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Abstract The state complexity of a regular language is the number of states in a min-
imal deterministic finite automaton accepting the language. The syntactic complexity
of a regular language is the cardinality of its syntactic semigroup. The syntactic com-
plexity of a subclass of regular languages is the worst-case syntactic complexity taken
as a function of the state complexity n of languages in that class. We prove that n” !,
n" ' 4+ n—1,and n* 72 + (n — 2)2"2 + 1 are tight upper bounds on the syntactic
complexities of right ideals and prefix-closed languages, left ideals and suffix-closed
languages, and two-sided ideals and factor-closed languages, respectively. Moreover,
we show that the transition semigroups meeting the upper bounds for all three types
of ideals are unique, and the numbers of generators (4, 5, and 6, respectively) cannot
be reduced.
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1 Introduction

Formal definitions of the concepts introduced in this section are given in Section 2.
For now we assume that the reader is familiar with basic properties of regular
languages and finite automata as covered in [27, 32], for example.

There are two fundamental congruence relations in the theory of regular lan-
guages: the Nerode (right) congruence [25], and the Myhill congruence [24]. In both
cases, a language is regular if and only if it is a union of congruence classes of a
congruence of finite index. The Nerode congruence leads to the definitions of left
quotients of a language and the minimal deterministic finite automaton (DFA) rec-
ognizing the language, and the Myhill congruence, to the definitions of the syntactic
semigroup of the language.

The state complexity of a language is the number of states in a minimal DFA rec-
ognizing the language. This concept has been studied extensively; for surveys and
references see [2, 33]. The syntactic complexity of a regular language is the cardinal-
ity of its syntactic semigroup, which is isomorphic to the transition semigroup of a
minimal DFA recognizing the language [29], where the transition semigroup is the
semigroup of transformations of the set of states of the DFA induced by non-empty
words.

Syntactic complexity does not refine state complexity, for there exist languages
with the same syntactic complexity but different state complexities. However, it often
helps to distinguish among languages with the same state complexity. For example,
the DFAs in Fig. 1 all have the same alphabet, are all minimal, and all have state
complexity 3. However, the syntactic complexity of D is 3, that of D5 is 9, and that
of D3 is 27.

The problem we study in this paper is the following: Given a language belonging
to a subclass of the class of regular languages — for example, the subclass of finite
languages or prefix-free languages (prefix-codes) — what is the maximal size of the
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Fig. 1 DFAs with various syntactic complexities

@ Springer



Theory Comput Syst (2018) 62:1175-1202 1177

syntactic semigroup of that language? Equivalently, given a minimal DFA of a lan-
guage in the subclass, what is the maximal size of the transition semigroup of the
DFA? A secondary problem is to find the minimal size of a set of generators for the
maximal semigroup.

Syntactic complexity has been studied in several subclasses of regular languages
other than ideals: prefix-, suffix-, bifix-, and factor-free languages [8, 12]; star-free
languages [7, 10]; R- and J-trivial languages [6]; finite/cofinite and reverse definite
languages [7]. This problem can be quite challenging, depending on the subclass;
in the present case it is easy for right ideals but much more difficult for left- and
two-sided ideals (defined below).

As syntactic complexity bounds the maximal size of the transition semigroup,
it provides a natural bound on the time and space complexities of algorithms
dealing with transition semigroups. For example, a simple algorithm determining
whether the language of a given minimal DFA is star-free [23] requires the enumer-
ation of all transformations and checking whether they do not contain non-trivial
cycles. A language is star-free if it can be generated from finite languages by using
only Boolean operations and product (concatenation), but not star; equivalently, its
syntactic semigroup is group-free, that is, has no non-trivial subgroups.

Maximal transition semigroups also play an important role in the study of most
complex languages [3] belonging to a given subclass. These are languages that meet
all the upper bounds on the state complexities of Boolean operations, product, star,
and reversal, have maximal syntactic semigroups and most complex atoms [13].

In contrast to the syntactic monoid of the language, the syntactic semigroup may
or may not contain the neutral element (the identity transformation). The presence of
letters acting as identity is often important in the case of state complexity of binary
operations. Moreover, the syntactic semigroup is more suitable to characterize some
classes of languages, which have a description in terms of semigroups. For example,
in the class of (co)finite languages all transformations must admit a certain linear
order of the states [15], and the identity transformation cannot be present; the latter
condition would not be distinguished by the syntactic monoid.

In this paper we study the syntactic complexities of right ideals (satisfying the
equation L = L¥%*), left ideals (satisfying L = ¥*L), and two-sided ideals (satisfy-
ing L = X*LX¥*). Ideals are fundamental objects in semigroup theory. They appear
in the theoretical computer science literature in 1965 [26] and continue to be of inter-
est. Ideal languages are special cases of convex languages (see e.g. [9]), and they
are complements of prefix-, suffix-, factor-, and subword-closed languages. Besides
being of theoretical interest, ideals also play a role in algorithms for pattern match-
ing. For this application, a fext is represented by a word w over some alphabet X. A
pattern is a language L over X. An occurrence of a pattern represented by L in text w
is a triple (u, x, v) such that w = uxv and x is in L. Searching text w for words in L
is equivalent to looking for prefixes of w that belong to the language X* L, which is
the left ideal generated by L, or looking for factors of w that belong to X*LX* [16].

The state complexity of operations on the classes of ideal languages was studied
by Brzozowski, Jirdskova and Li [4]. The same problem for the classes of prefix-,
suffix-, factor-, and subword-closed languages was studied by Han and K. Salo-
maa [17], Han, K. Salomaa, and Wood [18], and Brzozowski, Jiraskova and Zou [5].
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We refer the reader to these papers for a discussion of past work on this topic and
additional references.

The set of all n"* transformations of a set Q,, of n elements is a monoid under com-
position of transformations, with identity as the unit element. In 1970, Maslov [22]
dealt with the generators of the semigroup of all transformations in the setting of
finite automata. Holzer and Konig [19], and independently Krawetz, Lawrence, and
Shallit [20] studied the syntactic complexity of unary and binary regular languages.
Recently, syntactic complexity has been studied in several subclasses of regular lan-
guages other than ideals: prefix-, suffix-, bifix-, and factor-free languages [8, 12];
star-free languages [7, 10]; R- and J-trivial languages [6].

We define our terminology and notation in Section 2, and give some basic prop-
erties of syntactic complexity in Section 3. The syntactic complexities of right, left,
and two-sided ideals are treated in Sections 4-6, and Section 7 concludes the paper.
As mentioned above, closed languages are complements of ideal languages. Since
syntactic complexity is preserved under complementation, our proofs are for ideals
only. The syntactic complexity of all-sided ideals remains open.

In the proof for the upper bounds for left and two-sided ideals we use the method
of injective function, which is generally applicable for other subclasses of regular
languages (see [12] for suffix-free and [31] for bifix-free languages). The proofs
presented here are the first that apply this method to syntactic complexity.

A part of the results in this paper previously appeared in conference proceedings:
In 2011 in [14] syntactic complexity of right ideals was established and lower bounds
for the classes of left and two-sided ideals were presented. In 2014 in [11] incomplete
proofs of the upper bounds for syntactic complexity of left and two-sided ideals were
presented.

2 Preliminaries

If X is an alphabet (a non-empty finite set), then X* is the free monoid generated by
%, and T 7 is the free semigroup generated by X. A word is any element of £*, and
the empty word is €. The length of a word w € £* is |w|. A language over X is any
subset of X*.

If w = uxv for some u,v,x € X* then u is a prefix of w, v is a suffix of
w, and x is a factor of w. A prefix or suffix of w is also a factor of w. If w =
ULVIUVY - - - Uk Vg Uiy 1, Where the u; and v; are in X*, then vyvy - - - vg 1S a subword
of w. A language L is prefix-closed if w € L implies that every prefix of w is
also in L. In an analogous way, we define suffix-closed, factor-closed, and subword-
closed. We refer to all four types as closed languages.

The shuffle v v of two words u, v € L* is defined as follows:

Wi v = {uiv] - URUE | U= UL U,V = UL Uk, UL, e, U, VT, e, U € X7 H
The shuffle of two languages K and L is defined by

KuwlL= U uL .
ueK,veL
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A language L C X* is a right ideal (respectively, left ideal, two-sided ideal, all-
sided ideal) if it is non-empty and satisfies L = LX* (respectively, L = X*L,
L = X*LY*, L = X*w L). We refer to all four of these types as ideal languages or
simply ideals.

Proposition 1 Suppose L is a language over ©* and L # ¥*. Let L = ¥* \ L be
the complement of L. Then the following hold:

— L is prefix-closed if and only zf_z is a right ideal.
— L is suffix-closed if and only if L is a left ideal.
— L is factor-closed if and only if L is a two-sided ideal.

Proof The claim for factor-closed languages was proved in [21]. The proof for
prefix-closed languages [1] parallels the proof in [21], and that for suffix-closed
languages follows by the dual argument. U

A transformation of a set Q,, of n elements is a mapping of Q,, into itself, whereas
a permutation of Q, is a mapping of Q,, onto itself. In this paper we consider only
transformations of finite sets, and we assume without loss of generality that Q, =
{0, 1,...,n — 1}. An arbitrary transformation has the form

t_(O 1 -~-n—2n—l)

N q0 91 - 4n-2 {4n-1 ’

where gy € O, for 0 < k < n — 1. The image of element ¢ under transformation
t is denoted by gt. The identity transformation 1 maps each element to itself. For
k > 2, a transformation (permutation) s of a set P = {po, p1,..., pk—1} € Qnp isa
k-cycle if pos = p1, p1s = p2, ..., Pk—25 = Pk—1, Pk—1S = po. If a transformation
ton Q, actson P C O, like a k-cycle then ¢ is said to have a k-cycle. A k-cycle is
denoted by (po, p1, - .., pk—1) When it is viewed as a transformation of P.If ¢ is a
transformation of Q,, has a k-cycle (po, p1, ..., pk—1) of P, and acts as identity on
0, \ P, then we denote ¢ also by (po, p1, ..., pk—1)- A 2-cycle (po, p1) is called a
transposition. A transformation is constant if it maps all states to a single state g; it
is denoted by (Q — ¢). A transformation that maps a single state p to g and keeps
O\ {p} unchanged is denoted by (p — ¢). A transformation mapping p to g, for
p=0,...,n—1is sometimes denoted by [qo, ..., gn—1]

The following facts are well-known [28, 30]:

Proposition 2 The complete transformation monoid T, of size n" can be gener-
ated by any cyclic permutation of n elements together with a transposition of any
two elements adjacent in the cyclic permutation, and a singular (non-invertible)
transformation of rank (image size) n — 1. In particular, T, can be generated by
0,1,...,n—1), (0, 1) and (n—1 — 0). Moreover, T, cannot be generated by fewer
than three generators for n > 3.

Remark 1 Let T, be a transformation semigroup that requires at least g generators.
Suppose T, contains 7, as a subsemigroup. If for every ¢ € T),, no transformation
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from T, \ 7, can be used to generate ¢, then any set of generators of 7}, contains at
least g generators from 7).

Proof Let G be a set of generators of T,,. Let ¢ € T,. Since t € T,, it is generated by
G. Since generators from 7}, \ 7, cannot be used, 7 is generated by generators from
G NT,. Thus G N T, generates T, and so G contains at least g generators. O

An equivalence relation ~ on X* is a right congruence if, for all x,y € X%,
x ~ y&xv ~ yvu, forallv € T* It is a congruence if x ~ y & uxv ~
uyv, forallu,v € T*.

For any language L € X*, define the Nerode right congruence [25] ~, of L by

x~pyifandonlyifxv € L & yv € L, forallv € &%, (1)

The left quotient, or simply quotient, of a language L by a word w is the language
w™ 'L = {x € ¥* | wx € L}. Evidently, x 'L = y~!L if and only if x ~ y. Thus,
each equivalence class of this right congruence corresponds to a distinct quotient of
L.Let K = {Kp, ..., K,_1} be the set of quotients of a regular language L; by
convention, we let Ko = L = ¢~ L. The number of distinct quotients of L is the
quotient complexity k(L) of L.

The Myhill congruence [24] =, of L is defined by

x~yp yifandonly ifuxv € L < uyv € L forallu,v € &*. 2)

This congruence is also known as the syntactic congruence of L. The semigroup
%1/~ of equivalence classes of the relation = is the syntactic semigroup of L,
and X*/~ is the syntactic monoid of L. The syntactic complexity o (L) of L is the
cardinality of its syntactic semigroup.

A deterministic finite automaton (DFA) is a quintuple D = (Q, %, 8, qo, F),
where Q is a finite, non-empty set of states, ¥ is an alphabet, §: Q x ¥ — Q
is the transition function, qo € Q is the initial state, and F C Q is the set of
final states. As usual, § is extended to a function from Q x X* to Q. By the lan-
guage of a state q of D we mean the language K, accepted by the automaton
(0, %,8,q, F). States p and g are equivalent if K, = K. A state q is reachable if
8(qo, w) = g for some w € ¥*. A DFA is minimal if every state is reachable and no
two states are equivalent. This implies that the number of states of a minimal DFA is
minimal.

Each word w of ¥* induces a transformation ¢ as follows: gt = &(g, w) for
all ¢ € Q. The fact that w induces transformation ¢ is denoted by w: ¢. The
transition semigroup of a DFA is the set of transformations ¢ +— §(g, w) for
all g € Q, w € 7T induced by words of £T on the set of states. The transi-
tion semigroup of the quotient DFA of L is isomorphic to the syntactic semigroup
of L [29].

The quotient automaton of L is D = (K, X, 8, L, F), where §(K,, a) = a’qu,
and F' = {K,; | ¢ € K;}. Since the number of distinct quotients of L is precisely
the number of states in the quotient automaton, the quotient automaton is always
minimal, and so quotient complexity is the same as state complexity.
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3 Syntactic Complexity of Languages with Special Quotients
We now present some basic properties of syntactic complexity.

Proposition 3 Forany L C X* withk(L) =n > 1, we haven — 1 <o (L) < n".

Proof Let D = (K, X, §, L, F) be the quotient automaton of L. Since every state
other than L has to be reachable from the initial state L by a non-empty word, there
must be at least n — 1 transformations. If £ = {a} and L = " 'a*, then k(L) = n,
and o (L) = n — 1; so the lower bound n — 1 is achievable. The upper bound is n",
and by Proposition 2 this upper bound is achievable if |X| > 3. The upper bound is
reachable with | 3| = 2 for n = 2 by the language (b U aa U ab)*, and with |[X| = 1
for n = 1 by the language X*. O

If one of the quotients of L is @ (respectively, {¢}, %, >1), then we say that
L has @ (respectively, {¢}, £*, £1). A quotient w™'L of a language L is uniquely
reachable [2] if x 'L = w™'L implies that x = w. If (wa)~'L is uniquely reach-
able for a € X, then so is w—'L. Thus, if L has a uniquely reachable quotient,
then L itself is uniquely reachable by ¢, i.e., a minimal automaton of L is non--
returning [17].

Theorem 1 (Special Quotients) Let L C X* and let k(L) =n > 1.

If L has @ or X%, then o (L) < n 1

If L has {€} or ©%, then o (L) < n" 2.

If L is uniquely reachable, then o (L) < (n — 1)".

If w™'L is uniquely reachable by w € * with 0 < |w| < n — 1, then o (L) <
lwl+ (n —1—[w)".

L=

Moreover, all the bounds shown in Table 1 hold.

Table 1 Upper bounds on syntactic complexity for languages with special quotients

[%) z* {e} hoha o(L) < if also L is ur ifalsoa™ 'L is ur
Vi n! (n -1t 1+ @—3)"!
J il (n— 1y 14 -3y
v v n"=? (n—1)n~2 1+ (n —4)"2
J J n=2 (n— 12 L+ —4"2
v v "= (n—1"? L+ —4"?
v v v n"=3 (n—13 1+ (n—5"3
v Vi v n"=3 (n—1r=3 1+ @n—35"3
v Vi NV v n4 (n—1Dn—* L+ (n—6"*

The abbreviation “ur” stands for “uniquely reachable”. The a in the last column is in ¥
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Proof Suppose that L € ¥*, n > 1,and « (L) = n.

1. Since a='@ = ¢ for all ¢ € %, there are only n — 1 states in the quotient
automaton with which one can distinguish two transformations. Hence there are
at most n"~! transformations. If L has *, then ¢~ !T* = T*, foralla € X,
and the same argument applies.

2. Since a~'{e} = @ for all ¢ € X, a language L has @ if L has {¢}. Now there
are two states that do not contribute to distinguishing among different trans-
formations. Dually, ¢!+ = X* for all ¢ € X, and the same argument
applies.

3. If L is uniquely reachable then w—'L = L implies w = &. Thus L does not
appear in the image of any transformation by a word in £, and there remain
only n — 1 choices for each of the n states.

4. If w™!L is uniquely reachable, then so is x ~! L for every prefix x of w. Hence for
each prefix x of w, x 'L appears only in one transformation, and there are |w|
such transformations. All the other transformations map every quotient x "' L to
y~!L, where y is not a prefix of w. Therefore there can be at most (n — 1 — |w|)"
other transformations.

The remaining entries in Table 1 are easily verified: every transformation fixes ¢, X*,
maps {¢} to @, and maps T to X*, so these quotients are removed from counting
possible mappings for a quotient. O

4 Right Ideals and Prefix-Closed Languages

In this section we prove that the syntactic complexity of right ideals is n”*~!. First we
define a witness DFA that meets this bound.

Definition 1 (Witness: Right Ideals) Forn > 3,let W, = (Q,, X, §w, 0, {n—1}),
be the DFA in which ¥ = {a, b,c,d},a: (0,...,n—=2),b: (0,1),c: (n —2 — 0),
andd: (n —2 — n — 1). For n = 3 inputs a and b induce the same transformation;
hence ¥ = {a, c, d} suffices. Furthermore, let W, = (Q», {a, b}, 5y, 0, {1}), where
a: (0 — 1),and b: 1, and let W = (Q1, {a}, Sy, 0, {0}), where a: 1. Let L,, =
LOWy).

The structure of the DFA of Definition 1 is shown in Fig. 2 for n > 3.

Fig. 2 Quotient DFA W), of a right ideal with n" ! transformations
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Let W; be the transition semigroup of the witness W,,.

Lemma 1 The DFA W, of Definition 1 is minimal, accepts a right ideal, and its
transition semigroup Wy has size n" 1.

Proof If n < 2 this is easily verified; here L1 = £* and L, = Z*aX*.

For n > 3, any state ¢ with 0 < ¢ < n — 2 is non-final, accepts a" 2794, and no
other such state accepts this word. Since n — 1 is final, all states are distinguishable.
Since W, has exactly one final state and that state accepts £*, L, is a right ideal.

For the syntactic complexity, observe that inputs a, b, and c restricted to 0,1 can
induce any transformation of Q,,_1 (Proposition 2); hence all (n — 1)"~! transforma-
tions that fix n — 1 can be performed by W,. Also observe that any transformation
(q—n—1)forqg €{0,...,n—3}is induced by a">~9da9t!.

Note that every transformation from the transition semigroup Wy; fixes state n —
1. Let ¢ be any transformation such that (n — 1)t = n — 1. There are n"~! such
transformations, and we will show that all of them are generated. Let {py, ..., pi}
be the set of all states from Q \ {n — 1} that are mapped by # to n — 1. Then ¢ can be
generated by (p;y — n —1)--- (pr — n — 1)t/, where ¢’ fixes n — 1 and all states
pi, and acts as ¢ on the other states; thus it is a transformation of Q,_ if restricted
to Q,—1 and can be generated by a, b, and c. O

We are now in a position to state our main theorem of this section.

Theorem 2 (Right Ideals and Prefix-Closed Languages) Suppose that L € %*
and k(L) = n. If L is a right ideal or a prefix-closed language, then o (L) < n"~!.
This bound is tight forn = 1 if |Z| > 1, forn =2if |X| > 2, forn =3 if || > 3,
and for n > 4 if |X| > 4. Moreover, the sizes of the alphabet cannot be reduced.

Proof For n > 4, every transformation in the transition semigroup of a minimal
DFA of any right ideal with n quotients must fix state n — 1; hence the size of this
semigroup cannot exceed n"~!. By Lemma 1 this bound is tight.

It is easy to verify that the alphabet cannot be smaller if n < 3. Let n > 4.
The set of transformations in the largest transition semigroup must contain every
transformation ¢ that maps Q,—1 to Q,—1 and fixes n—1; otherwise, the bound cannot
be met. Thus, none of the generators of this semigroup can map a state from Q,_
to n — 1. When restricted to Q,,_1, the transformations in this semigroup must form
the full transformation semigroup of Q,_1 with n — 1 > 3 states. So by Remark 1,
from Proposition 2 we know that there must be at least three generators of these
transformations, say a, b, c. As noted above, none of {a, b, c}, extended to Q, by
adding the mapping of n — 1 to n — 1, can map a state from Q,_j ton — 1. So we
need at least one more generator, say d, which maps a state from Q,_; ton — 1.
Altogether, at least four generators are needed.

Since prefix-closed languages are complements of right ideals and the syntactic
complexity is preserved by complementation, the result is the same for prefix-closed
languages. O
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Remark 2 A maximal transition semigroup of the quotient DFA of a right ideal con-
tains all transformations of Q,, that fix state n — 1. Hence there is only one maximal
transition semigroup for right ideals, which is Wi;.

5 Left Ideals and Suffix-Closed Languages
5.1 Basic Properties

Let D, = (Qu, Xp,dp,0, F) be a minimal DFA, and let 7, be its transition
semigroup. Consider the sequence (0, 0z, 0¢2, .. .) of states obtained by applying a
transformation ¢ € T, repeatedly, starting with the initial state. Since Q, is finite,
there must eventually be a repeated state, that is, there must exist i and j such that

0,0¢,...,0¢, 06+ . 0r/~! are distinct, but 0t/ = 0f'; the integer j — i is the
period of t. If the period is 1, ¢ is said to be initially aperiodic. If t is initially
aperiodic, then its sequence is 0, O¢, . . ., 0r/=1 = 0t/

Lemma 2 If D, is the quotient DFA of a left ideal, all the transformations in T, are
initially aperiodic, and the empty set is not a quotient of L.

Proof Let t be a transformation that is not initially aperiodic. Then there exist
i,j such that p; = O0tf = 0t/ = p; for some i < j, where j —i >
2. Let w be a word that induces 7. Since D, is minimal, states p; and p;_i
must be distinguishable, say by word x € > If wix € L, then w/~lx =
w/7 "y = wimi Y wix) ¢ L, contradicting the assumption that L is a left
1deal If w/~'x € L, then w/x = w(w/~'x) ¢ L, again contradicting that L is a
left ideal.
For the second claim, we know that a left ideal is non-empty by definition. So
suppose that w € L. If L has the empty quotient, say x 'L = ¢, then xw ¢ L, which
contradicts the assumption that L is a left ideal. O

Example 1 Note that the conditions of Lemma 2 are not sufficient. For ¥ = {a, b},
the language L = b U ¥*q satisfies the conditions, but is not a left ideal because
b € L butab ¢ L. Its quotient automaton is shown in Fig. 3.

If the final state is 2 instead of 1, the language becomes L' = ¥ ¥*b = T*3b,
which is a left ideal. The languages L and L’ have the same syntactic semigroup, but
one is a left ideal while the other is not.

Fig. 3 Quotient DFA of a
language that is not a left ideal
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The following remark was proved in [4]:

Remark 3 A language L € X* is a left ideal if and only if for all x,y € X%,
y~ 'L € (xy)~'L.Hence,if x 'L # L,then L C x~'L forany x € .

Proof 1f L is aleftideal then for all x, y, w € ¥*, we have yw € L impliesxyw € L,
that is, w € y~ 'L implies w € (xy)~'L.

For the other direction, if for some x, y € ¥* there is w € y~!L such that w ¢
(xy)~'L, then x # ¢ and yw € L but xyw ¢ L, which contradicts that L is a left
ideal. O

It is useful to restate this observation it terms of the states of D,,. For DFA D,, and
states p, g € Qp, we write p < q if K, C K. Also, we write p < g if K, C K.

Remark 4 A DFA D, is a minimal DFA of a left ideal if and only if for all s, €
T, U {1}, O < Osz. Equivalently, since g = Os for some s, for every g € O, \ {0} we
have 0 < g.

Remark 5 In a minimal DFA D, of a left ideal, if r € Q,, has a r-predecessor, that
is, if there exists g € Q) such that gt = r, then O¢ < r. In particular, if r appears in
acycle of ¢ or is a fixed point of 7, then 0r < r.

Proof This follows because 0 < ¢ and so 0t < gt = r by Remark 4. O

We consider chains of the form K;, C K;, C --- C K;,, where the Kij are
quotients of L. If L is a left ideal, the smallest element of any maximal-length chain
is always L. Alternatively, we consider chains of states starting from 0 and strictly
ordered by <.

Proposition 4 Fort € T,, and p,q € Qn, p < q implies pt < qt. If p < pt, then
p < pt < - < pt* = pt**! for some k > 1. Similarly, p > g implies pt > qt,
and p > pt implies p > pt > --- > pt* = pt**1 for some k > 1.

Proof Since C is a partial order on quotients, by definition of <, if K, C K, then
wK p C w_qu, where w is a word inducing 7. This applied iteratively yields
p < pt < - < ptk = pr**1 for some k > 1, because there are finitely many
quotients (k < n). The same hold dually for >. O

5.2 Lower Bound

We now show that the syntactic complexity of the following DFA of a left ideal is
"l 4n—1.

Definition 2 (Witness: Left Ideals) Forn > 3,letW, = (Qn, Zw), dw, 0, {n—1}),
be the DFA in which ¥y = {a, b, c,d,e},a: (1,...,n—1),b: (1,2),c: (n—1 —
1),d: m—1—0),ande: (Q, — 1). Forn = 3, a and b coincide, and we can use
Xw = {a, c,d, e}. Also, let Wr = (0>, {a, b, ¢}, 5w, 0, {1}), where a: (0 — 1),
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b:1,and c: (Qy — 1), and let W = (Q1, {a}, 3,0, {0}), where a: 1. Let L,, =
LOW,).

The structure of the DFA of Definition 2 is shown in Fig. 4 for n > 3.

Lemma 3 The DFA of Definition 2 is minimal, accepts a left ideal, and has transition
semigroup of size "~ +n — 1 that contains all the transformations fixing 0 and all
the constant transformations.

Proof State 0 does not accept a’ for any i, whereas state i with 1 < i < n—2 accepts
a" 171 and no other state j with 1 < j < n — 2 accepts this word. Since n — 1 is
the only final state, all states are distinguishable.

To prove that L is a left ideal it suffices to show that for any w € L, we also have
xw € L for every x € X. This is obvious if x € X \ {e}. If w € L, then w has the
form w = uev, where ), (0, u) = 0, §)1(0, ue) = 1, and v is accepted from state
1. But (0, eue) = 1, and since v is accepted from 1, we have euev = ew € L,,.
Thus L, is a left ideal.

In W, the transformations induced by a, b, and c restricted to O, \ {0} generate
all the transformations of the last n — 1 states (Proposition 2). Together with the trans-
formation of d, they generate all transformations of Q,, that fix 0, and the number of
such transformations is n"~!. To see this, consider any transformation ¢ that fixes 0.
If some states from {1, ...,n — 1} are mapped to O by ¢, we can map them first to
n — 1 and n — 1 to one of them by the transformations of a, b, and ¢, and then map
n — 1 to 0 by the transformation of d.

Also the words of the form ea’ fori € {0, ..., n—2} induce constant transforma-
tions (Q,, — i + 1). Hence the transition semigroup of W, contains all the constant
transformations of Q, (where (Q, — 0) has been already counted). Altogether,
there are "~ ! + n — 1 transformations in the transition semigroup of W,. O

Example 2 The maximal-length chains of quotients in WV, have length 2. However,
in other left ideals maximal-length chains can be as long as n. For this let n > 2,

d

Fig. 4 Quotient DFA W), of a left ideal with n" =1 +n — 1 transformations
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Y = {a, b} and L = *a"~!; then L has n quotients and a maximal-length chain of
length 7.

Proof A maximal-length chain always starts at 0; suppose it ends with g. If there is a
p € 0,\{0, g} such that p < ¢, then K, C K, which contradicts that a" 1" r e K,
and "~ 177 ¢ K.

In L = X*a"!, we have the unique maximal-length chain consisting of all
quotients:

E*al’l—l C Z*an—Z CcC---C E*. D

We will see that the maximal length of chains of quotients is an important struc-
tural feature; in particular, to meet the bound for syntactic complexity by both left
and two-sided ideals, the maximal length of the chains must be the smallest possible.

5.3 Upper Bound

The derivation of the upper bound n"~! +n — 1 for left ideals is much more difficult
that for right ideals. We begin with the easy cases where n € {1, 2}.

Remark 6 If n = 1, the only left ideal is X* and the transition semigroup of its
minimal DFA satisfies the bound 1° + 1 — 1 = 1. If n = 2, there are only three
allowed transformations, since the transposition (0, 1) is not initially aperiodic and is
ruled out by Lemma 2. Thus the bound 2! + 2 — 1 = 3 holds.

Let D, = (Qn, Xp, ép, 0, F) be a minimal DFA of an arbitrary left ideal with
n quotients and let 7, be the transition semigroup of D,. Let Wj; be the transition
semigroup of the witness DFA W, of Definition 2.

Lemma 4 Ifn > 3 and a maximal-length chain in D, strictly ordered by < has
length 2, then |T,,| < n"~' +n — 1 and Ty, is a subsemigroup of Wi;.

Proof Consider an arbitrary transformation ¢ € T, and let p = Oz. If p = 0, then any
state other than 0 can possibly be mapped by ¢ to any one of the n states; hence there
are at most n”~! such transformations. All of these transformations are in Wj; by the
proof of Lemma 3.

If p # 0, then 0 < p. Consider any state g & {0, p}; by Remark 4, 0t = p < gt.
If p # qt, then p < gt. But then we have the chain 0 < p < gt of length 3,
contradicting our assumption. Hence we must have p = gt, and so ¢ is the constant
transformation t = (Q, — p). Since p can be any one of the n — 1 states other than
0, we have at most n — 1 such transformations. Since all of these transformations are
in Wj; by Lemma 3, 7, is a subsemigroup of Wj;. O]

Lemma 5 (Left Ideals, Suffix-Closed Languages) Ifn > 3 and L is a left ideal or

a suffix-closed language with n quotients, then its syntactic complexity is less than or
equal ton" ' +n — 1.
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Proof Our approach is as follows: We consider a minimal DFA D, =
(On, 2p,6p,0, F) of an arbitrary left ideal with n quotients and let 7,, be
the transition semigroup of D,. We also deal with the witness DFA W, =
(On, Zw, S, 0, {n — 1}) of Definition 2 that has the same state set as D, and
whose transition semigroup is Wy;. We will show that there is an injective mapping
f: T, — Wy, and this will prove that |T,,| < |Wj;]|.

It suffices to prove the result for left ideals, since suffix-closed languages are their
complements.

In the proof of this lemma we enumerate the following cases illustrated in Fig. 5:

Casel: e Wj.
Case2: ¢ ¢ W and 072 # Or.
Case3: ¢ W and 0r> = Or.

(a): thasacycle.

(b): ¢ has no cycles and has a fixed point r # p.

(¢): ¢ has no cycles, has no fixed point » # p, and there is a state r such
that p < r with rt = p.

We now proceed to examine each of these cases.
Casel: e Wj.

Let f(t) = t; then obviously f restricted to Wj; is injective.
Case2: ¢ Wy and 0r% # Or.

Note that r ¢ Wy; implies 0r # 0 by Lemma 3. Let 0r = p. Since 0r> # Or,
we have p = Or < Ort = pt by Remark 4. Let p < --- < ptk = pr¥*1 be the

Case 1: s = t. Case 2:
ll\i\ .
Case 3(a): Case 3(b):
é?\ S—& 5~
Case 3(c):

O Os= O

Fig. 5 Map of the cases in the proof of Lemma 5. The transitions of ¢ are represented by solid lines, and
the modified transitions of s by dashed red lines
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chain defined from p; this chain is of length at least 2. Let f(¢) = s, where s is the
transformation defined by

0Os =0, ptks = p, gs = qt for the other states ¢ € Q.

Transformation s is shown in Fig. 5, Case 2, where the dashed transitions show
how s differs from ¢.

By Lemma 3, s € Wy;. However, s ¢ T,, as it contains the cycle (p, ..., ptk)
with states strictly ordered by < in DFA D,,, which contradicts Proposition 4. Since
s & Ty, it is distinct from the transformations defined in Case 1.

In going from ¢ to s, we have added one transition (Os = 0) that is a fixed point,
and one (ptks = p) that is not. Since only one non-fixed-point transition has been
added, there can be only one cycle in s with states strictly ordered by <. Since 0
cannot appear in this cycle, p is its smallest element with respect to <.

Suppose now that ¢’ # ¢ is another transformation that satisfies Case 2, that is,
0t/ = p’ # 0and p't’ # p’; we will show that f(r) # f(¢). Define s’ for t’ as s
was defined for ¢. For a contradiction, assume s = f () = f(t') = s'.

Like state s, state s” contains only one cycle strictly ordered by <, and p’ is its
smallest element. Since we have assumed that s = s’, we must have p = 0r = 0t' =
p’ and the cycles in s and s’ must be identical. In particular, pr¥r = prk = p(t)ft' =
p(t")%. For g of O, \ {0, pt*}, we have gt = gs = gs’ = qt’. Hencet =t —a
contradiction. Therefore ¢ # ¢' implies f(r) # f(t').

Case3: 1 ¢ Wj; and 0% = Or.

As before, let Ot = p. Consider any state g ¢ {0, p}; then 0 < g by Remark 4 and
0t < gt by Proposition 4. Thus either p < gt, or p = gt. We consider the following
sub-cases:

e (a): t hasacycle.

Since ¢ has a cycle, take a state r from the cycle; then r and r¢ are not comparable
under < by Proposition 4, and p < r by Remark 5. Let f(f) = s, where s is the
transformation shown in Fig. 5, Case 3(a), and defined by

Os =0, ps=r, qgs=qtfortheotherstatesqg € Q.

By Lemma 3, s € Wy;. Suppose that s € Tj,; since p < r, we have r = ps <
rs = rt by the definition of s and Proposition 4; this contradicts that r and rt are not
comparable. Hence s ¢ T,, and so s is distinct from the transformations of Case 1.

We claim that p is not in a cycle of s; this cycle would have to be

1 1

s s s s k=1 $ . s t t t k—1 !
p—or—>rt—...—>rt = p, thatis, p >r —>rt — ... > rt - p,

for some k > 2 because r # p = pt andrt # p. Since p < r we have p = pt < rt;
but then we have a chain p < rt < --- < rtk = p, contradicting Proposition 4.

Since p is not in a cycle of s, it follows that s does not contain a cycle with states
strictly ordered by <, as such a cycle would also be in ¢. So s is distinct from the
transformations of Case 2.
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We claim there is a unique state ¢ such that (a) 0 < g < gs, (b) gs £ gs>. First
we show that p satisfies these conditions: (a) holds because ps = r and p < r; (b)
holds because ps = r, ps> = rt and r and rt are not comparable. Now suppose that
q satisfies the two conditions, but ¢ # p. Note that gs # p, because gs = p implies
gs = p < r = gs2, contradicting (b). Since ¢, gs ¢ {0, p}, we have gt = gs £
gs* = gt*. But Proposition 4 for ¢ < gt implies that gt < gt> — a contradiction.
Thus p is the only state satisfying these conditions.

If t' # t is another transformation satisfying the conditions of this case, we define
s’ like s. Suppose that s = f(¢) = f(t') = s’. Since both s and s’ contain a unique
state p satisfying the two conditions above, we have 0t = 0’ = p and pr = pr’ = p.
Since the other states are mapped by s exactly as by ¢ and ¢/, we have t = ¢,

e (b): r has no cycles and has a fixed point r # p.

Because 0 < r by Remark 4, 0 < rt by Proposition 4. Since r is a fixed point of
t,then p =0t <rt =r.Sincer # p, we have p < r.Let f(¢t) = s, where s is the
transformation shown in Fig. 5, Case 3(b), and defined by

0s=0, ¢gs=0 for each fixed point g ¢ {0, p}, gs =qt for the other states g € Q,.

By Lemma 3, s € Wj;. Suppose that s € T,,; because p < r, ps = p,rs =0, and
ps =< rs by Proposition 4, we have p < 0, which is a contradiction. Hence s is not
in 7}, and so is distinct from the transformations of Case 1. Also, s maps at least one
state other than O to 0, and so is distinct from the transformations of Case 2 and also
from the transformations of Case 3(a).

If ¢’ # t is another transformation satisfying the conditions of this case, we define
s’ like s. Now suppose that s = f(t) = f(t') = s'. There is only one fixed point
of s other than 0 (ps = p), and only one fixed point of s” other than 0 (p's’ = p’);
hence 0t = p = p’ = 0t'. By the definition of s, for each state ¢ # 0 such that
gs = 0, we have gt = ¢. Similarly, for each state ¢ # 0 such that gs’ = 0, we have
gqt' = g. Hence t and ¢’ agree on these states. Since the remaining states are mapped
by s exactly as they are mapped by ¢ and ¢/, we have ¢ = ¢’. Thus we have proved

that ¢ # ¢’ implies f(¢) # f(t).

® (c): t has no cycles, has no fixed point r # p, and there is a state r such that
p <r withrt = p.

Let f(t) = s, where s is the transformation shown in Fig. 5, Case 3(c), and defined
by
0s =0, ps=r, gs=0foreachqg > psuchthatgt = p,

gs = qt for the other states ¢ € Q,,.

By Lemma 3, s € Wj;. Suppose that s € T;,; because p < r, ps =r,rs =0, and
r = ps < rs = 0 by Proposition 4, we have r < 0 — a contradiction. Hence s ¢ T},
and s is distinct from the transformations of Case 1.

Because s maps at least one state other than 0 to 0 (rs = 0), it is distinct from the
transformations of Case 2 and 3(a). Also s does not have a fixed point other than 0,
while the transformations of Case 3(b) have such a fixed point.

@ Springer



Theory Comput Syst (2018) 62:1175-1202 1191

We claim that there is a unique state ¢ such that (a) 0 < ¢ < ¢s and (b) gs> = 0.
First we show that p satisfies these conditions. By assumption0 < p < r andrt = p;
also rs = 0 by the definition of s. Condition (a) holds because 0 < p < r = ps, and
(b) holds because 0 = rs = ps?.

Now suppose that 0 < g < ¢s, gs> = 0 and ¢ # p. Since gs # 0, we have
gs = qt by the definition of 5. Because gt has a t-predecessor, p < gt by Remark 5.
Also gt = gs # p, for gs = p implies 0 = ¢gs> = ps = r — a contradiction.
Hence p < gt. From gt = gs and ¢ < ¢s, we have g < gt. Since ¢gs> = 0 we have
(gt)s = 0 and so (gt)t = p, by the definition of s. By Proposition 4, from g < gt
we have gt < (gt)t = p, contradicting p < gt. So g = p.

If ¢’ # t is another transformation satisfying the conditions of this case, we define
s’ like s. Suppose that s = f(r) = (') = s'. Since s and s’ contain a unique state p
satisfying the two conditions above, we have 0r = 0+’ = p and pt = pt' = p. Then
r and the states ¢ > p with gt = p are determined by p, since they are precisely the
states g > p with gs = 0. Since the other states are mapped by s exactly as by ¢ and
t',wehavet =1, and f is injective restricted to the transformations of this case also.

o All cases are covered:

We need to ensure that any transformation ¢ fits in at least one case. It is clear that
t fits in Case 1 or 2 or 3. Let p = 0Or. For Case 3, it is sufficient to show that if (i)
t ¢ Wjy; does not contain a fixed point 7 # p, and (ii) there is no state r with p < r
and rt = p, then ¢ contains a cycle and so fits in Subcase 3(c).

First, if there is no r such that p < r, we claim that ¢ is the constant transformation
(Qn — p), thus it fits in Case 1. Consider any state ¢ € Q, such that gt # p. Then
p < gt by Remark 4, contradicting that there is no state r = gt such that p < r.

So let ¢ be a transformation that fits in Case 3 and satisfies (i) and (ii), and let r
be some state such that p < r. Consider the sequence r, rt, re2, ... By Remark 5,
p =< rtf foralli > 0. If rek = p for some k > 1, let k be the smallest such number,
then rt*=! £ p: we have p < rt*~! and (rt*~')t = p, contradicting (ii). Since p is
the only fixed point by (i), we have rt' # rt~! for all i > 1. Since there are finitely
many states, rit = rt/ for some i and jsuchthat 0 <i < j — 1, and so the states
ret, it rtd = rtf form a cycle.

We have shown that for every transformation ¢ in 7,, there is a corresponding
transformation f(¢) in Wy;, and f is injective. So |T,| < |[Wy| =n""'+n—1. O

Next we prove that Wy; is the only transition semigroup meeting the bound. It
follows that minimal DFAs of left ideals with the maximal syntactic complexity have
maximal-length chains of length 2.

Theorem 3 If T}, has size "' +n — 1, then T, = Wj;.

Proof Consider a maximal-length chain of states strictly ordered by < in D,,. If its
length is 2, then by Lemma 4, T;, is a subsemigroup of Wy;. Thus only 7, = Wy
reaches the bound in this case.

Assume now that the length of a maximal-length chain is at least 3. Then there are
states p and r such that 0 < p < r.Let R = {q | p < q}. We show that there exists
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a transformation s that is in Wy; but not in f(7;,). To define s we use the constant
transformation ¢t = (Q, — p) as an auxiliary transformation. Note that ¢ fits in
Case 3(c) in the proof of Lemma 5 except that t € Wj;. We define s from ¢ according
to the rules of Case 3(c):

Os =0, ps=r, gs=0foreachq € R,
gs = qt = p for the other states q.

By Lemma 3, s € Wj;.

Let f be the injective function from the proof of Lemma 5. It remains to be
shown that there is no transformation ' € T, such that s = f(¢'). The proof
that s is different from the transformations f(z’) of Cases 1, 2, 3(a) and 3(b) is
exactly the same as the corresponding proof in Case 3(c) following the definition
of s.

It remains to verify that there is no ¢ € T, in Case 3(c) such that f(t') = s.
Suppose there is such a ¢’. Recall that states p and r satisfying 0 < p < r have
been fixed by assumption. By the definition of s, state p satisfies the conditions (a)
0 < p < ps and (b) ps?> = 0. We claim that p is the only state satisfying these
conditions. Indeed, if ¢ # p then either gs = 0, g £ gs = 0 and (a) is violated, or
gs = p,qs* = ps = r # 0 and (b) is violated. This observation is used in the proof
of Case 3(c) to prove the claim below.

Both 7 and ¢’ satisfy the conditions of Case 3(c), except that ¢ fails the condition
t ¢ Wy. However, that latter condition is not used in the proof that if ¢ # ¢’ and ¢/
satisfy the other conditions of Case 3(c), then s’ # s, where s’ is the transformation
obtained from ¢’ by the rules of s. Thus s is also different from the transformations
in f(T,) from Case 3(c).

Because f is injective, s ¢ f(T,), s € Wy and f(T,,) S Wy;, the bound n" 4
n — 1 cannot be reached if the length of the maximal-length chains is not 2. O

Proposition 5 For n > 4, the minimal number of generators of the transition
semigroup Wy is 5.

Proof We need a generator, say e, that maps 0 to a state in @, \ {0}. Since all such
transformations in Wy; are constant transformations, e is also constant.

Let U be the set of all transformations that map Q, \ {0} to O, \ {0} and fix
0. The transition semigroup Wj; contains U. If a transformation + € U would be
generated by a generator g mapping a state g from Q, \ {0} to 0, then g must be
used together with some constant generator s to map 0 back to a state p in Q, \
{0}. Then Or = (Og)s = p, since s is constant; hence ¢ does not fix 0, which is a
contradiction. Hence, all the transformations in U must be generated by generators
inU.

When restricted to @, \ {0}, the set U forms the full transformation semigroup
with n — 1 > 3 states. So by Remark 1, from Proposition 2 we need at least three
generators for this semigroup, say a, b, and c.

Finally, 7, contains transformations mapping some states from Q, \ {0} to 0, so
we need one more generator, say d, mapping a state from Q, \ {0} to O. O

We are finally in a position to prove our main theorem of this section.
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Theorem 4 (Left Ideals, Suffix-Closed Languages) Suppose that L C ¥* and
k(L) = n. If L is a left ideal or a suffix-closed language, then o (L) < n" ' +n — 1.
This bound is tight forn = 1 if |Z| > 1, forn =2if |X| = 3, forn =3 if |Z| > 4,
and forn > 4 if |X| > 5. Moreover, the sizes of the alphabet cannot be reduced.

Proof If L is a left ideal, then o (L,) < -1 by Lemma 5. By Lemma 3
the languages of Definition 2 meet this bound. It is easy to verify that the size of
the alphabet cannot be reduced if n < 3. For n > 4, by Theorem 3 only languages
L whose quotient automata have transition semigroups isomorphic to Wj; meet the
bound, and by Proposition 5 Wy; requires 5 generators. O

6 Two-Sided Ideals

If a language L is a right ideal, then L = L¥* and L has exactly one final quotient,
namely X*; hence this also holds for two-sided ideals. For n > 3, in a two-sided ideal
every maximal chain is of length at least 3: it starts with L, every quotient contains
L and is contained in X*.

6.1 Lower Bound

We now show that the syntactic complexity of the following DFA of a two-sided ideal
isn" 24 (n—2)2"241.

Definition 3 (Witness: Two-Sided Ideals) For n > 4, define the DFA W, =
(On, Zw, dw, 0, {n — 1}), where Xy = {a,b,c,d,e, f}, a: (1,...,n — 2),
b: (1,2),c:(mn—2—>1),d:(n—2— 0),e: @1 — L,and f: (1 - n —1).
For n = 4, inputs a and b coincide, and we can use Xyy = {a,c,d, e, f}. Also,
let W3 = (Q3, {a, b, ¢}, 5w, 0, {2}), where a: (1 — 2)(0 — 1), b: (1 — 0), and
c: 1,and let W) = (Q», {a, b}, Sy, 0, {1}), where a: (0 — 1), and b: 1. Finally, let
Ly = LOWy).

The structure of the DFA of Definition 3 is shown in Fig. 6 for n > 4.

Lemma 6 Forn > 2, the DFA of Definition 3 is minimal, accepts a two-sided ideal,
and its transition semigroup has size n" =%+ (n—2)2""2+1. In particular, in contains
all transformations of Q, that

1. fixOandn — 1,
map SU{n —1}ton—1and Q,\ {S}U{n—1}) toi, forall S C {1,...,n—2}
andi €{l,...,n—2},

3. map Qnton — 1.

Proof Forn = 2, the DFA W, has only two states 0 and 1, and is obviously minimal.
Also, LOWV,) = {a, b}*a{a, b}* is a two-sided ideal. The set S is empty, and W,
contains all transformations of types 1 and 3. Finally, }» meets the bound 2.
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a,b,c,d,e, f ¢ e

Fig. 6 Quotient DFA of a two-sided ideal with n"~2 + (n — 2)2"~2 + 1 transformations

Fori = 1,...,n — 2, state i is the only non-final state that accepts a1t f;
hence all these states are distinguishable. State O is distinguishable from these states,
because it does not accept any words in a* f. Hence W, is minimal. The proof that
W, is a left ideal is like that in Lemma 3. Since n — 1 is the only final state and it
accepts X* L, is a right ideal. Hence it is two-sided.

For n = 3, W3 meets the bound 6 with the transition semigroup consisting of the
transformations [0, 0, 2], [0, 1, 2], [0, 2, 2], [1, 1, 2], [1, 2, 2], and [2, 2, 2].

From now on we may assume that n > 4. In W, the transformations induced by
a, b, and c restricted to Q,, \ {0, n — 1} generate all the transformations of the states
1,...,n —2. When restricted to Q,, \ {n — 1}, together with the transformation of d,
they generate all (n — 1)"~2 transformations that fix 0: Let 7 be such a transformation
mapping a subset S € O, \ {n — 1} to 0. First, using a, b, ¢, we canmap Ston — 2
and n —2 to a state from S (unless n —2 € S). Then we apply d. Finally, using a, b, c,
we can map n — 2 to the original state, and the remaining states as in .

In the same way, together with the transformation f, we have all n"~2 transfor-
mations of Q, that fix Oandn — 1.

For any subset S C {1, ..., n — 2}, there is a transformation — induced by a Word
wg, say — that maps S to n — 1 and fixes Q \ S. Then the words of the form wgea’,
fori € {0, ..., n — 3}, induce all transformations that map S U {n — 1} ton — 1 and

0, \(SU{n —1}) to i+ 1. There are 2" 2 subsets S, and there are n — 2 possibilities
for i. Hence there are (n — 2)2"~2 transformations of this type. There is also the

constant transformation ef : (Q,, — n — 1), which yields the total number claimed.
]

6.2 Upper Bound
We consider a minimal DFA D,, = (Q,, £p, ép, 0, {n — 1}) of an arbitrary two-
sided ideal with n quotients, and let 7,, be the transition semigroup of D,. We also

deal with the witness DFA W, = (Q,, Zw, w, 0, {n — 1}) of Definition 3 with
transition semigroup Wo;.
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Lemma 7 If n > 4 and a maximal-length chain in D, strictly ordered by < has
length 3, then |T,,| < n" =% + (n — 2)2"~% + 1, and T,, is a subsemigroup of Wo;.

Proof Consider an arbitrary transformation t € Ty; then (n — 1)t =n — 1. If 0t = 0,
then any state not in {0, n — 1} can possibly be mapped by ¢ to any one of the n states;
hence there are at most n~2 such transformations.

If 0t # 0, then 0 < Oz. Consider any state g ¢ {0, Oz}; since D,, is minimal, ¢ must
be reachable from 0 by some transformation s, that is, g = Os. If Ost ¢ {Of, n — 1},
then Or < Ost by Remark 4. But then we have the chain 0 < 0t < Ost < n — 1
of length 4, contradicting our assumption. Hence we must have either Ost = 0f, or
Ost = n—1. For a fixed O, a subset of the states in Q, \ {0, n— 1} can be mapped to Oz
and the remaining states in Q,, \ {0, n — 1} to n — 1, thus giving 2" 2 transformations.
Since there are n — 2 possibilities for 07, we obtain the second part of the bound.
Finally, all states can be mapped to n — 1.

By Lemma 6 all of the above-mentioned transformations are in Wo;.

O

Lemma 8 (Two-Sided Ideals, Factor-Closed Languages) If L is a two-sided ideal
or a factor-closed language with n > 2 quotients, then its syntactic complexity is less
than or equal to "4 (n—2)2""241.

Proof 1t suffices to prove the result for two-sided ideals, since factor-closed lan-
guages are their complements.

As we did for left ideals, we show that |T;,| < |Wa;|, by constructing an injective
function f: T, — Wo;.

Wehave g < n—1forallg € Q,, and n—1 is a fixed point of every transformation
in 7,, and Wo;.

For a transformation ¢ € T,,, consider the cases shown in Fig. 7.

We now prove the lemma for each of these cases.

Case1l: t € Wy;.
The proof is the same as that of Case 1 of Lemma 5.
Case2: 1 ¢ Wa;, and 0r2 # Or.

Let0f = p < --- < ptk = pr**1 be the chain defined from p.
o (a:ptf#£n—1.

The proof is the same as that of Case 2 of Lemma 5.
e (b):ptF=n—1landk > 2.

Let f(t) = s, where s is the transformation shown in Fig. 7, Case 2(b), and defined
by

0s =0, pils=pi''forl<i<k—1, ps=n—1,

gs = qt for the other states g € Q,,.
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Case 1: s = t. Case 2(a):

Case 2(b):

Case 3(d):

s~
I \

Fig. 7 Map of the cases in the proof of Lemma 8. The transitions of ¢ are represented by solid lines, and
the modified transitions of s by dashed red lines

By Lemma 6, s € W»;. We have pt > p, pts = p, and ps = n — 1. By Propo-
sition 4, pts > ps, thatis, p > n — 1, which contradicts the fact that k > 2 (so
Ot =p#n—1),andg <n—1forallg € Q,. Thus s is not in 7,,, and so it is
different from the transformations of Case 1.

Observe that s does not have a cycle with states strictly ordered by <, since no
state from {0, p, pt, ..., pt*=1} can be in a cycle, and ¢ cannot have such a cycle
with ordered states by Proposition 4. Hence s is different from the transformations of
Case 2(a).

In s, there is a unique state g such that gs = n — 1 and for which there exists a
state r such that r > g and rs = ¢, and that this state ¢ must be p. Indeed, if g # p,
then gt = gs = n — 1 by the definition of s. From r > g, we have rt > gt =n — 1;
hence rs =rt =n — 1 and rs # g — a contradiction. Hence g = p.

By a similar argument, we show that there exists a unique state g such that ¢ > p,
and gs = p, and that this state ¢ must be pz. If ¢ # pt then gs = gt. But g > gt
and p = gt > gt> = pt contradicts that p < pr. Continuing in this way for
pt2, ..., pt*=1 we show that there is a unique chain pr*=! 5 ... 5 pr > p.

If ¢’ # t is another transformation satisfying the conditions of this case, we define
s’ like s. Now suppose that s = f(¢t) = f(¢') = s'. Since we have a unique state p
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such that ps = n — 1 for which there exists a state r such that» > p and rs = p, we
have Or = 0t = p. Also the chain of states p, pt, pt*, ..., pt*~! is unique in s and
s’ as we have shown above; so pti = pt'" fori =1, ..., k— 1. Since the other states
are mapped by s exactly as by ¢ and ¢/, we have r = ¢'.

e (¢):pt=n-—1.

Let P = {0, p,n — 1}. We have n > 4, as otherwise t € W); since it is a trans-
formation of type 2 from Lemma 6. So there must be a state » ¢ P; let r be chosen
arbitrarily. If p < r forallr ¢ P,thenn—1 = pt < rt; hence rt = n—1 for all such
r,and gt € {p,n — 1} forall ¢ € Q,. By Lemma 6, there is a transformation in W;
that maps SU{n —1}ton—1,and Q,\ (SU{n—1})to pforany S C {1,...,n—2}.
Thus ¢ € W5; — a contradiction.

In view of the above, there must exist a state r ¢ P such that p Z r. By Remark 4,
we have p <rt and of course rt <n — 1. Ifrtis porn — 1 forallr ¢ P, we again
have the situation described above, showing that + € W»;. Hence there must exist an
r¢ Psuchthat p Arand p <rt <n—1.

Also we claim that ¢ does not have a cycle. Indeed, if p < ¢, then g is mapped to
n — 1;if p £ g, then g is mapped to a state g¢ > p and again g cannot be in a cycle
since the chain starting with ¢ ends inn — 1.

Let f(z) = s, where s is the transformation shown in Fig. 7, Case 2(c), and defined
by

Os=0, ps=rt, (t)s=p, rs=0,
gs = qt for the other states g € Q.

Since s fixes both 0 and n — 1, it is in Wp; by Lemma 6. But s is not in 7}, as
we have the cycle (p, rt) with p < rt, which would contradict Proposition 4. So s is
different from the transformations of Case 1. Since s maps a state other than 0 to 0,
it is different from the transformations of Cases 2(a) and 2(b).

Observe that ¢ does not map any state to 0; otherwise, if gt = 0 for some g, then
0 < p implies ¢ < 0 by Proposition 4, which contradicts that 0 < g from Remark 4.
Consequently, in s there is the unique state » % 0 mapped to 0. Also, as ¢ does not
contain a cycle, the only cycle in s must be (p, rt).

If ¢’ # t is another transformation satisfying the conditions of this case, we define
s’ like s. Now suppose that s = f(t) = f(t') = s’. Because both s and s’ have
the unique non-fixed point r mapped to 0, r = r’. Also s and s’ contain the unique
cycle (p,rt), p < rt. Thus p = p/, pt = pt' = n — 1 and rt = rt’. It follows that
0t = 0t/ = p. Because p < rt = rt’, we have (rt)t = (rt)t' = n — 1. The other
states are mapped by s exactly as by t and ¢/, and so t = ¢'.

Case3: ¢ Wy,0t =p #0,and pt = p.
e (a):t hasacycle.

The case is analogous to that of Case 3(a) in Lemma 5.

Since ¢ has a cycle, take a state r from the cycle; then r and r¢ are not comparable
under < by Proposition 4, and p < r by Remark 5. Let f(f) = s, where s is the
transformation shown in Fig. 7 and defined by

Os =0, ps=r, gs=qtforthe other states g € Q.
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The proof that s is different from the s of Case 1, 2(a), and that there is no ¢’ # ¢
fitting in this case and yielding the same s, is the same as in Lemma 5.

In s there is the state p with the property that p < ps but ps and ps? are not
comparable under <. Consider a transformation ¢’ that fits in Case 2(b). Then in s’
every state ¢’ = p/t" for0 <i < k — 1, and ¢ = 0, is such that ¢’s’ is comparable
with ¢’s’? under <. So if there is such a state in s’, it must be also present in ¢’ € T,.
But then ¢’ < ¢'t’ implies ¢’t’ < ¢’t’* by Proposition 4, so this is not possible. Thus
s #s.

For a distinction from the transformations of Case 2(c) observe that s does not
map to 0 any state other than 0.

e (b): ¢ has no cycles and has a fixed pointr ¢ {p,n — 1}.

The case is analogous to that of Case 3(b) in Lemma 5.

Because 0 < r by Remark 4, 0 < rt by Proposition 4. Since r is a fixed point of
t,then p =0t <rt =r.Sincer # p,we have p < r.Let f(¢t) = s, where s is the
transformation shown in Fig. 7 and defined by

0Os =0, ¢s =0 for each fixed point g ¢ {0, p, n — 1},

gs = qt for the other states g € Q.

The proof that s is different from the s of Case 1, 2(a), 3(a), and that there is no
t' # t fitting in this case and yielding the same s, is the same as in Lemma 5.

Since s maps to 0 a state other than 0, this case is distinct from Case 2(b). Because
t does not have a cycle, and no state ¢ mapped to O can be in a cycle in s, it follows
that s does not have a cycle. Thus s is different from the transformations of Case 2(c).

® (c): ¢ has neither a cycle nor a fixed point r ¢ {p, n — 1}, and has a state r > p
mapped to p.

The case is analogous to that of Case 3(c) in Lemma 5.
Let f(¢) = s, where s is the transformation shown in Fig. 7 and defined by

0s =0, ps=r, gs=0foreachq > psuchthatgt = p,

gs = gt for the other states ¢ € Q.

The proof that s is different from the s of Case 1, 2(a), 3(a), 3(b), and that there is
no ¢’ # t fitting in this case and yielding the same s, is the same as in Lemma 5.

Since s maps to O a state other than 0, this case is distinct from Case 2(b). In s, 0
cannot be in a cycle, no state ¢ > p mapped to 0 can be in a cycle and p cannot be
in a cycle as ps = r and rs = 0. Since the other states are mapped as in ¢, s does not
have a cycle. Thus s is different from the transformations of Case 2(c).

e (d): r has no cycles, no fixed point r ¢ {p, n — 1}, and no state » > p mapped to
p, and has a state r such that p < r < n — 1 that is mapped ton — 1.

Let f(t) = s, where s is the transformation shown in Fig. 7, Case 3(d), and defined
by
0Os =0, g¢s = q forstates g suchthatgt =n—1, ps=n—1

gs = qt for the other states ¢ € Q,,.
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By Lemma 6, s € W,;. However, s is not in 7,, as we have a fixed point r
such that p < r < n — 1 and ps = n — 1. So Proposition 4 yields n — 1 =
ps < rs = r — a contradiction. Thus s is different from the transformations of
Case 1.

Transformation s does not have any cycles, as t does not have one in this case and
fixed points g and p cannot be in a cycle. So s is different from the transformations
of Cases 2(a) and 3(a). Also, since p is the unique state mapped to n — 1 and there
is no state r > p mapped to p, s is different from the transformations of Case 2(b).
For a distinction from the transformations of Cases 2(c), 3(b) and 3(c), observe that
s does not map to O any state other than 0.

If ¢’ # t is another transformation satisfying the conditions of this case, we define
s’ like 5. Now suppose that s = f () = f(t’) = s’. Observe that ¢t does not have
a fixed point other than n — 1. So for every fixed point ¢ ¢ {0,n — 1} of s we
have gt = gt' = n — 1. Also, since p is the unique state mapped to n — 1 in s,
0t = 0t = p and pr = pt' = p. The other states are mapped by s as by 7 and ¢’; so
t=1.

o All cases are covered:

We need to ensure that any transformation ¢ fits in at least one case. It is clear that
t fits in Case 1 or 2 or 3. Any transformation from Case 2 fits in Case 2(a) or 2(b) or
2(c). For Case 3, it is sufficient to show that if (i) r ¢ W»; does not contain a fixed
pointr ¢ {p,n— 1}, and (ii) there isno state r, p < r < n— 1, mappedto porn —1,
then ¢ has a cycle.

If there is no state r such that p < r < n — 1, then gt € {p,n — 1} for
all g € Qp, since gt > p. By the proof of Lemma 6 in Wy; for any § C
0O, \ {n — 1} there are all transformations that map S U {n — 1} ton — 1, and
the other states Q, \ (S U {n — 1}) to any state from Q,; thus t € Wy — a
contradiction.

So let ¢ be a transformation that fits in Case 3 and satisfies (i) and (ii), and let r
be some state such that p < r < n — 1. Consider the sequence r, rt, rt?,.... By
Remark 5, p < rtl foralli > 0. If re* € {p,n — 1} for some k > 1, let k be the
smallest such number, then r#¥~! ¢ {p,n — 1}; we have p < rtv=1 < n—1and
(rt*=Nt € {p, n — 1}, contradicting (ii).

Since p and n — 1 are the only fixed points by (i), we have rt! # rt'~!. Since
there are finitely many states, r#/ = rt/ for some i and j such that 0 <i < j — I,
and so the states r¢/, rtit! ... rt/ = rt’ form a cycle. O

Theorem 5 If T, has size "% + (n — 2)2" "2 + 1, then T, = W»;.

Proof The proof is very similar to that of Theorem 3.

Consider a maximal-length chain of states strictly ordered by < in Dj,. If its length
is 3, then by Lemma 7 T}, is a subsemigroup of W»;. Thus only 7,, = Wy; reaches
the bound.

If there is a chain of length 4, then there are states p and r such that0) < p <r <
n—1.LetR={q € 0, \{n—1}| p < q}. To define s we use the transformation
t = (Qn\{n—1} — p) as an auxiliary transformation. Note that 7 fits in Case 3(c) in
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the proof of the proof of Lemma 8 except that r € W»;. We define s from ¢ according
to the rules of Case 3(c):

Os =0, ps=r, gs=_0foreachg € R,
qgs = gt = p for the other statesq.

By Lemma 6 (transformations of type 1), s € Wo;.

Let f be the injective function from the proof of Lemma 8. It remains to be shown
that there is no transformation ¢’ € T, such that s = f(¢'). The proof that s is
different from the transformations f(¢') of Cases 1, 2(a), 2(b), 2(c), 3(a), and 3(b) is
exactly the same as the corresponding proof in Case 3(c) following the definition of
s. The proof that s is different from the transformations ¢’ € T}, in Case 3(c) is exactly
the same as the corresponding proof in Theorem 3. It remains to show that that there
isnot’ € T, in Case 3(d) such that s = f(¢’). Indeed, f(¢") from Case 3(d) does not
map any state to 0 other than 0, while we have rs = 0. So s is also different from
these transformations.

Because f is injective, s ¢ f(T,), s € Wy and f(T,,) € Wp;, the bound n"l 4
n — 1 cannot be reached if the length of the maximal-length chains is not 3. O

Proposition 6 For n > 4, the minimal number of generators of the transition
semigroup Woj is 6.

Proof Transition semigroup Wo; contains all transformations of Q,— to Q,—1 that
fix n — 1. Since every transformation in Wy; fixes n — 1, they must be also gener-
ated only by transformations of this form, as otherwise a generated transformation
would map a state from Q,_1 ton — 1, as n — 1 is always fixed. When restricted
to Qn—1, these transformations form the largest transformation semigroup of a left
ideal Wy; with n — 1 > 4 states. So by Remark1, from Proposition 5 we know that
they require 5 generators. These generators do not map any state from Q, \ {n — 1}
to n — 1, hence, we need one more generator which maps a state from Q,_; to
n— 1. O

We are now in a position to prove our main theorem of this section.

Theorem 6 (Two-Sided Ideals, Factor-Closed Languages) Suppose that L € X*
and k(L) = n > 1. If L is a two-sided ideal or a factor-closed language, then
o (L) <n""% 4+ (n —2)2"2 4 1. This bound is tight forn =2 if |Z| > 2, forn =3
if|2| =3, forn = 4if|X| = 5, and forn > 5 if | 2| = 6. Moreover, the sizes of the
alphabet cannot be reduced.

Proof This follows from Lemmas 6 and 8. It is easy to verify that the size of
the alphabet cannot be reduced if n < 4. For n > 5, by Theorem 5 only
languages L whose quotient automaton has transition semigroup isomorphic to
W,; meet the bound, and by Proposition 6, transition semigroup Wy; requires 6
generators. O
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7 Conclusions

We have found tight upper bounds on the syntactic complexity of right, left, and two-
sided ideals. We have shown that in each of the three cases the maximal transition
semigroup is unique.

In our proof for left and two-sided ideals we exhibited an injective function from
the transition semigroup of a minimal DFA of an arbitrary left, right, two-sided ideal
language to the transition semigroup of the witness DFA attaining the upper bound
for these languages. This approach is generally applicable for other subclasses of
regular languages. For example, in [12] we have used this method to establish the
upper bound for suffix-free languages.
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