
Theory Comput Syst (2018) 62:1144–1160

Exploration of the T-Interval-Connected Dynamic
Graphs: the Case of the Ring

David Ilcinkas1 ·Ahmed M. Wade2

Published online: 14 July 2017
© Springer Science+Business Media, LLC 2017

Abstract In this paper, we study the T -interval-connected dynamic graphs from the
point of view of the time necessary and sufficient for their exploration by a mobile
entity (agent). A dynamic graph (more precisely, an evolving graph) is T -interval-
connected (T ≥ 1) if, for every window of T consecutive time steps, there exists
a connected spanning subgraph that is stable (always present) during this period.
This property of connection stability over time was introduced by Kuhn, Lynch and
Oshman (Kuhn et al. 2010) (STOC 2010). We focus on the case when the underlying
graph is a ring of size n, and we show that the worst-case time complexity for the
exploration problem is 2n − T − �(1) time units if the agent knows the dynamics
of the graph, and n + n

max{1,T −1} (δ − 1) ± �(δ) time units otherwise, where δ is the
maximum time between two successive appearances of an edge.

Keywords Exploration · Dynamic graphs · T-interval-connectivity · Mobile agent

A preliminary version of this paper appeared in the Proceedings of the 20th International
Colloquium on Structural Information and Communication Complexity (SIROCCO 2013) [13].
Partially supported by the ANR projects DISPLEXITY (ANR-11-BS02-014) and MACARON
(ANR-13-JS02-002).

� Ahmed M. Wade
awade@ept.sn

David Ilcinkas
david.ilcinkas@labri.fr

1 LaBRI, CNRS, Univ. Bordeaux, France

2 École Polytechnique de Thiès, Thiès, Senegal

DOI 10.1007/s00224-017-9796-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9796-3&domain=pdf
http://orcid.org/0000-0001-5920-8402
mailto:awade@ept.sn
mailto:david.ilcinkas@labri.fr

Theory Comput Syst (2018) 62:1144–1160 1145

1 Introduction

Partly due to the very important increase of the number of communicating objects that
we observe today, the distributed computing systems are becoming more and more
dynamic. The computational models for static networks are clearly not sufficient
anymore to capture the behavior of these new communication networks. One can nev-
ertheless consider the appearances and disappearances of nodes or edges due to the
dynamic nature of the network as (topological) failures. But even the computational
models that take into account a certain degree of fault tolerance become insuffi-
cient for some very dynamic networks. Indeed, the classical models of fault tolerance
either assume that the frequency of fault occurrences is small, which gives enough
time to the algorithm to adapt to the changes, or that the system stabilizes after a cer-
tain amount of time (as in the self-stabilizing systems for example). Therefore, in the
last decade or so, many more or less equivalent models have been developed that take
into account the extreme dynamism of some communication networks. An interested
reader will find in [4] a very complete overview of the different models and studies
of dynamic graphs (see also [15] and [16]).

One of the first developed models, and also one of the most standard, is the model
of evolving graphs [7]. To simplify, given a static graph G, called the underlying
graph, an evolving graph based on G is a (possibly infinite) sequence of spanning
but not necessarily connected subgraphs of G (see Section 2 for precise definitions).
Differently speaking, the node set does not change but edges can appear or disappear
at each time instant. This model is particularly well adapted for modeling dynamic
synchronous networks.

In all its generality, the model of evolving graphs allows to consider an extremely
varied set of dynamic networks. Therefore, to obtain interesting results, it is often
required to make assumptions that reduce the possibilities of dynamic graphs gen-
erated by the model. One example is the assumption of connectivity over time,
introduced in [7], which states that there is a journey (path over time) from any ver-
tex to any other vertex. Another example is the assumption of constant connectivity,
for which the graph must be connected at all times. This latter assumption, which
is very usual, has been recently generalized in a paper by Kuhn, Lynch and Osh-
man [14] by the notion of T -interval-connectivity (see also [17] for other kinds of
generalizations). Roughly speaking, given an integer T ≥ 1, a dynamic graph is
T -interval-connected if, for any window of T consecutive time steps, there exists
a connected spanning subgraph which is stable throughout the period. (The notion
of constant connectivity is thus equivalent to the notion of 1-interval-connectivity).
This new notion, which captures the connection stability over time, allows the find-
ing of interesting results: the T -interval-connectivity allows to reduce by a factor
of about �(T) the number of messages that is necessary and sufficient to per-
form a complete exchange of information between all the vertices [14] (gossip
problem).

In this paper, we carry on the study of these T -interval-connected dynamic graphs
by considering the problem of exploration. A mobile entity (called agent), moving
from node to node along the edges of a dynamic graph, must traverse/visit each of its

1146 Theory Comput Syst (2018) 62:1144–1160

vertices at least once (the traversal of an edge takes one time unit).1 This fundamental
problem in distributed computing by mobile agents has been widely studied in static
graphs since the seminal paper by Claude Shannon [19].

As far as highly dynamic graphs are concerned, only the case of periodically-
varying graphs had been studied before the preliminary version of this paper [13],
both in the absence [10, 12] and in the presence of harmful nodes [8, 9]. Since then,
several works also considered the problem of exploring highly dynamic networks.

The most related papers are [11], a generalization of our paper to the case when
the underlying graph is a tree of cycles (a cactus), and [6], a part of which is a
generalization to the cases of the graphs with bounded treewidth, in general and
for some specific subclasses, like the rings. Note that our results and those of [6]
on the rings were proved independently. In [5], the authors study the impact that
synchrony, anonymity and topological knowledge have on the computability and
complexity of the deterministic multi-agent exploration with termination of the 1-
interval-connected dynamic graphs based on the ring, in the case when the agents do
not know the dynamics of the graph. Finally, [3] presents and proves the correctness
of a self-stabilizing algorithm allowing three robots to perpetually explore a dynamic
graph based on the ring in which each node can reach infinitely often any other node.

Besides, several papers focus on the complexity of computing the optimal explo-
ration time of a dynamic graph given as (a centralized) input, in a similar manner as in
the Traveling Salesman Problem for static graphs. In the dynamic case, the problem
is called Temporal Graph Exploration Problem [6, 18] or Dynamic Map Visitation
Problem [1, 2]. In [2], the case of several agents is considered, while [6, 18] and most
of [1] consider the case of a single agent. In these papers, several polynomial-time
algorithms are given, either exact algorithms for specific graph classes, or approxi-
mation algorithms for the general cases. In particular, [1] gives an O(n2) algorithm to
compute the optimal exploration time of a given 1-interval-connected dynamic graph
based on the n-node ring. Inapproximability results for the general case are given
in [6, 18].

We focus here on the (worst-case) time complexity of this problem, namely the
number of time units used by the agent to solve the problem in the T -interval-
connected dynamic graphs. The problem of exploration, in addition to its theoretical
interests, can be applied for instance to the network maintenance, where a mobile
agent has to control the proper functioning of each vertex of the graph.

We consider the problem in two scenarios. In the first one, often referred as the
offline scenario, the agent knows entirely and exactly the dynamic graph it has to
explore. This situation corresponds to predictable dynamic networks such as trans-
portation networks for example. In the second scenario, often referred as the online
scenario, the agent does not know the dynamics of the graph, that is the times

1Note that several specializations of this problem exist, depending on whether the agent has to eventually
detect termination (exploration with stop), return to its starting position (exploration with return), or even
visit each vertex infinitely often (perpetual exploration). The rest of the paper just considers the general
version of the problem.

Theory Comput Syst (2018) 62:1144–1160 1147

of appearance and disappearance of the edges. This case typically corresponds to
networks whose changes are related to frequent and unpredictable failures. In this
second scenario, Kuhn, Lynch and Oshman [14] noted that the exploration problem
is impossible to solve under the single assumption of 1-interval-connectivity. In fact,
it is quite easy to convince oneself that by adding the assumption that each edge of
the underlying graph must appear infinitely often, the exploration problem becomes
possible, but the time complexity remains unbounded. In this article, and only for
the second scenario, we therefore add the assumption of δ-recurrence, for some inte-
ger δ ≥ 1: each edge of the underlying graph appears at least once every δ time
units.

It turns out that the problem of exploration is much more complex in dynamic
graphs than in static graphs. Indeed, let us consider for example the first scenario
(known dynamic graph). The worst-case exploration time of n-node static graphs is
clearly in �(n) (worst case 2n − 3). On the other hand, the worst-case exploration
time of n-node (1-interval-connected) dynamic graphs remains largely unknown. No
lower bound better than the static bound is known, while the best known upper bound
is quadratic, and directly follows from the fact that the temporal diameter of these
graphs is bounded by n. Also, without the 1-interval-connectivity assumption, it is
already NP-complete to decide whether exploration is feasible at all, while with this
assumption the problem remains hard to approximate (see [6, 18]). In this paper, we
focus on the study of T -interval-connected dynamic graphs whose underlying graph
is a ring. Note that, in this particular case, the T -interval-connectivity property, for
T ≥ 1, implies that at most one edge can be absent at a given time.

Our results We determine in this paper the exact time complexity of the explo-
ration problem for the n-node T -interval-connected dynamic graphs based on the
ring, when the agent knows the dynamics of the graph. This is essentially 2n−T −1
time units (see Section 3 for details). When the agent does not know the dynamics of
the graph, we add the assumption of δ-recurrence, and we show that the complexity
is n + n

max{1,T −1} (δ − 1) ± �(δ) time units in this case (see Section 4 for details).

2 Model and Definitions

This section gives the precise definitions of the concepts and models informally
mentioned in the introduction. Some definitions are similar or even identical to the
definitions given in [14].

Definition 1 (Evolving graph) An evolving graph is a pair G = (V , E), where V is
a static set of n vertices, and E is a function which maps to every integer i ≥ 0 a set
E (i) of undirected edges on V .

Definition 2 (Underlying graph) Given an evolving graph G = (V , E), the static
graph G = (V ,

⋃∞
i=0 E (i)) is called the underlying graph of G . Conversely, the

evolving graph G is said to be based on the static graph G.

1148 Theory Comput Syst (2018) 62:1144–1160

In this article, we consider the evolving graphs based on the n-node ring,
denoted Cn. Since the cases n = 1 and n = 2 are trivial and somehow degenerated,
we will assume n ≥ 3.

Definition 3 (T -interval-connectivity) An evolving graph G = (V ,E) is T -interval-
connected, for an integer T ≥ 1, if for every integer i ≥ 0, the static graphG[i,i+T [=
(V ,

⋂i+T −1
j=i E (j)) is connected.

Definition 4 (δ-recurrence) An evolving graph is δ-recurrent if every edge of the
underlying graph is present at least once every δ time steps.

Definition 5 (Temporal diameter) The temporal diameter of an evolving graph is the
maximum time needed to go from any node to any other node starting at any time
when at most one edge can be traversed at each time unit.

Note that the temporal diameter of any 1-interval-connected evolving graph is at
most n − 1.

Amobile entity, called agent, operates on these dynamic graphs. We do not assume
any limitation in terms of computational capabilities or memory. Nevertheless, the
agent can traverse at most one edge per time unit. It may also stay at the current node
(typically to wait for an incident edge to appear). We say that an agent explores the
dynamic graph if and only if it visits all the nodes.

3 The Agent knows the Dynamics of the Graph

In this section, we assume that the agent perfectly knows the dynamic graph to be
explored.

3.1 Upper Bound

The theorem presented in this subsection, Theorem 1, shows that the worst-case
exploration time is actually small, bounded by 2n, when the underlying graph
is a ring. Furthermore, it shows that the agent can benefit from the T -interval-
connectivity to spare an additive term T (cf. Fig. 1). Note that our upper bound is
constructive, and tight (cf. Theorem 2).

The proof of Theorem 1 being quite long and technical, we first present a simpler
and elegant proof, but giving a less precise upper bound, namely 2n−2 for any value
of T . Nevertheless, we believe that this simplified result and its proof are of inde-
pendent interest, because of the simplicity of the proof and the fact that the presented
algorithm visits every node in the last n − 1 time units. Note that this implies that the
agent is not changing direction and is never blocked during these n − 1 steps.

Proposition 1 For every integers n ≥ 3 and T ≥ 1, and for every T -interval-connec-
ted dynamic graph based on Cn, there exists an agent (algorithm) exploring this

Theory Comput Syst (2018) 62:1144–1160 1149

Fig. 1 Worst-case exploration time of the T -interval-connected dynamic graphs based onCn as a function
of T

dynamic graph in time at most 2n − 2 such that this algorithm visits every node in
the last n − 1 time units.

Proof We first prove that, for any time t , there exists a node v(t) such that an agent
starting from v(t) at time t and moving in the clockwise direction is not blocked in
the n − 1 following time units, implying that such an agent has visited all nodes by
time t + n− 1. Indeed, consider that n virtual agents are placed on the n nodes of the
graph at time t (one virtual agent on each node). Further consider that all these virtual
agents go clockwise from time t on. At the first round (from time t), all virtual agents
are trying to traverse different edges, so at most one virtual agent may be blocked.
More generally, at each round, only one additional virtual agent can be blocked. Since
there are n virtual agents, there exists at least one of them which is not blocked from
time t to time t + n − 1. Its starting node v(t) satisfy the desired properties.

We can now describe the algorithm satisfying the statement of the proposition. Let
u be the starting node of the agent and let v be the node v(n−1) described in the first
part of this proof. The algorithm simply consists in going from u to v in time at most
n − 1 (recall that the temporal diameter of any 1-interval-connected dynamic graph
is at most n − 1, so this is always possible), then in waiting at v until time n − 1 (if
v is reached sooner), and finally in going clockwise from v for n − 1 time units. The
proposition follows from the properties of the node v.

Before proceeding with the formal theorem and its proof, let us informally
describe the key ingredients of the proof of the most general case.

We consider two algorithms, being the algorithms always going in the clockwise,
resp. counter-clockwise, direction, traversing edges as soon as the dynamic graph
allows it. At the beginning of the process, the two agents executing these algorithms,
starting from the same initial position, try to traverse distinct edges and thus, at each

1150 Theory Comput Syst (2018) 62:1144–1160

time step, at least one of them progresses. During this phase, the average speed of the
two agents is thus 1/2 (edge traversals per time unit). However, when the agents are
about to meet each other on an edge or on a node (thus after time at most n), their
progression may be stopped by the absence of a unique edge e.

If this edge e is absent for at least n−1 time steps, then any agent has enough time
to change its direction and to explore all the nodes of the graph in the other direction,
hence completing exploration within 2n steps, see Fig. 2.

If the edge e does not stay absent long enough and reappears at time t , we mod-
ify the two algorithms as follows. The agent previously progressing in the clockwise,
resp. counter-clockwise, direction, starts now by exploring the ring in the opposite
direction, before going back in the usual direction the latest possible so that it reaches
the edge e at time at most t . At time t , the two modified algorithms cross each other,
and then continue their progression in their usual direction until one of them termi-
nates the exploration. Note that, after time t , we have again the property that, at each
time step, at least one agent progresses. See Fig. 3.

Globally, except during the period when e is absent, the average speed of the two
agents is 1/2. Besides, the modification of the algorithms generally allows each of
the agents to explore an additional part of the ring. Unfortunately, these parts of the
ring are traversed twice instead of once. Nevertheless, in the general case, the speed
of both the modified agents is 1 during the period when e is absent. This compensates
the loss induced by traversing twice some parts of the ring. Overall, the average speed
is thus globally of at least 1/2, which implies that at least one of the two modified
agents performs exploration within time 2n.

In order to obtain a better upper bound thanks to the T -interval connectivity, we
use the following observation.

Observation When a dynamic graph based on a ring is T -interval connected, all
edges are present during T − 1 steps between the removal of two different edges.

We use this observation to gain an additive term of T − 1 on the exploration time,
yielding to a time of roughly 2n − T . A much more precise analysis of the modified
algorithms allows us to obtain the exact claimed bounds.

Theorem 1 For every integers n ≥ 3 and T ≥ 1, and for every T -interval-connected
dynamic graph based on Cn, there exists an agent (algorithm) exploring this dynamic
graph in time at most

⎧
⎨

⎩

2n − 3 if T = 1
2n − T − 1 if 2 ≤ T ≤ (n + 1)/2
⌊ 3(n−1)

2

⌋
if T > (n + 1)/2

Proof Fix n ≥ 3 and an arbitrary dynamic graph based on the ring Cn. Let
v0, · · · , vn−1 be the vertices of Cn in clockwise order. Assume that the agent starts
exploration from v0 at time 0. In order to prove this theorem, we will describe var-
ious algorithms, and we will show that at least one of them will allow the agent to
perform exploration within the claimed time bound. Fix T to be any positive integer,
and let T be this bound.

Theory Comput Syst (2018) 62:1144–1160 1151

First assume that at most one edge e is absent during the time interval [0, T).
Then, an agent going to the closest extremity of e (in time at most �(n − 1)/2�) and
then changing direction (for n − 1 steps) will explore all nodes of the ring in time at
most �3(n − 1)/2� ≤ T (see Fig. 1). So let us assume from now on that at least two
different edges are absent at least once each during the time interval [0, T).

Before proceeding with the rest of the proof, we introduce the following notations.
Given a time interval I and two algorithms A and B, let dI

A be the number of edge
traversals performed by agent A during the time interval I , let αI

A, resp. αI
A,B , be

the number of time steps in I for which agent A, resp. both agents A and B, do(es)
not move. (For all the algorithms we will consider, the reason why an agent will not
move will always be the same: the edge it wants to traverse is absent.) Finally, let βI

be the number of time steps in I for which no edges are absent.
Let us now consider two simple algorithms. L, respectively R, is the algorithm

always going in the counter-clockwise, resp. clockwise, direction, traversing edges
as soon as the dynamic graph allows it. Now consider the sum of the number of edges
traversed by each of the two algorithms until some time t . Since only one edge can
be absent at a given time, this sum increases by at least one (and obviously by at most
two) at each time step, until this sum is larger than or equal to n − 1. So let e be the
unique unexplored edge when this sum reaches n−1. If the sum jumps directly from
n − 2 to n, then fix e to be any of the last two unexplored edges. In both cases, let t1
be the first time one of the two agents reaches one extremity of e. We consider two
cases.

Case 1. The edge e is absent during the whole interval [t1, t1 + n − 1).
In this case, the first agent to reach an extremity of e, at time t1, goes back in

the opposite direction and explores the ring in n − 1 further steps. This gives an
exploration time of at most t1 + n − 1. Let I1 = [0, t1). We have

and, since L and R are always trying to traverse distinct edges during I1 and at
most one edge may be removed at any time, we also have

α
I1
L + α

I1
R + βI1 ≤ t1. (3)

Besides, by definition of t1, we have d
I1
L + d

I1
R ≤ n − 1. (4)

Recall that we are considering the case when there are at least two removed dif-
ferent edges during the whole interval [0, t1 + n − 1). As mentioned before, when
the dynamic graph is T -interval connected, all edges must be present during T −1
steps between the removal of two different edges. This implies that during the
whole interval [0, t1 + n − 1), there are at least T − 1 steps when no edges are
absent. By definition of Case 1, these steps must occur before time t1. Thus, we
have

βI1 ≥ T − 1 (5)

1152 Theory Comput Syst (2018) 62:1144–1160

Fig. 2 In the case when edge e is absent for a long time (Case 1 in the proof), one of the dotted and dashed
trajectories explores all nodes in the desired time

Summing the first five (in)equalities, we obtain

(1) + (2) + (3) + (4) + (5) → t1 + T ≤ n,

or equivalently t1 + n − 1 ≤ 2n − T − 1, which gives the exact claimed bound for
the general case T ≥ 2. Figure 2 illustrates the trajectories analyzed in Case 1.
For T = 1, this bound is one unit larger than the claimed bound. So let us

further study the case T = 1. If the inequality (4) is in fact strict, then the correct
bound is obtained. Otherwise, it means that at time t1 − 1, both agents were free
to move. This implies that either βI1 ≥ 1 (the inequality (5) is strict) or that the
inequality (3) is strict. In both cases, this also gives the correct bound.

Case 2. The edge e is not absent during the whole interval [t1, t1 + n − 1).
Then let t2 be the time such that t2 + 1 is the first time at which every edge has
been explored by L or R (or both). Note that this definition implies that t2 ≥ t1.
We now define two new algorithms, one of which will explore the dynamic graph
within time T .

Let L′ be the algorithm that is equal to L until some time t , at which L′ goes
back in the other direction forever. More precisely, L′ is the algorithm for which
t is the largest possible value such that L′ and R share the same position at time
t2 (intuitively, L′ just has time to catch back R at time at most t2). Similarly, let
R′ be the algorithm that is equal to R until some time t , at which R′ goes back in
the other direction forever. More precisely, R′ is the algorithm for which t is the
largest possible value such that R′ and L share the same position at time t2.

Theory Comput Syst (2018) 62:1144–1160 1153

In order to analyze the algorithms L′ andR′, we introduce two other algorithms.
Let L′′, respectively R′′ be the algorithm defined as L′, resp. R′, but turning back
exactly one time unit later than L′, resp. R′.
Finally, let Texp be the exploration time of the first between L′ and R′ explor-

ing the dynamic graph, and let I1 = [0, t1), I2 = [t1, t2), I1,2 = [0, t2),
I3 = [t2, Texp), and I = [0, Texp).
As in the first case, we have

On I1, we have

α
I1
L′′ + α

I1
R′′ − α

I1
L′′,R′′ + βI1 ≤ t1. (8)

Besides, L and R are always trying to traverse distinct edges during I1. Moreover,
by definition, the algorithm L′′, resp. R′′, does not catch R, resp. L, before time t2
(and thus t1). This gives

α
I1
L + α

I1
R + α

I1
L′′,R′′ + βI1 ≤ t1 (9)

(6) + (7) + (8) + (9) → α
I1
L′′ + α

I1
R′′ + 2βI1 ≤ d

I1
L + d

I1
R (10)

On I1,2, we have

Note that, by definition of L′′ and R′′

d
I1,2
L′′ ≤ d

I1,2
L′ + 1 (13)

d
I1,2
R′′ ≤ d

I1,2
R′ + 1 (14)

(11) + (12) + (13) + (14) → 2t2 ≤ d
I1,2
L′ + d

I1,2
R′ + α

I1,2
L′′ + α

I1,2
R′′ + 2 (15)

Note that, by definition of t1 and t2, the edge e is absent during the whole interval
I2. Besides, neither L′ nor R′ reaches an extremity of the edge e before turning
back, because otherwise it would reach the other extremity too late, namely at time
at least t1 +n−1, which is larger than t2 by definition of Case 2. (By the way, this
proves that Texp > t2.) This implies that L′′ and/or R′′ may reach an extremity
of e (at time t1) but in this case turn back immediately before trying to traverse it.
Moreover, L′′ and R′′ cannot reach an extremity of edge e while going clockwise,
resp. counter-clockwise, before time t2. This means that they are never blocked
during the time interval I2. This translates into

α
I1,2
L′′ =α

I1
L′′ (16)

α
I1,2
R′′ =α

I1
R′′ (17)

(10)+(15)+ (16)+ (17) → 2t2+ 2βI1 ≤ d
I1
L + d

I1
R + d

I1,2
L′ +d

I1,2
R′ +2 (18)

1154 Theory Comput Syst (2018) 62:1144–1160

Starting from time t2 + 1, the algorithms L′ and R′ are always trying to traverse
distinct edges. Since L′ and R′ are not blocked at time t2, this means that, on I3,
we have

α
I3
L′ + α

I3
R′ + βI3 ≤ Texp − t2 (19)

and

(19) + (20) + (21) → Texp − t2 + βI3 ≤ d
I3
L′ + d

I3
R′ (22)

(22) + 1

2
(18) →

Texp + βI1 + βI3 ≤ 1

2
(d

I1
L + d

I1
R + d

I1,2
L′ + d

I1,2
R′) + d

I3
L′ + d

I3
R′ + 1 (23)

Let x, resp. y, be the number of edges traversed by L′, resp. R′, before turning
back. Then

d
I1,2
L′ = 2x + d

I1,2
R (24)

d
I1,2
R′ = 2y + d

I1,2
L (25)

Counting the number of edges that still need to be traversed by L′ and R′ until
exploration is performed, we obtain

d
I3
L′ ≤ n − 1 − x − d

I1,2
R (26)

d
I3
R′ ≤ n − 1 − y − d

I1,2
L (27)

Similarly as in Case 1, because of the T -interval connectivity and the hypotheses
that at least two different edges are removed, we have

βI ≥ T − 1. (28)

Besides, note that βI1 + βI3 = βI .
Finally, since d

I1
L − d

I1,2
L and d

I1
R − d

I1,2
R are less than or equal to 0, we get

(23) + 1

2
(24) + 1

2
(25) + (26) + (27) + (28) → Texp ≤ 2n − T .

In fact, we claim that this last inequality is strict. We will prove this claim by
contradiction, assuming that inequalities (19), (26), (27), and (28) are in fact equal-
ities. The equalities for (26) and (27) imply that the algorithms L′ and R′ are not
blocked during the last step of I3, which allow them to simultaneously terminate
exploration at this last step. Equation (19) being an equality, this implies that this
last step is counted in βI3 . However, this step where no edges are absent being
the last one of I , it cannot belong to the T − 1 consecutive steps with no absent
edges that occur between the removal of two different edges in the same interval I .

Theory Comput Syst (2018) 62:1144–1160 1155

Fig. 3 In the case when edge e is absent for a short time (Case 2 in the proof), the dashed trajectory is
used (or its equivalent in the other direction). The turning time of the dashed trajectory is defined at the
latest possible time such that both the dashed and the dotted trajectories traverse edge e at the same time

This contradicts the fact that (28) is an equality, concluding the proof for T ≥ 2.
Figure 3 illustrates the trajectories analyzed in Case 2.
For T = 1, the bound obtained so far is one unit larger than the claimed bound.

For the purpose of contradiction, assume that Texp = 2n − 2. This implies that all
inequalities are in fact equalities except exactly one of the inequalities (19), (26),
(27), and (28). In the latter case, we proved more precisely that βI = 1 because
βI3 = 1. This implies that βI1 = 0 in all four cases. We will now come to a
contradiction by proving that one of the inequalities (8), (9), (13), or (14) must be
strict.
The only way for Eq. (13), resp. (14), to be an equality is that L′′, resp. R′′, tra-

verses an edge just before turning back, that is at the step, say tL′ , resp. tR′ , when
L′, resp. R′, turns back. Differently speaking, Eq. (13), resp. (14), being an equal-
ity implies thatL′′ and thusL, resp.R′′ and thusR, are not blocked at step tL′ , resp.
tR′ . Since (8) is assumed to be an equality, and because βI1 = 0, at least one of L′′
and R′′ is blocked at each time step of the interval I1. This is in particular true for
the times tL′ and tR′ . Therefore, the two times tL′ and tR′ must be different. With-
out loss of generality, assume that tL′ < tR′ . Let us now consider the step at time
tR′ . At this step, R′′ and thus R as well are not blocked. This implies that L must
be blocked at this step because of (9) being an equality. However, L′′ has already
turned back and does not travel with L anymore, and thus cannot be blocked
at this step. This would lead to (8) being strict, the contradiction concluding
this proof.

1156 Theory Comput Syst (2018) 62:1144–1160

Fig. 4 T -interval-connected dynamic graph based on Cn achieving the worst-case exploration time, for
2 ≤ T ≤ 	(n + 1)/2

3.2 Lower Bound

We now prove that the precise bound given in Section 3.1 is actually the exact worst-
case time complexity of the exploration problem.

Theorem 2 For every integers n ≥ 3 and T ≥ 1, there exists a T -interval-connected
dynamic graph based on Cn such that any agent (algorithm) needs at least

⎧
⎨

⎩

2n − 3 if T = 1
2n − T − 1 if 2 ≤ T ≤ (n + 1)/2
⌊ 3(n−1)

2

⌋
if T > (n + 1)/2

time units to explore it.

Proof For any integers n ≥ 3, and 2 ≤ T ≤ 	(n + 1)/2
, we define a T -interval-
connected dynamic graph Gn,T based on Cn. Let v0, v1, · · · , vn−1 be the vertices
of Cn in clockwise order. Assume that the exploration starts from v0 at time 0. In
Gn,T , the edge {v0, v1}, respectively {vT −1, vT }, is absent in the time interval [0, n −
2T + 1), respectively [n − T , 2n). See Fig. 4. Note that this dynamic graph is indeed
T -interval-connected.

Consider any agent (algorithm). We will now prove that the time it uses to explore
Gn,T is at least 2n − T − 1. Since the agent must explore all vertices, it must in
particular explore both vT −1 and vT . We consider two cases.

Case 1. vT −1 is explored before vT .
To visit vT −1 without going through vT , the agent must traverse the edge {v0, v1}.
By construction, this edge is absent until time n−2T +1. Moreover, the length of

Theory Comput Syst (2018) 62:1144–1160 1157

the path between v0 and vT −1 without going through vT is T − 1. Thus the agent
needs at least n − T time units to reach vT −1 for the first time. Since the edge
{vT −1, vT } is absent in the time interval [n − T , 2n), the fastest way of reaching
vT is to traverse the whole ring through v0, inducing n − 1 additional time units.
So in this first case, the agent needs at least 2n−T − 1 time units to explore Gn,T .

Case 2. vT is explored before vT −1.
To visit vT without going through vT −1, the agent must use the path v0, vn−1, up
to vT , which is of length n − T . When at node vT , and since the edge {vT −1, vT }
is absent in the time interval [n − T , 2n), the fastest way of reaching vT −1 is to
traverse the whole ring through v0, inducing n − 1 additional time units. Thus
also in the second case, the agent needs at least 2n − T − 1 time units to explore
Gn,T .

This proves the theorem for values of T in [2, 	(n+1)/2
]. In fact, this also proves
the theorem for T = 1 because Gn,2 is obviously also 1-interval-connected, and thus
the bound 2n-3 proved for T = 2 is also valid for T = 1. Besides, note that only
one edge is ever removed in Gn,	(n+1)/2
. This dynamic graph is therefore T -interval-
connected for any T , and thus the theorem is also proved for values of T larger than
(n + 1)/2.

4 The Agent does not know the Dynamics of the Graph

In this section, we assume that the agent does not know the dynamics of the graph,
i.e., it does not know the times of appearance and disappearance of the edges. As
explained in the introduction, we assume here the δ-recurrence property, for a given
δ ≥ 1, in order for the problem to be solvable in bounded time.

4.1 Upper Bound

We first prove that there exists a very simple algorithm that is able to explore all the
δ-recurrent T -interval-connected dynamic graphs based on the ring. This algorithm
consists in moving as much and as soon as possible in a fixed arbitrary direction, see
Algorithm 1.

1158 Theory Comput Syst (2018) 62:1144–1160

Theorem 3 For every integers n ≥ 3, T ≥ 1 and δ ≥ 1, and for any
direction dir, Algorithm STUBBORN-TRAVERSAL(dir) explores any δ-recurrent
T -interval-connected dynamic graph based on Cn in time at most

n − 1 +
⌈

n − 1

max{1, T − 1}
⌉

(δ − 1).

Proof Fix an arbitrary direction dir and let us analyze the algorithm STUBBORN-
TRAVERSAL(dir). Note first that it will complete exploration after traversing
exactly n − 1 edges. To bound its exploration time, it thus remains to bound the
number of time steps when the agent cannot move.

Since the dynamic graph is δ-recurrent, an edge cannot be absent for more than
δ − 1 consecutive time steps. Furthermore, since the dynamic graph is T -interval-
connected, two time steps in which two different edges are absent must be separated
by at least T − 1 time steps in which all edges are present. Therefore, the agent can
traverse at least max{1, T − 1} edges between two consecutive blocks at different

nodes. To summarize, the agent can be blocked at most
⌈

n−1
max{1,T −1}

⌉
times during at

most δ − 1 time steps.
Putting everything together, the agent will perform edge traversals for n − 1 time

steps and will wait for at most
⌈

n−1
max{1,T −1}

⌉
(δ − 1) time steps, which gives the

claimed bound.

4.2 Lower Bound

It turns out that the simple and natural Algorithm 1, described and analyzed in
Section 4.1, is almost optimal, up to an additive term proportional to δ.

Theorem 4 For every integers n ≥ 3, T ≥ 1, and δ ≥ 1, and for every agent
(algorithm), there exists a δ-recurrent T -interval-connected dynamic graph based on
Cn such that this agent needs at least

n − 1 +
⌊

n − 3

max{1, T − 1}
⌋

(δ − 1)

time units to explore it.
This result holds even if the agent knows n, T and δ.

Proof Let n ≥ 3, T ≥ 1, and δ ≥ 1. Fix an arbitrary agent (algorithm) A. We
construct as follows the δ-recurrent T -interval-connected dynamic graph Gn,T ,δ(A)

based on Cn that this agent will fail to explore in less than the claimed bound.
Let v0, v1, · · · , vn−1 be the vertices of Cn in clockwise order. Assume that the

agent starts exploration from v0 at time 0. For any integer 1 ≤ i ≤ n − 1, if the node
vi is explored by going from v0 in the counter-clockwise direction, then node vi is
denoted vi−n. Finally, let T̃ = max{1, T − 1}.

Theory Comput Syst (2018) 62:1144–1160 1159

In the dynamic graph Gn,T ,δ(A), only the edges {v
T̃ +1, vT̃ +2}, {v2T̃ +1, v2T̃ +2},

and so on, and {v0, v−1}, {v−T̃
, v−T̃ −1}, {v−2T̃ , v−2T̃ −1}, and so on, may be absent.

The actual times of appearance and disappearance of these edges depend on the algo-
rithm A. For any integer i ≥ 0, each time the agent arrives at node v−iT̃

in the
counter-clockwise direction, the edge {v−iT̃

, v−iT̃ −1} is removed until either the δ-
recurrence forces the edge to reappear or the agent leaves the node v−iT̃

to go on
v−iT̃ +1. Similarly, for any integer i ≥ 1, each time the agent arrives at node v

iT̃ +1
in the clockwise direction, the edge {v

iT̃ +1, viT̃ +2} is removed until either the δ-
recurrence forces the edge to reappear or the agent leaves the node v

iT̃ +1 to go on
v
iT̃
. Note that between two time steps with two different absent edges, there are at

least T − 1 time steps for which no edges are absent. The dynamic graph is therefore
T -interval-connected. It is also δ-recurrent by construction.

By definition of the dynamics of the graph, the agent needs to wait δ−1 time units
to go from v−iT̃

to v−iT̃ −1, for i ≥ 0, or to go from v
iT̃ +1 to v

iT̃ +2, for i ≥ 1. Also,
except near the origin in the clockwise direction, the agent cannot traverse more than
T̃ new edges before having to traverse such a blocking edge. Hence, to explore all

the vertices, the agent needs to perform at least
⌊

n−3
T̃

⌋
such traversals. This lower

bound is obtained in the case when the agent explores the ring by always going clock-
wise (starting in the counter-clockwise direction and/or changing direction during the

exploration do not help). The waiting time of the agent is thus at least
⌊

n−3
T̃

⌋
(δ −1).

Since the agent needs also at least n − 1 time units to traverse enough edges so that
all vertices are explored, we obtain the claimed bound.

5 Conclusion

We studied in this paper the problem of exploration of the T -interval-connected
dynamic graphs based on the ring in two scenarios, when the agent is specific to the
dynamic graph, and when the agent does not know the dynamics of the graph. The
next objective is obviously to extend these results to larger families of underlying
graphs. Unfortunately, this problem is much more difficult than it seems: proving that
any dynamic graph based on a tree of cycles (a cactus) can be explored in time O(n)

is already a challenging open problem.

References

1. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: Foremost Waypoint Coverage of Time-Varying Graphs.
In: 40th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), LNCS
8147, pp. 29–41 (2014)

2. Aaron, E., Krizanc, D., Meyerson, E.: Multi-Robot Foremost Coverage of Time-Varying Graphs.
In: 10th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless
Networks and Distributed Robotics (ALGOSENSORS), LNCS 8847, pp. 22–38 (2014)

3. Bournat, M., Datta, A.K., Dubois, S.: Self-Stabilizing Robots in Highly Dynamic Environments.
In: 18th International Symposium on Stabilization, Safety, and security of distributed systems (SSS
2016), LNCS 10083, pp. 54–69 (2016)

1160 Theory Comput Syst (2018) 62:1144–1160

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic
networks. Int. J. Parallel Emergent Distrib. Syst., 27(5) (2012)

5. Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic rings. In: IEEE
36th International Conference on Distributed Computing Systems (ICDCS), pp. 570–579 (2016)

6. Erlebach, T., Hoffmann, M., Kammer, F.: On Temporal Graph Exploration. In: 42nd International
Colloquium on Automata, Languages, and Programming (ICALP), LNCS 9134, pp. 444–455 (2015)

7. Ferreira, A.: Building a reference combinatorial model for MANETs. Network, IEEE 18(5), 24–29
(2004)

8. Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Searching for black holes in subways. Theory of
Computing Systems 50(1), 158–184 (2012)

9. Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Finding Good Coffee in Paris. In: 6th International
Conference on Fun with Algorithms (FUN), LNCS 7288, pp. 154–165 (2012)

10. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput.
Sci. 469, 53–68 (2013)

11. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of Constantly Connected Dynamic Graphs
Based on Cactuses. In: 21st International Colloquium on Structural Information and Communication
Complexity (SIROCCO), LNCS 8576, pp. 250–262 (2014)

12. Ilcinkas, D., Wade, A.M.: On the Power of Waiting when Exploring Public Transportation Systems.
In: 15th International Conference On Principles Of Distributed Systems (OPODIS), LNCS 7109,
pp. 451–464 (2011)

13. Ilcinkas, D., Wade, A.M.: Exploration of the T-Interval-Connected Dynamic Graphs: the Case of the
Ring. In: 20th International Colloquium on Structural Information and Communication Complexity
(SIROCCO), LNCS 8179, pp. 13–23 (2013)

14. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: 42nd ACM
symposium on Theory of computing (STOC), pp. 513–522 (2010)

15. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT News 42(1), 82–96
(2011)

16. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4),
239–280 (2016)

17. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and computation in possibly
disconnected synchronous dynamic networks. J. Parallel Distrib. Comput. 74(1), 2016–2026 (2014)

18. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. Theor. Comput. Sci.
634, 1–23 (2016)

19. Shannon, C.E.: Presentation of a maze-solving machine. 8th Conf. of the Josiah Macy Jr. Found.
(Cybernetics), 173–180 (1951)

	Exploration of the T-Interval-Connected Dynamic Graphs: the Case of the Ring
	Abstract
	Introduction
	Our results

	Model and Definitions
	The Agent knows the Dynamics of the Graph
	Upper Bound
	Observation

	Lower Bound

	The Agent does not know the Dynamics of the Graph
	Upper Bound
	Lower Bound

	Conclusion
	References

