
Theory Comput Syst (2018) 62:249–267

Constant-Time Local Computation Algorithms

Yishay Mansour1 ·Boaz Patt-Shamir2 ·Shai Vardi3

Published online: 20 June 2017
© Springer Science+Business Media, LLC 2017

Abstract Local computation algorithms (LCAs) produce small parts of a single
(possibly approximate) solution to a given search problem using time and space sub-
linear in the size of the input. In this work we present LCAs whose time complexity
(and usually also space complexity) is independent of the input size. Specifically,
we give (1) a (1 − ε)-approximation LCA to the maximum weight acyclic edge set,
(2) LCAs for approximating multicut and integer multicommodity flow on trees, and
(3) a local reduction of weighted matching to any unweighted matching LCA, such
that the running time of the weighted matching LCA is d times (where d is the
maximal degree) the running time of the unweighted matching LCA, (and therefore
independent of the edge weight function).

Keywords Local computation algorithms · Sublinear algorithms · Approximation
algorithms · Maximal weight forest

� Shai Vardi
shaivardi@gmail.com

Yishay Mansour
mansour@post.tau.ac.il

Boaz Patt-Shamir
boaz@tau.ac.il

1 Tel Aviv University and Microsoft Research, Tel Aviv, Israel

2 Tel Aviv University, Tel Aviv, Israel

3 California Institute of Technology, Pasadena, CA, USA

DOI 10.1007/s00224-017-9788-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9788-3&domain=pdf
mailto:shaivardi@gmail.com
mailto:mansour@post.tau.ac.il
mailto:boaz@tau.ac.il

250 Theory Comput Syst (2018) 62:249–267

1 Introduction

Local computation algorithms (LCAs) provide a solution to situations in which we
require fast and space-efficient access to part of a solution to a large computational
problem, but we never need the entire solution at once. Consider, for instance, a
database describing a network with millions of nodes and edges, on which we would
like to compute a maximal matching. At any point in time, the algorithm may be
queried about an edge, and is expected to reply “yes” or “no”, depending on whether
the edge is part of a maximal matching. The algorithm may never be required to
compute the entire solution. However, replies to queries are expected to be consistent
with a single matching.

LCA measures. Typically, LCAs use polylog(n) space, and are required to reply to
each query in polylog(n) time.1 Some papers on LCAs (e.g., [21]) give three criteria
for measuring LCAs: running time per query, the total space required, and failure
probability. Others (e.g., [4]) consider only the number of times the input is probed,
and the amount of information the LCA needs to store between queries.

In this paper we propose a more comprehensive model that unifies the two
approaches. The idea is to distinguish between computational time and probe com-
plexity. And between enduring and transient memory. More specifically, a probe to
the input graph consists of asking a vertex for a list of its neighbors.2 Regarding
space, we assume that there is an enduring memory, which is written only once by the
algorithm, before the first query is presented. We think about it as an augmentation of
the input. Enduring memory is useful in randomized LCAs (e.g., [2, 13, 21]), where
the LCA must use the same randomness each time it is invoked to ensure consis-
tency. This can be done by storing a random seed in the enduring memory. Transient
memory is simply the memory required to compute a reply to each query. Note that
as the enduring memory is read-only, the algorithm’s reply to a query depends only
on the input and the enduring memory, and not on the history, and hence is obliv-
ious to the order in which it receives queries. The failure probability of an LCA A

(cf. [13]) is the probability, taken over coin flips of A, that the running time of A

for any query exceeds its stated running time. Formal definitions are provided in
Section 2.

New LCAs. We give the first non-trivial constant-time, constant-probe LCAs to
several graph problems, assuming graphs have constant maximal degree. The high-
level technique behind all of our LCAs is the following: we take an existing algorithm
for a graph problem that does not appear to be implementable as an LCA, and
“weaken” it in some sense (running time, approximation ratio, etc.) The resulting
algorithm, while weaker, can be implemented (usually in a straightforward fashion)
as an LCA. We focus on the following problems.

1We assume the standard uniform-cost RAM model [1], in which the word size is O(log n) bits, where n

is the input size.
2We typically assume that vertex degrees are bounded by a constant.

Theory Comput Syst (2018) 62:249–267 251

• Maximum weight forest. Given an undirected graph with edge weights, the
task is to find an acyclic edge set of (approximately) maximum weight. In
the corresponding LCA, a query specifies an edge, and the algorithm says
whether the given edge is in the solution forest. We present a deterministic
(1 − ε)-approximate LCA for this problem, whose running time and space are
independent of the size of the graph.

• Integer Multi-Commodity Flow (IMCF) and Multicut on Trees. Given a tree with
capacitated edges and source-destination pairs, the goal of IMCF is to route the
greatest possible total flow where each pair represents a different commodity,
subject to edge capacity constraints. Multicut is the dual problem where the goal
is to pick an edge set of minimal total capacity so that no source can be con-
nected to its destination without using a selected edge. We give a deterministic
LCA for IMCF and multicut on trees that runs in constant time and gives a
(1/4)-approximation to the optimal IMCF and a 4-approximation to the mini-
mum multicut. We also give a randomized LCA to IMCF, with constant running
time, very little enduring memory (less than a word), and approximation ratio
1
2 − ε (for any constant ε > 0). We note that because these problems are global
in nature, we need to make strong assumptions about the input graph in order to
obtain LCAs for them.

• Weighted Matching. Given a weighted graph, we would like to approximate the
maximum weight matching. We design a deterministic reduction from any (pos-
sibly randomized) LCA A for unweighted matching with approximation ratio α

to weighted matching with approximation ratio α/8. Our reduction invokes A

a constant number of times. Both the running time and approximation ratio are
independent of the magnitude of the edge weights.

We note that there cannot exist any LCA for maximum cardinality matching [25],
and that any LCA for maximal cardinality matching requires �(log∗ n) probes [5].
We do not know whether there exists an LCA that gives a constant approximation to
the maximum cardinality matching in constant time.

Related Work LCAs were introduced by Rubinfeld et al. [21]. Alon et al. [2]
described LCAs for hypergraph 2-coloring and maximal independent set (MIS) on
graphs of bounded degree, using a reduction from parallel and distributed algorithms.
Mansour et al. [12], showed how to convert a large class of online algorithms to
LCAs, and recently, Reingold and Vardi [20] extended these results to a much wider
class of graphs, and obtained stronger bounds. The foundation of the results of [2, 12,
20] is the technique of Nguyen and Onak [16], in which a random ordering is gen-
erated over the vertices, and this ordering is used to simulate an online algorithm: in
order to reply to a query about a vertex, we need to simulate the online algorithm on
all vertices that come before it in the ordering. The main challenge is to bound the
number of probes that one needs to make per query.

The family of graphs of constant bounded degree has been extremely well studied
in the context of distributed algorithms. Naor and Stockmeyer [14] investigate the
question of what can be computed on these networks in a constant number of rounds

252 Theory Comput Syst (2018) 62:249–267

in the LOCAL3 model. They consider locally checkable labeling (LCL) problems,
where the legality of a labeling can be checked in constant time (e.g., coloring). They
conclude that there are non-trivial LCL algorithms with constant-time distributed
algorithms (an example is weak coloring on graphs of odd degree, where weak col-
oring means that every vertex has at least one neighbor colored differently from it).
Cole and Vishkin [3] showed that it is possible to obtain a 3-coloring of an n-cycle in
O(log∗ n) rounds (assuming that there are unique node identifiers). This was shown
to be tight by Linial [10], and Göös et al. [5] showed that this lower bound holds for
LCAs as well. The LOCAL model has received considerable interest over the past
three decades, e.g., [7–9, 18]; see [19] for an introductory book and [22] for a survey
from 2013.

Even et al. [4] investigate the connection between local distributed algorithms
and LCAs. They show how to color the vertices in a small neighborhood of a graph
to obtain an acyclic orientation of the neighborhood. Their coloring algorithm is
an adaptation of the techniques of Panconesi and Rizzi [18] and Linial [10], and
produces a coloring in O(log∗ n) rounds. This orientation defines an order on the
vertices, and an online algorithm can be simulated on this order, similarly to the
technique of [12]. This generates a deterministic LCA for MIS on constant degree
graphs that requires O(log∗ n) probes. They also give algorithms with similar running
times for approximate maximum cardinality (MCM) and maximum weight match-
ings (MWM). Their results for MWM depend logarithmically on the ratio of the
maximum to the minimum weight.4

We give more problem-specific related work in the relevant sections.

2 Preliminaries

We denote the set {1, 2, . . . n} by [n].

Graph concepts Let G = (V , E) be a simple undirected graph. The neighborhood
of a vertex v, denoted N(v), is the set of vertices that share an edge with v: N(v) =
{u : (u, v) ∈ E}. The degree of a vertex v, is |N(v)|. The distance between two
vertices u and v, denoted dist(u, v), is the minimal number of edges on any path from
one to the other. For any vertex v, its k-neighborhood, denoted Nk(v) is the set of all
vertices at distance at most k from v. (Note that N(v) = N1(v) \ N0(v).) For any
edge e = (u, v), its k-neighborhood is defined as Nk(e) = Nk(u) ∪ Nk(v). Given
a non-empty vertex set S �= V , a cut (S, V \ S) is the set of edges with exactly one
endpoint in S.

3In the LOCAL model [19], at the beginning of the algorithm’s execution, each vertex knows only its ID
and the IDs of its neighbors. In each round, each vertex is allowed to send an unbounded message to all
of its neighbors and perform an unbounded amount of computation. The goal is to minimize the maximal
number of rounds a vertex requires to compute its own portion of the output.
4We note that while our algorithm for MWM runs in constant time, independently of the size of the graph
and of the edge weights, its approximation guarantee is much worse than that of [4], whose approximation
factor is (1 − ε).

Theory Comput Syst (2018) 62:249–267 253

Throughout this paper, we assume that the maximal degree in G is upper bounded
by some constant d. For simplicity of presentation, we assume that G is d-regular
and that |V | and d are powers of 2. All our results hold without these assumptions.

Approximation algorithms We define approximation algorithms as follows.

Definition 1 Given a maximization problem over graphs and a real number 0 ≤ α ≤
1, a (possibly randomized) α-approximation algorithm A is guaranteed, for any input
graph G, to output a feasible solution whose (possibly expected) value is at least
an α fraction of the value of an optimal solution.5 The definition of approximation
algorithms to minimization problems is analogous, with α ≥ 1.

LCAs We extend the model of [21] for local computation algorithms (LCAs) to
distinguish between time and probe complexity, and between enduring and transient
memory. The measures by which the complexity of LCAs is quantified are:

– Number of probes. An LCA can access a vertex in the input graph and ask for a
list of its neighbors, or the ID of a neighbor. This is called a “probe”.

– Running time. The running time of an LCA, per query, is the number of word
operations that the LCA performs in order to output a reply to the query. In the
running time calculation, a probe to the graph is assumed to take O(1) time.
Note, however, that if we wish to perform an operation on the entire list of neigh-
bors and the list is of size �, (such as committing the list to memory or finding
the maximal ID neighbor), this will take O(�) operations.

– Enduring memory. As a preprocessing step, before it is given its first query, the
LCA can be allocated some memory to which it is allowed to write. Once the
first query is given to the algorithm, it can only read from this memory and can
never modify it. This can be viewed as the LCA being allowed to augment the
input with some small number of bits.

– Transient memory. This is simply the amount of memory (measured in the num-
ber of words) that an LCA requires in order to reply to a query. It does not include
the enduring memory.

– Failure probability. The LCA fails if it deviates from its prescribed complexity
(the number of probes, running time or transient memory). We require that, even
if the LCA is queried on all vertices, the probability that it will fail on any of them
is still very low. Note that the algorithm is never allowed to reply incorrectly -
the failure is only a function of its complexity. Note further that the LCA is never
allowed to use more enduring memory than it requested.

We define LCAs as follows.

Definition 2 (LCA) A (t (n), p(n), em(n), tm(n), δ(n))-local computation algo-
rithmA for a computational problem is a randomized algorithm that receives an input
of size n and a query x. Before the first query, A is allowed to write em(n) bits to

5In case of a randomized algorithm, expectation is over its random choices.

254 Theory Comput Syst (2018) 62:249–267

the enduring memory, and may only read from it thereafter. Algorithm A makes at
most p(n) probes to the input in order to reply to any query x, and does so in time at
most t (n) using at most tm(n) bits of transient memory (in addition to the enduring
memory). The probability that A deviates from the probe, time or transient mem-
ory bounds6 (i.e., uses more than the prescribed amounts) is at most δ(n), which is
called A’s failure probability. Algorithm A must be consistent, that is, the algorithm’s
replies to all possible queries conform to a single feasible solution to the problem.

Remark 1 We define LCAs as randomized algorithms, but they can be deterministic.
In that case, we require that the failure probability is zero. All algorithms in this paper,
except Algorithm 5, are deterministic, and although Algorithm 6 is deterministic, it
uses a (possibly) randomized algorithm as a subroutine.

Remark 2 All the LCAs of this paper (except Algorithm 6)7 have failure probability
0; we include it in the model for compatibility with previous models, but omit it from
the statements for brevity. Furthermore, they all have a constant running time and the
transient memory is guaranteed to be of constant size; we omit this measure from the
statements as well.

3 MaximumWeight Forest

In this section we consider the problem of finding a maximum weight forest (MWF),
also known as the maximum weight basis of a graphic matroid [17]. We are given a
graph G = (V , E), with edge weights, w : E → R; we would like to find an acyclic
set of edges of (approximately) maximum weight. That is, we seek a forest whose
weight is close to the weight of a MWF. Without loss of generality, we assume that
edge weights are distinct, as it is always possible to break ties by ID. Recall that when
the edge weights are distinct, there is a unique MWF (e.g., [23]).

We describe a parallel algorithm for finding a MWF in a graph, analyze its correct-
ness and approximation ratio, and explain how to adapt it to an LCA. We note that
our parallel algorithm is less efficient than others (say, the Borůvka’s algorithm [15]),
when applied as parallel algorithms. In fact, there is no instance on which it would
out-perform Borůvka’s algorithm. Nevertheless, it is useful as adapting it to an LCA
and analyzing its local properties are simple.

We first need a few definitions. Define the distance between a vertex v and an
edge e = (u, w), denoted dist(v, e), to be min{dist(v, u), dist(v, w)}.

Definition 3 (Connected component, Truncated CC) Let G = (V , E) be a simple
undirected graph. For a vertex v ∈ V , and a subset of edges S ⊆ E, the connected
component of v with respect to S is CCS(v) ⊆ S which includes the edges e ∈ S that

6Note that the LCA is not allowed to deviate from the enduring memory bound.
7Algorithm 6 inherits it running time, space complexity and failure probability from the LCA it uses as a
subroutine.

Theory Comput Syst (2018) 62:249–267 255

have a path from e to v using only edges in S, and their endpoints. (Note that CCS(·)
defines a partition of S.) The k-truncated connected component of v (denoted by
TCCk

S(v)) is the set of all vertices in CCS(v) at distance at most k from v (w.r.t. G).

Algorithm 1 works as follows. We maintain a forest S, initially empty. In round k,
vertex v considers the cut (TCCk

S(v), V \ TCCk
S(v)) and adds the heaviest edge of

the cut, say e, to S. (Note that k is both the round number and the radius parameter
of the truncated connected component.) In contrast to many MWF algorithms (such
as Prim’s and Kruskal’s algorithms), an edge can be considered more than once, and
it is possible that an edge e is considered—and even added—when it is already in S
(if we add e to S when e ∈ S, S remains the same).

Algorithm 1 Parallel (CREW) MWF Approximation Algorithm

Input : with weight function 0
Output : a forest
// assume all edge weights are distinct

For all
for round 1 to 1 do

for all vertices in parallel do
if is the heaviest edge of the cut TCC then

Return

3.1 Correctness and Approximation Ratio

The correctness of Algorithm 1 relies on the so-called “blue rule” [23].

Lemma 1 ([23]) Let C be any cut of the graph. Then the heaviest edge in C belongs
to the MWF.

Corollary 1 establishes the correctness of Algorithm 1.

Corollary 1 All edges added to S by algorithm 1 are in the MWF.

We now turn to analyze the approximation ratio of Algorithm 1. To this end, define
Sk to be the set of edges of MWF that were added to S in rounds 1, 2, . . . , k (implying
that Sk ⊆ Sk+1). Let Rk = MWF \ Sk .

Consider the component tree of MWF, defined as follows: the node set is{
CCSk

(v) | v ∈ V
}
, and the edge set is

{
(CCSk

(v), CCSk
(u)) | (v, u) ∈ Rk

}
. In

words, there is a node in the component tree for each connected component of Sk , and
there is an edge in the component tree iff there is an edge in Rk connecting nodes in
the corresponding components. For the analysis, we choose an arbitrary component
as the root of the component tree, and direct all the edges towards it; this way, each
edge e ∈ Rk is outgoing from exactly one connected component of Sk . We denote

256 Theory Comput Syst (2018) 62:249–267

Fig. 1 The situation considered in the proof of Proposition 1, for k = 2. The edge e = (u, v) is in Rk .
Solid edges are in S, dashed edges are in E \ S. The shaded area represents CC2

e , and the dotted red arc
represents the distance 2 range. Edges marked by � are considered by v in round 2

this component by CCk
e (Fig. 1). Note that CCi

e ⊆ CC
j
e for i < j (for e ∈ Rj)

because components only grow. For any set of edges S, let w(S) = ∑
e∈S w(e).

The following proposition is the key to the analysis. The intuition is that even if
edges can be added to S more than once, they will never be added more than once by
any specific vertex.

Proposition 1 For any k ≥ 1, ∀e ∈ Rk , w(e) ≤ w(CCk
e)

k
.

Proof If Rk is empty, the claim holds trivially. Let e = (v, u) be any edge in Rk

(directed from v to u). Edge e was not chosen by vertex v in rounds 1, . . . , k. For
i ∈ [k], let ei be the edge chosen by v in round i. It suffices to show that (1) all
edges ei are heavier than e, i.e. ∀i ∈ [k], w(ei) > w(e), and that (2) the edges ei are
distinct, i.e., ∀i, j ∈ [k], i �= j ⇒ ei �= ej .

The proof of (1) is straightforward: e was in the cut (TCCi
S(v), V \TCCi

S(v)) in
all rounds i ∈ [k], but it was never chosen. This must be because v chose a heavier
edge in each round.

To prove (2), we show by induction that ei is distinct from {e1, e2, . . . , ei−1}.
The base of the induction is trivial. For the inductive step, consider the two possible
cases. If ei /∈ CCi−1

e , then, by the definition of CCi−1
e , ei cannot be any edge that

had already been added by v (and is now being added again), hence it is distinct
from {e1, e2, . . . , ei−1}. If ei ∈ CCi−1

e , then ei must be at distance exactly i from v,
otherwise it would not have been in the cut (TCCi

S(v), V \TCCi
S(v)) and could not

Theory Comput Syst (2018) 62:249–267 257

have been added. But e1, . . . , ei−1 are all at distance at most i − 1 (w.r.t. G). In other
words, if ei ∈ CCi−1

e , ei was previously added by some vertex w �= v to CCi
e.

Corollary 2 For k ≥ 1, w(Rk) ≤ w(Sk)
k

.

Proof

w(Rk) = ∑

e∈Rk

w(e)

≤ ∑

e∈Rk

w(CCk
e)

k
by Prop. 1

= w(Sk)
k

. e �= e′ ⇒ CCk
e �= CCk

e′, and
⋃

e∈Rk

CCk
e = Sk

This enables us to prove our approximation bound. Denote the weight of MWF by
OPT.

Lemma 2 w(Sk) ≥ (1 − 1
k+1)OPT.

Proof As Rk = MWF \ Sk ,

w(Sk)

OPT
= w(Sk)

w(Sk) + w(Rk)
≥ w(Sk)

w(Sk) + w(Sk)/k
= k

k + 1
,

where the inequality is due to Corollary 2.

This concludes the analysis of Algorithm 1. We now describe the LCA we derive
from it.

3.2 Adaptation to an LCA and Complexity Analysis

Given a graph G = (V , E) and a query e = (u, v) ∈ E, the implementation of
Algorithm 1 as an LCA is as follows. Set k∗ = 1/ε. Probe G to discover N2k∗

(u) and
N2k∗

(v).8 Simulate Algorithm 1 on all vertices in Nk∗
(u) ∪ Nk∗

(v) for k∗ rounds:
In each round i ∈ [k∗], for each node s ∈ Nk∗

(u) ∪ Nk∗
(v), the algorithm computes

TCCi
S(v), finds the heaviest edge e in the cut (TCCi

S(v), V \ TCCi
S(v)), and adds it

to the solution.

Lemma 3 The time required to simulate the execution of Algorithm 1 for k rounds
as an LCA is kdO(k), and the probe complexity is dO(k).

8In order to simulate Algorithm 1 on a vertex at distance i from v for j rounds, we need to discover
vertices at distance i + j from v.

258 Theory Comput Syst (2018) 62:249–267

Proof The time to discover N2k(v) ∪ N2k(u) by probing the graph is bounded by
dO(k). Each vertex z ∈ Nk(v)∪Nk(u) executes Algorithm 1 for k rounds: in round j ,
it explores Nj(z) ⊆ N2k(v) ∪ N2k(u) and updates S(z) (as defined in Algorithm 1).
Overall, the time complexity is at most dO(k)+ ∑

z∈Nk(v)∪Nk(u)

k|Nk(z)| = kdO(k).

Combining Lemmas 2 and 3 gives our first main result.

Theorem 1 There exists a deterministic LCA, that for any graph G whose degree
is bounded by d and every ε > 0, computes a forest whose weight is a (1 − ε)-
approximation to the maximal weighted forest of G in time t (n) = 1

ε
dO(1/ε), probe

complexity p(n) = dO(1/ε), and enduring memory em(n) = 0.

4 Multicut and Integer Multicommodity Flow in Trees

In this section we consider the integer multicommodity flow (IMCF) and mul-
ticut problems in trees. While simple, our LCAs demonstrate how, under some
circumstances, one can find constant-time LCAs for apparently global problems.

The input is an undirected tree G = (V , E) with a positive integer capacity c(e)

for each e ∈ E, and a set of pairs of vertices {(s1, t1), . . . , (sk, tk)}. (The pairs are
distinct, but the vertices are not necessarily distinct.)

In the Integer Muticommodity Flow Problem, the goal is to route commodity i

from si to ti so as to maximize the sum of the commodities routed, subject to edge
capacity constraints. (There is no a priori upper or lower bound on the amount of
flow for each commodity.) Note that in a tree, the only question is how much to route:
the route is uniquely determined. In the dual Multicut Problem, the goal is to find a
minimum capacity multicut, where a multicut is an edge set that separates si from ti
for all i ∈ [k].

We make the following assumptions about the input: The tree is rooted and along
with its ID, each vertex knows its distance from the root. The degree of the tree is
bounded by d = O(1). Furthermore, the distances from si to ti are bounded by some
given parameter �; i.e., ∀i, dist(si, ti) ≤ �. Our bounds will be a function of �, so
that if � is independent of tree size, then so are the time and space complexity of our
algorithms.

In the local version of IMCF (multicut), we are queried on an edge, and are
required to output how much of each resource is routed on it (whether it is part of
the cut). As before, we adapt a classical algorithm to an LCA. This time we use the
known algorithm of Garg et al. [6] as a subroutine (denoted Algorithm 2, and pre-
sented below for completeness). Note that this is a primal-dual algorithm, that solves
IMCF and multicut simultaneously.

Theorem 2 ([26]) Algorithm 2 achieves approximation factors of 2 for the multicut
problem and 1/2 for the IMCF problem on trees

Theory Comput Syst (2018) 62:249–267 259

Algorithm 2 Multicut and IMCF in trees [6, 26]

Input : A rooted tree , a function , which represents
the weights for multicut and the capacities for IMCF

Output: a flow and a cut

Initialize
for each vertex in nonincreasing order of depth do

for each pair let be the lowest common ancestor of and
do

Greedily route flow from to if possible;
Add all saturated edges to in arbitrary order;

Let be the ordered list of edges in ;
for down to 1 do

If is a multicut, then remove from ;

Our deterministic LCA for multicut is detailed in Algorithm 3.9 It finds a (4 + ε)-
approximation to the multicut problem. In trees with minimum capacity cmin ≥ 2, a
similar algorithm (Algorithm 4) finds an IMCF with approximation factor cmin/2�

2cmin
≥

1
6 .10 We also present a randomized Algorithm (Algorithm 5), that gives an approxi-
mation factor of (1

2 − ε) to IMCF for any desired ε > 0 (the running time depends
on 1/ε). All three algorithms are similar, in that they partition the tree to subtrees and
apply Algorithm 2 to each subtree. The randomized algorithm requires a very small
amount of enduring memory, namely O(log(�/ε)) bits.

4.1 Multicut on Trees

Similarly to Section 3, we first describe and analyze a global algorithm and then
show how to implement it as an LCA.

An edge is said to be at depth z if it connects vertices at depths z − 1 and z. The
deterministic (global) algorithm (Algorithm 3) for multicut is as follows. We con-
sider two overlapping decompositions of the tree into subtrees of height 2�: the first
decomposition is obtained by removing edges at depth 2�, 4�, . . . After removing
these edges, the tree is decomposed a forest consisting of subtrees of depths at most
2� with root nodes being the nodes at depth 0, 2�, 4�, . . . in the original tree. The sec-
ond decomposition is similar, only we remove all edges at depth �, 3�, . . . We then
run Algorithm 2 on both forests. Let the output of the “even” instance be De, and the
output of the “odd” instance be Do. The output of the global algorithm is De ∪ Do.

9Technically, this is a global algorithm, which we later show how to implement as an LCA.
10The ratio is 1

4 when all capacities are even, and it tends to 1
4 as cmin → ∞. For cmin = 1 the

approximation ratio is 0.

260 Theory Comput Syst (2018) 62:249–267

For the LCA implementation, we are given an edge e as a query, and execute
Algorithm 2 on the subtrees that contain e (there is at least one such tree and at most
two).The output of the LCA is “yes” (i.e., the edge is in the cut) if it is in Do ∪ De.
We discuss this implementation in more detail in Section 4.3.

Algorithm 3 Deterministic algorithm for Multicut in trees

Input : A graph , with , and 0
Output : A multicut

Step 1.
Delete all edges at depth , for odd ;
On each remaining subtree , run Algorithm 2;
Let be the multicut returned on ;
Let

Step 2.
Delete all edges at depth , for even ;
On each remaining subtree , run Algorithm 2;
Let be the multicut returned on ;
Let

Step 3.
Return

Let us call the subtrees created in Step 1 of Algorithm 3 odd subtrees, and the
subtrees created in Step 2 even subtrees.

Lemma 4 Algorithm 3 outputs a multicut, whose capacity is at most 4 times the
capacity of the minimum multicut of T .

Proof Each vertex is contained in exactly two subtrees, and every edge is contained
in at least one and at most two subtrees. As the subtrees are of depth 2�, each path
(si , ti) must be fully contained within either an odd subtree or an even subtree (or
both), as we assume that the paths are of length at most �. Therefore, as Do and De

are multicuts of their respective forests, at least one edge in Do ∪ De is on the path
between si and ti ; hence D = Do ∪ De is a multicut. From Theorem 2, Do and De

are 2-approximations to the minimal capacity multicut of T , hence their union is at
most a 4-approximation.

4.2 IMCF on Trees

The global algorithm for IMCF on trees (Algorithm 4) splits the tree into subtrees,
similarly to Algorithm 3. It then decreases the capacity of each edge e from ce by a
factor of 2 (rounding down to ensure feasibility and integrality). Algorithm 2 is then
executed on each subtree. This gives flows f e for the “even” subtrees and f o for
the “odd” subtrees. The algorithm outputs f e + f o. This algorithm is very similar in
structure to Algorithm 3; we include its pseudocode for completeness.

Theory Comput Syst (2018) 62:249–267 261

Algorithm 4 Deterministic algorithm for IMCF in trees

Input : A graph , with , and 0
Output : A flow

for every do
Set

Step 1.
Delete all edges at depth , for odd ;
On each remaining subtree , run Algorithm 2;
Let be the flow returned on ;
Let

Step 2.
Delete all edges at depth , for even ;
On each remaining subtree , run Algorithm 2;
Let be the flow returned on ;
Let

Step 3.
Return

Lemma 5 Algorithm 4 outputs a feasible flow, whose value is at least (1
4 − 1

4cmin
)

fraction of the maximal multicommodity flow on T .

Proof Let f o and f e denote the flows computed on odd and even trees, respectively.
Their sum is a feasible flow because each of them uses at most half of the capacity
of each edge. Moreover, the flow that the algorithm returns for subtree Ti is a 1/2
approximation to the optimal flow of Ti . Denote the value of the maximal IMCF on
T by f ∗. Let f ∗

i be the optimal flow on the subtree Ti . As in Algorithm 4, we denote
indices of odd subtrees by i, and even subtrees by j . Then

f ∗ ≤
∑

i

f ∗
i +

∑

j

f ∗
j

≤
∑

i

2fi +
∑

j

2fj

≤ (2f e + 2f o) · cmin

cmin/2�
≤ 4cmin

cmin − 1
(f e + f o) .

4.3 Implementation as LCAs

The implementation of Algorithms 3 and 4 as LCAs is straightforward: when queried
on an edge, determine to which subtrees it belongs, and then execute Algorithm 3
or 4 on the two subtrees. To determine to which subtrees it belongs, we need to find

262 Theory Comput Syst (2018) 62:249–267

the root of the subtree, which is done by repeatedly finding the parent of each vertex
on the path to the root. We then perform a BFS from the root vertex, stopping when
we reach the leaves of the subtree, which are the vertices 2� levels down from the
root. Finding the parent of a vertex takes O(d) probes. The maximal size of a subtree
is d2�, hence our probe complexity is O(d2�+1). We do not attempt to optimize the
running time, but simply note that it is trivial to implement the algorithm on subtree
Tj in time O(|Tj |3), as there can be at most |Tj |2 pairs (si , ti) in Tj . This gives

Theorem 3 Given a rooted tree T with depth information at the nodes, maximal
degree d, integer edge capacities at least cmin and source-destination pairs with max-
imal distance at most � > 0, there are LCAs with t (n) = dO(�), p(n) = dO(�) and
em(n) = 0, for 4-approximate multicut and (1

4 − 1
4cmin

)-approximate IMCF. If all

capacities are even, the approximation ratio to IMCF is 1
4 .

4.4 Randomized LCA for IMCF on Trees

We now turn to the randomized setting. Our randomized algorithm (detailed in
Algorithm 5) is very similar to the deterministic one; instead of an overlapping
decomposition, we use a random one as follows. Let H = � �

ε
�. We pick an integer

j uniformly at random from [H], and remove all edges whose depth modulo H is
j − 1. The result is a collection of subtrees of depth at most H − 1 each. Now, given
an edge e, we run Algorithm 2 on the subtree that contains e and output the output
of Algorithm 2 (with probability 1/H , the edge queried, e, is not in any tree; in this
case, e carries 0 flow).

Algorithm 5 IMCF in trees

Input : A graph , with , and 0
Output : A flow

Let
Uniformly sample an integer j from
Delete all edges at depth , for all such that depth
On each remaining subtree, run Algorithm 2;
Return the union of the flows on all subtrees.

Theorem 4 Algorithm 5 achieves an approximation ratio of 1/2−ε to the maximum
integer multicommodity flow on trees.

Proof For any i, the probability that the path (si , ti) is not fully contained within a
subtree is at most �

H
≤ ε. Fix an optimal solution f ∗ with value |f ∗|. After deleting

edges, the expected amount of remaining flow is at least (1 − ε)|f ∗|. By Theorem 2,
Algorithm 2 outputs at least a half of that amount. The result follows.

The implementation of Algorithm 5 as an LCA is almost identical to that of Algo-
rithm 3; in order to achieve a 1/2 − ε approximation to the IMCF, the enduring

Theory Comput Syst (2018) 62:249–267 263

memory has to hold an integer whose value is at most � �
ε
�, i.e., O(log(�/ε)) bits. We

therefore have

Theorem 5 Given a rooted tree T with depth information at the nodes, maximal
degree d, integer edge capacities and vertex pairs with maximal distance at most � >

0, there is an LCA with t (n) = dO(�/ε), p(n) = dO(�/ε), and em(n) = O(log �/ε),

that achieves an approximation ratio of (1/2 − ε) to IMCF.

5 Weighted Matchings

In this section we present a different kind of an LCA: a reduction. Specifically, we
consider the task of computing a maximum weight matching (MWM), and show
how to locally reduce it to maximum cardinality matching (MCM). Our construction,
given any graph of maximal degree d and a t-time α-approximation LCA for MCM,
yields an O(td)-time, α

8 -approximation LCA for MWM.
Formally, in the MWM problem, we are given a graph G = (V , E) with a weight

function w : E → N, and we need to output a set of disjoint edges of (approxi-
mately) maximum total weight. In MCM, the task is to find a set of disjoint edges of
(approximately) the largest possible cardinality.

The main idea of our reduction is a variant of the well-known technique of scaling
(e.g., [11, 24, 27]): partition the edges into classes of more-or-less uniform weight,
run an MCM instance for each class, and somehow combine the MCM outputs. Moti-
vated by local computation, however, we use a very crude combining rule that lends
itself naturally to LCAs.

Specifically, the algorithm is as follows (the “global” algorithm is presented as
Algorithm 6). Let γ > 2 be a constant whose value will be optimized later. Partition
the edges by weight to sets Ei , such that Ei = {e : w(e) ∈ [γ i−1, γ i)}. The level of
a class Ei is i, and we denote the level of an edge e by level(e); that is, level(e) =
i : e ∈ Ei . For each level i, find a maximum cardinality matching Mi on the graph
Gi = (V , Ei), using any LCA for MCM. Let M = ∪iMi . Given an edge e, our LCA
for MWM returns “yes” iff e is a local maximum in M , i.e., iff (1) e is in M , and (2)
for any edge e′ in M which shares a node with e, w(e′) < w(e) (no ties can occur).

Algorithm 6 Reduction of MWM to MCM
Input : A graph , with , and 2
Output: A matching

Partition the edges into classes for
In parallel, compute an unweighted matching for each level

for each edge do
if e has a neighbor , with level level then

Remove from ;

Return

264 Theory Comput Syst (2018) 62:249–267

5.1 Correctness and Approximation Ratio

The correctness of the reduction follows from the fact that edges in different classes
have different weights, and hence no pair of adjacent edges can be selected to be
in M . The more interesting part is the approximation ratio analysis. We require the
following definition.

Definition 4 [M-shrub] For any edge (u, v) = e ∈ M , recursively define
an edge set Te as follows. If e is lighter than all of its neighbors in M , then
Te = {e}. Otherwise, let fu be the heaviest edge in M that touches u and is
lighter than e. Define fv similarly, and let Te = {e} ∪ Tfu ∪ Tfv . (If fu does not
exist, let Tfu = ∅; similarly fv .) We call Te the M-shrub of e. See Fig. 2 for an
example.

In other words an M-shrub is an edge e and all of its neighbors that are lighter than
e and are in their respective matchings, their neighbors that are lighter than them and
are in their respective matchings, and so on. Intuitively, it is the set of edges that are
in

⋃
i Mi but not in M that we can “charge” to e.

Define a new weight function on G, ŵ: ŵ(e) = γ level(e)−1; i.e., ŵ(e) is w(e)

rounded down to the nearest power of γ . Note that the choices made by Algorithm 6
are identical under w and ŵ. The main argument in the analysis of the approximation
ratio of Algorithm 6 is the following.

Proposition 2 Let e = (v, u) be any edge in M , such that ŵ(e) = γ k and let Te be

the M-shrub of e. Then ŵ(Te) ≤
k∑

i=0
2k−iγ i .

Proof The proof is by induction on k. For the base of the induction, k = 0, we
have ŵ(Te) = 20γ 0. For the inductive step, assume that the proposition holds for

Fig. 2 A simple example. Here γ = 3 and that M = ∪iMi is the entire graph. The M-shrub (see
Definition 4) of the edge of weight 3 consists of the edge itself and its two neighbors of weight 1. The
M-shrub of the edge of weight 10 includes itself and the M-shrub of the edge of weight 3. The M-shrub
of the edge of weight 9 is the entire graph, except the edge of weight 10

Theory Comput Syst (2018) 62:249–267 265

all integers up to k − 1. Let e = (u, v). The heaviest edge that is lighter than e

and touches u (denoted fu) weighs at most γ k−1. Similarly for fv . Therefore, by the
inductive hypothesis,

ŵ(Te) ≤ γ k + 2
k−1∑

i=0

2k−i−1γ i =
k∑

i=0

2k−iγ i .

Corollary 3 Let e = (v, u) be any edge in M , such that ŵ(e) = γ k and let Te be the
M-shrub of e. Then ŵ(e) ≥ γ−2

γ
ŵ(Te).

Proof As γ > 2,

ŵ(Te) ≤
k∑

i=0

2k−iγ i

= γ k
k∑

i=0

2k−i

γ k−i

= γ k
k∑

j=0

2j

γ j

< γ k
∞∑

j=0

2j

γ j

= ŵ(e)
γ

γ − 2
.

Lemma 6 Using any α-approximate MCM algorithm, Algorithm 6 finds a matching
of total weight at least α γ−2

γ 2 OPT.

Proof Let M∗
i be a maximum weighted matching on Gi = (V , Ei), and let M∗ =

∪iM
∗
i . Let M̂∗

i be a maximum cardinality matching (MCM) on Ĝi . Clearly, for all i,
w(M̂∗

i) ≥ 1
γ
w(M∗

i), because each edge in M∗
i weighs at most γ times any edge of

M̂∗
i , and M∗

i does not contain more edges than M̂∗
i . Also note that w(M∗) ≥ OPT,

because any restriction of an optimal MWM to edges of class i cannot have more
weight than M∗

i . Call a locally heaviest edge in M an output edge. Note that every

266 Theory Comput Syst (2018) 62:249–267

edge e ∈ M is contained in the M-shrub of at least one output edge. We can therefore
conclude that

∑

e:e is an output edge

w(e) ≥
∑

Te:e is an output edge

γ − 2

γ
w(Te)

≥ γ − 2

γ
w(M)

= γ − 2

γ

∑

i

w(Mi)

≥ γ − 2

γ

∑

i

αw(M̂∗
i)

≥ γ − 2

γ 2

∑

i

αw(M∗
i)

= α
γ − 2

γ 2
w(M∗)

≥ α
γ − 2

γ 2
OPT.

It is easy to verify, by differentiation, that the optimal value of γ is 4, yielding
approximation factor α/8.

5.2 Complexity

The simulation of Algorithm 6 as an LCA is simple, and, unlike the global algorithm,
its complexity is independent of the weights on the edges. Suppose we are queried
about edge e. Let N be the set of edges that includes e and all of its neighboring
edges whose weight is at least w(e). We invoke, for each e′ ∈ N , the LCA for MCM
on the edges whose weight class is level(e′). The answer for e is “yes” iff the MCM
LCA replied “yes” for the query on e, and “no” for all other queries. The following
theorem follows.

Theorem 6 Let A be an LCA for unweighted matching, requiring t (n) time, p(n)

probes and em(n) enduring memory, and producing an α-approximation to the maxi-
mummatching. Then given a graphG = (V , E)with maximal degree d and arbitrary
weights on the edges, there is a LCA that computes a α/8-approximation to the
maximum weighted matching, requiring O(d · t (n)) time, O(d · p(n)) probes and
O(d · em(n)) enduring memory.

Acknowledgements The authors would like to thank the anonymous reviewers for their useful feedback.
Yishay Mansour is supported in part by a grant from the Israel Science Foundation, by a grant from United

States-Israel Binational Science Foundation (BSF), by a grant from the Israeli Ministry of Science (MoS) and
the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11). Boaz Patt-Shamir is
supported in part by the Israel Science Foundation (grant No. 1444/14) and by the Israel Ministry of Science
and Technology. Shai Vardi is supported in part by the Google Europe Fellowship in Game Theory.

Theory Comput Syst (2018) 62:249–267 267

References

1. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms. Addison-Wesley
Longman Publishing Co., Inc., Boston (1974)

2. Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algorithms. In: Pro-
ceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1132–1139
(2012)

3. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Inf.
Control. 70(1), 32–53 (1986)

4. Even, G., Medina, M., Ron, D.: Deterministic stateless centralized local algorithms for bounded
degree graphs. In: 22th Annual European Symposium on Algorithms (ESA), pp. 394–405
(2014)

5. Göös, M., Hirvonen, J., Levi, R., Medina, M., Suomela, J.: Non-local probes do not help with many
graph problems. In: 30th International Symposium, on Distributed Computing (DISC), pp. 201–214
(2016)

6. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and
multicut in trees. Algorithmica 18(1), 3–20 (1997)

7. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. In: ACM Symposium on
Principles of Distributed Computing, PODC, pp. 175–184 (2012)

8. Kuhn, F.: Local approximation of covering and packing problems. In: Encyclopedia of Algorithms
(2008)

9. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proceedings of the
17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 980–989 (2006)

10. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1) (1992)
11. Lotker, Z., Patt-Shamir, B., Rosén, A.: Distributed approximate matching. SIAM J. Comput. 39(2)

(2009)
12. Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to local computa-

tion algorithms. In: Proceedings of the 39th International Colloquium on Automata, Languages and
Programming (ICALP), pp. 653–664 (2012)

13. Mansour, Y., Vardi, S.: A Local computation approximation scheme to maximum matching. In:
APPROX-RANDOM, pp. 260–273 (2013)

14. Naor, M., Stockmeyer, L.J.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277
(1995)

15. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Borůvka on minimum spanning tree problem:
Translation of both the 1926 papers, comments, history. Discret. Math. 233(1), 3–36 (2001)

16. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: Pro-
ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
327–336 (2008)

17. Oxley, J.: Matroid Theory. Oxford University Press (1992)
18. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distrib. Comput.

14(2), 97–100 (2001)
19. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied

Mathematics, Philadelphia (2000)
20. Reingold, O., Vardi, S.: New techniques and tighter bounds for local computation algorithms. J.

Comput. Syst. Sci. 82(7), 1180–1200 (2016)
21. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In: Proceedings of the

2nd Symposium on Innovations in Computer Science (ICS), pp. 223–238 (2011)
22. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24 (2013)
23. Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and Applied Mathemat-

ics, Philadelphia (1983)
24. Uehara, R., Chen, Z.: Parallel approximation algorithms for maximum weighted matching in gen-

eral graphs. In: Theoretical Computer Science, Exploring New Frontiers of Theoretical Informatics,
International Conference IFIP TCS, pp. 84–98 (2000)

25. Vardi, S.: Designing Local Computation Algorithms and Mechanisms. PhD Thesis. Tel Aviv
University, Tel Aviv (2015)

26. Vazirani, V.V.: Approximation Algorithms. Springer (2001)
27. Wattenhofer, M., Wattenhofer, R.: Distributed weighted matching. In: DISC, pp. 335–348 (2004)

	Constant-Time Local Computation Algorithms
	Abstract
	Introduction
	Related Work

	Preliminaries
	Graph concepts
	Approximation algorithms
	LCAs

	Maximum Weight Forest
	Correctness and Approximation Ratio
	Adaptation to an LCA and Complexity Analysis

	Multicut and Integer Multicommodity Flow in Trees
	Multicut on Trees
	IMCF on Trees
	Implementation as LCAs
	Randomized LCA for IMCF on Trees

	Weighted Matchings
	Correctness and Approximation Ratio
	Complexity

	Acknowledgements
	References

