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Abstract It is shown that the knapsack problem, which was introduced by Myas-
nikov et al. for arbitrary finitely generated groups, can be solved in NP for every
graph group. This result even holds if the group elements are represented in a com-
pressed form by so called straight-line programs, which generalizes the classical
NP-completeness result of the integer knapsack problem. If group elements are rep-
resented explicitly by words over the generators, then knapsack for a graph group
belongs to the class LogCFL (a subclass of P) if the graph group can be built up from
the trivial group using the operations of free product and direct product with Z. In all
other cases, the knapsack problem is NP-complete.

Keywords Graph groups · Knapsack problems · Combinatorial group theory ·
Decision problems in group theory

1 Introduction

In their paper [44], Myasnikov, Nikolaev, and Ushakov started the investigation of
classical discrete optimization problems, which are formulated over the integers, for
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arbitrary (possibly non-commutative) groups. The general goal of this line of research
is to study to what extent results from the commutative setting can be transferred to
the non-commutative setting. Among other problems, Myasnikov et al. introduced for
a finitely generated group G the knapsack problem and the subset sum problem. The
input for the knapsack problem is a sequence of group elements g1, . . . , gk, g ∈ G

(specified by finite words over the generators of G) and it is asked whether there
exists a solution (x1, . . . , xk) ∈ N

k of the equation g
x1
1 · · · gxk

k = g. For the subset
sum problem one restricts the solution to {0, 1}k .

For the particular case G = Z (where the additive notation x1 ·g1+· · ·+xk ·gk = g

is usually preferred) these problems are NP-complete if the numbers g1, . . . , gk, g

are encoded in binary representation. For subset sum, this is a classical result from
Karp’s seminal paper [31] on NP-completeness. Knapsack for integers is usually for-
mulated in a more general form in the literature; NP-completeness of the above form
(for binary encoded integers) was shown in [23], where the problem was called MUL-
TISUBSET SUM.1 Interestingly, if we consider subset sum for the group G = Z,
but encode the input numbers g1, . . . , gk, g in unary notation, then the problem is in
DLOGTIME-uniform TC0 (a small subclass of polynomial time and even of logarith-
mic space that captures the complexity of multiplication of binary encoded numbers;
see e.g. the book [50] for more details) [17], and the same holds for knapsack (see
Theorem 4.29). Related results can be found in [29].

In [44], Myasnikov et al. encode elements of the finitely generated group G by
words over the group generators and their inverses, which corresponds to the unary
encoding of integers. Among others, the following results were shown in [44]:

– Subset sum and knapsack can be solved in polynomial time for every hyperbolic
group.

– Subset sum for a virtually nilpotent group (a finite extension of a nilpotent group)
can be solved in polynomial time.

– For the following groups, subset sum is NP-complete (whereas the word problem
can be solved in polynomial time): free metabelian non-abelian groups of finite
rank, the wreath product Z � Z, Thompson’s group F , and the Baumslag-Solitar
group BS(1, 2).

Further results on knapsack and subset sum have been recently obtained in [33]:

– For a virtually nilpotent group, subset sum belongs to NL (nondeterministic
logspace).

– There is a nilpotent group of class 2 (in fact, a direct product of sufficiently
many copies of the discrete Heisenberg group H3(Z)), for which knapsack is
undecidable.

– The knapsack problem for the discrete Heisenberg group H3(Z) is decidable.
In particular, together with the previous point it follows that decidability of
knapsack is not preserved under direct products.

1Note that if we ask for a solution (x1, . . . , xk) in Z
k , then knapsack can be solved in polynomial time

(even for binary encoded integers) by checking whether gcd(g1, . . . , gk) divides g.
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– There is a polycyclic group with an NP-complete subset sum problem. Recently
it has been shown that subset sum is NP-complete for every polycyclic group that
is not virtually nilpotent [45].

– The knapsack problem is decidable for every co-context-free group.

In recent years, group-theoretic problems began to be studied in the setting where
group elements are encoded in a succinct (or compressed) way. A particularly pop-
ular succinct representation are so called straight-line programs (SLP). These are
context-free grammars that produce a single word, see [35, 36] for surveys. Over a
unary alphabet, one can achieve for every word exponential compression with SLPs:
The word an can be produced by an SLP of size O(log n). This shows that knapsack
and subset sum for the group Z with SLP-compressed group elements correspond
to the classical knapsack and subset sum problem with binary encoded numbers. To
distinguish between the two variants, we will speak in this introduction of uncom-
pressed knapsack (resp., subset sum) if the input group elements are given explicitly
by words over the generators. On the other hand, if these words are represented by
SLPs, we will speak of compressed knapsack (resp., subset sum). In the main part
of this paper, the terms “knapsack” and “subset sum” will refer to the uncompressed
version.

In this paper we will study the compressed and uncompressed versions of knap-
sack and subset sum for the class of graph groups. Graph groups are also known as
“right-angled Artin groups” or “free partially commutative groups”. A graph group
is specified by a finite simple graph. The vertices are the generators of the group, and
two generators a and b are allowed to commute if and only if a and b are adjacent.
Graph groups can be regarded as interpolating between free groups and free abelian
groups and constitute a group counterpart of trace monoids (free partially commu-
tative monoids), which have been used for the specification of concurrent behavior.
In combinatorial group theory, graph groups are currently an active area of research,
mainly because of their rich subgroup structure (see e.g. [6, 10, 20]).

Since the word problem for a graph group can be solved in polynomial time, it is
clear that for each graph group, the subset sum problem belongs to NP. This result
carries over to compressed subset sum, since the compressed word problem (the word
problem where the input group element is given by an SLP) for a graph product can
be solved in polynomial time [37] (see also [36] for more details). Our first main
result states that for every graph group, even compressed knapsack belongs to NP and
is in fact NP-complete. This generalizes the classical NP-completeness for knapsack
(over Z) to a much wider class of groups. To prove this result, we proceed in two
steps:

– We show that if an instance g
x1
1 · · · gxk

k = g, where all group elements g1, . . . , gk

are given succinctly by SLPs, has a solution in a graph group, then it has a solu-
tion where every xi is bounded exponentially in the input length (the total length
of all SLPs representing the group elements g1, . . . , gk, g).

– We then guess the binary encodings of numbers n1, . . . , nk that are bounded by
the exponential bound from the previous point and verify in polynomial time the
identity g

n1
1 · · · gnk

k = g. The latter problem is an instance of the compressed
word problem for a graph group, which can be solved in polynomial time [37].
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In fact, our proof yields a stronger result: First, it yields an NP procedure for solv-
ing knapsack-like equations g

x1
1 · · · gxk

k = g where some of the variables x1, . . . , xk

are allowed to be identical. We call such an equation an exponent equation. Hence,
we prove that solvability of exponent equations over a graph group belongs to NP.
A by-product of our proof is that the set of all solutions (x1, . . . , xk) ∈ N

k of
g

x1
1 · · · gxk

k = g is semilinear, and a semilinear representation can be produced effec-
tively. This seems to be true for many groups, e.g., for all co-context-free groups [33].
On the other hand, the discrete Heisenberg group H3(Z) is an example of a group for
which solvability of exponent equations is decidable, but the set of all solutions of an
exponent equation is not semilinear; it is defined by a single quadratic Diophantine
equation [33].

The second part of the paper is concerned with with uncompressed knapsack and
subset sum for graph groups. In the case of knapsack, we completely determine the
complexity and for subset sum, we obtain an almost complete picture. For a finite
simple graph �, let G(�) denote the graph group specified by �.

(i) Uncompressed knapsack and subset sum for G(�) are complete for TC0 if �

is a complete graph (and thus G(�) is a free abelian group.)2

(ii) Uncompressed knapsack and subset sum for G(�) are LogCFL-complete if �

is not a complete graph and neither contains an induced cycle on four nodes
(C4) nor an induced path on four nodes (P4).

(iii) Uncompressed knapsack for G(�) is NP-complete if � contains an induced C4
or an induced P4 (it is not clear whether this also holds for subset sum).

The result (1) is a straightforward extension of the corresponding fact for Z [17].
The proofs for (1) and (1) are less obvious. Recall that LogCFL is the closure of
the context-free languages under logspace reductions; it is contained in the circuit
complexity class NC2.

To show the upper bound in (1), we use the fact that the graph groups G(�), where
� neither contains an induced C4 nor an induced P4 (these graphs are the so called
transitive forests), are exactly those groups that can be built up from Z using the
operations of free product and direct product with Z. We then construct inductively
over these operations a logspace-bounded auxiliary pushdown automaton working
in polynomial time (these machines accept exactly the languages in LogCFL) that
checks whether an acyclic finite automaton accepts a word that is trivial in the graph
group. In order to apply this result to knapsack, we finally show that every solvable
knapsack instance over a graph group G(�) with � a transitive forest has a solution
with polynomially bounded exponents. This is the most difficult result in the second
part of this paper and it might be of independent interest.

For the lower bound in (1), it suffices to consider the group F2 (the free group on
two generators). Our proof is based on the fact that the context-free languages are
exactly those languages that can be accepted by valence automata over F2. This is
a reinterpretation of the classical theorem of Chomsky and Schützenberger. To the

2In the following, TC0 always refers to its DLOGTIME-uniform version.
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authors’ knowledge, the result (1) is the first completeness result for LogCFL in the
area of combinatorial group theory.

Finally, for the result (1) it suffices to show NP-hardness of knapsack for the graph
groups G(C4) (where C4 is a cycle on four nodes) and G(P4) (where P4 is a cycle on
four nodes). Our proof for G(C4) is based on ideas from [44]. For G(P4), we apply
a technique that was first used by Aalbersberg and Hoogeboom [1] to show that the
intersection non-emptiness problem for regular trace languages is undecidable for P4.

This work presents all results with full proofs from the extended abstracts in [39,
40] that concern the knapsack problem and the subset sub problem for graph groups
(the paper [39] also contains transfer results on HNN-extensions and free products
with amalgamations, which do not appear here).

Related work Implicitly, the knapsack problem was also studied by Babai et al.
[4], where it is shown that knapsack for commutative matrix groups over algebraic
number fields can be solved in polynomial time.

The knapsack problem is a special case of the more general rational subset
membership problem. A rational subset of a finitely generated monoid M is the
homomorphic image in M of a regular language over the generators of M . In the
rational subset membership problem for M the input consists of a rational subset
L ⊆ M (specified by a finite automaton) and an element m ∈ M and it is asked
whether m ∈ L. It was shown in [38] that the rational subset membership problem
for a graph group G is decidable if and only if the corresponding graph has (i) no
induced cycle on four nodes (C4) and (ii) no induced path on four nodes (P4). For
the decidable cases, the precise complexity is open.

Knapsack for G can be also viewed as the question, whether a word equation
z1z2 · · · zn = 1, where z1, . . . , zn are variables, together with constraints of the form
{gn | n ≥ 0} for the variables has a solution in G. Such a solution is a mapping
ϕ : {z1, . . . , zn} → G such that ϕ(z1z2 · · · zn) evaluates to 1 in G and all constraints
are satisfied. For another class of constraints (so-called normalized rational con-
straints, which do not cover constraints of the form {gn | n ≥ 0}), solvability of
general word equations was shown to be decidable (PSPACE-complete) for graph
groups by Diekert and Muscholl [14]. This result was extended in [13] to a transfer
theorem for graph products. A graph product is specified by a finite simple graph
where every node is labeled with a group. The associated group is obtained from the
free product of all vertex groups by allowing elements from adjacent groups to com-
mute. Note that decidability of knapsack is not preserved under graph products: It is
not even preserved under direct products (see the above mentioned results from [33]).

2 Basic Concepts

2.1 Complexity Classes

We assume that the reader is familiar with the complexity classes P and NP, see
e.g. [3] for details. The class TC0 is a very low circuit complexity class; it is
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contained for instance in NC1 and deterministic logspace. We will use this class
only in Section 4.4, and even that part can be understood without the precise def-
inition of TC0. Nevertheless, for completeness we include the formal definition of
TC0.

A language L ⊆ {0, 1}∗ belongs to TC0 if there exists a family (Cn)n≥0 of Boolean
circuits with the following properties:

– Cn has n distinguished input gates x1, . . . , xn and a distinguished output gate o.
– Cn accepts exactly the words from L ∩ {0, 1}n, i.e., if the input gate xi receives

the input ai ∈ {0, 1}, then the output gate o evaluates to 1 if and only if
a1a2 · · · an ∈ L.

– Every circuit Cn is built up from input gates, and-gates, or-gates, and majority-
gates, where a majority gate evaluates to 1 if at least half of its input wires
carry 1.

– All gates have unbounded fan-in, which means that there is no bound on the
number of input wires for a gate.

– There is a polynomial p(n) such that Cn has at most p(n) many gates.
– There is a constant c such that every Cn has depth at most c, where the depth is

the length of a longest path from an input gate xi to the output gate o.

This is in fact the definition of non-uniform TC0. Here “non-uniform” means that the
mapping n 	→ Cn is not restricted in any way. In particular, it can be non-computable.
For algorithmic purposes one usually adds some uniformity requirement to the above
definition. The most “uniform” version of TC0 is DLOGTIME-uniform TC0. For this,
one encodes the gates of each circuit Cn by bit strings of length O(log n). Then the
circuit family (Cn)n≥0 is called DLOGTIME-uniform if (i) there exists a deterministic
Turing machine that computes for a given gate u ∈ {0, 1}∗ of Cn (|u| ∈ O(log n)) in
time O(log n) the type (of gate u, where the types are x1, . . . , xn, and, or, majority)
and (ii) there exists a deterministic Turing machine that decides for two given gate
u, v ∈ {0, 1}∗ of Cn (|u|, |v| ∈ O(log n)) in time O(log n) whether there is a wire
from gate u to gate v. In the following, we always implicitly refer to DLOGTIME-
uniform TC0.

If the language L in the above definition of TC0 is defined over a non-binary
alphabet � then one first has to fix a binary encoding of words over �. When talk-
ing about hardness for TC0, one has to use reductions, whose computational power
are below TC0, e.g. AC0-Turing-reductions. The precise definition of these reduc-
tions is not important for our purpose. Important problems that are complete for TC0

are:

– The languages {w ∈ {0, 1}∗ | |w|0 ≤ |w|1} and {w ∈ {0, 1}∗ | |w|0 = |w|1},
where |w|a denotes the number of occurrences of a in w, see e.g. [50].

– The computation (of a certain bit) of the binary representation of the product of
two (or any number of) binary encoded integers [25].

– The computation (of a certain bit) of the binary representation of the integer
quotient of two binary encoded integers [25].
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– The word problem for every infinite solvable linear group [32].
– The conjugacy problem for the Baumslag-Solitar group BS(1, 2) [15].

The class LogCFL consists of all problems that are logspace reducible to a context-
free language. The class LogCFL is included in the parallel complexity class NC2 and
has several alternative characterizations (see e.g. [48, 50]):

– logspace bounded alternating Turing-machines with polynomial tree size,
– semi-unbounded Boolean circuits of polynomial size and logarithmic depth, and
– logspace bounded auxiliary pushdown automata with polynomial running time.

For our purposes, the last characterization is most suitable. An AuxPDA (for auxiliary
pushdown automaton) is a nondeterministic pushdown automaton with a two-way
input tape and an additional work tape. Here we only consider AuxPDA with the
following two restrictions:

– The length of the work tape is restricted to O(log n) for an input of length n

(logspace bounded).
– There is a polynomial p(n), such that every computation path of the AuxPDA on

an input of length n has length at most p(n) (polynomially time bounded).

Whenever we speak of an AuxPDA in the following, we implicitly assume that the
AuxPDA is logspace bounded and polynomially time bounded. Deterministic Aux-
PDA are defined in the obvious way. The class of languages that are accepted by
AuxPDA is exactly LogCFL, whereas the class of languages accepted by determin-
istic AuxPDA is LogDCFL (the closure of the deterministic context-free languages
under logspace reductions) [48].

2.2 Finite automata

We will use standard notions from automata theory. We define a nondeterministic
finite automaton (NFA) as a tuple A = (Q, �, �, q0, F ), where Q is a finite set of
states, � is the input alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the final state,
and � ⊆ Q × �∗ × Q is a finite set of transitions. Note that such an automaton
can read several (including zero) many symbols in a transition. A spelling NFA is
an NFA A = (Q, �, �, q0, F ), where � ⊆ Q × � × Q. The language accepted
by A is denoted with L(A). If we allow ε-transitions of the form (q, ε, p), which
is the case for general (non-spelling) NFA, then we can assume that the set of final
states F consists of a unique state qf , in which case we write A = (Q, �, �,

q0, qf ).
An acyclic NFA is a (not necessarily spelling) NFA A = (Q, �, �, q0, qf ) such

that the relation {(p, q) | ∃w ∈ �∗ : (p, w, q) ∈ �} is acyclic. An acyclic loop NFA
is a (not necessarily spelling) NFA A = (Q, �, �, q0, qf ) such that there exists a
linear order � on � having the property that for all (p, u, q), (q, v, r) ∈ � it holds
(p, u, q) � (q, v, r). Thus, an acyclic loop NFA is obtained from an acyclic NFA by
attaching to some of the states a unique loop.
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2.3 Vectors and Semilinear Sets

Vectors will be column vectors, unless we explicitly speak of row vectors. For a
vector x ∈ Z

k we denote with xT the corresponding row vector. Given a vector
x = (x1, . . . , xk)

T ∈ Z
k , we use three different standard norms:

‖x‖∞ = max{|xi | | 1 ≤ i ≤ k}, (1)

‖x‖2 =
√ ∑

1≤i≤k

x2
i , (2)

‖x‖1 =
m∑

i=1

|xi |. (3)

For a subset T ⊆ N
k , we write T ⊕ for the smallest subset of Nk that contains T ∪{0}

and is closed under addition. A subset S ⊆ N
k is called linear if there is a vector

x ∈ N
k and a finite set F ⊆ N

k such that S = x +F⊕. Note that a set is linear if and
only if it can be written as x+AN

t for some x ∈ N
k and some matrix A ∈ N

k×t . Here,
AN

t denotes the set of all vectors Ay for y ∈ N
t . A semilinear set is a finite union of

linear sets. If S = ⋃n
i=1 xi + F⊕

i for x1, . . . , xn ∈ N
k and finite sets F1, . . . , Fn ⊆

N
k , then the tuple (x1, F1, . . . , xn, Fn) is a semilinear representation of S. Saying

that a set S is effectively semilinear means that a semilinear representation for S can
be computed from certain input data.

2.4 Words and straight-line programs

For a word w we denote with alph(w) the set of symbols occurring in w. The length
of the word w is |w|.

A straight-line program, briefly SLP, is basically a context-free grammar that
produces exactly one string. To ensure this, the grammar has to be acyclic and deter-
ministic (every variable has a unique production where it occurs on the left-hand
side). Formally, an SLP is a tuple G = (V , �, rhs, S), where V is a finite set of vari-
ables (or nonterminals), � is the terminal alphabet, S ∈ V is the start variable, and
rhs maps every variable to a right-hand side rhs(A) ∈ (V ∪�)∗. We require that there
is a linear order < on V such that B < A whenever B ∈ N ∩ alph(rhs(A)). Every
variable A ∈ V derives to a unique string valG(A) by iteratively replacing variables
by the corresponding right-hand sides, starting with A. Finally, the string derived by
G is val(G) = valG(S).

Let G = (V , �, rhs, S) be an SLP. The size of G is |G| = ∑
A∈V |rhs(A)|, i.e., the

total length of all right-hand sides. A simple induction shows that for every SLP G
of size m one has |val(G)| ≤ O(3m/3) ⊆ 2O(m) [9, proof of Lemma 1]. On the other
hand, it is straightforward to define an SLP H of size 2n such that |val(H)| ≥ 2n.
This justifies to see an SLP G as a compressed representation of the string val(G),
and exponential compression rates can be achieved in this way. More details on SLPs
can be found in the survey [35].
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2.5 Groups

We assume that the reader has some basic knowledge concerning (finitely generated)
groups (see e.g. [41] for further details). Let G be a finitely generated group, and
let A be a finite generating set for G. Then, elements of G can be represented by
finite words over the alphabet A±1 = A ∪ A−1. The free group generated by A is
denoted by F(A) and we also write Fn for F(A) if |A| = n. Elements of F(A) can
be identified with irreducible words over A±1, i.e., words that do not contain a factor
of the form aa−1 or a−1a for a ∈ A. The length |g| of g ∈ F(A) is the the length of
the irreducible word corresponding to g.

A group G is finitely presented if there exists a finite alphabet A and a finite
set of words R ⊆ (A±1)∗ (which we identify with a subset of F(A)) such that G

is isomorphic to F(A)/N , where N is the smallest normal subgroup of F(A) that
contains R. The group F(A)/N is usually denoted by 〈A | R〉 and the pair (A, R)

is called a presentation of G. Elements of R are called relators. With 〈A | u1 =
v1, . . . , uk = vk〉 we denote the group 〈A | u1v

−1
1 , . . . , ukv

−1
k 〉.

It is a standard fact that an element g ∈ F(A) represents the identity of G =
〈A | R〉 if and only if g can be written in F(A) as a product

∏n
i=1 c−1

i rici , where
ci ∈ F(A) and ri ∈ R ∪ R−1. The minimal such n is called the area of g (with
respect to the presentation (A, R)). The Dehn function of the presentation (A, R) is
the function f : N → N that maps n to the maximal area of an element g ∈ F(A)

such that g = 1 in F(A) and |g| ≤ n. We say that a finitely presented group G has
a polynomial Dehn function if there exists a presentation for G whose Dehn function
is bounded by a polynomial.

2.6 Knapsack and exponent equations

Let G be a finitely generated group, and fix a generating set A for G. An exponent
equation over G is an equation of the form

v0u
x1
1 v1u

x2
2 v2 · · · uxn

n vn = 1 (4)

where u1, u2, . . . , un, v0, v1, . . . , vn ∈ G are group elements that are given by finite
words over the alphabet A±1 and x1, x2, . . . , xn are not necessarily distinct variables.
Such an exponent equation is solvable if there exists a mapping σ : {x1, . . . , xn} → N

such that v0u
σ(x1)
1 v1u

σ(x2)
1 v2 · · · uσ(xn)

n vn = 1 in the group G. If there is no danger
of confusion, we will simplify notation and not distinguish between variables and
solutions. Solvability of exponent equations over G is the following computational
problem:

Input: An exponent equation E over G (where elements of G are specified by
words over the alphabet A±1.)

Question: Is E solvable?

It suffices to consider exponent equations of the form u
x1
1 u

x2
2 · · · uxn

n vn = 1:
using conjugation, we can replace an equation v0u

x1
1 v1u

x2
2 v2 · · · uxn

n v = 1 by
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(v0u1v
−1
0 )x1(v0v1)u

x2
2 v2 · · · uxn

n vn = 1 and then continue in this way. On the
other hand, in some of our proof it is convenient to allow the group elements
v0, v1, . . . , vn−1 in (4).

The knapsack problem for the group G is the restriction of solvability of expo-
nent equations over G to exponent equations of the form u

x1
1 u

x2
2 · · · uxn

n u−1 = 1 or,
equivalently, u

x1
1 u

x2
2 · · · uxn

n = u where the exponent variables x1, . . . , xn have to be
pairwise different.

We will also study a compressed version of exponent equations over G, where
elements of G are given by SLPs over A±1. A compressed exponent equation
is an exponent equation v0u

x1
1 v1u

x2
2 v2 · · · uxn

n vn = 1 where the group elements
u1, u2, . . . , un, v0, v1, . . . , vn ∈ G are given by SLPs over the terminal alphabet
A±1. The sum of the sizes of these SLPs is the size of the compressed exponent
equation.

Let us define solvability of compressed exponent equations over G as the
following computational problem:

Input: A compressed exponent equation E over G.
Question: Is E solvable?

The compressed knapsack problem for G is defined analogously. Note that with
this terminology, the classical knapsack problem for binary encoded integers is the
compressed knapsack problem for the group Z. The binary encoding of an integer can
be easily transformed into an SLP over the alphabet {a, a−1} (where a is a generator
of Z) and vice versa. Here, the number of bits in the binary encoding and the size of
the SLP are linearly related.

Remark 2.1 Let us comment on the difference between the knapsack problem and
solvability of exponent equations. The main concern of this work is the knapsack
problem, where all variables are distinct. However, the methods we use in Section 3 for
obtaining the NP upper bound apply to general (even compressed) exponent equa-
tions. Our proof of the LogCFL upper bound in Section 4, on the other hand, only
works for the knapsack problem.

Nevertheless, all our (complexity) lower bounds are with respect to the knapsack
problem.

It is a simple observation that the decidability and complexity of solvability of
(compressed) exponent equations over G as well as the (compressed) knapsack
problem for G does not depend on the chosen finite generating set for the group
G. Therefore, we do not have to mention the generating set explicitly in these
problems.

Remark 2.2 Since we are dealing with a group, one might also allow solution
mappings σ : {x1, . . . , xn} → Z to the integers. But this variant of solvability of
(compressed) exponent equations (knapsack, respectively) can be reduced to the
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above version, where σ maps to N, by simply replacing a power u
xi

i by u
xi

i (u−1
i )yi ,

where yi is a fresh variable.
This work is concerned with decidability and complexity of solvability of expo-

nent equations for so-called graph groups, which will be introduced in the next
section.

2.7 Traces and graph groups

Let (A, I) be a finite simple graph. In other words, the edge relation I ⊆ A × A

is irreflexive and symmetric. It is also called the independence relation, and (A, I)

is called an independence alphabet. The relation D = (A × A) \ I is also called
the associated dependence relation and (A, D) is called the associated dependence
alphabet. We consider the monoid M(A, I) = A∗/≡I , where ≡I is the smallest
congruence relation on the free monoid A∗ that contains all pairs (ab, ba) with a, b ∈
A and (a, b) ∈ I . This monoid is called a trace monoid or partially commutative
free monoid; it is cancellative, i.e., xy = xz or yx = zx implies y = z. Elements of
M(A, I) are called Mazurkiewicz traces or simply traces. The trace represented by
the word u is denoted by [u]I , or simply u if no confusion can arise. For a language
L ⊆ A∗ we denote with [L]I = {u ∈ A∗ | ∃v ∈ L : u ≡I v} its partially
commutative closure. The length of the trace [u]I is |[u]I | = |u| and its alphabet is
alph([u]I ) = alph(u). It is easy to see that these definitions do not depend on the
concrete word that represents the trace [u]I . For subsets B, C ⊆ A we write BIC

for B × C ⊆ I . If B = {a} we simply write aIC. For traces s, t we write sI t for
alph(s)Ialph(t). The empty trace [ε]I is the identity element of the monoid M(A, I)

and is denoted by 1. A trace t is connected if we cannot factorize t as t = uv with
u �= 1 �= v and uIv.

A trace t ∈ M(A, I) can be visualized by its dependence graph Dt . To define
Dt , choose an arbitrary word w = a1a2 · · · an, ai ∈ A, with t = [w]I and define
Dt = ({1, . . . , n}, E, λ), where E = {(i, j) | i < j, (ai, aj ) ∈ D} and λ(i) = ai .
If we identify isomorphic dependence graphs, then this definition is independent of
the chosen word representing t . Moreover, the mapping t 	→ Dt is injective. As a
consequence of the representation of traces by dependence graphs, one obtains Levi’s
lemma for traces (see e.g. [16, p. 74]), which is one of the fundamental facts in trace
theory. The formal statement is as follows.

Lemma 2.3 (Levi’s lemma) Let u1, . . . , um, v1, . . . , vn ∈M(A, I). Then

u1u2 · · · um = v1v2 · · · vn

if and only if there exist wi,j ∈M(A, I) (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that

– ui = wi,1wi,2 · · ·wi,n for every 1 ≤ i ≤ m,
– vj = w1,jw2,j · · ·wm,j for every 1 ≤ j ≤ n, and
– wi,j Iwk,	 if 1 ≤ i < k ≤ m and n ≥ j > 	 ≥ 1.
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The situation in the lemma will be visualized by a diagram of the following kind.
The i–th column corresponds to ui , the j–th row corresponds to vj , and the intersec-
tion of the i–th column and the j–th row represents wi,j . Furthermore wi,j and wk,	

are independent if one of them is left-above the other one.

A consequence of Levi’s Lemma is that trace monoids are cancellative, i.e., usv =
utv implies s = t for all traces s, t, u, v ∈M(A, I).

Let s, t ∈ M(A, I) be traces. We say that s is a prefix of t if there is a trace
r ∈ M(A, I) with sr = t . Moreover, we define ρ(t) as the number of prefixes of t .
We will use the following statement from [5].

Lemma 2.4 Let t ∈ M(A, I) be a trace of length n. Then ρ(t) ∈ O(nα), where α is
the size of a largest clique of the associated dependence alphabet (A, D).

With an independence alphabet (A, I) we associate the finitely presented group

G(A, I) = 〈A | ab = ba ((a, b) ∈ I )〉.
Such a group is called a graph group, or right-angled Artin group,3 or free partially
commutative group. Here, we use the term graph group. Graph groups received a
lot of attention in group theory during the last few years, mainly due to their rich
subgroup structure [6, 10, 20], and their relationship to low dimensional topology (via
so-called virtually special groups) [2, 24, 51]. We represent elements of G(A, I) by
traces over an extended independence alphabet. For this, let A−1 = {a−1 | a ∈ A} be
a disjoint copy of the alphabet A, and let A±1 = A∪A−1. We define (a−1)−1 = a and
for a word w = a1a2 · · · an with ai ∈ A±1 we define w−1 = a−1

n · · · a−1
2 a−1

1 . This
defines an involution (without fixed points) on (A±1)∗. We extend the independence
relation I to A±1 by (ax, by) ∈ I for all (a, b) ∈ I and x, y ∈ {−1, 1}. Then,
there is a canonical surjective morphism h : M(A±1, I ) → G(A, I) that maps every
symbol a ∈ A±1 to the corresponding group element. Of course, h is not injective,
but we can easily define a subset IRR(A±1, I ) ⊆ M(A±1, I ) of irreducible traces
such that h restricted to IRR(A±1, I ) is bijective. The set IRR(A±1, I ) consists of all
traces t ∈ M(A±1, I ) such that t does not contain a factor [aa−1]I with a ∈ A±1,
i.e., there do not exist u, v ∈ M(A±1, I ) and a ∈ A±1 such that in M(A±1, I ) we
have a factorization t = u[aa−1]I v. For every trace t there exists a corresponding
irreducible normal form that is obtained by removing from t factors [aa−1]I with

3This term comes from the fact that right-angled Artin groups are exactly the Artin groups corresponding
to right-angled Coxeter groups.
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a ∈ A±1 as long as possible. It can be shown that this reduction process is terminating
(which is trivial since it reduces the length) and confluent (in [34] a more general
confluence lemma for graph products of monoids is shown). Hence, the irreducible
normal form of t does not depend on the concrete order of reduction steps. For a
group element g ∈ G(A, I) we denote with |g| the length of the unique trace t ∈
IRR(A±1, I ) such that h(t) = g.

For a trace t = [u]I (u ∈ (A±1)∗) we can define t−1 = [u−1]I . This is well-
defined, since u ≡I v implies u−1 ≡I v−1. The following lemma will be important;
see also [14, Lemma 23].

Lemma 2.5 Let s, t ∈ IRR(A±1, I ). Then there exist unique factorizations s =
up and t = p−1v in M(A±1, I ) such that uv ∈ IRR(A±1, I ). Hence, uv is the
irreducible normal form of st .

3 Compressed knapsack and exponent equations

The goal of this section is to show the following result:

Theorem 3.1 Let (A, I) be a fixed independence alphabet. Solvability of compressed
exponent equations over the graph group G(A, I) is in NP.

As a byproduct, we will prove that the set of solutions of an exponent equation
over a fixed graph group is semilinear.

In Section 3.1 we will analyze the possible factorizations of a power ux , where u

is a connected trace and x is a natural number, into a product y1y2 · · · ym of traces.
In Section 3.2 we will describe the set of solution of a trace equation puxs = qvyt ,
where u and v are connected traces and x, y ∈ N are variables. In Section 3.3 we state
an auxiliary result on linear diophantine equations that follows easily from a result
of [19]. In Section 3.4 we prove the key lemma that allows us to reduce an exponent
equations over a graph group to a system of trace equations. Finally, in Section 3.5
we prove Theorem 3.1. Section 3.6 deals with the compressed solvability of exponent
equations in a graph group that is also part of the input (and given by the defining
independence alphabet).

3.1 Factorizations of Powers

Based on Levi’s lemma we prove in this section a factorization result for powers of a
connected trace. We start with the case that we factorize such a power into two factors.

Lemma 3.2 Let u ∈M(A, I) \ {1} be a connected trace. Then, for all x ∈ N and all
traces y1, y2 the following two statements are equivalent:

(i) ux = y1y2
(ii) There exist l, k, c ∈ N and traces s, p such that: y1 = uls, y2 = puk , sp = uc,

l + k + c = x, and c ≤ |A|.



Theory Comput Syst (2018) 62:192–246 205

Proof That (ii) implies (i) is clear. It remains to prove that (i) implies (ii). Assume
that ux = y1y2 holds. The case that x ≤ |A| is trivial. Hence, assume that x ≥ |A|+1.
We apply Levi’s lemma (Lemma 2.3) to the identity ux = y1y2:

Let Ai = alph(u1,2 · · · ui,2). Then Ai ⊆ Ai+1. If A1 = ∅ then u1,2 = 1 and
we can go to Case 2 below. Otherwise, assume that A1 �= ∅. In that case there
must exist 1 ≤ i ≤ |A| such that Ai = Ai+1, which implies alph(ui+1,2) ⊆ Ai .
Since ui+1,1I (u1,2 · · · ui,2) we also have ui+1,1Iui+1,2. Since u is connected, we
have ui+1,1 = 1 or ui+1,2 = 1. We can therefore distinguish the following two cases:

Case 1. There exists 1 ≤ i ≤ |A| + 1 such that ui,1 = 1. Then ui,2 = u, which
implies uj,1 = 1 for all j > i (since ui,2Iuj,1):

Let s = u1,1u2,1 · · · ui−1,1 and p = u1,2u2,2 · · · ui−1,2. Thus, y1 = u0s, y2 =
pux−i+1 and sp = ui−1 with i − 1 ≤ |A|, and the conclusion of the lemma holds.

Case 2. There exists 1 ≤ i ≤ |A| + 1 such that ui,2 = 1. Then, uj,2 = 1 for all
j < i (since ui,1 = u and uj,2Iui,1):

Let y′1 = ui+1,1 · · · ux,1. Hence, ux−i = y′1y2. We can use induction to get fac-
torizations y′1 = uls, y2 = puk , and sp = uc with c ≤ |A| and k + l + c = x − i.
Finally, we have y1 = uiy′1 = ui+ls, which shows the conclusion of the lemma.

Now we lift Lemma 3.2 to an arbitrary number of factors.

Lemma 3.3 Let u ∈ M(A, I) \ {1} be a connected trace and m ∈ N, m ≥ 2. Then,
for all x ∈ N and traces y1, . . . , ym the following two statements are equivalent:

(i) ux = y1y2 · · · ym.
(ii) There exist traces pi,j (1 ≤ j < i ≤ m), si (1 ≤ i ≤ m) and numbers

xi, cj ∈ N (1 ≤ i ≤ m, 1 ≤ j ≤ m− 1) such that:

– yi = (
∏i−1

j=1 pi,j )u
xi si for all 1 ≤ i ≤ m,

– pi,j Ipk,l if j < l < k < i and pi,j I (uxk sk) if j < k < i,4

4Note that since alph(pi,j ) ⊆ alph(u), we must have pi,j = 1 or xk = 0 whenever j < k < i.
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– sm = 1 and for all 1 ≤ j < m, sj
∏m

i=j+1 pi,j = ucj ,
– cj ≤ |A| for all 1 ≤ j ≤ m− 1,
– x = ∑m

i=1 xi +∑m−1
i=1 ci .

Proof Let us first show that (ii) implies (i). Assume that (ii) holds. Then we get

y1y2 · · · ym =
m∏

i=1

⎛
⎝(

i−1∏
j=1

pi,j )u
xi si

⎞
⎠ .

The independencies pi,j Ipk,l for j < l < k < i and pi,j I (uxk sk) for j < k < i

yield

m∏
i=1

⎛
⎝

⎛
⎝i−1∏

j=1

pi,j

⎞
⎠ uxi si

⎞
⎠

= ux1s1p2,1 · · ·pm,1u
x2s2p3,2 · · ·pm,2u

x3s3 · · · uxm−1sm−1pm,m−1u
xmsm

= ux1uc1ux2uc2ux3 · · · ucm−1uxm = ux.

We now prove that (i) implies (ii) by induction on m. So, assume that ux =
y1y2 · · · ym. The case m = 2 follows directly from Lemma 3.2. Now assume that
m ≥ 3. By Lemma 3.2 there exist factorizations y1 = ux1s1, y2 · · · ym = p1u

x′ ,
and s1p1 = uc1 with c1 ≤ |A| and x1 + x′ + c1 = x. Levi’s lemma applied to
y2 · · · ym = p1u

x′ gives the following diagram:

There exist y′i with yi = pi,1y
′
i (2 ≤ i ≤ m), y′2 · · · y′m = ux′ , and y′j Ipi,1 for

j < i. By induction on m we get factorizations

y ′i =
i−1∏
j=2

pi,j u
xi si

for 2 ≤ i ≤ m such that for all 2 ≤ j < i ≤ m:

– pi,j Ipk,l if j < l < k < i and pi,j I (uxk sk) if j < k < i,
– sm = 1 and for all 2 ≤ j < m, sj

∏m
i=j+1 pi,j = ucj for some cj ≤ |A|,

– x′ = ∑m
i=2 xi +∑m−1

i=2 ci .

Since y′j Ipi,1 for j < i we get pi,1Ipj,k for 1 < k < j < i and pi,1Iuxj sj for
1 < j < i. Finally, we have

s1

m∏
i=2

pi,1 = s1p1 = uc1
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and

x = x1 + c1 + x′ = x1 + c1 +
m∑

i=2

xi +
m−1∑
i=2

ci =
m∑

i=1

xi +
m−1∑
i=1

ci .

This proves the lemma.

Remark 3.4 In Section 3.5 we will apply Lemma 3.3 in order to replace an equation
ux = y1y2 · · · ym (where x, y1, . . . , ym are variables and u is a concrete connected
trace) by an equivalent disjunction. Note that the length of all factors pi,j and si above
is bounded by |A| · |u|. Hence, one can guess these traces as well as the numbers
cj ≤ |A| (the guess results in a disjunction). We can also guess which of the numbers
xi are zero and which are greater than zero. After these guesses we can verify the
independencies pi,j Ipk,l (j < l < k < i) and pi,j I (uxk sk) (j < k < i), and the
identities sm = 1, sj

∏m
i=j+1 pi,j = ucj (1 ≤ j < m). If one of them does not hold,

the specific guess does not contribute to the disjunction. In this way, we can replace
the equation ux = y1y2 · · · ym by a disjunction of formulas of the form

∃xi > 0 (i ∈ K) : x =
∑
i∈K

xi + c ∧
∧
i∈K

yi = piu
xi si ∧

∧
i∈[1,m]\K

yi = pisi,

where K ⊆ [1, m], c ≤ |A| · (m − 1) and the pi, si are concrete traces of length
at most |A| · (m − 1) · |u|. The number of disjuncts in the disjunction will not be
important for our purpose.

3.2 Automata for partially commutative closures

In this section, we present several automata constructions that are well-known from
the theory of recognizable trace languages [11, Chapter 2]. For our purpose we need
upper bounds on the size (the size of an automaton is its number of states) of the
constructed automata. In our specific situation we can obtain better bounds than those
obtained from the known constructions. Therefore, we present the constructions in
detail.

Let us fix an independence alphabet (A, I) and let A = (Q, A, �, q0, F ) be
an NFA over the alphabet A. Then, A is an I -diamond NFA if for all (a, b) ∈
I and all transitions (p, a, q), (q, b, r) ∈ � there exists a state q ′ such that
(p, b, q ′), (q ′, a, r) ∈ �. For an I -diamond automaton we have L(A) = [L(A)]I .
The NFA A is memorizing if (i) every state is accessible from the initial state q0 and
(ii) there is a mapping α : Q → 2A such that for every word w ∈ A∗, if q0

w−→A q,
then α(q) = alph(w).

Lemma 3.5 Let A1 and A2 be I -diamond NFA and let ni be the number of states
of Ai . Assume that A2 is memorizing. Then there exists an I -diamond NFA for
[L(A1)L(A2)]I with n1 · n2 many states.
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Proof Let Ai = (Qi, A, �i, q0,i , Fi) for i ∈ {1, 2}. Let α2 : Q2 → 2A be the map
witnessing the fact that A2 is memorizing. Then, let

A = (Q1 ×Q2, A, �, 〈q0,1, q0,2〉, F1 × F2),

where

� = {(〈p1, p2〉, a, 〈q1, p2〉) | (p1, a, q1) ∈ �1, aIα2(p2)} ∪
{(〈p1, p2〉, a, 〈p1, q2〉) | (p2, a, q2) ∈ �2}.

Claim 1. A is an I -diamond NFA.
To show this claim, let us consider two consecutive transitions in A labeled with

independent letters. The following four cases can be distinguished, where we assume
(a, b) ∈ I in all four cases:

Case 1. 〈p1, p2〉 a−→A 〈q1, p2〉 b−→A 〈r1, p2〉, where p1
a−→A1 q1

b−→A1 r1
and aIα2(p2), bIα2(q2). Since A1 is an I -diamond NFA, there exists a state q ′1 ∈ Q1

such that p1
b−→A1 q ′1

a−→A1 r1. We get 〈p1, p2〉 b−→A 〈q ′1, p2〉 a−→A 〈r1, p2〉.
Case 2. 〈p1, p2〉 a−→A 〈p1, q2〉 b−→A 〈p1, r2〉, where p2

a−→A2 q2
b−→A2 r2.

We can conclude as in Case 1 using the fact that A2 is an I -diamond NFA.

Case 3. 〈p1, p2〉 a−→A 〈q1, p2〉 b−→A 〈q1, q2〉, where p1
a−→A1 q1, p2

b−→A2

q2, and aIα2(p2). Since α2(q2) = α2(p2) ∪ {b} and (a, b) ∈ I we have aIα2(q2).

We get 〈p1, p2〉 b−→A 〈p1, q2〉 a−→A 〈q1, q2〉.
Case 4. 〈p1, p2〉 a−→A 〈p1, q2〉 b−→A 〈q1, q2〉, where p2

a−→A2 q2, p1
b−→A1

q1, and bIα2(q2). Since α2(q2) = α2(p2)∪{a}, we also have bIα2(p2). This implies

〈p1, p2〉 b−→A 〈q1, p2〉 a−→A 〈q1, q2〉.
This concludes the proof of Claim 1. To show that L(A) = [L(A1)L(A2)]I it

suffices to show the following claim:
Claim 2. For all w ∈ A∗, p1 ∈ Q1, and p2 ∈ Q2, the following two statements

are equivalent :

(i) 〈q0,1, q0,2〉 w−→A 〈p1, p2〉
(ii) There are w1, w2 ∈ A∗ such that w ≡I w1w2, q0,1

w1−→A1 p1, and q0,2
w2−→A2

p2.

Let us first prove that (i) implies (ii). The case w = ε is clear. Hence, let w = w′a.
Then there exist p′1 ∈ Q1, p′2 ∈ Q2 such that

〈q0,1, q0,2〉 w′−→A 〈p′1, p′2〉 a−→A 〈p1, p2〉.

By induction, there exists a factorization w′ ≡I w′
1w

′
2 such that q0,1

w′
1−→A1 p′1 and

q0,2
w′

2−→A2 p′2. Note that alph(w′
2) = α2(p

′
2). There are two cases:

Case 1. p′1
a−→A1 p1, p2 = p′2, and aIα2(p

′
2). Thus, aIw′

2. We get w = w′a ≡I

w′
1w

′
2a ≡I (w′

1a)w′
2. Let w1 = w′

1a and w2 = w′
2. We get q0,1

w1−→A1 p1 and

q0,2
w2−→A2 p2.
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Case 2. p′2
a−→A2 p2 and p1 = p′1. Let w1 = w′

1 and w2 = w′
2a. Thus, w =

w′a ≡I w′
1w

′
2a = w1w2. Moreover, we have q0,1

w1−→A1 p1 and q0,2
w2−→A2 p2.

Let us now prove that (ii) implies (i). Assume that w ≡I w1w2, q0,1
w1−→A1 p1,

and q0,2
w2−→A2 p2. We have to show that 〈q0,1, q0,2〉 w−→A 〈p1, p2〉. But since

A is an I -diamond NFA, it suffices to show that 〈q0,1, q0,2〉 w1w2−→A 〈p1, p2〉, which
follows directly from the assumption and the definition of A (note that α2(q0,2) = ∅).
This concludes the proof of Claim 2 and hence the proof of the lemma.

In general, for a regular language L ⊆ A∗, the partially commutative closure [L]I
is not regular. For instance, if A = {a, b} and aIb, then [(ab)∗]I consists of all words
with the same number of a’s as b’s. On the other hand, it is well known that if [v]I is
a connected trace, then [v∗]I is regular (in fact, there is a more general result, known
as Ochmanski’s theorem [11, Section 2.3]). For our purpose we need an upper on the
size of an I -diamond NFA for [v∗]I (with [v]I connected). Recall that ρ(u) is the
number of different prefixes of the trace u.

Lemma 3.6 Let u ∈ A∗ \ {ε} such that the trace [u]I is connected. There is a
memorizing I -diamond NFA for [u∗]I of size 2 · ρ([u]I )|A|.

Proof The following construction can be found in [43, Proposition 5] for the more
general case of the partially commutative closure of a so-called loop-connected
automaton. We present the construction in our simplified situation, since the NFA
gets slightly smaller.

In the following, we identify u with the trace [u]I . We first define a non-
memorizing I -diamond NFA A for [u∗]I of size ρ(u)|A|. Then, we show that by
adding an additional bit to all states, we can get a memorizing I -diamond NFA A for
[u∗]I of size 2 · ρ(u)|A|. The idea for the construction of A is implicitly contained in
the proof of Lemma 3.2: Assume that the automaton wants to read a word w ∈ [u∗]I
and a prefix y1 of w is already read. Then [y1]I must be of the form uks, where s is
a prefix of uc for some c ≤ |A|. Moreover, by choosing k maximal, we can assume
that u is not a prefix of the trace s.

We define A = (Q, A, �, q0, F ), where Q is the set of all prefixes s of some
trace in u∗ such that u is not a prefix of s.

Let us estimate |Q|. Observe that if s ∈ Q, then Lemma 3.2 tells us that s = uks′,
where s′ is a prefix of uc with c ≤ |A|. Since u is not a prefix of s, we have k = 0 and
hence s = s′ is a prefix of uc. According to Levi’s lemma, s is of the form u1u2 · · · uc

such that every trace ui is a non-empty prefix of u. Hence |Q| ≤ ρ(u)|A|.
Note that Q is prefix closed. Moreover, if |u| = 1, then 1 is the only state. The

initial state as well as the final state is the empty trace 1. The set of transition tuples is

� = {(s, a, sa) | s, sa ∈ Q, a ∈ A} ∪ {(s, a, t) | s, t ∈ Q, sa = ut inM(A, I)}.
Claim 1. A is an I -diamond NFA.
We can distinguish the following four cases, where (a, b) ∈ I in all four cases:
Case 1. (s, a, sa), (sa, b, sab) ∈ �. Since sab = sba ∈ Q, we must have sb ∈ Q.
Hence, we have (s, b, sb), (sb, a, sba) ∈ �.
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Case 2. (s, a, t), (t, b, v) ∈ �, where sa = ut and tb = uv. From sa = ut and the
fact that u is not a prefix of s we obtain with Levi’s lemma the factorizations s = u′t
and u = u′a with aI t . From aI t and (a, b) ∈ I we get aI tb, in contradiction to
tb = uv = u′av. Hence, Case 2 cannot occur.
Case 3. (s, a, t), (t, b, tb) ∈ �, where sa = ut . As above, we get factorizations
s = u′t and u = u′a with aI t . We claim that sb ∈ Q. First, u is not a prefix of
sb: If sb = uv for some trace v, then u′tb = sb = uv = u′av. Hence tb = av, in
contradiction to aI tb.

It remains to show that sb is a prefix of a trace in u∗. Since tb ∈ Q there exists a
trace x such that tbx ∈ u∗. Hence, sbax = sabx = utbx ∈ u∗, i.e., sb is a prefix of
a trace in u∗. Thus, sb ∈ Q and hence (s, b, sb) ∈ �. Moreover sba = sab = utb.
Thus, (sb, a, tb) ∈ �.
Case 4. (s, a, sa), (sa, b, t) ∈ �, where sab = ut . We get sa = u′t , u = u′b and
bI t for some trace u′. We distinguish two subcases. First assume that u is not a prefix
of sb. We claim that sb ∈ Q. Since t ∈ Q, there exist a trace x with tx ∈ u∗. Hence,
sbax = sabx = utx ∈ u∗. Thus, sb is a prefix of a trace in u∗ and does not have u

as a prefix. Hence sb ∈ Q and (s, b, sb) ∈ �. Moreover, sba = sab = ut , and thus
(sb, a, t) ∈ �.

Now assume that u is a prefix of sb. Let sb = uv. Since u is not a prefix of s ∈ Q,
we get s = u′′v, u = u′′b and bIv for some trace u′′. Hence, u′′b = u = u′b, i.e.,
u′′ = u′ and s = u′v. Thus, u′t = sa = u′va, which implies t = va. Since t ∈ Q,
we have v ∈ Q. We get (s, b, v), (v, a, t) ∈ �. This concludes the proof of Claim 1.
The following claim shows that L(A) = [u∗]I :
Claim 2. For every state s ∈ Q and every w ∈ A∗ the following two statements are
equivalent:

(i) 1
w−→A s

(ii) [w]I = uks for some k ≥ 0

Let us first show by induction on |w| that (i) implies (ii). The case w = ε is clear. So,
assume that w = w′a. There must exist a state s′ ∈ Q such that

1
w′−→A s′ a−→A s.

By induction, we get [w′]I = u	s′ for some 	 ≥ 0. The definition of the transitions
of A implies that [w]I = [w′a]I = u	s′a = uks, where k ∈ {	, 	+ 1}.

For the direction from (ii) to (i) assume that [w]I = uks for some k ≥ 0. We have
to show that 1

w−→A s. Let s′ ∈ A∗ such that s = [s′]I . Hence, w ≡I uks′. Since

A is an I -diamond NFA, it suffices to show that 1 . But this follows directly

from the definition of A.
To make A memorizing, we first keep only those states that are accessible from the

initial state 1. Then, we add an extra bit to every state that indicates whether we have
already seen a completed occurrence of u. Thus, the new set of states is Q × {0, 1},
the initial state is the pair (1, 0), and the final states are (1, 0) and (1, 1). The new set
of transitions is

{((s, i), a, (t, i)) | (s, a, t) ∈ �} ∪ {((s, i), a, (t, 1)) | s, t ∈ Q, sa = ut, i ∈ {0, 1}}.
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Then, we can define the α-mapping by α(s, i) = alph(uis). The resulting NFA is
still an I -diamond NFA.

A direct consequence of Lemma 3.5 and 3.6 is:

Lemma 3.7 Let p, u, s ∈ A∗ with u �= ε and [u]I connected. There is an NFA for
[pu∗s]I of size 2 · ρ([p]I ) · ρ([s]I ) · ρ([u]I )|A|.

Proof We first construct an I -diamond NFA for [p]I (which is identified here with
the set of words {w ∈ A∗ | w ≡I p}) with ρ([p]I ) many states by taking the set of
all prefixes of [p]I as states. Then, we construct a memorizing I -diamond NFA for
[u∗]I with 2·ρ([u]I )|A| states using Lemma 3.6. By Lemma 3.5 we get an I -diamond
automaton for [pu∗]I with 2 · ρ([p]I ) · ρ([u]I )|A| many states. Finally, we construct
an I -diamond NFA for [s]I with ρ([s]I ) many states by taking the set of all prefixes
of [s]I as states. This NFA is also memorizing. Hence, we can apply Lemma 3.5 to
get an NFA for [pu∗s]I with 2 · ρ([p]I ) · ρ([s]I ) · ρ([u]I )|A| many states.

The main lemma from this section that will be needed later is:

Lemma 3.8 Let p, q, u, v, s, t ∈ M(A, I) with u �= 1 and v �= 1 connected. Let
m = max{ρ(p), ρ(q), ρ(s), ρ(t)} and n = max{ρ(u), ρ(v)}. Then the set

L(p, u, s, q, v, t) := {(x, y) ∈ N× N | puxs = qvyt}
is semilinear and is a union ofO(m8 ·n4|A|) many linear sets of the form {(a+bz, c+
dz) | z ∈ N} with a, b, c, d ∈ O(m8 · n4|A|).

Proof We identify the traces p, q, u, v, s, t with words representing these traces. By
Lemma 3.6 there exists an NFA for [pu∗s]I of size

k = 2 · ρ(p) · ρ(s) · ρ(u)|A| ≤ 2 ·m2 · n|A|
and an NFA for [qv∗t]I of size

	 = 2 · ρ(q) · ρ(t) · ρ(v)|A| ≤ 2 ·m2 · n|A|.
Then, we obtain an NFA A for L = [pu∗s]I ∩ [qv∗t]I with k · 	 states. We are only
interested in the length of words from L. Hence, we replace in A every transition
label by the symbol a. The resulting NFA B is defined over a unary alphabet. Let
P = {n | an ∈ L(B)}. By [49, Theorem 1], the set P can be written as a union

P =
r⋃

i=1

{bi + ci · z | z ∈ N}

with r ∈ O(k2	2) ⊆ O(m8 · n4|A|) and bi, ci ∈ O(k2	2) ⊆ O(m8 · n4|A|). For every
1 ≤ i ≤ r and z ∈ N there must exist a pair (x, y) ∈ N× N such that

bi + ci · z = |ps| + |u| · x = |qt | + |v| · y.
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In particular, bi ≥ |ps|, bi ≥ |qt |, |u| divides bi−|ps| and ci , and |v| divides bi−|qt |
and ci . We get:

L(p, u, s, q, v, t) =
r⋃

i=1

{(
bi − |ps|
|u| + ci

|u| · z,
bi − |qt |
|v| + ci

|v| · z
)
| z ∈ N

}

This shows the lemma.

3.3 Linear Diophantine Equations

We will also need a bound on the norm of a smallest vector in a certain kind of
semilinear sets. We will easily obtain this bound from a result from [19].

Lemma 3.9 Let A ∈ Z
n×m, a ∈ Z

n, C ∈ N
k×m, c ∈ N

k . Let β be an upper bound
for the absolute value of all entries in A, a, C, c. The set

L = {Cz+ c | z ∈ N
m, Az = a} ⊆ N

k (5)

is semilinear. Moreover, if L �= ∅ then there is y ∈ L with

‖y||∞ ≤ β + (
√

m)n ·m · (m+ 1) · βn+1.

Proof Semilinearity of L is clear since the set is Presburger-definable. For the size
bound, we use a result from [19] to bound the size of a smallest positive solution
of the system Az = a. Let A ∈ Z

n×m, B ∈ Z
p×m, a ∈ Z

n×1, b ∈ Z
p×1. Let

r = rank(A), and s = rank

(
A

B

)
. Let M be an upper bound on the absolute values

of all (s − 1)× (s − 1)- or (s × s)-subdeterminants of the (n+ p)× (m+ 1)-matrix(
A a

B b

)
, which are formed with at least r rows from the matrix (A a). Then by the

main result of [19], the system Az = a, Bz ≥ b has an integer solution if and only if
it has an integer solution z such that the absolute value of every entry of z is bounded
by (m+ 1)M .

In our situation, we set p = m, B is the m-dimensional identity matrix, and b is
the vector with all entries equal to zero (then Bz ≥ b expresses that all entries of

z are positive). Since

(
A

B

)
is an (n + m) × m-matrix we get s = rank

(
A

B

)
≤

m. We claim that the absolute values of all (s × s)-subdeterminants (and also all

(s−1)×(s−1)-subdeterminants) of the matrix

(
A a

B b

)
are bounded by (

√
m)n ·βn.

To see this, select s rows and s columns from

(
A a

B b

)
and consider the resulting

submatrix D.
Let d1, . . . , ds be the row vectors of D. By Hadamard’s inequality we have

det(D) ≤
s∏

i=1

‖di‖2.
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Assume that the row vectors d1, . . . , ds′ (s′ ≤ n) of D are from the n × (m + 1)-
submatrix (A, a). The remaining row vectors ds′+1, . . . , ds of D are from (B, b).
Then, every di (s′ + 1 ≤ i ≤ s) is a zero vector or a unit vector and hence has
Euklidean norm 0 or 1. We therefore have

det(D) ≤
s∏

i=1

‖di‖2 ≤
s′∏

i=1

‖di‖2 ≤ (
√

m)n · βn.

It follows that if Az = a has a positive solution, then it has a positive solution where
every entry is bounded by (m+ 1) · (√m)n · βn.

By substituting every entry of z by (
√

m)n · βn in Cz + c, it follows that if the
set L in (5) is non-empty, then it contains a vector with all entries bounded by β +
(
√

m)n ·m · (m+ 1) · βn+1.

3.4 Reduction from graph groups to trace monoids

As usual, we fix an independence alphabet (A, I). In the following we will consider
reduction rules on sequences of traces. For better readability we separate the consec-
utive traces in such a sequence by commas. Let u1, u2, . . . , un ∈ IRR(A±1, I ) be
irreducible traces. The sequence u1, u2, . . . , un is I -freely reducible if the sequence
u1, u2, . . . , un can be reduced to the empty sequence ε by the following rules:

– ui, uj → uj , ui if uiIuj

– ui, uj → ε if ui = u−1
j in M(A±1, I )

– ui → ε if ui = ε.

A concrete sequence of these rewrite steps leading to the empty sequence is a reduc-
tion of the sequence u1, u2, . . . , un. Such a reduction can be seen as a witness for
the fact that u1u2 · · · un = 1 in G(A, I). On the other hand, u1u2 · · · un = 1 does
not necessarily imply that u1, u2, . . . , un has a reduction. For instance, the sequence
a−1, ab, b−1 has no reduction. But we can show that every sequence which multi-
plies to 1 in G(A, I) can be refined (by factorizing the elements of the sequence)
such that the resulting refined sequence has a reduction. For getting an NP-algorithm,
it is important to bound the length of the refined sequence exponentially in the length
of the initial sequence.

Lemma 3.10 Let n ≥ 2 and u1, u2, . . . , un ∈ IRR(A±1, I ). If u1u2 · · · un = 1 in
G(A, I), then there exist factorizations ui = ui,1 · · · ui,ki

inM(A±1, I ) such that the
sequence

u1,1, . . . , u1,k1 , u2,1, . . . , u2,k2 , . . . , un,1, . . . , un,kn

is I -freely reducible. Moreover,
∑n

i=1 ki ≤ 2n − 2.

Proof We prove the lemma by induction on n. The case n = 2 is trivial (we must
have u2 = u−1

1 ). If n ≥ 3 then by Lemma 2.5 we can factorize u1 and u2 as u1 = ps

and u2 = s−1t in M(A±1, I ) such that v := pt is irreducible. Hence, vu3 · · · un = 1
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in G(A, I). By induction, we obtain factorizations pt = v = v1 · · · vk and ui =
vi,1 · · · vi,ki

(3 ≤ i ≤ n) in M(A±1, I ) such that the sequence

v1, . . . , vk, v3,1, . . . , v3,k3 , . . . , vn,1, . . . , vn,kn (6)

is I -freely reducible. Moreover,

k +
n∑

i=3

ki ≤ 2n−1 − 2.

By applying Levi’s lemma to the trace identity pt = v1v2 · · · vk , we obtain factoriza-
tions vi = ui,1ui,2 in M(A±1, I ) such that p = u1,1 · · · uk,1, t = u1,2 · · · uk,2, and
ui,2Iuj,1 for 1 ≤ i < j ≤ k.

Fix a concrete reduction of the sequence (6). We now consider the following
sequence

u1,1, . . . , uk,1, s, s−1, u1,2, . . . , uk,2, ṽ3,1, . . . , ṽ3,k3, . . . , ṽn,1, . . . , ṽn,kn , (7)

where the subsequence ṽi,j is u−1
l,2 , u−1

l,1 if vi,j cancels against vl in our fixed reduc-

tion of (6) (which, in particular, implies that vi,j = v−1
l = u−1

l,2 u−1
l,1 in M(A±1, I )).

Otherwise (i.e., if vi,j does not cancel against any vl in our fixed reduction), we set
ṽi,j = vi,j .

Note that u1,1 · · · uk,1s = ps = u1, s−1u1,2 · · · uk,2 = s−1t = u2 and
the concatenation of all traces in ṽi,1, . . . , ṽi,ki

is ui for 3 ≤ i ≤ n. Hence,
it remains to show that the sequence (7) is I -freely reducible. First of all,
u1,1, . . . , uk,1, s, s

−1, u1,2, . . . , uk,2 reduces to u1,1, . . . , uk,1, u1,2, . . . , uk,2, which
can be rearranged to u1,1, u1,2, u2,1, u2,2, . . . , uk,1, uk,2 using the fact that ui,2Iuj,1
for 1 ≤ i < j ≤ k. Finally, the sequence

u1,1u1,2, u2,1u2,2, . . . , uk,1uk,2, ṽ3,1, . . . , ṽ3,k3 , . . . , ṽn,1, . . . , ṽn,kn

is I -freely reducible. The definition of ṽi,j allows to basically apply the fixed
reduction of (6) to this sequence.

The number of traces in the sequence (7) can be estimated as

2k + 2+ 2 ·
n∑

i=3

ki ≤ 2 · (2n−1 − 2)+ 2 = 2n − 2.

This concludes the proof of the lemma.

3.5 Semilinearity, exponential bounds, and NP-membership

We now come to the main technical result of Section 3. Let α ≤ |A| be the size of a
largest clique of the dependence alphabet (A, D) corresponding to (A, I).

Theorem 3.11 Let u1, u2, . . . , un ∈ G(A, I) \ {1}, v0, v1, . . . , vn ∈ G(A, I) and let
x1, . . . , xn be variables (we may have xi = xj for i �= j ) ranging over N. Then, the
set of solutions of the exponent equation

v0u
x1
1 v1u

x2
2 v2 · · · uxn

n vn = 1
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is effectively semilinear. Moreover, if there is a solution, then there is a solution with
xi ∈ O(23(αn)2+7αn · μ8α(n+1) · ν8α|A|(n+1)), where

– μ ∈ O(|A|α · 22α2n · λα),
– ν ∈ O(λα), and
– λ = max{|u1|, |u2|, . . . , |un|, |v0|, |v1|, . . . , |vn|}.

Proof Let us choose irreducible traces for u1, u2, . . . , un, v0, v1, . . . , vn; we denote
these traces with the same letters as the group elements. A trace u is called cyclically
reduced if there do not exist a ∈ A±1 and v such that u = ava−1. For every trace
u there exist unique traces p,w such that u = pwp−1 and w is cyclically reduced
(since the reduction relation a−1xa → x is terminating and confluent [12, Lemma
16]). These traces p and w can be computed in polynomial time. Note that for a cycli-
cally reduced irreducible trace w, every power wn is irreducible. Let ui = piwip

−1
i

with wi cyclically reduced. Note that wi cannot be the empty trace since ui �= 1
in G(A, I). By replacing every u

xi

i by piw
xi

i p−1
i , we can assume that all ui are

cyclically reduced, irreducible, and non-empty. In case one of the traces ui is not
connected, we can write ui as ui = ui,1ui,2 with ui,1Iui,2 and ui,1 �= 1 �= ui,2. Thus,
we can replace the power u

xi

i by u
xi

i,1u
xi

i,2. Note that ui,1 and ui,2 are still irreducible
and cyclically reduced. By doing this, the number n from the theorem multiplies by
at most α (which is the maximal number of pairwise independent letters). In order to
keep the notation simple we still use the letter n for the number of ui , but at the end
of the proof we have to multiply n by α in the derived bound. Hence, for the further
proof we can assume that all ui are connected, irreducible and cyclically reduced. Let
λ be the maximal length of one of the traces u1, u2, . . . , un, v0, v1, . . . , vn, which
does not increase by the above preprocessing.

We now apply Lemma 3.10 to the equation

v0u
x1
1 v1u

x2
2 v2 · · · uxn

n vn = 1, (8)

where every u
xi

i is viewed as a single factor. Note that by our preprocessing,
all factors u

x1
1 , u

x2
2 , . . . , u

xn
n , v0, . . . , vn are irreducible (for all choices of the xi).

By taking a disjunction over (i) all possible factorizations of the 2n + 1 factors
u

x1
1 , u

x2
2 , . . . , u

xn
n , v0, . . . , vn into totally at most 22n+1 − 2 factors and (ii) all pos-

sible reductions of the resulting refined factorization of v0u
x1
1 v1u

x2
2 v2 · · · uxn

n vn, it
follows that (8) is equivalent to a disjunction of statements of the following form:
There exist traces yi,1, . . . , yi,ki

(1 ≤ i ≤ n) and zi,1, . . . , zi,li (0 ≤ i ≤ n) such that
in M(A±1, I ) the following hold:

(a) u
xi

i = yi,1 · · · yi,ki
(1 ≤ i ≤ n)

(b) vi = zi,1 · · · zi,li (0 ≤ i ≤ n)
(c) yi,j Iyk,l for all (i, j, k, l) ∈ J1
(d) yi,j Izk,l for all (i, j, k, l) ∈ J2
(e) zi,j Izk,l for all (i, j, k, l) ∈ J3

(f) yi,j = y−1
k,l for all (i, j, k, l) ∈ M1

(g) yi,j = z−1
k,l for all (i, j, k, l) ∈ M2
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(h) zi,j = z−1
k,l for all (i, j, k, l) ∈ M3

Here, the numbers ki and li sum up to at most 22n+1 − 2 (hence, some ki can be
exponentially large, whereas li can be bound by the length of vi , which is at most
λ). The tuple sets J1, J2, J3 collect all independencies between the factors yi,j , zk,l

that are necessary to carry out the chosen reduction of the refined left-hand side in
(8). Similarly, the tuple sets M1, M2, M3 tell us which of the factors yi,j , zk,l cancels
against which of the factors yi,j , zk,l in our chosen reduction of the refined left-
hand side in (8). Note that every factor yi,j (resp., zk,l) appears in exactly one of
the identities (f), (g), (h) (since in the reduction every factor cancels against another
unique factor). Let us also remark that in the rest of proof we no longer work in the
graph group G(A, I). All statements refer to the trace monoid M(A±1, I ).

Next, we simplify our statements. Since the vi are concrete traces (of length at
most λ), we can take a disjunction over all possible factorizations vi = vi,1 · · · vi,li

(1 ≤ i ≤ n + 1) such that vi,j Ivk,l for all (i, j, k, l) ∈ J3 and vi,j = v−1
k,l for

all (i, j, k, l) ∈ M3. This allows to replace every variable zi,j by a concrete trace
vi,j . Statements of the form vi,j Ivk,l and vi,j = v−1

k,l can, of course, be eliminated.

Moreover, if there is an identity yi,j = v−1
k,l then we can replace the variable yi,j by

the concrete trace v−1
k,l (of length at most λ).

In the next step, we eliminate trace equations of the form u
xi

i = yi,1 · · · yi,ki
(1 ≤

i ≤ n). Note that some of the variables yi,j might have been replaced by concrete
traces of length at most λ. We apply to each of these trace equations Lemma 3.3,
or better Remark 3.4. This allows us to replace every equation u

xi

i = yi,1 · · · yi,ki

(1 ≤ i ≤ n) by a disjunction of statements of the following form: There exist numbers
xi,j > 0 (1 ≤ i ≤ n, j ∈ Ki) such that

– xi = ci +∑
j∈Ki

xi,j for all 1 ≤ i ≤ n,

– yi,j = pi,j u
xi,j

i si,j for all 1 ≤ i ≤ n, j ∈ Ki ,
– yi,j = pi,j si,j for all 1 ≤ i ≤ n, j ∈ [1, ki] \Ki .

Here, Ki ⊆ [1, ki], the ci are concrete numbers with ci ≤ |A| · (ki − 1), and the
pi,j , si,j are concrete traces of length at most |A| ·(ki−1) · |ui | ≤ |A| ·(22n+1−3) ·λ.
Hence, the lengths of these traces can be exponential in n.

Note that since xi > 0, we know the alphabet of yi,j = pi,j u
xi,j

i si,j (resp.,
yi,j = pi,j si,j ). This allows us to replace all independencies of the form yi,j Iyk,l

for (i, j, k, l) ∈ J1 (see (c)) and yi,j Izk,l for (i, j, k, l) ∈ J2 (see (d)) by con-
crete truth values. Note that all variables zk,l have already been replaced by concrete
traces. If yi,j was already replaced by a concrete trace, then we can determine
from an equation yi,j = pi,j u

xi,j

i si,j the exponent xi,j . Since yi,j was replaced
by a trace of length at most λ (a small number), we get xi,j ≤ λ, and we can
replace xi,j in xi = ∑

j∈Ki
xi,j + ci by a concrete number of size at most λ.

Finally, if yi,j was replaced by a concrete trace, and we have an equation of the
form yi,j = pi,j si,j , then the resulting identity is either true or false and can be
eliminated.

After this step, we obtain a disjunction of statements of the following form: There
exist numbers xi,j > 0 (1 ≤ i ≤ n, j ∈ K ′

i ) such that
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(a’) xi = ci +∑
j∈K ′

i
xi,j for all 1 ≤ i ≤ n, and

(b’) pi,j u
xi,j

i si,j = s−1
k,l (u

−1
k )xk,l p−1

k,l for all (i, j, k, l) ∈ M .

Here, K ′
i ⊆ Ki is a set of size at most ki ≤ 22n+1 − 2, ci ≤ |A| · (ki − 1) + λ ·

ki < (|A| + λ) · (22n+1 − 2), and the pi,j , si,j are concrete traces of length at most
|A|·(22n+1−3)·λ. The set M specifies a matching in the sense that for every exponent
xa,b (1 ≤ a ≤ n, b ∈ K ′

i ) there is a unique (i, j, k, l) ∈ M such that (i, j) = (a, b)

or (k, l) = (a, b).
We now apply Lemma 3.8 to the trace identities

pi,j u
xi,j

i si,j = s−1
k,l (u

−1
k )xk,l p−1

k,l .

Each such identity can be replaced by a disjunction of constraints

(xi,j , xk,l) ∈ {(ai,j,k,l + bi,j,k,l · zi,j,k,l, ci,j,k,l + di,j,k,l · zi,j,k,l) | zi,j,k,l ∈ N}.
For the numbers ai,j,k,l, bi,j,k,l, ci,j,k,l , di,j,k,l we obtain the bound

ai,j,k,l, bi,j,k,l, ci,j,k,l , di,j,k,l ∈ O(μ8 · ν8|A|)

(the alphabet of the traces is A±1 which has size 2|A|, therefore, we have to multiply
in Lemma 3.8 |A| by 2), where, by Lemma 2.4,

μ = max{ρ(pi,j ), ρ(pk,l), ρ(si,j ), ρ(sk,l)} ∈ O(|A|α · 22αn · λα) (9)

and
ν = max{ρ(ui), ρ(uk)} ∈ O(λα). (10)

Note that ρ(t) = ρ(t−1) for every trace t . The above condition (a’) for xi can be now
written as

xi = ci +
∑

(i,j,k,l)∈M

(ai,j,k,l + bi,j,k,l · zi,j,k,l)+
∑

(k,l,i,j)∈M

(ck,l,i,j + dk,l,i,j · zk,l,i,j ).

Note that the two sums in this equation contain in total |K ′
i | ≤ 22n+1 many sum-

mands (since for every j ∈ K ′
i there is a unique pair (k, l) with (i, j, k, l) ∈ M or

(k, l, i, j) ∈ M).
Hence, after a renaming of symbols, the initial (8) becomes equivalent to a finite

disjunction of statements of the form: There exist z1, . . . , zm ∈ N (these zi are the
above zi,j,k,l and m = maxi |K ′

i |) such that

xi = ai +
m∑

j=1

ai,j zj for all1 ≤ i ≤ n. (11)

Moreover, we have the following size bounds:

– m = maxi |K ′
i | ≤ 22n+1,

– ai ∈ O(ci+|K ′
i | ·μ8 ·ν8|A|) ⊆ O(22n(|A|+λ+μ8 ·ν8|A|)) ⊆ O(22n ·μ8 ·ν8|A|)

– ai,j ∈ O(μ8 · ν8|A|)

Recall that some of the variables xi can be identical. W.l.o.g. assume that x1, . . . , xk

are pairwise different and for all k + 1 ≤ i ≤ n, xi = xf (i), where f : [k + 1, n] →
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[1, k]. Then, the system of (11) is equivalent to

xi = ai +
m∑

j=1
ai,j zj for all 1 ≤ i ≤ k

ai − af (i) =
m∑

j=1
(af (i),j − ai,j )zj for all k + 1 ≤ i ≤ n.

The set of all (x1, . . . , xk) ∈ N
k for which there exist z1, . . . , zm ∈ N satisfying these

equations is semilinear by Lemma 3.9, and if it is non-empty then it contains a vector
(x1, . . . , xk) ∈ N

k such that (note that (
√

m)n ∈ O(2n2+n))

xi ∈ O((
√

m)n ·m2 · 22n(n+1) · μ8(n+1) · ν8|A|(n+1)) (12)

⊆ O(23n2+7n · μ8(n+1) · ν8|A|(n+1)). (13)

Recall that in this bound we have to replace n by α ·n due to the initial preprocessing.
This proves the theorem.

Proof of Theorem 3.1. Consider a compressed exponent equation

E = (v0u
x1
1 v1u

x2
2 v2 · · · uxn

n vn = 1),

where ui = val(Gi ) and vi = val(Hi ) for given SLPs G1, . . . ,Gn,H0, . . . ,Hn.
Let m = max{|G1|, . . . , |Gn|, |H0|, . . . , |Hn|}. By Theorem 3.11 we know that if
there exists a solution for E then there exists a solution (x1, . . . , xn) with xi ∈
O(23(αn)2+7αn · μ8α(n+1) · ν8α|A|(n+1)), where

– μ ∈ O(|A|α · 22α2n · λα),
– ν ∈ O(λα),
– λ = max{|u1|, |u2|, . . . , |un|, |v0|, |v1|, . . . , |vn|} ∈ 2O(m), and
– α ≤ |A|.
Note that the bound on the xi is exponential in the input length (the sum of the sizes
of all Gi and Hi). Hence, we can guess in polynomial time the binary encodings of
numbers ki ∈ O(23(αn)2+7αn · μ8α(n+1) · ν8α|A|(n+1)) (where ki = kj if xi = xj ).
Then, we have to verify whether

val(H0)val(G1)
k1val(H1)val(G2)

k2val(H2) · · · val(Gn)
knval(Hn) = 1

in the graph group G(A, I). This is an instance of the so-called compressed word
problem for G(A, I), where the input consists of an SLP G over the alphabet A±1

and it is asked whether val(G) = 1 in G(A, I). Note that the powers val(Gi )
ki can

be produced with the productions of Gi and additional �log ki� many productions
(using iterated squaring). Since the compressed word problem for a graph group can
be solved in deterministic polynomial time [36, 37] (NP would suffice), the theorem
follows. For the last step, it is important that (A, I) is fixed.

3.6 Solvability of compressed exponent equation for a variable graph group

For the proof of Theorem 3.1 we assumed that the graph group G(A, I) is fixed. In
this section we briefly consider the case, where the independence alphabet (A, I) is
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part of the input as well. Let uniform solvability of compressed exponent equations
over graph groups be the following computational problem.

Input: An independence alphabet (A, I) and a compressed exponent equation E

over G(A, I).
Question: Is E solvable?

Note that the bound on the exponents xi in the proof of Theorem 3.1 is still
exponential in the input length if the independence alphabet (A, I) is part of the
input as well. The problem is that we do not know whether the uniform compressed
word problem for graph groups (where the input is an independence alphabet (A, I)

together with an SLP over the terminal alphabet A±1) can be solved in polynomial
time or at least in NP. The latter would suffice to get an NP-algorithm for uniform
solvability of compressed exponent equations over a graph groups. On the other hand,
we can show that the uniform compressed word problem for graph groups belongs
to the complexity class coRP. A language L ∈ �∗ belongs to the class coRP if there
exists a set P ⊆ �∗ × {0, 1}∗ and a polynomial p(n) such that P can be decided in
deterministic polynomial time and for all x ∈ �∗ with |x| = n the following holds:

– If x ∈ L then (x, y) ∈ P for all y ∈ {0, 1}p(n).
– If x �∈ L then (x, y) ∈ P for at most 1/3 · 2p(n) many y ∈ {0, 1}p(n).

Theorem 3.12 The uniform compressed word problem for graph groups belongs to
coRP.

Proof We make use of a well known embedding of a graph group G(A, I) with
n = |A| into the linear matrix group GL2n(Z). This embedding is obtained by first
embedding G(A, I) into a so called right-angled Coxeter group followed by a linear
embedding for the latter group. A right-angled Coxeter group is obtained by adding
to a graph group G(A, I) all relations a2 = 1 for all generators a ∈ A. Let us denote
with C(A, I) this right-angled Coxeter group.

The following embedding of a graph group G(A, I) into a right-angled Coxeter
group goes back to [26]: Take a disjoint copy A′ = {a′ | a ∈ A} of A and consider
the right-angled Coxeter group C(A ∪ A′, J ) with

J = {(a, b), (a′, b), (a, b′), (a′, b′) | (a, b) ∈ I }.
Then the morphism g : G(A, I) → C(A ∪ A′, J ) with g(a) = aa′ for a ∈ A is
injective.

Next, a right-angled Coxeter group C(A, I) with |A| = n can be embedded into
GLn(Z) by mapping the generator a ∈ A to the linear map σa : ZA → Z

A defined by

σa(b) =
⎧⎨
⎩
−b if b = a,

b if (a, b) ∈ I,

b + 2a if a �= b and (a, b) �∈ I

This is an instance of the standard linear embedding for general Coxeter groups, see
e.g. the textbook [8] for more details.
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Let us fix a graph group G(A, I) with n = |A| and let h : G(A, I) → GL2n(Z) be
the linear embedding that results from the above construction. Note that for a given
graph (A, I) we can compute in polynomial time for every generator a ∈ A the
corresponding matrix h(a) ∈ GL2n(Z).

Let G = (V , �, rhs, S) be an SLP over the terminal alphabet A ∪ A−1. Without
loss of generality, one can assume that for every variable X ∈ V , the right-hand side
rhs(X) belongs to A ∪ A−1 ∪ V V , see e.g. [36, Proposition 3.8]. We now construct
an arithmetic circuit5 that evaluates to 1 if and only if val(G) = 1 in the graph group
G(A, I). The construction is the same as in [36, Theorem 4.15]. For every nonter-
minal X ∈ V we introduce 4n2 many +-labeled gates Xi,j (1 ≤ i, j ≤ 2n). The
idea is that Xi,j evaluates to the entry at position (i, j) in the matrix h(valG(X)).
The wires between the gates are defined such that they implement matrix multiplica-
tion. If rhs(X) = YZ, then we add an auxiliary ×-labeled gate Xi,j,k together with
the wires (Yi,j , Xi,j,k), (Zj,k, Xi,j,k), and (Xi,j,k, Xi,k) for all 1 ≤ i, j, k ≤ 2n. If
rhs(X) = a ∈ A∪A−1, then we set the value of Xi,j to the entry at position (i, j) of
the matrix h(a).

Assume that the gate Si,j of the constructed arithmetic circuit evaluates to the inte-
ger si,j . Then, the matrix (si,j )1≤i,j≤n is h(val(G)). Thus, we have to check, whether
this matrix is the identity matrix. For this,we add an additional gate X (which will be
the output gate of the circuit) together with some auxiliary gates to the circuit such
that gate X evaluates to the integer

∑n
i=1(si,i−1)2+∑

i �=j s2
i,j . Then, (si,j )1≤i,j≤n is

the identity matrix if and only if gate X evaluates to zero, We can conclude the proof
by using the following well-known result, see e.g. [27]: Whether a given arithmetic
circuit evaluates to zero can be decided in coRP.

There is some evidence in complexity theory for RP = coRP = P. Impagliazzo
and Wigderson [28] proved that if there exists a language in DTIME(2O(n)) that has
circuit complexity 2�(n) (which seems to be plausible) then RP = coRP = P (in
fact, BPP = P).

A language L ∈ �∗ belongs to the class MA (for Merlin-Arthur protocol) if there
exists a set P ⊆ �∗ × {0, 1}∗ × {0, 1}∗ and polynomials p(n), q(n) such that P can
be decided in deterministic polynomial time and for all x ∈ �∗ with |x| = n the
following holds:

– If x ∈ L then there exists y ∈ {0, 1}p(n) such that (x, y, z) ∈ P for all z ∈
{0, 1}q(n).

– If x �∈ L then for all y ∈ {0, 1}p(n) there exist at most 1/3 · 2p(n) many z ∈
{0, 1}q(n) such that (x, y, z) ∈ P .

The same (unproven) circuit complexity lower bounds that allow to derandomize RP
[28] also imply MA = NP.

5An arithmetic circuit is a finite directed acyclic graph, where every node of indegree zero is labeled
with a binary encoded integer, and every node of non-zero indegree is labeled with one of the arithmetic
operations + or ×. Nodes (resp., edges) of the arithmetic circuit are also called gates (resp., wires) and
there is a distinguished gate, called the output gate. Every gate evaluates to an integer (the value of the
gate) in the natural way, and the arithmetic circuits evaluates to the value of its output gate.
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Corollary 3.13 Uniform solvability of compressed exponent equations over graph
groups belongs to MA.

Proof We follow to arguments from the proof of Theorem 3.1. As remarked above,
the bound on the exponents xi in the proof of Theorem 3.1 is still exponential in
the input length if the independence alphabet (A, I) is part of the input as well.
After guessing the values for the xi in binary representation (this corresponds to the
existential quantifier in the definition of MA), we are left with the solution of an
instance of the uniform compressed word problem for graph groups, which belongs
to coRP by Theorem 3.12. This yields an MA-protocol for uniform solvability of
compressed exponent equations over graph groups.

4 Uncompressed Knapsack and Subset Sum

Since knapsack and subset sum for binary encoded integers is NP-complete, it
follows that compressed knapsack and subset sum are NP-hard for every finitely gen-
erated group that contains an element of infinite order. In the rest of the paper, we
will study the computational complexity of uncompressed knapsack and subset sum
for graph groups. In the rest of the paper, the terms “knapsack” and “subset sum” will
always refer to the uncompressed variant of the problem.

In Section 4.1, we present a class of graph groups for which knapsack is NP-
complete. In Section 4.2, we will show that for all other graph groups, knapsack
belongs to LogCFL, which is a subclass of P. In fact, we will show that knapsack is
LogCFL- complete for these graph groups, unless they are abelian. Finally, in Section 4.4,
we prove TC0-completeness in the case of abelian graph groups (i.e. free abelian
groups). For subset sum, we are not able to exactly locate the border between P-
membership and NP-completeness.

4.1 NP-completeness

Figure 1 shows two important independence alphabets that we denote with P4 (path
on four nodes) and C4 (cycle on four nodes). Note that M(C4) = {a, c}∗ × {b, d}∗
and G(C4) ∼= F2 × F2, where F2 the free group of rank 2.

A transitive forest is an independence that can be inductively obtained as follows:

– ({a}, ∅) is a transitive forest.
– If (A1, I1) and (A2, I2) are transitive forests, then also (A1 ∪ A2, I1 ∪ I2) is a

transitive forest.

Fig. 1 P4 and C4
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– If (A, I) is a transitive forest and a �∈ I , then (A ∪ {a}, I ∪ {a} × A ∪ A× {a})
is a transitive forest.

The name “transitive forest” comes from the fact that these graphs are obtained by
taking the transitive closure of a disjoint union of rooted directed trees (a forest) and
then forgetting the direction of edges. From the above definition of transitive forests,
it is clear that the graph groups G(A, I) with (A, I) a transitive forest is the smallest
class of groups that contains Z and is closed under free products and direct products
with Z. We will use the following alternative characterization of transitive forests
by Wolk [52]: (A, I) is a transitive forest if and only if (A, I) neither contains an
induced P4 nor and induced C4.

In the rest of Section 4.1, we will prove the following theorem:

Theorem 4.1 If (A, I) is not a transitive forest, then knapsack is NP-complete for
G(A, I).

By the above mentioned result of Wolk, it suffices to show that knapsack is NP-
hard for G(C4) (Section 4.1.1) and G(P4) (Section 4.1.2). Note that if (A′, I ′) is an
induced subgraph of (A, I), then G(A′, I ′) is a subgroup of G(A, I).

4.1.1 Knapsack and subset sum for G(C4)

In this section, we prove that knapsack and subset sum are NP-complete for G(C4),
i.e., for a direct product of two free groups of rank two. This solves an open problem
from [18].

Recall that F(�) denotes the free group generated by the set � and F2 =
F({a, b}).

Lemma 4.2 The subset sum problem and the knapsack problem are NP-complete
for F2 × F2. For knapsack, NP-hardness already holds for the variant where the
exponent variables are allowed to take values from Z (see Remark 2.2).

Proof In [44] it was shown that there exists a fixed set D ⊆ F2 × F2 such that the
following problem (called the bounded submonoid problem) is NP-complete:

Input: A unary encoded number n (i.e., n is given by the string an) and an element
g ∈ F2 × F2

Question: Do there exist g1, . . . gn ∈ D (not necessarily distinct) such that g =
g1g2 · · · gn in F2 × F2?

Let us briefly explain the NP-hardness proof, since we will reuse it.
Recall the notion of the Dehn function defined in Section 2.5. We start with a

finitely presented group 〈� | R〉 having an NP-complete word problem and a polyno-
mial Dehn function. Such a group was constructed in [7]. To this group, the following
classical construction by Mihaı̆lova [42] is applied: Let

D = {(rε, 1) | r ∈ R, ε ∈ {−1, 1}} ∪ {(a, a) | a ∈ �±1},
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which is viewed as a subset of F(�) × F(�). Note that D is closed under taking
inverses. Let 〈D〉 ≤ F(�) × F(�) be the subgroup generated by D. Mihaı̆lova
proved that for every word w ∈ (�±1)∗ the following equivalence holds:

w = 1 in 〈�, R〉 ⇐⇒ (w, 1) ∈ 〈D〉 in F(�)× F(�).

Moreover, based on the fact that 〈�, R〉 has a polynomial Dehn function p(n), the
following equivalence was shown in [44], where q(n) = p(n)+ 8(c · p(n)+ n), c is
the maximal length of a relator in R, and Dn is the set of all products of n elements
from D:

w = 1 in 〈�, R〉 ⇐⇒ ∃n ≤ q(|w|) : (w, 1) ∈ Dn in F(�)× F(�).

From these two equivalences it follows directly that the following three statements
are equivalent for all words w ∈ (�±1)∗, where D = {g1, g2, . . . , gk}:
– w = 1 in 〈�, R〉
– (w, 1) = ∏q(|w|)

i=1 (g
a1,i

1 g
a2,i

2 · · · gak,i

k ) in F(�)× F(�) for aj,i ∈ {0, 1}
– (w, 1) = ∏q(|w|)

i=1 (g
a1,i

1 g
a2,i

2 · · · gak,i

k ) in F(�)× F(�) for aj,i ∈ Z

This shows that the subset sum problem and the knapsack problem are NP-hard for
the group F(�)×F(�), where for knapsack we allow integer exponents. To get the
same results for F2 × F2, we use the fact that F2 contains a copy of F(�).

4.1.2 Knapsack for G(P4)

In this section, we show that knapsack is NP-complete for the graph group G(P4).
Let us fix the copy ({a, b, c, d}, I ) of P4 shown in Fig. 1.

As a first step, we will prove NP-completeness of a certain automata theoretic
problem, that will be reduced to knapsack for G(P4) in a second step. For a trace
monoid M(A, I), the intersection nonemptiness problem for acyclic loop NFA is the
following computational problem:

Input: Two acyclic loop NFA A1, A2 over the input alphabet A (as defined in
Section 2.2).

Question: Does [L(A1)]I ∩ [L(A2)]I �= ∅ hold?

Aalbersberg and Hoogeboom [1] proved that for the trace monoid M(P4) the
intersection nonemptiness problem for arbitrary NFA is undecidable. We use their
technique to show:

Lemma 4.3 ForM(P4), intersection nonemptiness for acyclic loop NFA is NP-hard.

Proof We give a reduction from 3SAT. Let ϕ = ∧m
i=1 Ci where for every i ∈ [1, m],

Ci = (Li,1 ∨Li,2 ∨Li,3) is a clause consisting of three literals. Let x1, . . . , xn be the
boolean variables that occur in ϕ. In particular, every literal Li,j belongs to the set
{x1, . . . , xn,¬x1, . . . ,¬xn}.

Let p1, p2, . . . , pn be a list of the first n prime numbers. So, for each boolean
variable xi we have the corresponding prime number pi . We encode a valuation
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β : {x1, . . . , xn} → {0, 1} by any natural number N such that N ≡ 0 mod pi if and
only if β(xi) = 1. For a positive literal xi let S(xi) = {pi · n | n ∈ N} and for a nega-
tive literal ¬xi let S(¬xi) = {pi ·n+ r | n ∈ N, r ∈ [1, pi−1]}. Moreover, for every
i ∈ [1, m] let Si = S(Li,1) ∪ S(Li,2) ∪ S(Li,3). Thus, Si is the set of all numbers
that encode a valuation, which makes the clause Ci true. Hence, the set S = ⋂n

i=1 Si

encodes the set of all valuations that make ϕ true.
We first construct an acyclic loop NFA A1 with

L(A1) =
m∏

i=1

{a(bc)Ni d | Ni ∈ Si}.

Note that ϕ is satisfiable iff [L(A1)]I contains a trace from [{(a(bc)Nd)m | N ∈
N}]I . We will ensure this property with a second acyclic loop NFA A2 that satisfies
the equality L(A2) = b∗(ad(bc)∗)m−1adc∗.

We claim that [L(A1)]I ∩ [L(A2)]I = [{(a(bc)Nd)m | N ∈ S}]I . First assume
that w ≡I (a(bc)Nd)m for some N ∈ S. We have

w ≡I (a(bc)Nd)m ≡I bN(ad(bc)N)m−1adcN

and thus [w]I ∈ [L(A2)]I . Moreover, since N ∈ S we get [w]I ∈ [L(A1)]I . For the
other direction, let [w]I ∈ [L(A1)]I ∩ [L(A2)]I . Thus

w ≡I

m∏
i=1

(a(bc)Ni d) ≡ bN1

(
m−1∏
i=1

(adcNi bNi+1)

)
adcNm,

where Ni ∈ Si for i ∈ [1, m]. Moreover, the fact that [w]I ∈ [L(A2)]I means hat
there are k0, k1, . . . , km−1, km ≥ 0 with

bN1

(
m−1∏
i=1

(adcNi bNi+1)

)
adcNm ≡I bk0

(
m−1∏
i=1

(ad(bc)ki )

)
adckm

≡I bk0

(
m−1∏
i=1

(adbki cki )

)
adckm.

Since every symbol is dependent from a or d, this identity implies Ni = Ni+1 for
i ∈ [1, m− 1]. Thus, [w]I ∈ [{(a(bc)Nd)m | N ∈ S}]I .

For a graph group G(A, I) the membership problem for acyclic loop NFA is the
following computational problem:

Input: An acyclic loop NFA A over the input alphabet A ∪ A−1.
Question: Is there a word w ∈ L(A) such that w = 1 in G(A, I)?

It is straightforward to reduce the intersection nonemptiness problem for acyclic
loop NFA over M(A, I) to the membership problem for acyclic loop NFA over
G(A, I). For the rest of this section let � = {a, b, c, d, a−1, b−1, c−1, d−1} and let
θ : �∗ → G(P4) be the canonical homomorphism that maps a word over � to the
corresponding group element.

Lemma 4.4 For G(P4), the membership problem for acyclic loop NFA is NP-hard.
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Proof The lemma follows easily from Lemma 4.3. Note that [L(A1)]I ∩[L(A2)]I �=
∅ if and only if 1 ∈ θ(L(A1)L(A2)

−1) in the graph group G(P4). Moreover, it is
straightforward to construct from acyclic loop NFA A1 and A2 an acyclic loop NFA
for L(A1)L(A2)

−1. We only have to replace every transition label w in A2 by w−1,
then reverse all transitions in A2 and concatenate the resulting NFA with A1 on the
left.

We can now use a construction from [38] to reduce membership for acyclic loop
NFA to knapsack.

Lemma 4.5 Knapsack for the graph group G(P4) is NP-hard.

Proof By Lemma 4.4 it suffices to reduce for G(P4) the membership problem for
acyclic loop NFA to knapsack. Let A = (Q, �, �, q0, qf ) be an acyclic loop NFA
with transitions � ⊆ Q×�∗ ×Q. W.l.o.g. assume that Q = {1, . . . , n}.

We reuse a construction from [38], where the rational subset membership problem
for G(P4) was reduced to the submonoid membership problem for G(P4). For a state
q ∈ Q let q̃ = (ada)qd(ada)−q ∈ �∗. Let us fix the morphism ϕ : �∗ → �∗
with ϕ(x) = xx for x ∈ �. For a transition t = (p, w, q) ∈ � let t̃ = p̃ ϕ(w) q̃−1

and define S = {t̃ | t ∈ �}∗. In [38] it was shown that 1 ∈ θ(L(A)) if and only if
θ(q̃0 q̃f

−1) ∈ θ(S).
We construct in polynomial time a knapsack instance over G(P4) from the NFA A

as follows: Let us choose an enumeration t1, t2, . . . , tm of the transitions of A such
that the following holds, where ti = (pi, wi, qi): If qj = pk then j ≤ k. Since A
is an acyclic loop NFA, such an enumeration exists. The following claim proves the
theorem.

Claim: 1 ∈ θ(L(A)) if and only if θ(q̃0 q̃f
−1) ∈ θ(t̃∗1 t̃∗2 · · · t̃∗m).

One direction is clear: If θ(q̃0 q̃f
−1) ∈ θ(t̃∗1 t̃∗2 · · · t̃∗m), then θ(q̃0 q̃f

−1) ∈ θ(S).
Hence, by [38] we have 1 ∈ θ(L(A)). On the other hand, if 1 ∈ θ(L(A)), then there
exists a path in A of the form

such that θ(a1a2 · · · ak) = 1. Let (sj−1, aj , sj ) = tij , where we refer to the above
enumeration of all transitions. Then, we must have i1 ≤ i2 ≤ · · · ≤ ik . Moreover, we
have

θ(q̃0 q̃f
−1) = θ(q̃0 a1a2 · · · ak q̃f

−1) = θ(t̃i1 t̃i2 · · · t̃ik ) ∈ θ(t̃∗1 t̃∗2 · · · t̃∗m).

This proves the claim and hence the theorem.

We are now ready to prove Theorem 4.1.

Proof Theorem 4.1 If (A, I) is not a transitive forest, then P4 or C4 is an induced
subgraph of (A, I) [52]. Thus, G(P4) or G(C4) ∼= F2×F2 is a subgroup of G(A, I).
Hence, NP-hardness of knapsack for G(A, I) follows from Lemma 4.2 or Lemma
4.5.
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4.2 Membership in LogCFL

In this section, we show that if (A, I) is a transitive forest, then knapsack and subset
sum belong to LogCFL, which is a subclass of P; see Section 2.1.

Theorem 4.6 If (A, I) is a transitive forest, then knapsack and subset sum for
G(A, I) belong to LogCFL.

4.2.1 Membership for acyclic NFA

In the proof of Theorem 4.6 we employ the membership problem for acyclic NFA
(see Section 2.2), which has already been studied in connection with the knapsack
and subset sum problem [18, 33]. For a graph group G(A, I) the membership problem
for acyclic NFA is the following computational problem:

Input: An acyclic automaton A over the input alphabet A ∪ A−1.
Question: Is there a word w ∈ L(A) such that w = 1 in G(A, I)?

In order to show Theorem 4.6, we reduce knapsack for G(A, I) with (A, I) a tran-
sitive forest to the membership problem for acyclic NFA for G(A, I) (note that for
subset sum this reduction is obvious). Then, we apply the following Proposition 4.7.
From work of Frenkel, Nikolaev, and Ushakov [18], it follows that the membership
problem for acyclic NFA is in P. We strengthen this to LogCFL:

Proposition 4.7 If (A, I) is a transitive forest, then the membership problem for
acyclic NFA over G(A, I) is in LogCFL.

The proof of Proposition 4.7 uses the following lemma:

Lemma 4.8 For every transitive forest (A, I) with the associated graph group G =
G(A, I) there is a deterministic AuxPDA P(G) with input alphabet A±1 and the
following properties:

– In each step, the input head for P(G) either does not move, or moves one step to
the right.

– If the input word is equal to 1 in G, then P(G) terminates in the distinguished
state q1 with empty stack. Let us call this state the 1-state of P(G).

– If the input word is not equal to 1 in G, then P(G) terminates in a state different
from q1 (and the stack is not necessarily empty).

Proof We construct the AuxPDA P(G) by induction over the structure of the group
G. For this, we consider the three cases that G = 1, G = G1 ∗G2, and G = Z×G′.
The case that G = 1 is of course trivial.

CaseG = Z×G′. We have already constructed the AuxPDA P(G′). The AuxPDA
P(G) simulates the AuxPDA P(G′) on the generators of G′. Moreover, it stores the
current value of the Z-component in binary notation on the work tape. If the input
word has length n, then O(log n) bits are sufficient for this. At the end, P(G) goes
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into its 1-state if and only if P(G′) is in its 1-state (which implies that the stack will
be empty) and the Z-component is zero.

Case G = G1 ∗ G2. For i ∈ {1, 2}, we have already constructed the Aux-
PDA Pi = P(Gi). Let A±1

i be its input alphabet, which is a monoid generating

set for Gi . Consider now an input word w ∈ (A±1
1 ∪ A±1

2 )∗. Let us assume that

w = u1v1u2v2 · · · ukvk with ui ∈ (A±1
1 )+ and vi ∈ (A±1

2 )+ (other cases can be
treated analogously). The AuxPDA P(G) starts with empty stack and simulates the
AuxPDA P1 on the prefix u1. If it turns out that u1 = 1 in G1 (which means that P1

is in its 1-state) then the stack will be empty and the AuxPDA P(G) continues with
simulating P2 on v1. On the other hand, if u1 �= 1 in G1, then P(G) pushes the state
together with the work tape content of P1 reached after reading u1 on the stack (on
top of the final stack content of P1). This allows P(G) to resume the computation of
P1 later. Then P(G) continues with simulating P2 on v1.

The computation of P(G) will continue in this way. More precisely, if after
reading ui (resp. vi with i < k) the AuxPDA P1 (resp. P2) is in its 1-state then either

(i) the stack is empty or
(ii) the top part of the stack is of the form sqt (t is the top), where s is a stack

content of P2 (resp. P1), q is a state of P2 (resp. P1) and t is a work tape content
of P2 (resp. P1).

In case (i), P(G) continues with the simulation of P2 (resp. P1) on the word vi (resp.
ui+1) in the initial configuration. In case (ii), P(G) continues with the simulation of
P2 (resp. P1) on the word vi (resp. ui+1), where the simulation is started with stack
content s, state q, and work tape content t . On the other hand, if after reading ui

(resp. vi with i < k) the AuxPDA P1 (resp. P2) is not in its 1-state then P(G) pushes
on the stack the state and work tape content of P1 reached after its simulation on ui .
This concludes the description of the AuxPDA P(G). It is clear that P(G) has the
properties stated in the lemma.

We can now prove Proposition 4.7:

Proof of Proposition 4.7. Fix the graph group G = G(A, I), where (A, I) is a tran-
sitive forest. An AuxPDA for the membership problem for acyclic NFA guesses a
path in the input NFA A and thereby simulates the AuxPDA P(G) from Lemma 4.8.
If the final state of the input NFA A is reached while the AuxPDA P(G) is in the
accepting state q1, then the overall AuxPDA accepts. It is important that the AuxPDA
P(G) works one-way since the guessed path in A cannot be stored in logspace. This
implies that the AuxPDA cannot re-access the input symbols that already have been
processed. Also note that the AuxPDA is logspace bounded and polynomially time
bounded since A is acyclic.

4.2.2 Bounds on knapsack solutions in transitive forests

As mentioned above, we reduce for graph groups G(A, I) with (A, I) a transitive
forest the knapsack problem to the membership problem for acyclic NFA. To this end,
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we show that every positive knapsack instance has a polynomially bounded solution.
The latter is the most involved proof in our paper.

Frenkel, Nikolaev, and Ushakov [18] call groups with this property polynomially
bounded knapsack groups and show that this class is closed under taking free prod-
ucts. However, it is not clear if direct products with Z also inherit this property and
we leave this question open.

Hence, we are looking for a property that yields polynomial-size solutions and is
passed on to free products and to direct products with Z. It is known that the solution
sets are always semilinear. If (A, I) is a transitive forest, this follows from a more
general semilinearity property of rational sets [38] and for arbitrary graph groups,
this was shown in Theorem 3.11.

Note that it is not true that the solution sets always have polynomial-size semilin-
ear representations. This already fails in the case of Z: The equation x1+· · ·+xk = k

has
(2k−1

k

) ≥ 2k solutions. We therefore need a weaker property: We will show here
that the solution sets have semilinear representations where every occurring number
is bounded by a polynomial.

For a semilinear representation (x1, F1, . . . , xn, Fn) of the semilinear set S =⋃n
i=1 xi + F⊕

i , the magnitude of this representation is defined as the maximum
of ‖y‖∞, where y ranges over all vectors of

⋃n
i=1{xi} ∪ Fi . The magnitude of a

semilinear set S is the smallest magnitude of a semilinear representation for S.

Definition 4.9 A group G is called knapsack tame if there is a polynomial p such
that for every exponent equation h0g

x1
1 h1g

x2
2 h2 · · · gxk

n hk = 1 of size n with pairwise
distinct variables x1, . . . , xk , the set S ⊆ N

k of solutions is semilinear of magnitude
at most p(n).

Note that here, we only consider exponent equations where each variable occurs at
most once. This corresponds to the definition of the knapsack problem as introduced
by Myasnikov et. al. [44]. This is in contrast to Section 3, where the methods we
used to obtain NP membership work for general exponent equations. In the case of
the LogCFL membership proof, however, our techniques only apply to the original
version of the knapsack problem. See also Remark 2.1.

Observe that although the size of an exponent equation may depend on the chosen
generating set of G, changing the generating set increases the size only by a constant
factor. Thus, whether or not a group is knapsack tame is independent of the chosen
generating set.

Theorem 4.10 If (A, I) is a transitive forest, then G(A, I) is knapsack tame.

Note that Theorem 4.10 implies in particular that every solvable exponent equation
with pairwise distinct variables has a polynomially bounded solution. Theorem 4.10
and Proposition 4.7 easily imply Theorem 4.6.

We prove Theorem 4.10 by showing that knapsack tameness transfers from groups
G to G×Z (Proposition 4.11) and from G and H to G∗H (Proposition 4.17). Since
the trivial group is obviously knapsack tame, the inductive characterization of groups
G(A, I) for transitive forests (A, I) immediately yields Theorem 4.10.
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4.2.3 Tameness of direct products with Z

In this section, we show the following.

Proposition 4.11 If G is knapsack tame, then so is G× Z.

Linear Diophantine equations We employ a result of Pottier [47], which bounds
the norm of minimal non-negative solutions to a linear Diophantine equation. Recall
the definition of the vector norms ‖x‖∞ and ‖x‖1 from Section 2.3. Let A ∈ Z

k×m

be an integer matrix where aij is the entry of A at row i and column j . We will use
the following matrix norms:

‖A‖1,∞ = max
i∈[1,k]

⎛
⎝ ∑

j∈[1,m]
|aij |

⎞
⎠ ,

‖A‖∞,1 = max
j∈[1,m]

⎛
⎝ ∑

i∈[1,k]
|aij |

⎞
⎠ ,

‖A‖∞ = max
i∈[1,k],j∈[1,m]

|aij |.

A non-trivial solution x ∈ N
m \ {0} to the equation Ax = 0 is minimal if there is no

y ∈ N
m \ {0} with Ay = 0 and y ≤ x, y �= x. Here y ≤ x means that yi ≤ xi for

all i ∈ [1, m]. The set of all solutions clearly forms a submonoid of Nm. Let r be the
rank of A.

Theorem 4.12 (Pottier [47]) Each non-trivial minimal solution x ∈ N
m to Ax = 0

satisfies ‖x‖1 ≤ (1+ ‖A‖1,∞)r .

We only need Theorem 4.12 for the case that A is a row vector uT for u ∈ Z
k .

Corollary 4.13 Let u ∈ Z
k . Each non-trivial minimal solution x ∈ N

k to uT x = 0
satisfies ‖x‖1 ≤ 1+ ‖u‖1.

By applying Theorem 4.12 to the row vector (uT ,−b) for b ∈ Z, it is easy to
deduce that for each x ∈ N

k with uT x = b, there is a y ∈ N
k with uT y = b, y ≤ x,

and ‖y‖1 ≤ 1+‖(u
b

)‖1 = 1+‖u‖1 + |b|. We reformulate Corollary 4.13 as follows.

Lemma 4.14 Let u ∈ Z
k and b ∈ Z. Then the set {x ∈ N

k | uT x = b} admits a
decomposition {x ∈ N

k | uT x = b} = ⋃s
i=1 ci +CN

t , where ci ∈ N
k and C ∈ N

k×t

with ‖ci‖1 and ‖C‖∞,1 bounded by 1+ ‖u‖1 + |b|.

Proof Let {c1, . . . , cs} be the set of minimal solutions of uT x = b. Then, as
explained above, Corollary 4.13 yields ‖ci‖1 ≤ 1 + ‖u‖1 + |b|. Moreover, let
C ∈ N

k×t be the matrix whose columns are the non-trivial minimal solutions of
uT x = 0. Then we have ‖C‖∞,1 ≤ 1 + ‖u‖1. This clearly yields the desired
decomposition.
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The problem is that we want to apply Lemma 4.14 in a situation where we have
no bound on ‖u‖1, but only one on ‖u‖∞. The following lemma yields such a bound.

Lemma 4.15 If u ∈ Z
k and b ∈ Z with ‖u‖∞, |b| ≤ M , then we have a decom-

position {x ∈ N
k | uT x = b} = ⋃s

i=1 ci + CN
t where ‖ci‖1, ‖C‖∞,1 ≤

1+ (M + 2)M .

Proof Write uT = (b1, . . . , bk) and consider the row vector vT = (b′1, . . . , b′2M+1),
v ∈ Z

2M+1, with entries b′i = i − (M + 1). Thus, we have

vT = (b′1, . . . , b′2M+1) = (−M,−M + 1, . . . ,−1, 0, 1, . . . ,M).

Moreover, define the matrix S = (sij ) ∈ N
(2M+1)×k with

sij =
{

1 if bj = b′i ,
0 otherwise.

Then clearly u = vT S and ‖v‖1 = (M + 1)M . Furthermore, observe that we have
‖Sx‖1 = ‖x‖1 for every x ∈ N

k and that for each y ∈ N
2M+1 the set

Ty = {x ∈ N
k | Sx = y}

is finite.
According to Lemma 4.14, we can write

{x ∈ N
2M+1 | vT x = b} =

s′⋃
i=1

c′i + C′
N

t ′ (14)

where ‖c′i‖1, ‖C′‖∞,1 ≤ 1+ (M + 1)M +M = 1+ (M + 2)M . Let {c1, . . . , cs} be
the union of all sets Tc′i for i ∈ [1, s′] and let C ∈ N

k×t be the matrix whose columns

comprise all Tv where v ∈ N
2M+1 is a column of C′. Since we have ‖Sx‖1 = ‖x‖1

for x ∈ N
k , the vectors ci obey the same bound as the vectors c′i , meaning ‖ci‖1 ≤

1+(M+2)M . By the same argument, we have ‖C‖∞,1 ≤ ‖C′‖∞,1 ≤ 1+(M+2)M .
It remains to be shown that the equality from Lemma 4.15 holds.

Suppose uT x = b. Then vT Sx = b and hence Sx = c′i + C′y for some y ∈ N
t ′ .

Observe that every column of S is either zero or a unit vector. This implies that if
Sz = p+q for p, q ∈ N

2M+1, then z decomposes as z = p′+q ′, p′, q ′ ∈ N
k , so that

Sp′ = p and Sq ′ = q. Therefore, we can write x = x0 + · · · + xn with Sx0 = c′i and
Sxj is some column of C′ for each j ∈ [1, n]. Hence, x0 = cr for some r ∈ [1, s]
and for each j ∈ [1, n], xj is a column of C. This proves x ∈ cr + CN

t .
On the other hand, the definition of c1, . . . , cs and C implies that for each column

v of C, Sv is a column of C′. Moreover, for each i ∈ [1, s], there is a j ∈ [1, s ′] with
Sci = c′j and thus Sci + SCN

t ⊆ c′j + C′
N

t ′ . Therefore

uT (ci + CN
t ) = vT S(ci + CN

t ) ⊆ vT (c′j + C′
N

t ′)

and the latter set contains only b because of (14).
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Lemma 4.16 Let S ⊆ N
k be a semilinear set of magnitude M and u ∈ Z

k , b ∈ Z

with ‖u‖∞, |b| ≤ m. Then {x ∈ S | uT x = b} is a semilinear set of magnitude at
most 10(kmM)3.

Proof Let T = {x ∈ N
k | uT x = b}. We may assume that S is linear of magnitude

M , because if S = L1 ∪ · · · ∪ Ln, then S ∩ T = (L1 ∩ T ) ∪ · · · ∪ (Ln ∩ T ).
Write S = a +AN

n with a ∈ N
k and A ∈ N

k×n, where ‖a‖∞ ≤ M and ‖A‖∞ ≤
M . Consider the set U = {x ∈ N

n | uT Ax = b − uT a}. Note that uT A ∈ Z
1×n and

‖uT A‖∞ ≤ k · ‖u‖∞ · ‖A‖∞ ≤ kmM,

|b − uT a| ≤ m+ k · ‖u‖∞ · ‖a‖∞ ≤ m+ kmM.

According to Lemma 4.15, we can write U = ⋃s
i=1 ci + CN

t where ‖ci‖1 and
‖C‖∞,1 are at most 1+ (m+ kmM)(m+ kmM + 2) ≤ 9(kmM)2. Observe that

a + AU =
s⋃

i=1

a + Aci + ACN
t

and

‖a + Aci‖∞ ≤ ‖a‖∞ + ‖A‖∞ · ‖ci‖1 ≤ M +M · 9(kmM)2 ≤ 10(kmM)3,

‖AC‖∞ ≤ ‖A‖∞ · ‖C‖∞,1 ≤ M · 9(kmM)2 ≤ 10(kmM)3.

Finally, note that S ∩ T = a + AU .

We are now ready to prove Proposition 4.11.

Proof of Proposition 4.11. Suppose G is knapsack tame with polynomial p̄. Let

h0g
x1
1 h1g

x2
2 h2 · · · gxk

k hk = 1 (15)

be an exponent equation of size n with pairwise distinct variables x1, . . . , xk and with
h0, g1, h1, . . . , gk, hk ∈ G× Z. Let hi = (h̄i , yi) for i ∈ [0, k] and gi = (ḡi , zi) for
i ∈ [1, k].

The exponent equation h̄0ḡ
x1
1 h̄1ḡ

x2
2 h̄2 · · · ḡxk

k h̄k = 1 has a semilinear solution set
S̄ ⊆ N

k of magnitude at most p̄(n). The solution set of (15) is

S = {(x1, . . . , xk) ∈ S̄ | z1x1 + · · · + zkxk = y},
where y = −(y0 + · · · + yk). Note that |zi | ≤ n and |y| ≤ n. By Lemma 4.16, S is
semilinear of magnitude 10(n2p̄(n))3 (recall that k ≤ n).

4.2.4 Tameness of free products

This section is devoted to the proof of the following proposition.

Proposition 4.17 If G0 and G1 are knapsack tame, then so is G0 ∗G1.

Let G = G0 ∗ G1. Suppose that for i ∈ {0, 1}, the group Gi is generated by
Ai , where w.l.o.g. A−1

i = Ai and let A = A0  A1, which generates G. Recall
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that every g ∈ G can be written uniquely as g = g1 · · · gn where n ≥ 0, gi ∈
(G0 \ {1}) ∪ (G1 \ {1}) for each i ∈ [1, n] and where gj ∈ Gt iff gj+1 ∈ G1−t for
j ∈ [1, n − 1]. We call g cyclically reduced if for some t ∈ {0, 1}, either g1 ∈ Gt

and gn ∈ G1−t or g1, gn ∈ Gt and gng1 �= 1. Consider an exponent equation

h0g
x1
1 h1 · · · gxk

k hk = 1, (16)

of size n, where gi is represented by ui ∈ A∗ for i ∈ [1, k] and hi is represented
by vi ∈ A∗ for i ∈ [0, k]. Then clearly

∑k
i=0 |vi | +∑k

i=1 |ui | ≤ n. Let S ⊆ N
k be

the set of all solutions to (16). Every word w ∈ A∗ has a (possibly empty) unique
factorization into maximal factors from A+

0 ∪ A+
1 , which we call syllables. By ‖w‖,

we denote the number of syllables of w. The word w is reduced if none of its syl-
lables represents 1 (in G0 resp. G1). We define the maps λ, ρ : A+ → A+ (”rotate
left/right”), where for each word w ∈ A+ with its factorization w = w1 · · ·wm into
syllables, we set λ(w) = w2 · · ·wmw1 and ρ(w) = wmw1w2 · · ·wm−1.

Consider a word w ∈ A∗ and suppose w = w1 · · ·wm, m ≥ 0, where for each
i ∈ [1, m], we have wi ∈ A+

j for some j ∈ {0, 1} (we allow that wi, wi+1 ∈ A+
j ). A

cancelation is a subset C ⊆ 2[1,m] that is

– a partition:
⋃

I∈C I = [1, m] and I ∩ J = ∅ for any I, J ∈ C with I �= J .
– consistent: for each I ∈ C, there is an i ∈ {0, 1} such that wj ∈ A+

i for all j ∈ I .
– canceling: if {i1, . . . , i	} ∈ C with i1 < · · · < i	, then wi1 · · ·wi	 represents 1 in

G.
– well-nested: there are no I, J ∈ C with i1, i2 ∈ I and j1, j2 ∈ J such that

i1 < j1 < i2 < j2.
– maximal: if wi, wi+1 ∈ A+

j for j ∈ {0, 1} then there is an I ∈ C with i, i+1 ∈ I .

Since C can be regarded as a hypergraph on [1, m], the elements of C will be called
edges. We have the following simple fact:

Lemma 4.18 Let w = w1 · · ·wm, m ≥ 0, where for each i ∈ [1, m], we have
wi ∈ A+

j for some j ∈ {0, 1}. Then w admits a cancelation if and only if it represents
1 in G.

Proof Assume that w represents 1 in the free product G. The case w = ε is clear;
hence assume that w �= ε. Then there must exist a factor wiwi+1 · · ·wj repre-
senting 1 in G such that (i) wiwi+1 · · ·wj ∈ A+

k for some k ∈ {0, 1}, (ii) either
i = 1 or wi−1 ∈ A+

1−k , and (iii) either j = m or wj+1 ∈ A+
1−k . The word

w′ = w1 · · ·wi−1wj+1 · · ·wm also represents 1 in G. By induction, w′ admits a can-
celation C′. Let C′′ be obtained from C′ by replacing every occurrence of an index
k ≥ i in C′ by k + j − i + 1. Then C = C′′ ∪ {[i, j ]} is a cancelation for w.

For the other direction let us call a partition C ⊆ 2[1,m] a weak cancelation if it is
consistent, canceling and well-nested (but not necessarily maximal). Then we show
by induction that w represents 1, if it has a weak cancelation. So, let C be a weak
cancelation of w �= ε. Then there must exist an interval [i, j ] ∈ C (otherwise C

would be not well-nested). Then wiwi+1 · · ·wj represents 1 in G. Consider the word
w′ = w1 · · ·wi−1wj+1 · · ·wm. Let C′ be obtained from C\{[i, j ]} by replacing every
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occurrence of an index k ≥ j + 1 in C \ {[i, j ]} by k − j + i − 1. Then C′ is a weak
cancelation for w′. Hence, w′ represents 1, which implies that w represents 1.

Of course, when showing that the solution set of (16) has a polynomial magnitude,
we may assume that gi �= 1 for any i ∈ [1, k]. Moreover, we lose no generality by
assuming that all words ui , i ∈ [1, k] and vi , i ∈ [0, k] are reduced. Furthermore, we
may assume that each gi is cyclically reduced. Indeed, if some gi is not cyclically
reduced, we can write gi = f−1gf for some cyclically reduced g and replace hi−1,
gi , and hi by hi−1f

−1, g = fgif
−1, and f hi , respectively. This does not change the

solution set because

hi−1f
−1(fgif

−1)xi f hi = hi−1g
xi

i hi .

Moreover, if we do this replacement for each gi that is not cyclically reduced,
we increase the size of the instance by at most 2|g1| + · · · + 2|gk| ≤ 2n (note that
|g| = |gi |). Applying this argument again, we may even assume that

ui ∈ A+
0 ∪ A+

1 ∪ A+
0 A∗A+

1 ∪ A+
1 A∗A+

0 (17)

for every i ∈ [1, k]. Note that λ and ρ are bijections on words of this form.
Consider a solution (x1, . . . , xk) to (16). Then the word

w = v0u
x1
1 v1 · · · uxk

k vk (18)

represents 1 in G. We factorize each vi , i ∈ [0, k], and each ui , i ∈ [1, k], into its
syllables. These factorizations define a factorization w = w1 · · ·wm and we call this
the block factorization of w. This is the coarsest refinement of the factorization w =
v0u

x1
1 v1 · · · uxk

k vk and of w’s factorization into syllables. The numbers 1, 2, . . . , m are
the blocks of w. We fix this factorization w = w1 · · ·wm for the rest of this section.

Cycles and certified solutions In the representation v0u
x1
1 v1 · · · uxk

k vk = 1 of (16),
the words u1, . . . , uk are called the cycles. If ui ∈ A+

0 ∪ A+
1 , the cycle ui is said to

be simple and otherwise mixed (note that ui = ε cannot happen because gi �= 1).
Let p be a block of w. If wp is contained in some u

xi

i for a cycle ui , then p is a ui-
blocks or block from ui . If wp is contained in some vi , then p is a vi-block or a block
from vi . A certified solution is a pair (x, C), where x is a solution to (16) and C is a
cancelation of the word w as in (18).

Observe that if C ⊆ 2[1,m] is a cancelation for w = w1 · · ·wm then by maximality,
for each simple cycle ui , all ui-blocks are contained in the same edge of C. We will
also need the following two auxiliary lemmas.

Lemma 4.19 Let C be a cancelation. If i, j are two distinct blocks from the same
mixed cycle, then there is no edge I ∈ C with i, j ∈ I .

Proof Suppose there is such an I ∈ C. Furthermore, assume that i and j are chosen
so that |i − j | is minimal and i < j . Since i, j ∈ I , we have wiwj ∈ A+

0 ∪ A+
1
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by consistency of C. Hence, i and j cannot be neighbors. Therefore there is an 	 ∈
[1, m] with i < 	 < j . This means there is a J ∈ C with 	 ∈ J . By well-nestedness,
J ⊆ [i, j ]. Since every edge in C must contain at least two elements, we have |J | ≥ 2
and thus a contradiction to the minimality of |i − j |.

An edge I ∈ C is called standard if |I | = 2 and the two blocks in I are from
mixed cycles. Intuitively, the following lemma tells us that in a cancelation, most
edges are standard.

Lemma 4.20 Let C be a cancelation and ui be a mixed cycle. Then there are at most
n+ 3k + 1 non-standard edges I ∈ C containing a ui-block.

Proof Let N ⊆ C be the set of all non-standard edges I ∈ C that contain a ui-block.
Then, each edge I ∈ N satisfies one of the following.

(i) I contains a block from some simple cycle. There are at most k such I .
(ii) I contains a block from some vj , j ∈ [0, k]. Since ‖v0‖ + · · · + ‖vk‖ ≤ n,

there are at most n such I .
(iii) I contains only blocks from mixed cycles and |I | > 2.

Let M ⊆ C be the set of edges of type (4.2.4). If we can show that |M| ≤ 2k + 1,
then the lemma is proven. Consider the sets

M− = {I ∈ M | I contains a block from a mixed cycle uj , j < i},
M+ = {I ∈ M | I contains a block from a mixed cycle uj , j > i}.

We shall prove that |M− ∩M+| ≤ 1 and that |M+ \M−| ≤ k. By symmetry, this
also means |M− \M+| ≤ k and thus |M| = |M− ∪M+| ≤ 2k + 1.

Suppose I1, I2 ∈ M− ∩M+, I1 �= I2. Let r ∈ I1 and s ∈ I2 such that r and s are
blocks from ui , say with r < s. Since I1 ∈ M+, I1 contains a block r ′ from a mixed
cycle uj , j > i. This means in particular s < r ′. By well-nestedness, this implies
I2 ⊆ [r, r ′], so that I2 cannot contain a block from a mixed cycle u	 with 	 < i,
contradicting I2 ∈ M−. Thus, |M− ∩M+| ≤ 1.

In order to prove |M+ \ M−| ≤ k, we need another concept. For each I ∈ M+,
there is a maximal j ∈ [1, k] such that uj is a mixed cycle and I contains a block
from uj . Let μ(I) = j . We will show μ(I1) �= μ(I2) for all I1, I2 ∈ M+ \ M−,
I1 �= I2. This clearly implies |M+ \M−| ≤ k.

Suppose I1, I2 ∈ M+\M−, I1 �= I2, with μ(I1) = μ(I2). Let j = μ(I1) = μ(I2).
Let r be a block from ui contained in I1 and let r ′ be a block from ui contained in
I2. (Recall that those exist because I1, I2 ∈ M .) Without loss of generality, assume
r < r ′. Moreover, let s be a block from uj contained in I1 and let s′ be a block from
uj contained in I2. Thus, we have r < r ′ < s′.

However, we have |I1| > 2, meaning I1 contains a block p other than r and s.
Since an edge cannot contain two blocks of one mixed cycle (Lemma 4.19), p has
to belong to a mixed cycle ut other than ui and uj . By the maximality of j , we
have i < t < j . This implies, however, r < r ′ < p < s′, which contradicts
well-nestedness.
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Mixed periods From now on, for each i ∈ [1, k], we use ei to denote the i-th unit
vector in N

k , i.e. the vector with 1 in the i-th coordinate and 0 otherwise. A mixed
period is a vector π ∈ N

k of the form ‖uj‖ ·ei+‖ui‖ ·ej , where ui and uj are mixed
cycles. Let P ⊆ N

k be the set of mixed periods. Note that |P| ≤ k2.
We will need a condition that guarantees that a given period π ∈ P can be added

to a solution x to obtain another solution. Suppose we have two blocks p and q for
which we know that if we insert a string f1 to the left of wp and a string f2 to the
right of wq and f1f2 cancels to 1 in G, then the whole word cancels to 1. Which
string would we insert to the left of wp and to the right of wq if we build the solution
x + π?

Suppose p is a ui-block and q is a uj -block. Moreover, let r be the first (left-
most) ui-block and let s be the last (right-most) uj -block. If we add ‖uj‖ · ei to x,

this inserts λp−r (u
‖uj ‖
i ) to the left of wp: Indeed, in the case p = r , we insert u

‖uj ‖
i ;

and when p moves one position to the right, the inserted string is rotated once to the
left. Similarly, if we add ‖ui‖ · ej to x, we insert ρs−q(u

‖ui‖
j ) to the right of wq : This

is clear for q = s and decrementing q means rotating the inserted string to the right.
This motivates the following definition.

Let (x, C) be a certified solution and let ui and uj be mixed cycles with i < j .
Moreover, let r ∈ [1, m] be the left-most ui-block and let s ∈ [1, m] be the right-
most uj -block. Then the mixed period π = ‖uj‖ · ei + ‖ui‖ · ej is compatible with
(x, C) if there are a ui-block p and a uj -block q such that

{p, q} ∈ C and λp−r (u
‖uj ‖
i )ρs−q(u

‖ui‖
j ) represents 1 in G. (19)

With P(x, C), we denote the set of mixed periods that are compatible with (x, C).
One might wonder why we require an edge {p, q} ∈ C. In order to guarantee that

λp−r (u
‖uj ‖
i ) and ρs−q(u

‖ui‖
j ) can cancel, it would be sufficient to merely forbid edges

I ∈ C that intersect [p, q] and contain a block outside of [p − 1, q + 1]. However,
this weaker condition can become false when we insert other mixed periods. Our
stronger condition is preserved, which implies:

Lemma 4.21 Let (x, C) be a certified solution. Then every x ′ ∈ x + P(x, C)⊕ is a
solution.

Proof It suffices to show that if (x, C) is a certified solution and π ∈ P(x, C), then
there is a certified solution (x′, C′) such that x′ = x + π and P(x, C) ⊆ P(x ′, C′).
Suppose π = ‖uj‖·ei+‖ui‖·ej ∈ P(x, C). Without loss of generality, assume i < j .
Let r ∈ [1, m] be the left-most ui-block and s ∈ [1, m] be the right-most uj -block in
w. Since π ∈ P(x, C), there is a ui-block p and a uj -block q such that (19) holds.

As explained above, we can insert λp−r (u
‖uj ‖
i ) on the left of wp and ρs−q(u

‖ui‖
j ) on

the right of wq and thus obtain a word w′ that corresponds to the vector x′ = x + π .
Both inserted words consist of ‖uj‖ · ‖ui‖ many blocks and they cancel to 1,

which means we can construct a cancelation C′ from C as follows. Between the
two sequences of inserted blocks, we add two-element edges so that the left-most
inserted ui-block is connected to the right-most inserted uj -block, and so forth. The



236 Theory Comput Syst (2018) 62:192–246

blocks that existed before are connected by edges as in C. It is clear that then, C′ is a
partition that is consistent, canceling and maximal. Moreover, since there is an edge
{p, q}, the new edges between the inserted blocks do not violate well-nestedness: If
there were a crossing edge, then there would have been one that crosses {p, q}.

It remains to verify P(x, C) ⊆ P(x′, C′). A mixed period π ′ ∈ P(x, C) \ {π} is
clearly contained in P(x ′, C′) too. Hence, it remains to show π ∈ P(x′, C′). This,
however, follows from the fact that instead of the edge {p, q} that witnesses com-
patibility of π with (x, C), we can use its counterpart in C′; let us call this edge
{p′, q ′}: If r ′ is the left-most ui-block in w′ and s′ is the right-most uj -block in w′,
then p′ − r ′ = p − r + ‖ui‖ · ‖uj‖ and s′ − q ′ = s − q + ‖ui‖ · ‖uj‖. This implies

λp−r (u
‖uj ‖
i ) = λp′−r ′(u

‖uj ‖
i ) and ρs−q(u

‖ui‖
j ) = ρs′−q ′(u‖ui‖

j ) which implies that
(19) holds for the edge {p′, q ′}. This completes the proof of the lemma.

We shall need another auxiliary lemma.

Lemma 4.22 Let C be a cancelation for w. Let ui and uj be distinct mixed cycles.
Let D ⊆ C be the set of standard edges I ∈ C that contain one block from ui and
one block from uj . Then the set

B = {p ∈ [1, m] | p is a ui-block and p ∈ I for some I ∈ D}
is an interval.

Proof We prove the case i < j , the other follows by symmetry. Suppose there are
r1, r2 ∈ B such that r1 < r2 and there is no t ∈ B with r1 < t < r2.

Toward a contradiction, suppose r2−r1 > 1. Since r1, r2 ∈ B, there are I1, I2 ∈ D

with r1 ∈ I1 and r2 ∈ I2. Let I1 = {r1, s1} and I2 = {r2, s2}. Then s1 and s2 are uj -
blocks and by well-nestedness, we have r1 < r2 < s2 < s1. Since r2−r1 > 1, there is
a t with r1 < t < r2 and therefore some J ∈ C with t ∈ J . Since |J | ≥ 2, there has to
be a t ′ ∈ J , t ′ �= t . However, well-nestedness dictates that t ′ ∈ [r1, s1]\[r2, s2]. Since
J cannot contain another block from ui (Lemma 4.19), we cannot have t ′ ∈ [r1, r2],
which only leaves t ′ ∈ [s2, s1]. Hence, t ′ is from uj . By the same argument, any
block t ′′ ∈ J \ {t, t ′} must be from ui or uj , contradicting Lemma 4.19. This means
|J | = 2 and thus t ∈ B, in contradiction to the choice of r1 and r2.

Let M ⊆ [1, k] be the set of i ∈ [1, k] such that ui is a mixed cycle. We define a
new norm on vectors x ∈ N

k by setting ‖x‖M = maxi∈M xi .

Lemma 4.23 There is a polynomial q such that the following holds. For every certi-
fied solution (x, C) with ‖x‖M > q(n), there exists a mixed period π ∈ P(x, C) and
a certified solution (x′, C′) such that x′ = x − π and P(x, C) ⊆ P(x′, C′).

Proof We show that the lemma holds if q(n) ≥ (n + 3k + 1) + kn2. (Recall that
k ≤ n.) Let (x, C) be a certified solution with ‖x‖M > q(n). Then there is a mixed
cycle ui such that xi > q(n) and hence u

xi

i consists of more than q(n) blocks. Let
D ⊆ C be the set of all edges I ∈ C that contain a block from ui . Since an edge
can contain at most one block per mixed cycle (Lemma 4.19), we have |D| > q(n).
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Hence, Lemma 4.20 tells us that D contains more than kn2 standard edges. Hence,
there exists a mixed cycle uj such that the set E ⊆ D of standard edges I ∈ D that
consist of one block from ui and one block from uj satisfies |E| > n2. If Bi (resp.,
Bj ) denotes the set of blocks from ui (resp., uj ) contained in some edge I ∈ E,
then each of the sets Bi and Bj has to be an interval (Lemma 4.22) of size more
than n2.

We only deal with the case i < j , the case i > j can be done similarly.
Let us take a subinterval [p′, p] of Bi such that p − p′ = ‖ui‖ · ‖uj‖ ≤ n2.
By well-nestedness and since Bj is an interval, the neighbors (with respect to the
edges from E) of [p′, p] form an interval [q, q ′] ⊆ Bj as well, and we have
p − p′ = q ′ − q = ‖ui‖ · ‖uj‖. Moreover, we have an edge {p − 	, q + 	} ∈ E for
each 	 ∈ [0, p − p′]. In particular, wp′wp′+1 · · ·wp−1wq+1 · · ·wq ′ represents 1 in
G.

Let r be the left-most ui-block and let s be the right-most uj -block. Then, as
shown before the definition of compatibility (p. 44), we have

λp−r (u
‖uj ‖
i ) = wp′wp′+1 · · ·wp−1, ρs−q(u

‖ui‖
j ) = wq+1wq+1 · · ·wq ′ .

Therefore, λp−r (u
‖uj ‖
i )ρs−q(u

‖ui‖
j ) represents 1 in G and {p, q} witnesses compati-

bility of π = ‖uj‖ · ei + ‖ui‖ · ej with (x, C). Hence, π ∈ P(x, C).
Let x ′ = x − π . We remove the factors wp′ · · ·wp−1 and wq+1 · · ·wq ′ from w.

Then, the remaining blocks spell w′ = v0u
x′1
1 v1 · · · ux′k

k vk . Indeed, recall that remov-
ing from a word yt any factor of length 	 · |y| will result in the word yt−	. Moreover,
let C′ be the set of edges that agree with C on the remaining blocks. By the choice
of the removed blocks, it is clear that C′ is a cancelation for w′. Hence, (x′, C′) is a
certified solution.

It remains to verify P(x, C) ⊆ P(x ′, C′). First note that for every mixed cycle
u	, all u	-blocks that remain in w′ change their position relative to the left-most and
the right-most u	-block by a difference that is divisible by ‖u	‖ (if i �= 	 �= j then

these relative positions do not change at all). Note that the expression λp−r (u
‖uj ‖
i ) is

not altered when p − r changes by a difference divisible by ‖ui‖, and an analogous
fact holds for ρs−q(u

‖ui‖
j ). Hence, the edge in C′ that corresponds to the C-edge

{p, q} is a witness for π ∈ P(x′, C′). Moreover, for all other mixed periods π ′ ∈
P(x, C) \ {π} that are witnessed by an edge {t, u} ∈ C, the blocks t and u do not
belong to [p′, p − 1] ∪ [q + 1, q ′]. Therefore, the corresponding edge in C′ exists
and serves as a witness for π ′ ∈ P(x′, C′).

Lemma 4.24 There exists a polynomial q such that the following holds. For every
solution x ∈ N

k , there exists a certified solution (x′, C′) such that ‖x′‖M ≤ q(n) and
x ∈ x ′ + P(x′, C′)⊕.

Proof Let q be the polynomial provided by Lemma 4.23. Since x is a solution, there
is a certified solution (x, C). Repeated application of Lemma 4.23 yields certified
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solutions (x0, C0), . . . , (xm, Cm) and mixed periods π1, . . . , πm such that (x0, C0) =
(x, C), πi ∈ P(xi−1, Ci−1) ⊆ P(xi, Ci), xi = xi−1 − πi , and ‖xm‖M ≤ q(n). In
particular, P(xm, Cm) contains each πi and hence

x = xm + π1 + · · · + πm ∈ xm + P(xm, Cm)⊕.

Thus, (x′, C′) = (xm, Cm) is the desired certified solution.

We are now ready to prove Proposition 4.17 and thus Theorem 4.10.

Proof of Proposition 4.17. Suppose that p0 and p1 are the polynomials guaranteed
by the knapsack tameness of G0 and G1, respectively. Recall that S ⊆ N

k is the set of
solutions to (16). We prove that there exists a polynomial p such that for every x ∈ S

there is a semilinear set S′ ⊆ N
k of magnitude at most p(n) such that x ∈ S′ ⊆ S.

This clearly implies that S has magnitude at most p(n). First, we apply Lemma 4.24.
It yields a polynomial q and a certified solution (x′, C′) with ‖x′‖M ≤ q(n) such that

x ∈ x′ + P(x′, C′)⊕. Let w′ = v0u
x′1
1 v1 · · · ux′k

k vk and consider w′ decomposed into
blocks as we did above with w.

Let us briefly describe the idea of the remaining steps to construct S′. The semi-
linear set x′ + P(x′, C′) already satisfies x ∈ x′ + P(x′, C′) ⊆ S. The only entries
in the semilinear representation for x′ +P(x′, C′) that are not polynomially bounded
yet are the coordinates of x′ that correspond to simple cycles. Therefore, we consider
the set T ⊆ [1, k] of all i ∈ [1, k] for which the cycle ui is simple. In order to reduce
the entries at these coordinates as well, we partition T according to which edge of
C′ the blocks from a cycle ui , i ∈ T , belong to. (Recall that by maximality of C′, all
the blocks of a simple cycle belong to the same edge.) Then, all blocks that belong to
the same edge (i) belong to Gs for some s ∈ {0, 1} and (ii) yield 1 in Gs . Therefore,
these blocks form a solution to a knapsack instance over Gs , to which we can apply
knapsack tameness of Gs .

Let us make this idea precise. Since C′ is maximal, for each i ∈ T , all ui-blocks
are contained in one edge Ii ∈ C′. Note that it is allowed that one edge contains
the blocks of multiple simple cycles. We partition T into sets T = T1  · · ·  Tt so
that i ∈ T and j ∈ T belong to the same part if and only if the ui-blocks and the
uj -blocks belong to the same edge of C, i.e. Ii = Ij .

For a moment, let us fix an 	 ∈ [1, t] and let I ∈ C′ be the edge containing all ui-
blocks for all the i ∈ T	. Moreover, let T	 = {i1, . . . , ir }. The words v̄j for j ∈ [0, r]
will collect those blocks that belong to I but are not uis -blocks for any s ∈ [1, r].
Formally:

1. v̄0 consists of all blocks that belong to I that are to the left of all ui1 -blocks.
2. Similarly, v̄r is the concatenation of all blocks belonging to I that are to the right

of all uir -blocks.
3. Finally, for j ∈ [1, r − 1], v̄j consists of all blocks that belong to I and are to

the right of all uij -blocks and to the left of all uij+1 -blocks.
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By consistency of C′, for some s ∈ {0, 1}, all the words v̄j for j ∈ [0, r] and the
words uij for j ∈ [1, r] belong to A∗

s and thus represent elements of Gs . Since Gs is
knapsack tame, the set

S	 = {z ∈ N
k | v̄0u

zi1
i1

v̄1u
zi2
i2

v̄2 · · · uzir

ir
v̄r represents 1 in Gs , zj = 0 for j /∈ T	}

has magnitude at most ps(n). Consider the vector y ∈ N
k with yi = 0 for i ∈ T

and yi = x′i for i ∈ [1, k] \ T (i.e. when ui is a mixed cycle). We claim that S′ =
y + S1 + · · · St + P(x′, C′)⊕ has magnitude at most q(n)+ p0(n)+ p1(n)+ n and
satisfies x ∈ S′ ⊆ S.

First, since y and the members of S1, . . . , St are non-zero on pairwise disjoint
coordinates, the magnitude of y + S1 + · · · + St is the maximum of ‖y‖∞ and the
maximal magnitude of S1, . . . , St . Hence, it is bounded by q(n) + p0(n) + p1(n).
The summand P(x′, C′)⊕ contributes only periods, and their magnitude is bounded
by n (recall that they are mixed periods). Thus, the magnitude of S′ is at most p(n) =
q(n)+ p0(n)+ p1(n)+ n.

The canceling property of (x′, C′) tells us that x′ − y is contained in the sum
S1 + · · · + St . By the choice of (x′, C′), we have x ∈ x′ + P(x′, C′)⊕. Together,
this means x ∈ S′. Hence, it remains to show S′ ⊆ S. To this end, consider a vector
x′′ ∈ y + S1 + · · · + St . It differs from x′ only in the exponents at simple cycles.
Therefore, we can apply essentially the same cancelation to x′′ as to x′: we just need
to adjust the edges containing the blocks of simple cycles. It is therefore clear that the
resulting cancelation C′′ has the same compatible mixed periods as C′: P(x′′, C′′) =
P(x′, C′). Thus, by Lemma 4.21, we have x′′ + P(x′, C′)⊕ ⊆ S. This proves S′ =
y + S1 + · · · + St + P(x′, C′)⊕ ⊆ S and hence Proposition 4.17.

4.2.5 Proof of Theorem 4.6

Let us first consider knapsack. According to Proposition 4.7, it suffices to provide a
logspace reduction from the knapsack problem over G to the membership problem
for acyclic NFA over G. Suppose we have an instance

h0g
x1
1 h1 · · · gxk

k hk = 1

of the knapsack problem over G of size n. Moreover, let hi be represented by vi ∈ A∗
for each i ∈ [0, k] and let gi be represented by ui ∈ A∗ for i ∈ [1, k].

By Theorem 4.1, there is a polynomial p such that the above instance has a solu-
tion if and only if it has a solution x ∈ N

k with ‖x‖∞ ≤ p(n). We construct an acyclic
NFA A = (Q, A, �, q0, qf ) as follows. It has the state set Q = [0, k+1]×[0, p(n)]
and the following transitions. From (0, 0), there is one transition labeled v0 to (1, 0).
For each i ∈ [1, k] and j ∈ [0, p(n) − 1], there are two transitions from (i, j) to
(i, j + 1); one labeled by ui and one labeled by ε. Furthermore, there is a transi-
tion from (i, p(n)) to (i + 1, 0) labeled vi for each i ∈ [1, k]. The initial state is
q0 = (0, 0) and the final state is qf = (k + 1, 0).

It is clear that A accepts a word that represents 1 if and only if the exponent equation
has a solution. Finally, the reduction can clearly be carried out in logarithmic space.
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For subset sum the same reduction as above works but the polynomial bound on
solutions is for free.

4.3 LogCFL-completeness

In this section we complement Theorem 4.6 with a lower bound.

Theorem 4.25 If (A, I) is a transitive forest and not a complete graph, then
knapsack and subset sum for G(A, I) are LogCFL-complete.

By Theorem 4.6 it suffices to show that knapsack and subset sum for G(A, I) are
LogCFL-hard if (A, I) is not a complete graph. If (A, I) is not complete, then (A, I)

contains two non-adjacent vertices and thus G(A, I) contains an isomorphic copy of
F2, the free group of rank two. Hence, we will show that knapsack and subset sum
for F2 are LogCFL-hard:

Proposition 4.26 For F2, knapsack and subset sum are LogCFL-hard.

Let {a, b} be a generating set for F2. Let θ : {a, b, a−1, b−1}∗ → F2 be the
morphism that maps a word w to the group element represented by w.

A valence automaton over a group G is a tuple A = (Q, �, �, q0, qf ) where Q,
�, q0, qf are as in a finite automaton and � is a finite subset of Q× �∗ ×G×Q.
The language accepted by A is denoted L(A) and consists of all words w1 · · ·wn

such that there is a computation

such that (pi−1, wi, gi, pi) ∈ � for i ∈ [1, n], p0 = q0, pn = qf , and g1 · · · gn =
1 in G. We call this computation also an accepting run of A for w (of length n).
Note that we allow ε-transitions of the form (p, ε, g, q) ∈ �. This implies that an
accepting run for a word w can be of length greater than |w|.

An analysis of a proof (in this case [30]) of the Chomsky-Schützenberger theorem
yields:

Lemma 4.27 For every language L ⊆ �∗ the following statements are equivalent:

(i) L is context-free.
(ii) There is a valence automaton A over F2 such that L = L(A).

(iii) There is a valence automaton A over F2 and a constant c ∈ N such that
L = L(A) and for every w ∈ L there exists an accepting run of A for w of
length at most c · |w|.

Proof The equivalence of (i) and (ii) is well known (see [30]) and the implication
from (iii) to (ii) is trivial. We show that (i) implies (iii). For this, we shall use the
concept of rational transductions. If � and � are alphabets, subsets T ⊆ �∗ ×�∗ are
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called transductions. Given a language L ⊆ �∗ and a transduction T ⊆ �∗ × �∗,
we define

T L = {u ∈ �∗ | (u, v) ∈ T for some v ∈ L}.
A finite-state transducer is a tuple A = (Q, �, �, �, q0, qf ), where Q is a finite
set of states, � is its input alphabet, � is its output alphabet, � is a finite subset of
Q × �∗ × �∗ × Q, q0 ∈ Q is its initial state, and qf ∈ Q is its final state. The
elements of � are called transitions. We say that a pair (u, v) ∈ �∗ ×�∗ is accepted
by A if there is a sequence

(p0, u1, v1, p1), (p1, u2, v2, p2), . . . , (pn−1, un, vn, pn)

of transitions where n ≥ 1, p0 = q0, pn = qf , u = u1 · · · un, and v = v1 · · · vn.
The set of all pairs (u, v) ∈ �∗ × �∗ that are accepted by A is denoted by T (A).
A transduction T ⊆ �∗ × �∗ is called rational if there is a finite-state transducer A
with T (A) = T .

Let W2 ⊆ {a, b, a−1, b−1}∗ be the word problem of F2, i.e.

W2 = {w ∈ {a, b, a−1, b−1}∗ | θ(w) = 1}.
For languages K ⊆ �∗ and L ⊆ �∗, we write K � L if there is a rational

transduction T ⊆ �∗ ×�∗ and a constant c such that K = T L and for each u ∈ K ,
there is a v ∈ L with |v| ≤ c|u| and (u, v) ∈ T . Observe that the relation � is
transitive, meaning that it suffices to show L � W2 for every context-free language
L.

Let D2 be the one-sided Dyck language over two pairs of parentheses, in other
words: D2 is the smallest language D2 ⊆ {x, x̄, y, ȳ}∗ such that ε ∈ D2 and
whenever uv ∈ D2, we also have uwv ∈ D2 for w ∈ {xx̄, yȳ}.

It is easy to see that L � D2 for every context-free language L. Indeed, an ε-free
pushdown automaton (which exists for every context-free language [22]) for L can
be converted into a transducer witnessing L � D2. Therefore, it remains to show
that D2 � W2.

Let F3 be the free group of rank 3 and let {a, b, #} be a free generating set for F3.
As above, let

W3 = {w ∈ {a, b, #, a−1, b−1, #−1}∗ | w represents 1 in F3}
be the word problem of F3. Since F3 can be embedded into F2 [41, Proposition 3.1],
we clearly have W3 � W2. It therefore suffices to show D2 � W3.

For this, we use a construction of Kambites [30]. He proves that if A is the trans-
ducer in Fig. 2 and T = T (A), then D2 = T W3. Thus, for every u ∈ D2, we have
(u, v) ∈ T for some v ∈ W3. An inspection of A yields that |v| = 2|u| + |v|#−1 and
|v|# = |u|. Since v ∈ W3, we have |v|#−1 = |v|# and thus |v| = 3|u|. Hence, the

Fig. 2 Transducer used in the
proof of Lemma 4.27
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transduction T witnesses D2 � W3. We have thus shown L � D2 � W3 � W2
and hence the lemma.

Given w, it is easy to convert the valence automaton A from Lemma 4.27 into an
acyclic automaton that exhausts all computations of A of length c · |w|. This yields
the following.

Proposition 4.28 For F2, the membership problem for acyclic NFA is LogCFL-hard.

Proof Fix a context-free language L ⊆ �∗ with a LogCFL-complete membership
problem; such languages exist [21]. Fix a valence automaton A = (Q, �, �, q0, qf )

over F2 and a constant c ∈ N such that the statement of Lemma 4.27(iii) holds for
L, A, and c. Consider a word w ∈ �∗. From w we construct an acyclic automaton
B over the input alphabet {a, b, a−1, b−1} such that 1 ∈ θ(L(B)) if and only if
w ∈ L. Let m = |w|, w = a1a2 · · · am and n = c · m. The set of states of B is
[0, m] × [0, n] ×Q. The transitions of B are defined as follows:

– ∈ � for all i ∈ [1, m], j ∈ [1, n],
and x ∈ {a, b, a−1, b−1}∗

– ∈ � for all i ∈ [0, m], j ∈ [1, n], and
x ∈ {a, b, a−1, b−1}∗

The initial state of B is (0, 0, q0) and all states (m, j, qf ) with j ∈ [0, n] are final
in B. It is then straightforward to show that 1 ∈ θ(L(B)) if and only if w ∈ L. The
intuitive idea is that in a state of B we store in the first component the current position
in the word w. In this way we enforce the simulation of a run of A on input w. In the
second component of the state we store the total number of simulated A-transitions.
In this way we make B acyclic. Finally, the third state component of B stores the
current A-state.

Proof of Proposition 4.26. Let A = (Q, {a, b, a−1, b−1}, �, q0, qf ) be an acyclic
automaton. We construct words w, w1, . . . , wm ∈ {a, b, a−1, b−1} such that the
following three statements are equivalent:

(i) 1 ∈ θ(L(A)).
(ii) θ(w) ∈ θ(w∗

1w∗
2 · · ·w∗

m).
(iii) θ(w) ∈ θ(w

e1
1 w

e2
2 · · ·wem

m ) for some e1, e2, . . . , em ∈ {0, 1}.
W.l.o.g. assume that Q = {1, . . . , n}, where 1 is the initial state and n is the unique
final state of A.

Let αi = aiba−i for i ∈ [1, n + 2]. It is well known that the αi generate a free
subgroup of rank n+ 2 in F2 [41, Proposition 3.1]. Define the embedding ϕ : F2 →
F2 by ϕ(a) = αn+1 and ϕ(b) = αn+2. For a transition t = (p, w, q) ∈ � let
t̃ = αpϕ(w)α−1

q . Let � = {t1, . . . , tm} such that ti = (p, a, q) and tj = (q, b, r)

implies i < j . Since A is acyclic, such an enumeration must exist. Together with the
fact that the αi generate a free group, it follows that the following three statements
are equivalent:
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(i) 1 ∈ θ(L(A)).
(ii) θ(α1α

−1
n ) ∈ θ(t̃∗1 t̃∗2 · · · t̃∗m).

(iii) θ(α1α
−1
n ) ∈ θ(t̃

e1
1 t̃

e2
2 · · · t̃ em

m ) for some e1, e2, . . . , em ∈ {0, 1}.
This shows the proposition.

4.4 TC0-completeness

We finally show that subset sum and knapsack for free abelian groups Zm are com-
plete for the circuit complexity class TC0. Note that Zm is isomorphic to the graph
group G(A, I) where (A, I) is the complete graph on m nodes. The proof of the
following result is a simple combination of known results from [17, 46].

Theorem 4.29 For every fixed m ≥ 1, knapsack and subset sum for the free abelian
group Z

m are complete for TC0. Hence, knapsack and subset sum for G(A, I) are
complete for TC0 if (A, I) is a non-empty complete graph.

Proof Hardness for TC0 follows from the well-known fact that the word problem for
Z is TC0-complete: The word problem for Z is exactly the membership problem for
the language Eq = {w ∈ {a, b}∗ | |w|a = |w|b} (take b = a−1). The canonical TC0-
complete language is Maj = {w ∈ {a, b}∗ | |w|a ≥ |w|b} [50], which is equivalent
(with respect to AC0-Turing reductions) to Eq: (i) w ∈ Eq if and only if w ∈ Maj
and w′ ∈ Maj, where w′ is obtained by swapping the letters a and b in w, and (ii)
w ∈ Maj if and only if

∧|w|
i=0 wbi ∈ Eq.

Let us now show that knapsack for Zm belongs to TC0. Let A = {a1, . . . , am} be
the generating set for Zm. Given a word w ∈ (A∪A−1)∗ we can compute the vector
(b1, . . . , bm) ∈ Z

m with bi := |w|ai
− |w|

a−1
i

represented in unary notation in TC0

(counting the number of occurrences of a symbol in a string and subtraction can be
done in TC0). Hence, we can transform in TC0 an instance of knapsack for Zm into
a system of equations Ax = b, where A ∈ Z

m×n is an integer matrix with unary
encoded entries, b ∈ Z

m is an integer vector with unary encoded entries, and x is a
vector of n variables ranging over N. Let t = n(ma)2m+1, where a is the maximal
absolute value of an entry in (A | b). By [46] the system Ax = b has a solution if
and only if it has a solution with all entries of x from the interval [0, t]. Since m is a
constant, the unary encoding of the number t can be computed in TC0 (iterated mul-
tiplication can be done in TC0). However, the question whether the system Ax = b

has a solution from [0, t]n is an instance of the m-integer-linear-programming prob-
lem from [17], which was shown to be in TC0 in [17]. For subset sum for Zm one can
use the same argument with t = 1.

5 Open Problems

The following two open problems were mentioned earlier:
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– Is the subset sum problem for the graph group G(P4) NP-hard? The problem
belongs to NP.

– Is the class of polynomially bounded knapsack groups (i.e. those where every
solvable knapsack instance has a solution where all components are bounded
polynomially in the size of the knapsack instance) closed under direct products
with Z? See the remarks at the beginning of Section 4.2.2.

An important class of groups with open decidability status of the knapsack problem
is that of braid groups.

In [33], it is shown that knapsack is decidable for every co-context-free group. A
group is co-context-free if the set of all words that do not represent the group identity
is a context-free language. The algorithm from [33] has an exponential running time
and it is open whether for every co-context-free group the knapsack problem belongs
to NP.
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