize k

subject to
∑

e∈si

(αeKe) −
∑

e∈s∗
i

(αe(Ke + 1)) ≤ 0, ∀i ∈ [n]
∑

e∈si

(αeKe) ≤ k, ∀i ∈ [n − 1]
∑

e∈sn

(αeKe) = k

∑

e∈s∗
i

(αeOe) ≤ 1, ∀i ∈ [n]

αe ≥ 0, ∀e ∈ E

DLP(s, s∗) is as follows.

minimize
∑

i∈[n]
zi

subject to
∑

i:e∈si

(Ke(xi + yi)) −
∑

i:e∈s∗
i

(xi(Ke + 1) − ziOe) ≥ 0, ∀e ∈ E

∑

i∈[n]
yi ≤ −1

xi, zi ≥ 0, ∀i ∈ [n]
yi ≥ 0, ∀i ∈ [n − 1]

We easily reobtain the upper bound on the PoA proven by Christodoulou and
Koutsoupias in [23].

Theorem 10 For any G ∈ UCG, PoA(G) = O(
√

n).
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Proof The claim follows by choosing xi = 1√
n
, yi = 0 and zi = 2√

n
for each

i ∈ [n − 1] and xn = 1, yn = −1 and zn = 2
√

n. Such a choice clearly satisfies the
second dual constraint, thus we just need to show that the first dual constraint, that
we denote as f (Ke, Oe) ≥ 0, is satisfied for any pair of non-negative integers. Note
that f (Ke, Oe)may assume different forms depending of which of the following four
situations occurs:

• e /∈ sn ∧ e /∈ s∗
n . In this case, f (Ke, Oe) = K2

e − KeOe − Oe + 2O2
e ≥ 0 is

always satisfied for any pair of (Ke, Oe) since the equation f (Ke, Oe) = 0 has
no solution (its discriminant is negative).

• e /∈ sn ∧ e ∈ s∗
n . In this case, f (Ke, Oe) = K2

e − Ke(
√

n + Oe − 1) + 2nOe −√
n + (Oe − 1)(2Oe − 1). Note that δf

δOe
(Ke, Oe) = 2n − Ke + 4Oe − 3 which

is increasing in Oe. Since e ∈ s∗
n implies Oe ≥ 1, we just need to show that

f (Ke, Oe) ≥ 0 for Oe = 1. It holds that f (Ke, 1) = K2
e −√

nKe −√
n + 2n

which is always satisfied for any value ofKe (it suffices noting that this inequality
coincides with the one considered in the previous case when Oe = √

n).
• e ∈ sn ∧ e /∈ s∗

n . In this case, f (Ke, Oe) = K2
e − Ke(Oe + 1) − Oe + 2O2

e .
The equation f (Ke, Oe) = 0 has no solution for Oe ≥ 2 (its discriminant is
negative), while it has a unique solution for Oe = 1. Hence, it suffices showing
the claim for Oe = 0. It holds that f (Ke, Oe) = K2

e − K2 ≥ 0 which is always
satisfied for any integer Ke.

• e ∈ sn ∧ e ∈ s∗
n . In this case, f (Ke, Oe) = K2

e − Ke(
√

n + Oe) + 2nOe −√
n + (Oe − 1)(2Oe − 1). Note that δf

δOe
(Ke, Oe) = 2n − Ke + 4Oe − 3 which

is increasing in Oe. Since e ∈ s∗
n implies Oe ≥ 1, we just need to show that

f (Ke, Oe)≥0 for Oe =1. It holds that f (Ke, 1)=K2
e −(

√
n + 1)Ke −√

n + 2n
which is always satisfied for any value ofKe (it suffices noting that this inequality
coincides with the one considered in the previous case when Oe = √

n).

The claim follows since
∑n

i=1zi < 4
√

n.

7 Conclusions and Open Problems

In this paper, we have introduced a primal-dual method for bounding the quality
of self-emerging solutions, namely (approximate) pure Nash equilibria and strategy
profiles achieved after a one-round walk starting from the empty state, in weighted
congestion games. Our technique has revealed itself to be particularly effective in
this domain of application, as we could easily exploit it to reobtain, under a unify-
ing approach, all the results already known in the literature for the case of affine
latency functions as well as novel results for the cases of quadratic and cubic latency
functions.

Our method differs significantly from the primal-dual method proposed by Nadav
and Roughgarden in [37]. Roughly speaking, both methods consist in writing down a
linear program aiming at measuring the “maximum distance” between a given strat-
egy profile and the social optimum in a given game, but, while in their approach the
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strategic choices of the players are treated as variables (whereas the parameters of
the game defining the players’ costs/utilities are fixed constant values), in our formu-
lations these choices are reversed. Our key idea is, in fact, that of fixing two “virtual
strategy profiles”, representing the self-emerging solution under analysis and the
social optimum, which, although fixed, are kept parametric so as to encompass the
spectrum of all possible pairs of profiles, while the parameters defining the players’
costs/utilities in the game are now treated as variables in the formulation. The par-
ticularly compact succinct representation characterizing weighted congestion games
makes them the natural application arena for our technique even in several contexts
in which Nadav and Roughgarden’s method cannot be applied since the formulation
becomes non-linear.

Several interesting open problems are left open and we discuss in the following
some of them which, in our opinion, are worth to be investigated.

The first approach coming into mind is to export our primal-dual method outside
the scope of weighted congestion games, by trying to apply it to other succinctly
representable games. It would also be nice to understand whether our method can be
suitably used to analyze the efficiency of other self-emerging solutions in congestion
games. For instance, it is known that the PoA of Strong Nash equilibria in symmetric
unweighted congestion games with affine latency functions is strictly smaller than
5/2 [21] (which corresponds to the PoA of pure Nash equilibria), but no significant
bounds have been given up to date.

Moreover, is it possible to strengthen some of the results already known in the liter-
ature for the case of unweighted congestion games with linear latencies? For instance,
is it possible to narrow the gap between upper and lower bounds on the PoSε? (To
this aim, we believe that adding suitable constraints in the primal formulation should
provide better upper bounds.)

Or is it possible to narrow the gap between upper and lower bounds on the Apx1∅
when all the players’ strategies are made of a single resource? (In such a case, the
best-known lower bound is 4 [20], while no improvements on the 2 + √

5 ≈ 4.24
upper bound are known for this special case.)

Appendix: How to Compute Dual Variables: an Example

In this section, we show how to compute the dual variables exploited within the proof
of Theorem 1.

In order to find the best possible upper bound on the PoAε , we need to find the
variables γ and yi , for each i ∈ [n], such that the dual constraint

∑

i:e∈si

(yiKe) − (1 + ε)
∑

i:e∈s∗
i

(yi(Ke + wi)) + γO2
e ≥ K2

e

is satisfied for each pair of non-negative integers (Ke, Oe).
Since in our games no player has a special role which may distinguish her

from the others, we can assume, without loss of generality, that all players are
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indistinguishable, so that we can set yi = y for each i ∈ [n]. With this simplification,
the dual constraint becomes

yK2
e − (1 + ε)yOe(Ke + 1) + γO2

e ≥ K2
e ,

by which we obtain

γ ≥ K2
e (1 − y) + (1 + ε)yOe(Ke + 1)

O2
e

, (8)

forOe ≥ 1 and y ≥ 1 forOe = 0. Moreover, it is also easy to see that, forKe >> Oe,
the dual constraint is satisfied only if y > 1. Thus, from now on, we can assume,
without loss of generality, that y > 1, Oe ≥ 1 and focus on the satisfiability of (8).

Let us denote with f (Ke, Oe, y) the right-hand side of (8). Our task is to find the
value of y minimizing f (Ke, Oe, y) for each pair of non-negative integers (Ke, Oe)

with Oe ≥ 1. We have δf
δKe

(Ke, Oe, y) = y((1+ε)Oe−2Ke)+2Ke

O2
e

which, being a lin-

ear function in Ke, is maximized for Ke = (1+ε)yOe

2(y−1) . By using Ke = (1+ε)yOe

2(y−1) in
f (Ke, Oe, y), we obtain a function which is always decreasing in Oe; hence, we
can claim that the maximum value of f (Ke, Oe, y) is attained for Ke = (1+ε)y

2(y−1) and
Oe = 1.

However, the resulting lower bound on γ might not be tight, as Ke might not be
an integer. In order to remain within the realm of the integers, we can assume that the
maximum value of f (Ke, Oe, y) is attained for Oe = 1 and Ke such that either Ke =⌊

(1+ε)y
2(y−1)

⌋
or Ke =

⌈
(1+ε)y
2(y−1)

⌉
. By setting

⌊
(1+ε)y
2(y−1)

⌋
= z, this is equivalent to saying

that the maximum value of f (Ke, Oe, y) is attained for Oe = 1 and Ke such that
either Ke = z or Ke = z+ 1. By imposing the condition f (z, 1, y) = f (z+ 1, 1, y),

we obtain y = 2z+1
2z−ε

and γ = f (z, 1, 2z+1
2z−ε

) = (1 + ε) z2+3z+1
2z−ε

.
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