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Abstract In this work we introduce a notion of independence based on finite-state
automata: two infinite words are independent if no one helps to compress the other
using one-to-one finite-state transducers with auxiliary input. We prove that, as
expected, the set of independent pairs of infinite words has Lebesgue measure 1. We
show that the join of two independent normal words is normal. However, the inde-
pendence of two normal words is not guaranteed if we just require that their join is
normal. To prove this we construct a normal word x1x2x3 . . . where x2n = xn for
every n. This construction has its own interest.
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1 Introduction

In this work we introduce a notion of independence for pairs of infinite words, based
on finite-state automata. We call it finite-state independence.

The concept of independence appears in many mathematical theories, formaliz-
ing that two elements are independent if they have no common parts. In classical
probability theory the notion of independence is defined for random variables. In
the case of random variables with finite range the notion of independence can be
reformulated in terms of Shannon entropy function: two random variables are inde-
pendent if the entropy of the pair is exactly the sum of the individual entropies. An
equivalent formulation says that two random variables are independent if putting one
as a condition does not decrease the entropy of the other one. In algorithmic infor-
mation theory the notion of independence can be defined for finite objects using
program-size (Kolmogorov–Chaitin) complexity. Namely, finite words x and y are
independent if the program-size complexity of the pair (x, y) is close to the sum of
program-size complexities of x and y. Equivalently, up to a small error term, two
finite words are independent if the program-size complexity of one does not decrease
when we allow the other as an oracle.

Algorithmic information theory also defines the notion of independence for ran-
dom infinite words, as follows. Recall that, according to Martin-Löf’s definition, an
infinite word is random if it does not belong to any effectively null set; an equiva-
lent characterization establishes that an infinite word is random if its prefixes have
nearly maximal program-size complexity, which means that they are incompressible
with Turing machines. Two random infinite words x1x2 . . . and y1y2 . . . are indepen-
dent if their join x1y1x2y2 . . . is random [1, 23], see also [17, Theorem 3.4.6] and
[14] for independence on stronger notions of randomness. An equivalent definition
establishes that two random infinite words are independent if the program-size com-
plexity of the initial segment of one, conditioned on the other one, is nearly maximal.
This means that one word remains incompressible even when using the other one as
an oracle. See [10, 16, 22] for a thorough presentation of this material. While the
notion of independence for random infinite words is well understood, algorithmic
information theory has not provided a fully satisfactory definition of independence
for arbitrary infinite words, see the discussion in [7].

Here we scale down the notion of independence given by algorithmic information
theory by considering incompressibility by finite-state automata instead of incom-
pressibility by Turing machines. Our definition builds on the theory of finite-state
compression ratio introduced by Dai, Lathrop, Lutz and Mayordomo [9]. The finite-
state compression ratio of an infinite word indicates how much it can be compressed
by one-to-one finite-state transducers, which are finite-state automata augmented
with an output transition function such that the automata input–output behavior is
one-to-one (Huffman [12] called them lossless finite-state compressors). The infinite
words that can not be compressed are exactly the Borel normal words (this result was
first known from combining [20] and [9], see [4] for a direct proof). We say that two
infinite words are finite-state independent if one does not help to compress the other
using finite-state transducers. In Theorem 5.1 we show that the set of finite-state
independent pairs of infinite words has Lebesguemeasure 1, giving an elementary proof.
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As expected, the join of two finite-state independent normal words is normal (The-
orem 4.1). However, independence of two normal words is not guaranteed if we just
require that their join is normal. To show this we construct a normal word x that is
equal to the word even(x) that consists of the symbols of x at even positions (Theo-
rem 4.4). Thus, if odd(x) consists of the symbols of x at odd positions, both odd(x)

and even(x) are normal, and their join is normal. But odd(x) and even(x) are not
independent: odd(x) equals odd(even(x)). This phenomenon is not isolated: Alexan-
der Shen (personal communication, August 2016) proved that for the set of words x

such that x = even(x), a word is normal with probability 1.
The notion of finite-state independence we present here is based just on determin-

istic finite-state transducers. It remains to investigate if non-deterministic finite-state
transducers operating with an oracle can achieve different compression ratios. In the
case of finite-state transducers with no oracle, it is already known that the determin-
istic and the non-deterministic models compress exactly the same words, namely, the
non-normal words [3]. Some other models also compress exactly the same words,
such as the finite-state transducers with a single counter [3] and the two-way trans-
ducers [8]. It is still unknown if there is a deterministic push-down transducer that
can compress some normal words.

It also remains the question of how to characterize finite-state independence other
than by the conditional compression ratio in finite-state automata. One would like a
characterization in terms of a complexity function based on finite automata as those
considered in [21] and [13].

2 Primary Definitions

Let A be a finite set of symbols, the alphabet. We write Aω for the set of all infinite
words over A and Ak stands for the set of all words of length k. The length of a finite
word w is denoted by |w|. The positions in finite and infinite words are numbered
starting from 1. To denote the symbol at position i of a word w we write w[i] and to
denote the subword of w from position i to j we write w[i..j ]. We use the customary
notation for asymptotic growth of functions saying that f (n) is in O(g(n)) if ∃k >

0 ∃n0 ∀n > n0, |f (n)| ≤ k|g(n)|.

2.1 Normality

A presentation of the definitions and basic results on normal sequences can be read
form [2]. Here we start by introducing the number of occurrences and the number of
aligned occurrences of a word u in a word w.

Definition 2.1 For two wordsw and u, the number of occurrences of u inw, denoted
by |w|u, and the number of aligned occurrences of u in w, denoted by ||w||u, are
defined as

|w|u = |{i : w[i..i + |u| − 1] = u}|,
||w||u = |{i : w[i..i + |u| − 1] = u and i ≡ 1 mod |u|}|.
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For example, |aaaaa|aa = 4 and ||aaaaa||aa = 2. Aligned occurrences are
obtained by cutting w in |u|-sized pieces starting from the left. Notice that the defini-
tion of aligned occurrences has the condition i ≡ 1 mod |u| (and not i ≡ 0 mod |u|),
because the positions are numbered starting from 1. Of course, when a word u is just
a symbol, |w|u and ||w||u coincide. Aligned occurrences can be seen as symbol occur-
rences using a power alphabet: if w is a word whose length is a multiple of r , then
w can be considered as a word π(w) over Ar by grouping its symbols into blocks of
length r . The aligned occurrences of a word u of length r in w then correspond to the
occurrences of the symbol π(u) in the word π(w), and ||w||u = |π(w)|π(u).

We recall the definition of Borel normality [5] for infinite words (see the books
[6, 15] for a complete presentation). An infinite word x is simply normal to word
length � if all the blocks of length � have asymptotically the same frequency of
aligned occurrences, i.e., if for every u ∈ A�,

lim
n→∞

||x[1..n]||u
n/�

= |A|−�.

An infinite word x is normal if it is simply normal to every length. Normality is
defined here in terms of aligned occurrences but it could also be defined in terms of
all occurrences. The equivalence between the two definitions requires a proof (see
Theorem 4.5 in [6]).

2.2 Automata

We consider k-tape automata, also known as k-tape transducers when k is greater
than 1 [18, 19]. We call them k-automata and we consider them for k equal to 1, 2,
or 3 (Fig. 1). A k-automaton is a tuple T = 〈Q, A, δ, I 〉, where Q is the finite state
set, A is the alphabet, δ is the transition relation, I is the set of initial states. The
transition relation is a subset of Q × (A ∪ {ε})k × Q. A transition is thus a tuple
〈p, α1, . . . , αk, q〉 where p is its starting state, 〈α1, . . . , αk〉 is its label and q is its
ending state. Note that each αi is here either a symbol of the alphabet or the empty

word. A transition is written as p
α1,...,αk−−−−→ q. As usual, two transitions are called

consecutive if the ending state of the first is the starting state of the second.

Fig. 1 A 3-automaton and its tapes
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An infinite run is an infinite sequence of consecutive transitions

q0
α1,1,...,αk,1−−−−−−→ q1

α1,2,...,αk,2−−−−−−→ q2
α1,3,...,αk,3−−−−−−→ q3 −→ · · ·

The label of the run is the component-wise concatenation of the labels of the tran-
sitions given by the tuple 〈x1, . . . , xk〉 where each xj for 1 ≤ j ≤ k is equal to
αj,1αj,2αj,3 · · · . Note that some label xj might be finite although the run is infi-
nite since some transitions may have empty labels. The run is accepting if its first
state q0 is initial and each word xj is infinite. Such an accepting run is written shortly

as q0
x1,...,xk−−−−→ ∞. The tuple 〈x1, . . . , xk〉 is accepted if there exists at least one

accepting run with label 〈x1, . . . , xk〉. The 1-automata are the usual automata with
ε-transitions and the 2-automata are the usual automata with input and output also
known as transducers.

In this work we consider only deterministic k-automata. We actually consider k-
automata where the transition is determined by a subset of the k tapes. Informally, a
k-automaton is �-deterministic, for 1 ≤ � ≤ k, if the run is entirely determined by
the contents of the first � tapes. More precisely, a k-automaton is �-deterministic if
the following two conditions are fulfilled,

– the set I of initial states is a singleton set;

– for any two transitions p
α1,...,αk−−−−→ q and p′ α′

1,...,α
′
k−−−−→ q ′ with p = p′,

if αj = ε for some 1 ≤ j ≤ �, then α′
j = ε

if α1 = α′
1, . . . , α� = α′

�, then α�+1 = α′
�+1, . . . , αn = α′

n and q = q ′.

The conditions on the transitions leaving a state p are the following. The first one
requires that, among the first � components, the ones with empty label are the same
for all transitions leaving p. This means that each state determines (among the first
� tapes) the tapes from which a symbol is read (the ones with a symbol as label)
and the tapes from which no symbol is read (the ones with empty label). The second
condition is the usual one stating that two transitions leaving p and with the same
labels in the first � components must be the same.

Figures 2 and 3 show 3-automata that accept a triple 〈x, y, z〉 of infinite words
over the alphabet {0, 1}. In Fig. 2 the tuple 〈x, y, z〉 is accepted if z is a shuffle of

Fig. 2 A non-deterministic
3-automaton for the shuffle
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Fig. 3 A 2-deterministic
3-automaton for the join

x and y. In Fig. 3 the tuple 〈x, y, z〉 is accepted if z is the join of x and y (the
join of two infinite words x = a1a2a3 · · · and y = b1b2b3 · · · is the infinite word
z = a1b1a2b2a3 · · · .) The 3-automaton in Fig. 3 is 2-deterministic but the one in

Fig. 2 is not because the two transitions q0
0,ε,0−−→ q0 and q0

ε,0,0−−→ q0 violate the
required condition.

We assume each �-deterministic k-automata T computes a partial function
(Aω)� → (Aω)k−�. Let T be an �-deterministic k-automaton. For each tuple
〈x1, . . . , x�〉 of infinite words there exists at most one tuple 〈y�+1, . . . , yk〉 of
infinite words such that the k-tuple 〈x1, . . . , x�, y�+1, . . . , yk〉 is accepted by T .
The automaton T realizes then a partial function from (Aω)� to (Aω)k−� and
the tuple 〈y�+1, . . . , yk〉 is denoted T (x1, . . . , x�). The 1-deterministic 2-automata
are also called sequential transducers in the literature. When a k-automaton is �-

deterministic, we write the transition as p
α1,...,α�|β�+1,...,βk−−−−−−−−−−−→ q to emphasize the fact

that the first � tapes are input tapes and that the k−� remaining ones are output tapes.
We comment here on transitions reading no symbol from the input tapes. Let A

be a �-deterministic k-automaton. Suppose that there exists a transition from state p

to state q whose label has the form 〈ε, . . . , ε, β�+1, . . . , βk〉 with empty labels in the
first � components. Let us call these such a transition an ε�-transition. We claim that
it is always possible to get rid of ε�-transitions. The automatonA being deterministic
implies that this transition is the only transition leaving state p. If there exists a cycle
made of ε�-transitions, this cycle is a dead end in the automaton and its states can
be removed without changing the set of accepting runs of A. Let us recall that it is
required that all labels of an accepting state to be be infinite. Assume now that there

is no cycle of such ε�-transitions. Removing the transition p
ε,...,ε|β�+1,...,βk−−−−−−−−−→ q and

adding a transition p
α1,...,α�|β�+1γ�+1,...,βkγk−−−−−−−−−−−−−−−→ r for each transition q

α1,...,α�|γ�+1,...,γk−−−−−−−−−−−→
r leaving q preserve the accepting paths and decrease the number of ε�-transitions.
Completing the process until no ε�-transition remains remove all of them. In the rest
of the paper, we always assume that ε�-transitions have been removed.

Let T be a 1-deterministic 2-automaton. To define the compression ratio of an
infinite word x = a1a2 . . . by T , denoted by ρT (x), consider the unique accepting
run

q0
a1|v1−−−→ q1

a2|v2−−−→ q2
a3|v3−−−→ q3 · · ·
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of T , where each ai is a symbol in A, and each vi is a finite word (possibly empty)
of symbols in A. Then,

ρT (x) = lim inf
n→∞

|v1v2 · · · vn|
|a1a2 · · · an| .

For a given infinite word x it may happen that for some automata T , ρT (x) is
greater than 1 and for some other automaton T ′, ρT ′(x) is less than 1. We say that an
infinite word x is compressible by a 1-deterministic 2-automaton T if ρT (x) < 1.
A 1-deterministic 2-automaton T is called one-to-one if the function which maps x

to T (x) is one-to-one. The compression ratio of an infinite word x is the infimum of
the compression ratios achievable by all one-to-one 1-deterministic 2-automata:

ρ(x) = inf{ρT (x) : T is a one-to-one 1-deterministic 2-automaton}.
This compression ratio ρ(x) is always less or equal to 1, as witnessed by the one-
to-one compressor C0 which copies each symbol of the input to the output. For each
infinite word x, the compression ratio ρC0(x) is equal to 1.

The sequence x = 0ω, made entirely of zeros, has compression ratio ρ(x) = 0.
This is because for each positive real number ε, there exists a compressor C such
that ρC(x) < ε. However, the compression ratio 0 is not achievable by any one-to-
one 1-deterministic 2-automaton C for the following reason. Every such automaton C
computes a function Aω → Aω, and the compression ratio by C is the ratio between
the output and the input in the cycle reached by the infinite run. If the input word x is
ultimately periodic as for x = 0ω and x is in the domain of C then the run on x is also
ultimately periodic, and the compression ratio of x by C is non-zero. On the other
extreme, the words with compression ratio equal to 1 are exactly the normal words.

3 Finite-State Independence

To define the notion of finite-state independence we introduce the notion of con-
ditional compression ratio. The conditional compression ratio of an infinite word x

with respect to another infinite word y is the ratio of compression of x when y is used
as an oracle. To define this notion, we consider 2-deterministic 3-automata such that
two input tapes contain the words x and y and the output tape contains the result of
the compression of x with the help of y.

A compressor is a 2-deterministic 3-automata C such that for any fixed infinite
word y, the function x → C(x, y) which maps x to the output C(x, y) is one-to-one.
This guarantees that, if y is known, x can be recovered from C(x, y). Note that we
do not require that the function (x, y) → C(x, y) is one-to-one, which would be a
much stronger requirement.

Definition 3.1 Let C be a compressor. The conditional compression ratio of an
infinite word x with respect to y for C is determined by the unique accepting run

q0
α1,β1|w1−−−−−→ q1

α2,β2|w2−−−−−→ q2
α3,β3|w3−−−−−→ q3 · · ·
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such that x = α1α2α3 · · · and y = β1β2β3 . . ., with each αi, βi ∈ (A ∪ ε), as

ρC(x/y) = lim inf
n→∞

|w1w2 · · · wn|
|α1α2 · · · αn| .

Notice that the number of symbols read from y, the length of β1β2 · · · βn, is not
taken into account when defining ρC(x/y).

The conditional compression ratio of an infinite word x given an infinite word y,
denoted by ρ(x/y), is the infimum of the compression ratios ρC(x/y) of all
compressors C with input x and oracle y.

Notice that the plain compression ratio ρ(x) and the conditional compression ratio
ρ(x/y) always exist and they are values between 0 and 1 (witnessed by the identity
function).

The following proposition gives sufficient conditions for the maximum compres-
sion, when the conditional compression ratio is equal to zero.

Proposition 3.2 If a function f is realizable by a 1-deterministic 2-automata then,
for every x, ρ(f (x)/x) = 0.

Proof Assume that the function f is realized by a 1-deterministic 2-automaton T , so
f (x) = T (x) for every infinite word x. We fix a positive integer k and we construct
a compressor C such that ρC(f (x)/x) = 1/k. This compressor has two input tapes,
the first one containing a word y and the second one the word x. It compresses y in a
non-trivial way only when y is equal to f (x). The automaton C proceeds as follows. It
reads the infinite word x from the second input tape and computes f (x) by simulating
the automaton T . While f (x) coincides with y for the next k symbols, then C writes
a 0. When there is a mismatch, C writes a 1 and then copies the remaining part
of y to the output tape. Thus, if the mismatch occurs at position m = kp + r with
1 ≤ r ≤ k, the automaton C writes p symbols 0 before the mismatch, a symbol 1 and
ykp+1ykp+2ykp+3 · · · .

The following proposition provides a sufficient condition for compressing x

given y: some correlation between symbols in x and y at the same positions ensures
ρ(x/y) < 1.

Proposition 3.3 Let x and y be two infinite words. If there are three symbols c, c′
and d and an increasing sequence (mn)n≥0 of integers such that

lim
n→∞

|{1≤ i ≤mn :x[i]=c, y[i]=d}|
mn

�= lim
n→∞

|{1≤ i ≤mn :x[i]=c′, y[i]=d}|
mn

,

then ρ(x/y) < 1.

We assume here that both limits exist; however, the same result holds if just one
or none of the two limits exist.
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Proof By replacing the sequence (mn)n≥0 by some subsequence of it, we may
assume without loss of generality that limn→∞ |{1 ≤ i ≤ mn : x[i] = a, y[i] =
b}|/mn exists for arbitrary symbols a and b. This limit is denoted by π(a, b). The
existence of all the limits π(a, b) implies that for each symbol b,

lim
n→∞ |{1 ≤ i ≤ mn : y[i] = b}|/mn

also exists and

lim
n→∞

|{1 ≤ i ≤ mn : y[i] = b}|
mn

=
∑

a∈A

π(a, b).

This limit is denoted by πy(b). Define

ν(a/b) =
{

π(a, b)/πy(b) if πy(b) �= 0
1/|A| otherwise.

Let k be a block length to be fixed later. For two words u = a1 · · · ak and v =
b1 · · · bk of length k, define

ν(u/v) =
k∏

i=1

ν(ai/bi).

Let us recall that a set P of words is prefix-free if no distinct words u, v ∈ P

satisfy that u is a prefix of v. Note that if P is prefix-free, every word w ∈ A∗ has
at most one factorization w = u1 · · · un where each ui belongs to P . We will use the
following well-known fact due to Huffman [12].

Let p1, . . . , pn be real numbers such that 0 ≤ pi ≤ 1 for each 1 ≤ i ≤ n

and
∑n

i=1 pi = 1, then there exist n distinct words u1, . . . , un such that the set
{u1, . . . , un} is prefix-free and |ui | ≤ �− logpi� for 1 ≤ i ≤ n.

It is purely routine to check that
∑

u∈Ak ν(u/v) = 1 for each word v of length k.
Since

∑
u∈Ak ν(u/v) = 1, there exists for each word v, a prefix-free set {w(u, v) :

u, v ∈ Ak} such that the relation |w(u, v)| ≤ �− log|A| ν(u/v)� holds for each u

and v. These words w(u, v) are used by the transducer to encode the infinite word x

with the help of y. The transducer reads x and y by blocks of length k. For each
pair of blocks u and v, it outputs w(u, v). This output can be decoded with the
help of y because for each fixed block v, the possible blocks u are in one-to-one
correspondence with the words w(u, v).

We now evaluate the length of the output of the transducer. Let p(n, u, v) be the
number of occurrences of the pair (u, v) in x and y. Then,

p(n, u, v)=|{1 ≤ i ≤ n − k : i =1 mod k, x[i..i + k − 1]=u, y[i..i + k − 1]=v}|
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ρ(x/y) ≤ lim
n→∞

1

n

∑

u,v∈Ak

p(n, u, v)|w(u, v)|

≤ lim
n→∞

1

n

∑

u,v∈Ak

p(n, u, v)�− log|A| ν(u/v)�

≤ 1

k
+ lim

n→∞
1

n

∑

u,v∈Ak

p(n, u, v)(− log|A| ν(u/v))

= 1

k
+ lim

n→∞
1

n

∑

u=a1···ak

v=b1···bk

p(n, u, v)(− log|A|
k∏

i=1

ν(ai/bi))

= 1

k
+ lim

n→∞
1

n

∑

a,b∈A

|{1 ≤ i ≤ n : x[i] = a, y[i] = b}| log|A|
1

ν(a/b)

= 1

k
+

∑

b∈A,πy(b)�=0

πy(b)
∑

a∈A

π(a, b)

πy(b)
log|A|

πy(b)

π(a, b)

The previous to the last row results from counting correlated symbols instead of
counting correlated blocks of length k. The last equality results from using ν(a/b) =
π(a,b)
πy(b)

and applying the definition of π(·, ·) and πy(·).
We have that for each symbol b, the sum

∑

a∈A

π(a, b)

πy(b)
log|A|

πy(b)

π(a, b)
≤ 1.

However, for b = d, the above sum is strictly less than 1. Then, it follows that

∑

b∈A

πy(b)
∑

a∈A

π(a, b)

πy(b)
log

πy(b)

π(a, b)
< 1.

If k is chosen great enough, the conditional compression ratio ρ(x/y) satisfies
ρ(x/y) < 1.

The definition of finite-state independence of two infinite words is based on the
conditional compression ratio.

Definition 3.4 Two infinite words x and y are finite-state independent if ρ(x/y) =
ρ(x), ρ(y/x) = ρ(y) and the compression ratios of x and y are non-zero.

Note that we require that the compression ratios of x and y are non-zero. This
means that a word x such that ρ(x) = 0 cannot be part of an independent pair.
Without this requirement, every two words x and y such that ρ(x) = ρ(y) = 0 would
be independent. In particular, every word x with ρ(x) = 0 would be independent of
itself.
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4 Join Independence is not Enough

Recall that the join of two infinite words x = a1a2a3 · · · and y = b1b2b3 · · · is the
infinite word a1b1a2b2 · · · obtained by interleaving their symbols. It is denoted x∨y.
A possible definition of independence for normal words x and y would be to require
their join x∨y to be normal. We call this notion join independence. This definition of
independence would be natural since it mimics the definition of independence in the
theory of algorithmic randomness, where two random infinite words are independent
if their join is random [23], see also [17, Theorem 3.4.6]. One can ask whether a
similar result holds for our definition. Is it true that two normal words are finite-
state independent if and only if their join is normal? It turns out that finite-state
independence implies join independence. But the converse fails.

We use the following notation. For a given infinite word x = a1a2a3 . . ., we define
infinite words even(x) and odd(x) as a2a4a6 · · · and a1a3a5 · · · respectively. Simi-
larly, for a finite word w, even(w) and odd(w) are the words appearing on the even
and the odd positions in w. For example, x = even(x) means that an = a2n for all n.

Theorem 4.1 Let x and y be normal. If x and y are finite-state independent then
x ∨ y is normal.

Proof Suppose x ∨ y is not normal. Then, there is a length k such that a word of
length k does not have aligned frequency 2−k in x ∨ y. We can assume without loss
of generality that the length is even (increasing it if necessary), so we assume that
some word of length 2k does not have aligned frequency 2−2k . Split x ∨y into blocks
of size 2k:

x ∨ y = (u1 ∨ v1)(u2 ∨ v2) · · ·
where x = u1u2 . . . and y = v1v2 . . . are the respective decomposition in k-blocks.
Consider a sequence of positions (mn)n≥1 in x ∨ y such that each block of length 2k
has an aligned frequency, and let u ∨ v be a block of length 2k whose frequency f

along (mn)n≥1 is not 2−2k . Let u′ ∨ v be another block of length 2k with frequency
along (mn)n≥1 different from f . (Notice that if u ∨ v and all blocks u′ ∨ v have the
all the same frequency f along (mn)n≥1 then, necessarily, there is a block v′ such
that u ∨ v′ has frequency along (mn)n≥1 different from f , so we exchange the roles
of x and y). Then, at the positions (mn/2)n≥1

lim
n→∞

|{1 ≤ i ≤ mn/2 : x[i..i + k − 1] = u, y[i.. + k − 1] = v}|
mn

�= lim
n→∞

|{1 ≤ i ≤ mn/2 : x[i.. + k − 1] = u′, y[i..i + k − 1] = v}|
mn

,

By the argument in Proposition 3.3 we conclude that ρ(u1u2 . . . /v1v2 . . .) < 1. By
considering a compressor that reads blocks of length k we obtain

ρ(x/y) = ρ(u1u2 . . . /v1v2 . . .) < 1.

Actually, the proof of Theorem 4.1 gives a stronger result.

Proposition 4.2 If y is normal and ρ(x/y) = 1, then x ∨ y is normal.
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We now show that there are two words, that are join independent but not finite-
state independent. The proof is based on the existence of normal word x such that
x = even(x), that we prove in Theorem 4.4 below.

Theorem 4.3 There exists two normal words x and y such that x ∨ y is normal but
x and y are not independent.

Proof By Theorem 4.4, proved below, there is a normal word x such that x =
even(x). Let y = odd(x) and z = even(x). Since x is normal and x = y ∨ z, the
words y and z are join independent. Since y = odd(x) and x = even(x) = z, we
have the equality y = odd(z). This implies, by Proposition 3.2, that ρ(y/z) = 0;
hence, y and z are not finite-state independent.

4.1 Construction of a Normal Word x such that x = even(x)

Theorem 4.4 There is a normal word x such that x = even(x).

Here we prove this existence by giving an explicit construction of a normal
word x = a1a2a3 · · · over the alphabet {0, 1} such that a2n = an for every n.
The construction can be easily extended to an alphabet of size k to obtain a word
a1a2a3 · · · such that akn = an for each integer n ≥ 1. Beware that the construction,
as it is presented below, cannot provide a word a1a2a3 · · · over a binary alphabet
such that a3n = an (some more sophisticate one is needed, but it can be done; the
probabilistic argument also works).

A finite word w is called �-perfect for an integer � ≥ 1, if |w| is a multiple of � and
all words of length � have the same number of aligned occurrences |w|/(�2�) in w.

Lemma 4.5 Let w be an �-perfect word such that |w| is a multiple of �22�. Then,
there exists a 2�-perfect word z of length 2|w| such that even(z) = w.

Proof Since |w| is a multiple of �22� and w is �-perfect, for each word u of length �,
||w||u is a multiple of 2�. Consider a factorization of w = w1w2 · · · wr such that for
each i, |wi | = �. Thus, r = |w|/�. Since w is �-perfect, for any word u of length �,
the set {i : wi = u} has cardinality r/2�. Define z of length 2|w| as z = z1z2 · · · zr

such that for each i, |zi | = 2�, even(zi) = wi and for all words u and u′ of length �,
the set {i : zi = u′ ∨ u} has cardinality r/22�. This latter condition is achievable
because, for each word u of length �, the set {i : even(zi) = u} has cardinality r/2�

which is a multiple of 2�, the number of possible words u′.

Corollary 4.6 Let w be an �-perfect word for some even integer �. Then there exists
an �-perfect word z of length 2|w| such that even(z) = w.

Proof Since w is �-perfect, it is also �/2-perfect. Furthermore, if u and v are words
of length �/2 and � respectively then ||w||u = 2�/2+1||w||v . Thus, the hypothesis of
Lemma 4.5 is fulfilled with �/2.
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Corollary 4.7 There exist a sequence (wn)n≥1 of words and a sequence of posi-
tive integers (�n)n≥1 such that |wn| = 2n, even(wn+1) = wn, wn is �n-perfect
and (�n)n≥1 is non-decreasing and unbounded. Furthermore, it can be assumed that
w1 = 01.

Proof We start with w1 = 01, �1 = 1, w2 = 1001 and �2 = 1. For each n ≥
2, if �n22�n divides |wn|, then �n+1 = 2�n and wn+1 is obtained by Lemma 4.5.
Otherwise, �n+1 = �n and wn+1 is obtained by Corollary 4.6 . Note that the former
case happens infinitely often, so (�n)n≥1 is unbounded. Also note that each �n is a
power of 2.

Lemma 4.8 (Theorem 148 [11]) Let A be an alphabet of b symbols. Let p(k, r, j)

be the number of words of length k with exactly j occurrences of a given word of
length r , at any position:

p(k, r, j) =
∣∣∣∣∣
⋃

u∈Ar

{w ∈ Ak : |w|u = j}
∣∣∣∣∣ .

For every integer r greater than or equal to 1, for every integer k large enough and
for every real number ε such that 6/�k/r� ≤ ε ≤ 1/br ,

∑

i: |i−k/br |≥εk

p(k, r, i) < 2 bk+2r−2r e−br ε2k/6r .

Lemma 4.9 (Theorem 4.6 [6]) Let A be an alphabet. An infinite word x is normal if
and only if there is a positive number C such that, for every every word u,

lim sup
N→∞

|x[1..N ]|u
N

<
C

|A||u| ,

Finally, the next lemma is similar to Lemma 4.9 but with aligned occurrences.

Lemma 4.10 Let A be an alphabet. An infinite word x is normal if and only if there
is a positive number C such that, such that for infinitely many lengths �, for every
word w of length �,

lim sup
N→∞

||x[1..�N ]||w
N

<
C

|A|� .

Proof The implication from left to right is immediate from the definition of normal-
ity. We prove the other. Fix alphabet A with b symbols, fix x and C. Assume that for
infinitely many lengths �, for every word w of length �, the stated condition holds.
Equivalently,

lim sup
N→∞

||x[1..N ]||w
N

<
C

�|A|� . (*)

We will prove that for every word u, of any length,

lim sup
N→∞

|x[1..N ]|u
N

<
C

|A|u .
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and conclude that x is normal by Lemma 4.9. The task is to switch from aligned
occurrences to non-aligned occurrences. For this we consider long consecutive blocks
and the fact that most of them have the expected number of non-aligned occurrences
of small blocks inside.

Fix a length r and a word u of length r . Let � be any length greater than r for
which (*) holds. Fix ε. We group the words of length � in good and bad for r and
ε. The bad ones deviate from the expected number of occurrences of some word of
length r by ε� or more. The good ones do not. Lemma 4.8 bounds the number of
these bad words.

We use that each bad word has at most �− r +1 occurrences of u; each good word
has at most �/br + ε�/br occurrences of u; and in between any of two consecutive
blocks of length � there are at most r − 1 occurrences of u.

|x[1..N ]|u
N

<
1

N

∑

w∈A�

||x[1..N ]||w(|w|u + (r − 1))

= 1

N

∑

bad w

||x[1..N ]||w (|w|u + (r − 1))

+ 1

N

∑

good w

||x[1..N ]||w (|w|u + (r − 1))

<
1

N
(� − r + 1 + r − 1)

∑

bad w

||x[1..N ]||w

+ 1

N

(
�

br
+ ε� + r − 1

) ∑

good w

||x[1..N ]||w

<
1

N
�

(
2b� b2r−2r e−br ε2�/(6r)

) CN

�b�
+ 1

N

(
�

br
+ ε� + r − 1

)
N

�

= 2b2r−2re−br ε2�/(6r)C +
(

1

br
+ ε + r − 1

�

)
.

For � large enough and ε = �−1/3 the values 2b2r−2re−br ε2�/(6r)C and
(
ε + r−1

�

)

are arbitrarily small. So,

lim sup
N→∞

|x[1..N ]|u
N

<
C

br
.

Proof of Theorem 4.4 Let (wn)n≥1 be a sequence given by Corollary 4.7. Let x =
11w1w2w3 · · · We first prove that x satisfies x = even(x). Note that x[2k +
1..2k+1] = wk for each k ≥ 1 and x[1..2k+1] = 11w1 · · · wk . The fact that
wn = even(wn+1) implies x[2n] = x[n], for every n ≥ 3. The cases for n = 1 and
n = 2 hold because x[1..4] = 1101.

We prove that x is normal. Consider an arbitrary index n0. By construction, wn0 is
�n0 -perfect and for each n ≥ n0, wn is also �n0 -perfect. For every word u of length
�n0 and for every n ≥ n0,

||x[1..2n+1]||u ≤ ||x[1..2n0]||u + ||wn0 . . . wn||u.
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Then, for every N such that 2n ≤ N < 2n+1 and n ≥ n0,

||x[1..N ]||u
N/�n0

≤ ||x[1..2n+1]||u
N/�n0

≤ ||x[1..2n0]||u + ||wn0 . . . wn||u
N/�n0

≤ ||x[1..2n0]||u
2n/�n0

+ ||wn0 . . . wn||u
2n/�n0

= ||x[1..2n0]||u
2n/�n0

+ (2n0 + . . . + 2n)/(�n02
�n0 )

2n/�n0

= ||x[1..2n0]||u
2n/�n0

+ 2n+1 − 2n0

2n2�n0

<
||x[1..2n0]||u

2n/�n0

+ 2

2�n0
.

For large values of N and n such that 2n ≤ N < 2n+1, the expression

||x[1..2n0]||u
2n/�n0

becomes arbitrarily small. We obtain for every word u of length �n0 ,

lim sup
N→∞

||x[1..N ]||u
N/�n0

≤ 3 2−�n0 .

Since the choice of �n0 was arbitrary, the above inequality holds for each �n. Since
(�n)n≥1 is unbounded, the hypothesis of Lemma 4.10 is fulfilled, with C = 3, so we
conclude that x is normal.

Alexander Shen (personal communication, August 2016) proved that almost all
binary words satisfying x = even(x) are normal. The argument in his proof works
if the distances between different occurrences of the same repeated symbol grow
sufficiently fast. For example, his argument can be also used to prove that almost all
binary words satisfying x3n = xn are normal.

5 Almost All Pairs are Independent

The next theorem establishes that almost all pairs of infinite words are independent.

Theorem 5.1 The set I = {(x, y) : x and y are independent} has measure 1.

To prove it we use that if the oracle y is normal then the number of symbols read
from y, is linearly bounded by the number of symbols read from the input x. This
property, stated in Lemma 5.3 below, requires the notion of a finite run and the notion
of a forward pair.
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A finite run of a k-automaton T is a finite sequence of consecutive transitions

q0
a1,1,...,ak,1−−−−−−→ q1

a1,2,...,ak,2−−−−−−→ q2 −→ · · · −→ qn−1
a1,n,...,ak,n−−−−−−→ qn.

The label of the run is the component-wise concatenation of the labels of the tran-
sitions. More precisely, it is the tuple 〈u1, . . . , uk〉 where each uj for 1 ≤ j ≤ k is

equal to aj,1aj,2 · · · aj,n. Such a run is written shortly as q0
u1,...,uk−−−−→ qn.

Let T be a 2-deterministic 3-automaton whose state set is Q. Let v be a finite
word. A pair (p, a) ∈ Q × A is called a forward pair of v if there is a finite run

p
au,v|w−−−−→ q for some finite words u and w and some state q. A finite word v is

called a forward word if it has a maximum number of forward pairs. Since the num-
ber of pairs (p, a) ∈ Q × A is finite, there exist forward words. Note that, in case
the automaton is total, every extension of a forward word is also a forward word.
However, not every prefix of a forward word is a forward word.

Lemma 5.2 Let T be a 2-deterministic 3-automaton and let x and y be two infinite

words such that the run γ = q0
x,y|z−−−→ ∞ is accepting. Let v be a forward word

for T . For each factorization γ = q0
u1,v1|w1−−−−−→ q1

u2,v2|w2−−−−−→ q2
x1,y1|z1−−−−→ ∞ such that

v occurs in v2, u2 is non-empty.

Proof It suffices to prove the result when the word v2 is equal to v. Suppose by con-
tradiction that u2 is empty. Let a be the first symbol of x1. Since u2 is empty, the pair
(q1, a) is not forward pair of v. Since x1 is infinite, there exists a right extension vv′
of v such that (q1, a) is a forward pair of vv′. This contradicts the fact that v has a
maximum number of forward pairs.

Lemma 5.3 Let T be a 2-deterministic 3-automaton and let x and y be two infinite

words such that the run γ = q0
x,y|z−−−→ ∞ is accepting. If y is normal, there is a

constant K depending only on T such that for any factorization γ = q0
u1,v1|w1−−−−−→

q1
x1,y1|z1−−−−→ ∞ such that |u1| is long enough, |v1| ≤ K|u1|.

Proof Let v be a forward word for T . Since y is normal there is a positive constant k
less than 1 such that the number of disjoint occurrences of v in y[1..n] is greater than
kn for n large enough. By the previous lemma, |u1| ≥ k|v1| holds. The result holds
then with K = 1/k.

We write μ for the Lebesgue measure.

Theorem 5.4 For each normal word y, the set {x : ρ(x/y) < ρ(x)} has Lebesgue
measure 0.

Proof Fix y normal. Since for every x, ρ(x) ≤ 1 (see comment after Definition 3.1),
it suffices to prove {x : ρ(x/y) < 1} has measure 0. The inequality ρ(x/y) < 1 holds
if there exists a 2-deterministic 3-automaton that compresses x using y as oracle.
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For a 2-deterministic 3-automaton T , let Q be its state set and let K be the constant
obtained by Lemma 5.3. For any integer n and any positive real number ε < 1, let
Xn,ε be defined by

Xn,ε = {x : q0
u,v|w−−−→ q, u = x[1..n], v = y[1..n′] and |w| < (1 − ε)n}.

We claim that μ(Xn,ε) ≤ |Q|Kn2−nε. The number of configurations 〈q, n, n′〉
is at most |Q|Kn2(1−ε)n because there are |Q| possibles states, n′ ≤ Kn, and there
are at most 2(1−ε)n words of length smaller than (1 − ε)n. Two words x and x ′ with
different prefixes of length n can not reach the same configuration. If they did, the
rest of the run would be the same and this would contradict the injectivity of T .
Therefore, Xn,ε is contained in at most |Q|Kn2(1−ε)n cylinders of measure 2−n.

Observe that for n fixed, the inclusion Xn,ε ⊆ Xn,ε′ holds for ε′ ≤ ε. Let ε(n) be
a decreasing function which maps each integer n to a real number such that

∑

n≥0

n2−ε(n)n < ∞,

for instance ε(n) = 1/
√

n. For each k, define

X̃k =
⋃

n≥k

Xn,ε(n).

By the choice of the function ε(n), limk→∞ μ(X̃k) = 0. We claim that each
word x compressible with T with normal oracle y belongs to X̃k for each k. It suf-
fices to prove that it belongs to infinitely many sets Xn,ε(n). Suppose x is compressed
with ratio 1−δ, for some δ > 0. Then there is an infinite sequence of integers (nj )j≥0
such that the configurations 〈q, nj , n

′
j 〉 reached after reading the prefix of length nj

and outputting wj , with |wj | < (1 − δ)nj . Let j0 be such that ε(nj0) < δ. Then, for
each for j ≥ j0, we have x ∈ Xnj ,ε(nj ). Since this holds for each of the countably
many 3-automata T , we conclude that the measure of the set of words compressible
with normal oracle y is null.

Proof of Theorem 5.1 By definition of independence, the complement Ī = Aω ×
Aω \ I of I can be decomposed as Ī = J1 ∪ J2 ∪ J3 ∪ J4 where the sets J1, J2, J3
and J4 are defined by the following equations.

J1 = {(x, y) : ρ(x) = 0} J2 = {(x, y) : ρ(y) = 0}
J3 = {(x, y) : ρ(x/y) < ρ(x)} J4 = {(x, y) : ρ(y/x) < ρ(y)}

The sets J1 and J2 satisfy μ(J1) = μ(J2) = 0. By symmetry, the sets J3 and J4
satisfy μ(J3) = μ(J4). To show that μ(I) = 1, it suffices then to show that μ(J3) =
0.

The measure of J3 is then given by

μ(J3) =
∫∫

x,y

1J3 dxdy =
∫

y

(∫

x

1J3 dx

)
dy =

∫

y

f (y) dy

where the function f is defined by f (y) = μ({x : ρ(x/y) < ρ(x)}). By Theo-
rem 5.4, f (y) is equal to 0 for each normal word y. Since the set of normal words
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has measure 1, f (y) is equal to 0 for almost all y. It follows that μ(J3) = 0. This
concludes the proof of the theorem.
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Aires–CNRS/Université Paris Diderot. Becher is supported by the University of Buenos Aires and
CONICET.

References

1. Bauwens, B., Shen, A., Takahashi, H.: Conditional probabilities and van Lambalgen theorem revisited.
Submitted (2016)

2. Becher, V., Carton, O.: Normal numbers and computer science. In: Berthé, V., Rigó, M. (eds.)
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