
Theory Comput Syst (2018) 62:1351–1365

Speeding up dynamic programming
in the line-constrained k-median

Paweł Gawrychowski1 · Łukasz Zatorski2,3

Published online: 22 June 2017
© Springer Science+Business Media New York 2017

Abstract In the planar k-median problem we are given a set of demand points and
want to open up to k facilities as to minimize the sum of the transportation costs
from each demand point to its nearest facility. In the line-constrained version the
medians are required to lie on a given line. We present a new dynamic programming
formulation for this problem, based on constructing a weighted DAG over a set of
median candidates. We prove that, for any convex distance metric and any line, this
DAG satisfies the concave Monge property. This allows us to construct efficient algo-
rithms in L∞ and L1 and any line, while the previously known solution (Wang and
Zhang, ISAAC 2014) works only for vertical lines. We also provide an asymptotically
optimal O(n) solution for the case of k = 1.

Keywords k-median · Dynamic programming · Line-constraint · Monge property

This article is part of the Topical Collection on Special Issue on Combinatorial Algorithms

� Łukasz Zatorski
lzatorski@gmail.com

Paweł Gawrychowski
gawry@cs.uni.wroc.pl

1 University of Haifa, Haifa, Israel

2 Institute of Computer Science, University of Wrocław, Wrocław, Poland

3 Present address: imo.im, Palo Alto, CA, USA

DOI 10.1007/s00224-017-9780-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9780-y&domain=pdf
http://orcid.org/0000-0002-9633-7139
mailto:lzatorski@gmail.com
mailto:gawry@cs.uni.wroc.pl

1352 Theory Comput Syst (2018) 62:1351–1365

1 Introduction

The planar k-median problem is a variation of the well-known facility location prob-
lem. For a given set P of demand points, we want to find a set Q of k facilities, such
that the sum of all transportation costs from a demand point to its closest facility is
minimized. Each p ∈ P is associated with its own (positive) cost per unit of distance
to assigned facility, denoted w(p). Formally, we want to minimize:

S(P) =
∑

p∈P

min
q∈Q

w(p) · d(p, q)

Because the problem is NP-hard for many metrics [8], we further restrict it by intro-
ducing a line-constraint on the set Q. We require that all facilities should belong to a
specified facility line χ defined by an equation ax + by = c, where a, b, c ∈ R and
a · b �= 0. Such a constraint is natural when all facilities are by design placed along
a path that can be locally treated as linear, e.g., pipeline, railroad, highway, country
border, river, longitude or latitude.

For k = 1 we obtain the line-constrained 1-median problem. Despite the
additional restriction, the complexity of this simplest variant strongly depends
on the metric. For a point p ∈ R

2, let x(p) and y(p) denote its x- and y-
coordinate. The most natural metric is the Euclidean distance, where L2(p, q) =√

(x(p) − x(q))2 + (y(p) − y(q))2. It is known that even for 5 points, it is not pos-
sible to construct the 1-median with a ruler and compass. It can also be proven that
the general, line-constrained and 3-dimension versions of the k-median problem are
not solvable over the field of rationals [2]. Hence it is natural to consider also other
distance functions, for example (Fig. 1):

Chebyshev distance L∞(p, q) = max{|x(p) − x(q)|, |y(p) − y(q)|},
Manhattan distance L1(p, q) = |x(p) − x(q)| + |y(p) − y(q)|,
squared Euclidean distance L2

2(p, q) = (x(p) − x(q))2 + (y(p) − y(q))2.1

All these distances functions have been recently considered by Wang and Zhang
[11] in the context of line-constrained k-median problem. They designed efficient
algorithms based on a reduction to the minimum weight k-link path problem. However,
their L1 and L∞ solutions work only in the special case of a horizontal facility line.

We provide a different dynamic programming formulation of the problem that
works for any facility line χ in L1 and L∞. The new formulation can also be seen
as a minimum weight k-link path in a DAG, where the weights are Monge. However,
looking up the weight of an edge in this DAG is more expensive. We show how to
implement edge lookups in O(log n) after O(n log n) time and space preprocessing
which then allows us to apply the SMAWK algorithm [1] or, if k = �(log n), the
algorithm of Schieber [10] to obtain complexities listed in (Table 1).

In L∞, our general solution is faster than the one given by Wang and Zhang for
the special case of horizontal facility line. We also provide a specialized procedure
solving the problem for k = 1 in linear time.

1This is not a metric.

Theory Comput Syst (2018) 62:1351–1365 1353

Fig. 1 Example solution for k = 3 and facility line − 1
2 x + y = 0. Black demand points are assigned to

the closest white point facility in L1 metric via dashed line

2 Preliminaries

2.1 Monge property in dynamic programming

In many applications dynamic programming problem formulation can be visualized
as finding the row minima of (possibly many) matrices [6]. Such approach helps to
notice additional conditions satisfied by subproblem space. A basic tool for speed-
ing up dynamic programming is the so-called Monge property. It can often be used
to improve the time complexity by an order of magnitude, especially in geometric
problems.

Definition 1 A weight function w is concave Monge if, for all a < b and c < d,
w(a, c) + w(b, d) ≤ w(b, c) + w(a, d).

The naive solution for finding row minima of an n × n matrix takes O(n2)

time. However, Aggarwal et al. [1] showed how to decrease the time complexity
to O(n) if the matrix has the so-called total monotonicity property, which is often
established through the Monge property. Their method is usually referred to as the

Table 1 Comparison of results with previous approaches

Metric Facility line Time complexity

Wang and Zhang [11]

L1 horizontal min{O(nk), n2O(
√

log k log log n) log n}
L∞ horizontal min{O(nk log n), n2O(

√
log k log log n) log2 n}

Our results

L1 general min{O(nk log n), n2O(
√

log k log log n) log n}
L∞ general min{O(nk log n), n2O(

√
log k log log n) log n}

1354 Theory Comput Syst (2018) 62:1351–1365

SMAWK algorithm. There is a deep connection between SMAWK and other meth-
ods for speeding up dynamic programming, such as the Knuth-Yao inequality used
for building optimal binary search trees, as observed by Bein et al. [3].

2.2 Minimum diameter path and minimum weight k-link path

Let D be a DAG on n nodes 0, 1, . . . , n − 1 with a weight function w(i, j) defined
for 0 ≤ i < j < n that corresponds to the weight of the edge 〈i, j 〉. The weights
form an n×n upper triangular partial matrix, where defined entries form within each
row or column a contiguous interval. In such case, Monge and total monotonicity
properties are required to hold only for quadruples of defined entries. Although not
needed by referenced algorithms, one can imagine that undefined entries are pre-
filled with infinite-like values in order to satisfy the property for the full matrix, as in
Bein et al. [3]. It follows that:

Definition 2 A weight function w of a DAG is concave Monge if, for all a < b <

c < d, w(a, c) + w(b, d) ≤ w(b, c) + w(a, d) (Fig. 2).

A minimum diameter path in D is a path from 0 to n − 1 with the minimum
weight. Galil and Park showed how to find such path in optimal O(n) time using the
SMAWK algorithm [5]. A minimum weight k-link path is a minimum weight path
from 0 to n − 1 consisting of exactly k edges (links).

Lemma 1 Minimum weight k-link path of concave Monge DAG can be found in

O(nk) and, for k = �(log n), n2O(
√

log k log log n) time.

Proof To obtain O(nk) time complexity, we iteratively compute minimum weight
1-link, 2-link, . . . , (k − 1)-link and finally k-link paths from 0 to every other node.
This can be seen as k layers of dynamic programming, each requiring only O(n) time

thanks to the SMAWK algorithm. Alternatively, n2O(
√

log k log log n) time algorithm
for k = �(log n) was given by Schieber [10].

Fig. 2 Visual test for concave Monge property in a DAG. For any 4 nodes, the sum of weights of inter-
lacing edges (on the top) is smaller than or equal to the sum of weights of fully overlapping edges (on the
bottom)

Theory Comput Syst (2018) 62:1351–1365 1355

2.3 Orthogonal queries

The weights of the edges in our DAG will be computed on-the-fly with orthogonal
queries. We will use the following tool: preprocess a given set of n weighted points
in a plane for computing the sum of the weights of all points in a given query range
[x,+∞] × [y, +∞]. We call this problem orthogonal range sum.

Lemma 2 There exists a data structure for the orthogonal range sum problem that
can be built in O(n log n) time and answers any query in O(log n) time.

Proof We convert the points into a sequence by sorting them according to their
x-coordinates (without losing the generality, these coordinates are all distinct) and
writing down the corresponding y-coordinates. The y-coordinates are further nor-
malized by replacing with the ranks on a sorted list of all y-coordinates (again, we
assume that they are all distinct). Hence we obtain a sequence of length n over an
alphabet [n], where each character has its associated weight. We build a wavelet tree
[7] of this sequence in O(n log n) time. Each node of the wavelet tree is augmented
with an array of partial sums of the prefixes of its subsequence. This extra informa-
tion yields in total �(n log n) space complexity, dominating any efforts to compress
the node structure itself, otherwise common in text-index applications of the tree.
Given an orthogonal query, we first normalize it by looking at the sorted list of all
x- and y-coordinates. Then we traverse the wavelet tree starting from the root and
accumulate appropriate partial sums. The details can be found in [9].

3 Normalizing problem instances

L1 and L∞ metrics are equivalent, which can be seen by rotating the plane by 45◦.
Hence from now on we will work in L1 metric. This simplification was not possible
in the previous approach [11], since it required the facility line to be horizontal, which
is no longer true after rotation.

We further modify the problem instance so that the line χ is expressed in a slope
intercept form y = ax, where a ∈ [0, 1], and all coordinates of points in P are
non-negative. This is always possible by reflecting along the horizontal axis, then
along the line y = x, and finally translating. Such transformations do not mod-
ify the distances in L1, so computing the k-median solution Q for the transformed
instance gives us the answer for the original instance. Because any solution Q can
be transformed so that the x-coordinates of all facilities are distinct without increasing
the cost, we will consider only such solutions and identify each facility with its x-coordinate.

4 Computing 1-median

Let D(p, x) be the weighted distance between p ∈ P and (x, a · x) ∈ χ :

D(p, x) = w(p) · d(p, (x, a · x))

1356 Theory Comput Syst (2018) 62:1351–1365

Whenever we say that p ∈ P is closer to coordinate xi than xj , we mean that
D(p, xi) < D(p, xj). For a set of points A ⊆ P , D(A, x) is the sum of weighted
distances:

D(A, x) =
∑

p∈A

w(p) · d(p, (x, a · x))

The 1-median is simply min
x∈R D(P, x).

A function f : R → R is convex if the line segment between any two points on
its graph lies above or on the graph. Such functions have the following properties:

1. f (x) = |x − y| is convex for any y.
2. if f (x) is convex, then g(x) = c · f (x) is convex for any positive c.
3. if f (x) and g(x) are convex, then h(x) = f (x) + g(x) is also convex.

Lemma 3 For any point p, D(p, x) is convex. For any set of points P , D(P, x) is
also convex.

Proof Consider any point p ∈ P . From the definition:

D(p, x) = w(p) · L1(p, (x, a · x)) = w(p) · (|x(p) − x| + |y(p) − a · x|) .

This is a sum of absolute values functions multiplied by the (positive) weight of p.
Hence by the properties of convex functions D(p, x) is convex. Then D(P, x) is also
convex since it is a sum of convex functions over p ∈ P .

Since D(p, x) is convex, any of its local minima is a global minimum. Similarly
to the function f (x) = |x|, it is only semi-differentiable. Its derivative D′(p, x) is
a staircase nondecreasing function, undefined for at most two values x = x1 and
x = x2. We call x1 and x2 the median candidates and for convenience assume that
D′(p, x) is equal to its right derivative there. When a = 0 or p ∈ χ , D′(p, x) has
exactly one median candidate x1 = x(p), that is the minimum. Otherwise, there are
two median candidates x1 = x(p) and x2 = y(p)

a
. For a ∈ (0, 1), x1 is the only

minimum, whereas for a = 1 every value in range [x1, x2] is a minimum.

Fig. 3 Median candidates in L1 metric for weighted points a, b, c marked as circles on the facility line,
together with their combined distance function. Grey circle represents optimal solution for 1-median
problem

Theory Comput Syst (2018) 62:1351–1365 1357

Because the derivative of a sum of functions is the sum of their derivatives,
D′(P, x) can only change at a median candidate of some p ∈ P . This means that
a minimum of D(P, x) corresponds to one of at most 2n median candidates of P

(Fig. 3). In other words, there exists a solution (x, y) ∈ χ , such that x = x(p)

or y = y(p) for some p ∈ P . From now on, we use M(P) to denote the set of
median candidates of P . M(P) can be computed in O(n) time by simply iterating
over p ∈ P and adding x = x(p) and x = y(p)

a
to the result (note that this might

give us a multiset, i.e., some median candidates might be included multiple times).

Theorem 1 We can solve line-constrained 1-median problem in O(n) time.

Proof Because D′(P, x) is nondecreasing, we can binary search for the largest x

such that D′(P, x) ≤ 0. Then we return x as the solution. In every step of the binary
search we use the median selection algorithm [4] to narrow down the current search
range X = (xleft, xright). At the beginning of every step:

1. M is a multiset of all median candidates of P that are in X.
2. S contains all points from P with at least one median candidate in M .
3. r = D′(P \ S, x) for some x ∈ X.

We select the median xm of M and compute D′(P, xm). If D′(P, xm) > 0, we
continue the search in (xleft, xm), and otherwise in (xm, xright), updating S and M

accordingly. Eventually xleft = xright and we return xleft.
The key observation is that when a point p is removed from S, it does no longer

have a median candidate within X and its D′(p, x) remains constant in all further
computations. This means that D′(P \ S, x) is constant for all x ∈ X and r can
be updated after removing every point p from S in O(1) time. xm can be found
in O(|M|) time. Calculating D′(P, xm) = r + D′(S, xm) then takes O(1 + |S|)
time. For a point p to be in S, one of its median candidates must belong to M ,
so |S| ≤ |M|. Hence the complexity of a single iteration is O(|M|). After each
iteration the size of M decreases by a factor of two, so the running time is described
by T (n) = O(n) + T (n/2), which solves to O(n).

Theorem 2 We can calculate D(P, x) for all x ∈ M(P) in O(n log n) time.

Proof The elements of M(P) can be sorted in O(n log n) time, and we can
assume that every point generates exactly two median candidates. Let M(P) =
{x1, x2, . . . , x2n}, where xi ≤ xi+1 for all i = 1, 2, . . . , 2n − 1. Recall that
D′(P, x) = D′(P, xi) for any x ∈ (xi, xi+1). We compute D(P, x1) together with
D′(P, x1) in O(n) time. Then all other D(P, xi) are computed sequentially for
i = 2, 3, . . . , 2n in O(1) time each using the formula:

D(P, xi) = D(P, xi−1) + D′(P, xi−1) · (xi − xi−1)

D′(P, xi) = D′(P, xi−1) + 2 · w(p) · σ

where xi is generated by the point p, σ = 1 if xi = x(p) and σ = a otherwise.

1358 Theory Comput Syst (2018) 62:1351–1365

5 Computing k-median

Consider now any optimal solution Q of the k-median problem for the given set of
weighted points P . For any facility q ∈ Q, let Pq be the set of points of P assigned
to q. By interchanging the order of the summation, Q should minimize

∑

q∈Q

∑

p∈Pq

w(p) · d(p, q).

Hence q must be an optimal solution of the 1-median problem for Pq . Since replac-
ing q will not increase the sum of distances of points in P \Pq , q can be chosen to be
a median candidate of Pq . We deduce that there exists an optimal solution Q′ such
that

For k ≥ min(n, |M(P)|), every p ∈ P can be assigned to its closest possible
facility. Such an assignment can be easily computed in O(n) time. If we are required
to return exactly k medians, we simply add k−min(n, |M(P)|) unique facility points
to the result. They will not be assigned to any of the demand points. From now on, we
assume that k < min(n, |M(P)|). Thus there exists an optimal k-median solution,
where all facilities are 1-median candidates of P .

By arranging all median candidates in a sequence according to their x-coordinates,
we can view choosing k facilities as selecting a (k + 1)-link path in a DAG between
two artificial elements infinitely to the left and to the right of the sequence, called
source and sink, respectively.

Imagine that we traverse the sequence from left to right while deciding if we
should open a new facility at the current median candidate, see Fig. 4. Initially, all
points are assigned to the artificial facility source and the cost of the current solution
S is set to +∞. If we decide to open a new facility at the current median candidate

Fig. 4 Path in the DAG ending at the candidate xi . Dashed lines represent current assignment of points
from P to the closest chosen facility

Theory Comput Syst (2018) 62:1351–1365 1359

Fig. 5 We follow the edge 〈i, j 〉. All (black) points now assigned to xj were previously assigned to xi ,
see Fig. 4

xj , for every p ∈ P we check if xj is closer to p than the facility p is currently
assigned to. If so, we reassign p to xj , see Fig. 5.

We claim that p ∈ P can be closer to xj than the facility p is currently assigned to
only if the currently assigned facility is the most recently chosen facility xi , that is,
the current solution does not contain any facilities between xi and xj . Assuming that
the claim holds, we define the weight of an edge 〈source, i〉 to be D(P, xi), and the
weight of an internal edge 〈i, j 〉 to be total decrease of the cost after giving each point
p ∈ P the possibility to switch from xi to xj . Finally, the weight of an edge 〈j, sink〉
is 0. Then selecting k medians corresponds to selecting an (k + 1)-link from source
to sink in the DAG. However, we need to show the claim. To this end we consider the
following properties of convex functions:

Proposition 1 For any convex function f and a < b < c:

1. If f (c) < f (b) then f (b) < f (a).
2. If f (c) < f (a) then f (b) < f (a).

Proof Assume otherwise for any of the two implications. This means that f (a) ≤
f (b) > f (c) and the segment AC where A = (a, f (a)) and C = (c, f (c)) lies
below f (b), contradicting the assumption that the function f is convex.

Now we can prove the claim. Consider a point p ∈ P such that its currently
assigned facility is xi and, for some k > i, facility xk was not selected as a better
option. Then, for any j > k, facility xj cannot be a better option either, because xi <

xk < xj so by Proposition 1.1 D(p, xi) ≤ D(p, xk) implies D(p, xj) ≥ D(p, xk).
This means that if xi was the most recently opened facility and xj is the current
median candidate, opening a new facility at xj changes the total cost by

∑

p∈P

min(D(p, xj) − D(p, xi), 0).

1360 Theory Comput Syst (2018) 62:1351–1365

Definition 3 Let x1, x2, . . . , xn−1, x2n be the sorted sequence of median candidates
of P . We define its median DAG over nodes 0, 1, . . . , 2n, 2n + 1 with edge weight
function w(i, j) defined for i < j as follows:

w(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞ if i = 0 and j = 2n + 1,

0 if i > 0 and j = 2n + 1,

D(P, xj) if i = 0 and j ∈ {1, 2, . . . , 2n},∑
p∈P

min(D(p, xj) − D(p, xi), 0) otherwise.

The total cost of any k-median solution is equal to the sum of weights on its
corresponding path of length k+1 between 0 and 2n+1, so finding k-median reduces
to finding the minimum weight (k + 1)-link path in the median DAG.

5.1 Mongeness in k-median DAG

Because a sum of Monge functions is also Monge, to prove that w(i, j) is Monge we
argue that wp(i, j) is Monge, where w(i, j) = ∑

p∈P

wp(i, j) and for i < j :

wp(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if i = 0 and j = 2n + 1,

0 if i > 0 and j = 2n + 1,

D(p, xj) if i = 0 and j ∈ {1, 2, . . . , 2n},
min(D(p, xj) − D(p, xi), 0) otherwise.

Proposition 2 For any convex function f , if a < b < c then:

min(f (c) − f (a), 0) ≤ min(f (c) − f (b), 0).

Proof If f (c) ≥ f (b) then the right side of the equation is equal to 0 and left side is
non-positive. If f (c) < f (b) then by Proposition 1.1 also f (b) < f (a), so

min(f (c) − f (a), 0) ≤ f (c) − f (a) < f (c) − f (b) = min(f (c) − f (b), 0)

so the claim holds.

Proposition 3 For any convex function f , if a < b < c then

f (b) + min(f (c) − f (a), 0) ≤ f (c) + min(f (b) − f (a), 0).

Proof If f (b) ≥ f (a) then by Proposition 1.1 also f (c) ≥ f (b). Hence also f (c) ≥
f (a) and

f (b) + min(f (c) − f (a), 0) = f (b) ≤ f (c) = f (c) + min(f (b) − f (a), 0)

so the property holds. Otherwise, f (b) < f (a) and the property becomes

f (b) + min(f (c) − f (a), 0) ≤ f (c) + f (b) − f (a)

which is always true due to min(f (c) − f (a), 0) ≤ f (c) − f (a).

Theory Comput Syst (2018) 62:1351–1365 1361

Proposition 4 For any convex function f , if a < b < c < d then

min(f (c)−f (a), 0)+min(f (d)−f (b), 0) ≤ min(f (d)−f (a), 0)+min(f (c)−f (b), 0).

Proof If f (d) ≥ f (a), then

min(f (d) − f (b), 0) ≤ 0 = min(f (d) − f (a), 0).

Combined with Proposition 2 applied to a < b < c we obtain the claim. Otherwise,
f (d) < f (a) and by Proposition 1.2 applied to a < c < d also f (c) < f (a), so the
property becomes

f (c) + min(f (d) − f (b), 0) ≤ f (d) + min(f (c) − f (b), 0)

which holds by Proposition 3 applied to b < c < d .

Based on these properties we can show that:

Theorem 3 For any point p, wp(i, j) is concave Monge.

Proof Following Definition 2, consider any s, t, u, v ∈ [0, 2n+ 1] such that s < t <

u < v. We need to prove that for any p ∈ P :

wp(s, u) + wp(t, v) ≤ wp(s, v) + wp(t, u).

Case 1 s = 0 and v = 2n + 1
Straightforward, since wp(s, v) = ∞ and all other edges have finite weights.

Case 2 s > 0 and v = 2n + 1

wp(s, u) + wp(t, v) = wp(s, u) + 0

= min(D(p, u) − D(p, s), 0)

2≤ min(D(p, u) − D(p, t), 0)

= 0 + wp(t, u)

= wp(s, v) + wp(t, u)

Case 3 s = 0 and v < 2n + 1

wp(s, u) + wp(t, v) = D(p, u) + min(D(p, v) − D(p, t), 0)

3≤ D(p, v) + min(D(p, u) − D(p, t), 0)

= wp(s, v) + wp(t, u)

Case 4 s > 0 and v < 2n + 1

wp(s, u) + wp(t, v) = min(D(p, u) − D(p, s), 0) + min(D(p, v) − D(p, t), 0)

4≤ min(D(p, v) − D(p, s), 0) + min(D(p, u) − D(p, t), 0)

= wp(s, v) + wp(t, u)

1362 Theory Comput Syst (2018) 62:1351–1365

So in all cases wp(s, u) + wp(t, v) ≤ wp(s, v) + wp(t, u) and hence wp(i, j) is
concave Monge.

5.2 Our approach

In order to apply the known algorithms for finding minimum weight k-link path in
the k-median problem, we need to answer queries for w(i, j).

Lemma 4 After O(n log n) time and space preprocessing, we can answer queries
for w(i, j) in O(log n) time per query.

Proof All edges from the source can be computed in O(n log n) time via Theorem 2.
All edges to sink have zero weight. It remains to show how to calculate the weight of
an internal edge 〈i, j 〉. Consider the set of points p ∈ P that are closer to xj than to
xi (Fig. 6):

V (i, j) = {
(x, y) ∈ P : |x − xi | + |y − a · xi | > |x − xj | + |y − a · xj |

}

By definition, w(i, j) = D(V (i, j), xj) − D(V (i, j), xi). We describe how to
compute D(V (i, j), xi). D(V (i, j), xj) can be computed using the formula:

D(V (i, j), xj) = D(P, xj) − D(P \ V (i, j), xj)

where D(P, xj) is the already preprocessed weight of the edge 〈source, j 〉, and
D(P \V (i, j), xj) can be calculated by rotating the plane by 180◦ and using the same
method as the one described below.

First we argue that if (x, y) ∈ V (i, j) then x > xi . Otherwise

|y − a · xi | − |y − a · xj | > xj − xi ≥ a · xj − a · xi ≥ 0

and we obtain a contradiction in each of the three cases:

1. y < a · xi then the inequality becomes a · xi − a · xj > 0 but xi < xj .
2. y ∈ [a · xi, a · xj) then the inequality becomes 2y > 2a · xj but y < a · xj .
3. y > a · xj then the inequality becomes a · xj − a · xi > a · xj − a · xi .

Fig. 6 Voronoi diagram in L1 for two generating points (xi , axi) and (xj , axj). Black points on the right
of the border represent set V (i, j) of demand points from P closer to median candidate xj

Theory Comput Syst (2018) 62:1351–1365 1363

We partition V (i, j) into V1(i, j) and V2(i, j) with a horizontal line y = a · xi :

V1(i, j) = V (i, j) ∩ {(x, y) : y ≥ a · xi}
V2(i, j) = V (i, j) ∩ {(x, y) : y < a · xi}.

The median candidate (xi, a · xi) is on the left and bottom of all points in V1(i, j)

and on the left and top of all points in V2(i, j). Consider the minimum area rectangle
enclosing P with sides parallel to the coordinate axes, and enumerate its corners
clockwise starting from the top left as c1, c2, c3, c4. In L1 metric, one of the shortest
routes from any point in V1(i, j) to the bottom left corner point c4 goes via xi , see
Fig. 7. Therefore our desired sum of distances to xi can be described in respect to c4
as:

D(V1(i, j), xi) =
∑

p∈V1(i,j)

w(p) · d(p, (xi, a · xi))

=
⎛

⎝
∑

p∈V1(i,j)

w(p) · d(p, c4)

⎞

⎠ −
⎛

⎝d(c4, (xi, a · xi)) ·
∑

p∈V1(i,j)

w(p)

⎞

⎠ .

Similarly, one of the shortest routes from any point in V2(i, j) to c1 goes via xi :

D(V2(i, j), xi) =
⎛

⎝
∑

p∈V2(i,j)

w(p) · d(p, c1)

⎞

⎠ −
⎛

⎝d(c1, (xi, a · xi)) ·
∑

p∈V2(i,j)

w(p)

⎞

⎠ .

The distances d(c1, (xi, a · xi)) and d(c4, (xi, a · xi)) can be computed in O(1)

time. The expressions
∑

p∈V2(i,j) w(p) · d(p, c1) and
∑

p∈V2(i,j) w(p) can be eval-
uated in O(log n) with orthogonal queries. To calculate

∑
p∈V1(i,j) w(p) · d(p, c4)

Fig. 7 Shortest route in L1 from p2 to c1 and from p1 to c4 passing through the median candidate xi

1364 Theory Comput Syst (2018) 62:1351–1365

Fig. 8 V1 (from Fig. 7) represented as the gray V3 minus the striped V4

and
∑

p∈V1(i,j) w(p), we represent V1(i, j) as a difference between sets V3(i, j) and
V4(i, j), see Fig. 8 where δx = xj − xi , δy = a(xj − xi) and

V3(i, j) =
{
(x, y) ∈ P : y ≥ axi ∧

(
x + y >

(δx + δy)

2

)}

V4(i, j) =
{
(x, y) ∈ P : x ≤ xi + δx − δy ∧

(
x + y >

(δx + δy)

2

)}

V1(i, j) = V3(i, j) \ V4(i, j).

Now each of V2(i, j), V3(i, j) and V4(i, j) is defined by an intersection of two half-
planes. By transforming every point p ∈ P into (x(p)+y(p), y(p)) for V3(i, j) and
into (x(p) + y(p), x(p)) for V4(i, j), we can assume that the lines defining the half-
planes are parallel to the coordinate axes. Hence each sum can be calculated with
orthogonal queries in O(log n) time and O(n log n) time and space preprocessing by
Lemma 2.

We reduced the line-constrained k-median problem in L1 to the minimum k-link
path problem. The weight of any edge can be retrieved in O(log n) time by decom-
posing it into a constant number of orthogonal queries. By plugging in an appropriate
algorithm for the minimum k-link path problem, we obtain the final theorem.

Theorem 4 We can solve the line-constrained k-median problem in L1 and L∞
using O(kn log n) time or, if k = �(log n), n2O(

√
log k log log n) log n time.

References

1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-
searching algorithm. Algorithmica 2(1-4), 195–208 (1987)

2. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput. Geom. 3(1),
177–191 (1988)

3. Bein, W., Golin, M.J., Larmore, L.L., Zhang, Y.: The knuth–Yao quadrangle-inequality speedup is a
consequence of total monotonicity. ACM Trans. Algorithms (TALG) 6(1), 17 (2009)

4. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput.
Syst. Sci. 7(4), 448–461 (1973)

Theory Comput Syst (2018) 62:1351–1365 1365

5. Galil, Z., Park, K.: A linear-time algorithm for concave one-dimensional dynamic programming. Inf.
Process. Lett. 33(6), 309–311 (1990)

6. Galil, Z., Park, K.: Dynamic programming with convexity, concavity and sparsity. Theor. Comput.
Sci. 92(1), 49–76 (1992)

7. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 841–850. Society for
Industrial and Applied Mathematics (2003)

8. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM
J. Comput. 13(1), 182–196 (1984)

9. Navarro, G., Russo, L.M.: Space-efficient data-analysis queries on grids. In: Algorithms and Compu-
tation, pp. 323–332. Springer (2011)

10. Schieber, B.: Computing a minimum weight k-link path in graphs with the concave Monge property.
Journal of Algorithms 29(2), 204–222 (1998)

11. Wang, H., Zhang, J.: Line-constrained K-median, K-means, and K-center problems in the plane. In:
Algorithms and Computation, pp. 3–14. Springer (2014)

	Speeding up dynamic programming in the line-constrained k-median
	Abstract
	Introduction
	Preliminaries
	Monge property in dynamic programming
	Minimum diameter path and minimum weight k-link path
	Orthogonal queries

	Normalizing problem instances
	Computing 1-median
	Computing k-median
	Mongeness in k-median DAG
	Our approach

	References

