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Wojciech Czerwiński1 · Claire David2 ·
Filip Murlak1 · Paweł Parys1

Published online: 8 May 2017
© Springer Science+Business Media New York 2017

Abstract We study a class of integrity constraints for tree-structured data modelled
as data trees, whose nodes have a label from a finite alphabet and store a data value
from an infinite data domain. The constraints require each tuple of nodes selected
by a conjunctive query (using navigational axes and labels) to satisfy a positive
combination of equalities and a positive combination of inequalities over the stored
data values. Such constraints are instances of the general framework of XML-to-
relational constraints proposed recently by Niewerth and Schwentick. They cover
some common classes of constraints, including W3C XML Schema key and unique
constraints, as well as domain restrictions and denial constraints, but cannot express
inclusion constraints, such as reference keys. Our main result is that consistency of
such integrity constraints with respect to a given schema (modelled as a tree automa-
ton) is decidable. An easy extension gives decidability for the entailment problem.
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Equivalently, we show that validity and containment of unions of conjunctive queries
using navigational axes, labels, data equalities and inequalities is decidable, as long
as none of the conjunctive queries uses both equalities and inequalities; without this
restriction, both problems are known to be undecidable. In the context of XML data
exchange, our result can be used to establish decidability for a consistency problem for
XML schema mappings. All the decision procedures are doubly exponential, with match-
ing lower bounds. The complexity may be lowered to singly exponential, when conjunc-
tive queries are replaced by tree patterns, and the number of data comparisons is bounded.

Keywords Data trees · Integrity constraints · Unions of conjunctive queries ·
Schema mappings · Entailment · Containment · Consistency

1 Introduction

Static analysis is an area of database theory that focuses on deciding properties of
syntactic objects, like queries, integrity constraints, or data dependencies. The unify-
ing paradigm is that because these objects are mostly user-generated, they tend to be
small; hence, higher complexities are tolerable. The fundamental problems include
satisfiability, validity, containment, and equivalence of queries [9, 25], as well as
consistency and entailment of integrity constraints [16, 28]. More specialized tasks
include query rewriting in data integration scenarios [24], and manipulating schema
mappings in data exchange and schema evolution scenarios [1, 15]. Many of these
problems are equivalent to satisfiability of fragments of first order logic, possibly
over a restricted class of structures, but they are rarely presented this way, because
the involved fragments are tailored for specific applications, and usually do not form
natural sublogics. As satisfiability over arbitrary structures is undecidable even for
relatively simple fragments of first order logic, in static analysis undecidability is
always close [19, 20].

In this paper we present a decidability result (with tight complexity bounds) for
a problem in static analysis for tree-structured data. The specific model we consider
is that of data trees: finite ordered unranked trees whose nodes have a label from a
finite alphabet and store a data value from an infinite data domain. The problem has
three possible interpretations:

– consistency modulo schema for a class of integrity constraints;
– validity modulo schema for a class of queries; and
– consistency for a class of schema mappings.

The more general problems of entailment (or implication) of constraints and contain-
ment of queries are—as is often the case—very close to their restricted counterparts
listed above, and can be solved by easy modifications of our decision procedure.

Our basic setting is that of consistency of integrity constraints; it seems best suited
for proofs and—in combination with entailment—the most appealing. We consider
non-mixing constraints of the forms

α(x̄) ⇒ η∼(x̄) and α(x̄) ⇒ η�(x̄)
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that require each tuple x̄ of nodes selected by α to satisfy, respectively, a posi-
tive combination of equalities η∼ or a positive combination of inequalities η� over
the stored data values. As tuple selectors α(x̄) we use conjunctive queries over the
signature including label tests and the usual navigational axes. For example, the
constraint

a(x) ∧ x ↓ y ∧ x ↓ y′ ∧ y →+ y′ ⇒ y � y′

expresses that different children of the same a-labelled node store different data
values, and the constraint

a(x) ∧ x ↓ y ∧ x ↓ y′ ∧ x ↓ y′′ ⇒ y ∼ y′ ∨ y′ ∼ y′′ ∨ y′′ ∼ y

expresses that at most two different data values are used by children of each a-
labelled node. The consistency problem is to decide if there exists an instance of a
given schema that satisfies a given set of constraints. In the example above, there
exists an instance satisfying both constraints if and only if the schema allows trees
without a-labelled nodes with more than two children.

What is the expressive power of non-mixing constraints? Let us first look at what
they cannot do. Being first-order constraints, they cannot compare full subtrees, unlike
some other formalisms [21, 22]. They have purely universal character (can be written
as universal sentences of first order logic), so they cannot express general inclu-
sion dependencies nor foreign keys, as these need quantifier alternation. Finally, the
inability to mix freely data equalities and inequalities within a single constraint makes
them unable to express general functional dependencies. What can they do, then?

Non-mixing integrity constraints can be seen as a special case of the gen-
eral framework of XML-to-relational constraints (X2R constraints) introduced by
Niewerth and Schwentick [27]. Within this framework they cover a wide subclass of
functional dependencies, dubbed XKFDs, which are particularly well suited for tree-
structured data. They include W3C XML Schema key and unique constraints [18],
as well as absolute and relative XML keys by Arenas et al. [2], and XFDs by Arenas
and Libkin [3]. XKFDs can be expressed with non-mixing constraints of the form
α(x̄) ⇒ η�(x̄); that is, using only data inequalities.

Constraints of the form α(x̄) ⇒ η∼(x̄)—that is, using only equalities—can
express all sorts of finite data domain restrictions, either to a specific set of constants
or to a set of data values taken from the data tree (the latter can be seen as a limited
variant of inclusion constraints), as well as cardinality restrictions over data values
(like in the example above).

The novelty of our work is that we allow these two kinds of constraints simulta-
neously. Unrestricted mixing of data equalities and inequalities in constraints would
immediately lead to undecidability [6], but for non-mixing constraints we can show
decidability of the consistency problem, and a slight extension of the proof gives
decidability for entailment (with the same complexity bounds).

Our approach leads through a simple model property, which asserts that a set of
constraints is satisfiable if and only if it has a model of bounded data cut [7]; that is,
the number of data values shared by any subforest of the model and its complement
is bounded. This property can be seen as a strengthening of the bounded clique-width
property [11], in which decompositions must follow the structure of data trees. The
robustness of our approach is witnessed by the fact that it can be naturally extended to
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constraints in which tuple selectors α(x̄) are expressed in monadic second order logic
(MSO) using label tests and navigational predicates. At the core of our argument lies
a simple lemma of geometric nature.

Under the second interpretation our result shows decidability of validity and con-
tainment for unions of conjunctive queries where each conjunctive query can use
either data equality or inequality, but never both. Seen this way, our result is a uni-
form extension of decidability results for UCQs using only data equality, and UCQs
using only data inequality by Björklund et al. [6] (see also [12]). However, it cannot
be obtained via a combination of techniques used in these cases, as they are virtually
contradictory: they require assuming that almost all data values in counter-examples
are, respectively, different and equal. If data equalities and inequalities are mixed
freely in UCQs, even validity is undecidable [6].

In its third incarnation, our result gives decidability of the consistency problem
for XML schema mappings with source integrity constraints, which asks to decide
if there exists a source instance which satisfies the integrity constraints and admits a
target instance satisfying the requirements imposed by the schema mapping.

In all three cases (excluding the unsurprisingly non-elementary MSO extension),
the decision procedure is doubly exponential. This bound is tight, as already validity
modulo schema for UCQs over trees without data values is 2EXPTIME-complete [6].
We show that restricting the CQs to tree patterns does not help. However, the com-
plexity does drop to EXPTIME-complete when we replace CQs with tree patterns and
bound the number of variables used in data comparisons.

A broader context for our work is the rich landscape of results on static analy-
sis for the popular XML query language XPath [5, 26] and related formalisms like
alternating register automata [17, 23] or the two-variable fragment of first order logic
with data comparisons [8]. These formalisms do not compare easily with ours. Arbi-
trary alternation of quantifiers (implicit, in the case of XPath) lets them reach far
beyond conjunctive queries. But the restriction on the number of registers or variables
(reflected in the the syntax of XPath) limits data comparisons: one cannot compare
data values from too many nodes at the same time. In their basic form, our results imply
decidability (with the same tight complexity bounds) of the containment problem in
the presence of a schema for unions of XPath queries without negation, where each query
uses either equality or inequality, but never both. The extension to MSO constraints
allows free use of negation as long as data comparisons are not used under negation.

The remainder of the paper begins with a precise definition of non-mixing con-
straints and a short discussion of their scope (Section 2). Then we present the
decision procedure for consistency of non-mixing constraints and show its optimal-
ity (Section 3). We continue with a potpourri of extensions and connections: the
entailment problem (Section 4.1), the lower-complexity fragment (Section 4.2), the
relationships with existing constraint formalisms (Section 4.4), the two alternative
interpretations of our results (Sections 4.3 and 4.5), a comparison with clique-width
(Section 4.6), and the MSO extension (Section 4.7). We conclude with a brief
discussion of further possible extensions and open questions (Section 5).

This is an extended version of an 18-pages-long paper under the same title pre-
sented at ICDT 2016. The new material includes full proofs of all results, as well
as the comparison with clique-width and the MSO extension. There is also a major
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difference in the way the proof of the main result is presented. In the conference
version, register tree automata are used to recognize witnesses for consistency of
bounded data cut. Here, we encode such witnesses as trees over a finite alphabet and
use ordinary tree automata. The new formulation encapsulates reasoning about data
values within the encoding, and harmonizes with the clique-width approach and the
MSO extension.

2 Non-Mixing Constraints

2.1 Preliminaries

Let us fix a finite labelling alphabet � and a countably infinite set of data values
D. A data tree t is a finite ordered unranked tree whose nodes are labelled with
elements of � by function labt : domt → �, and with elements of D by function
valt : domt → D; here, domt stands for the domain of tree t , that is, the set of its
nodes. If labt (v) = a and valt (v) = d, we say that node v has label a and stores
data value d. A data forest f is a sequence of data trees whose roots are considered
siblings (with the inherited order); labf , valf , and domf are defined naturally. While
each data tree contains at least the root, a data forest can be empty. For a node v of t ,
we write tv for the data forest consisting of subtrees of t rooted at v itself and at all
preceding siblings of v; by slight abuse of notation we write t − tv for the remaining
part of t (see Fig. 1 for illustration). For a forest f we use the analogous notation, fv

and f − fv .
We abstract schemas as tree automata in the “previous sibling, last child” variant.

A tree automaton A is a tuple (Q, q0, F, δ), where Q is a finite set of states, q0 ∈ Q

is an initial state, F ⊆ Q is a set of accepting states, and δ ⊆ Q×Q×� ×Q is a set
of transitions. During the computation the automaton assigns a state to each node v of
the input tree t , based on the accumulated information about tv . More precisely, the
state for the node v depends on the label of v and the states from the previous sibling
and the last child of v. In leftmost siblings and in leaves we resort to imaginary nodes
outside of the actual tree t , which are always assigned the initial state q0. Formally,
let domcl

t be the set containing each node of t , an artificial previous sibling for each
leftmost sibling in t , and an artificial (last) child for each leaf in t . A run of A on t is
a function ρ : domcl

t → Q such that ρ(v) = q0 for every node v ∈ domcl
t − domt ,

Fig. 1 A tree t and a subforest
tv associated with a node v
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and for every node v ∈ domt with previous sibling vps and last child vlc there is a
transition (ρ(vps), ρ(vlc), labt (v), ρ(v)) ∈ δ. A run ρ is accepting if it assigns a state
from F to the root of t , and a tree t is accepted by A if it admits an accepting run.
Runs on forests are defined entirely analogously; acceptance is based on the state
in the root of the last tree (if the forest is empty, we take the initial state q0). An
automaton is deterministic if δ is a function Q × Q × � → Q. Each deterministic
automaton has a unique run on each tree (and forest), and can be complemented
(negated) simply by replacing the set of final states F with its complement Q − F .

To facilitate the use of the standard first order semantics, we model data trees and
data forests as relational structures over signature

sigdt = {↓, ↓+, →, →+, ∼,�} ∪ � ∪ D ∪ Ď

with Ď = {
ď

∣∣ d ∈ D

}
; that is, we have

– binary relations: child ↓, descendant ↓+, next sibling →, and following sibling
→+;

– data equality relation ∼ and data inequality relation � that contain pairs of nodes
storing, respectively, the same data value and different data values;

– unary relation a for each label a ∈ �;
– unary relations d and ď for each data value d ∈ D that contain nodes storing,

respectively, data value d and any data value different from d.

Signature sigdt is infinite (because of D and Ď), but queries use only finite fragments.
We include Ď in the signature to keep negation out of the syntax.

A conjunctive query α(x1, . . . , xn) over a signature sig is a first order formula of
the form

∃y1 . . . ∃ym β(x1, . . . , xn, y1, . . . , ym) ,

where β(x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms over signature sig and
variables x1, . . . , xn, y1, . . . , ym.

2.2 Definition

In their most general form, non-mixing integrity constraints σ are formulas of the
form

α(x̄) ⇒ η∼(x̄) ∧ η�(x̄)

where

– α(x̄) is a conjunctive query over the signature signav = {↓, ↓+, →, →+} ∪ �;
– η∼(x̄) is a finite positive Boolean combination of atoms over the signature

sig∼ = {∼} ∪ D and variables x̄;
– η�(x̄) is a finite positive Boolean combination of atoms over the signature

sig∼ = {�} ∪ Ď and variables x̄.

Query α is called the selector of σ , and η∼, η� are its assertions. Non-mixing con-
straints have the usual semantics of first order logic formulas: a data tree t satisfies
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constraint σ , denoted t |= σ , if each tuple v̄ of nodes of t selected by α satisfies both
η∼ and η�; that is,

t |= α(v̄) implies t |= η∼(v̄) ∧ η�(v̄) .

For a set 	 of non-mixing constraints, we write t |= 	 if t |= σ for all σ ∈ 	.
Note that α ⇒ η∼ ∧ η� is equivalent to {α ⇒ η∼ , α ⇒ η�}. Consequently,

each set 	 of non-mixing constraints is equivalent to 	∼ ∪ 	�, where 	∼ is a set
of constraints of the form α ⇒ η∼, 	� is a set of constraints of the form α ⇒ η�,
and the sizes of 	∼ and 	� are bounded by the size of 	. Thus, without loss of
generality, we restrict our attention to sets of constraints of the form 	∼ ∪	�, which
do not mix sig∼ and sig

�
(hence “non-mixing”). One can also assume that α is

quantifier free: ∃ȳ α(x̄, ȳ) ⇒ η(x̄) is equivalent to α(x̄, ȳ) ⇒ η(x̄).

2.3 Scope

Using non-mixing constraints one can express a variety of useful constraints. Let
us consider a database storing information about banks, each in a separate sub-
document. We want each bank to be identified by its BIC number. This key
constraint can be expressed as

qBIC(x, x′) ∧ qBIC(y, y′) ∧ x = y ⇒ x ′
� y′

where qBIC selects the root of the sub-document for bank, and the node stor-
ing the BIC number. Depending on the schema, query qBIC could be for instance
qBIC(x, x′) = bank(x) ∧ x ↓ x′ ∧ BIC(x′). Node inequality = is not part of the
signature, but can be expressed using signav . Assuming that the roots of the sub-
documents for banks are siblings, x = y can be replaced by x →+ y. In general, we
also need to consider four other possible ways in which two different nodes x and y

can be positioned in a tree (up to swapping x and y):

x ↓+ y , x →+ z ∧ z↓+ y , z↓+ x ∧ z→+ y , and z↓+ x ∧ z→+ z′ ∧ z′ ↓+ y ,

which means that we need five non-mixing constraints to express a single key
constraint.

Another natural constraint is that account numbers should be different for every
account within the same bank, but different banks may use the same account
numbers. Such a relative key constraint can also be expressed as

bank(z) ∧ z↓+ x ∧ z↓+ y ∧ qACC(x, x′) ∧ qACC(y, y′) ∧ x =y ⇒ x ′
� y′ .

where qACC(x, x′) selects account x and its number x′, similarly to qBIC.
We can also express multi-attribute keys (i.e. keys using composite fields). For

example

qBIC(u, u′) ∧ qBIC(v, v′) ∧ u↓+ x ∧ v↓+ y ∧ qACC(x, x′)∧ qACC(y, y′) ∧ x =y ⇒
⇒ u′

�v′ ∨ x′
�y′ .

asserts that BIC and account number form an absolute key, not relative to bank sub-
document.
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If, as a result of redundancy, BIC appears in several places within a bank sub-
document, using the singleton constraint

bank(x) ∧ x ↓+ x′ ∧ BIC(x′) ∧ x ↓+ x′′ ∧ BIC(x′′) ⇒ x′ ∼ x′′

we can guarantee that each time it gives the same value (for the same bank).
Assume now that each bank has a director and several branches, each of them

having a team of employees among which one is the manager of the branch. The
information about each employee is stored in a sub-document of its branch’s sub-
document. Each employee reports either to the manager of the branch or directly to
the director of the bank. Using a conjunctive query qSUPER(x, y, z), we can select the
director’s ID node x, the branch manager’s ID node y and the node z storing the
supervisor’s ID for an employee of the same branch. The constraint on employee’s
supervisor can be encoded as

qSUPER(x, y, z) ⇒ x ∼ z ∨ y ∼ z .

Following this idea we can express inclusion constraints of a restricted form,
where the intended superset is a tuple of values that can be selected by a conjunctive
query. This includes enumerative domain restrictions, like the constraint

creditCard(x) ∧ x ↓+ x′ ∧ brand(x′) ⇒
⇒ Visa(x′) ∨ MasterCard(x′) ∨ AmericanExpress(x′) ,

ensuring that banks issue only Visa, Master Card, and American Express cards.
Unrestricted inclusion constraints are beyond the scope of our formalism. Indeed,
non-mixing constraints cannot be violated by removing nodes, which is not the case
even for the simplest unary inclusion constraints, like each value stored in an a node
is also stored in a b node.

Our formalism is also capable of expressing cardinality constraints. Assume, for
instance, that banks support charity projects by delegating their employees to help.
The projects are organized by category (culture, education, environment, etc.) and
each project sub-document carries the list of involved employees. For the sake of
balance, we want each category to involve at most ten different employees in total.
This can be imposed by selecting eleven employee nodes below a single category
node and imposing at least two of them to carry the same data value by means of a
long disjunction of data equalities. We can also ensure that no employee is involved in
more than three different projects: the conjunctive query selects four different project
nodes and an employee for each of them; the assertion imposes at least two of the
four employees to have different ID.

Let us remark that while these constraints look clumsy expressed as non-mixing
constraints, one can easily imagine a syntactic-sugar layer on top of our formalism.
The point is that all these constraints can be rewritten as non-mixing constraints of
linear size (except for the cardinality constraints, where the size would grow by a
factor proportional to the numerical bounds).
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In Section 4 we examine the expressive power of non-mixing constraints further
by comparing them to other existing formalisms.

3 Consistency Problem

Our main result is decidability of the consistency problem for non-mixing con-
straints:

More precisely, we show the following theorem, establishing tight complexity
bounds.

Theorem 1 Consistency of non-mixing constraints is 2EXPTIME-complete.

The reminder of this section is devoted to the proof of Theorem 1. The proof is
based on a simple idea with a geometric flavour, but does not require any specialist
knowledge from geometry or linear algebra. Consider a family of finite unions of
affine subspaces of an Euclidean space. The intersection of this family can be also
represented as a finite union of affine subspaces and we show that their number can
be bounded independently of the cardinality of the family. From this bound we infer
a “bounded data cut” model property for non-mixing constraints, where by data cut
of a data tree t , denoted by datacut(t), we mean the maximum over nodes v ∈ domt

of the number of data values shared by tv and t − tv . With bounded data cut, we can
reduce the consistency problem to the emptiness problem for tree automata (over a
finite alphabet). In the final subsection we prove the lower bound.

3.1 Intersecting Unions of Subspaces

By a subspace of D
 we mean a subset of D
 defined by equating pairs of coordinates
and fixing coordinates; that is, it is a set of points (x1, x2, . . . , x
) in space D
 defined
by a conjunction of equalities of the form xi = xj or xi = d where d ∈ D. By
simple rewriting of equalities, each nonempty subspace of D
 can be defined with a
canonical set of at most 
 equalities such that

– for each coordinate i we have either xi = xj with i < j , or xi = d with d ∈ D,
or nothing;

– each coordinate j occurs at most once on the right side of an equality; and
– no data value d is used in more than one equality.

A subspace of D
 has dimension k if its canonical definition consists of 
 − k equal-
ities. In other words, each equality that does not follow from the others decreases
the dimension by one. To enhance intuitions, let us remark that if we equip D


 with
the structure of linear space by assuming that D is a field, this notion of dimension
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coincides with the classical notion of dimension for affine subspaces (of which the
subspaces above are a special case).

An intersection X ∩ Y of subspaces X, Y is also a subspace, defined by the con-
junction of conditions defining X and Y . If X ⊆ Y , then the canonical definition of
X∩Y contains at least one more equation than that of X; consequently, the dimension
of X ∩ Y is strictly smaller than the dimension of X. Similarly, intersecting unions
of subspaces, we obtain a union of subspaces; the following lemma gives a bound on
the size of such union.

Lemma 1 Let Z1, Z2, . . . , Zm ⊆ D

 be such that each Zi is a union of at most n

subspaces of D
. Then, Z1 ∩ Z2 ∩ · · · ∩ Zm can be represented as a union of at most
n
 subspaces of D
.

Proof Assume that Z1 ∩Z2 ∩ · · · ∩Zi−1 is a union X1 ∪X2 ∪ · · · ∪Xp of subspaces
of D
. We can write Zi as Y1 ∪ Y2 ∪ · · · ∪ Yn, where some of subspaces Yk may be
empty. We have

Z1 ∩ Z2 ∩ · · · ∩ Zi = (X1 ∪ X2 ∪ · · · ∪ Xp) ∩ Zi =
= (X1 ∩ Zi) ∪ (X2 ∩ Zi) ∪ · · · ∪ (Xp ∩ Zi) .

Let us examine a single Xj ∩ Zi . If Xj ⊆ Yk for some k, then Xj ∩ Zi = Xj .
Otherwise, Xj ∩Zi is a union of n subspaces, Xj ∩Y1, Xj ∩Y2, . . . , Xj ∩Yn, where
each Xj ∩ Yk is either empty or has dimension strictly smaller than Xj . Thus, when
X1 ∪ X2 ∪ · · · ∪ Xp is intersected with Zi , each Xj either does not change, or is split
into at most n subspaces of strictly smaller dimension; if Xj is a point, in the second
possibility it disappears.

Now, consider the following process: begin with D

, a single subspace of dimen-

sion 
, and then intersect with Zi for i from 1 to m, one by one. Since with each split,
the dimension strictly decreases, each non-empty subspace in the resulting union
is obtained in the course of at most 
 splits. Since each split generates at most n

subspaces, we cannot obtain more than n
 subspaces in this process.

We remark that the bound in Lemma 1 is tight, as shown by the following example.

Example 11 Assume 0, 1 ∈ D and let Zi = {
x̄ ⊆ D



∣∣ xi = 0 ∨ xi = 1

}
for i =

1, 2, . . . , 
. Then Z1 ∩ Z2 ∩ · · · ∩ Z
 = {0, 1}
 is a union of 2
 (disjoint) subspaces
of D
 of dimension 0.

3.2 Bounding the Data Cut

Based on the geometric fact we have proved in the previous subsection, in Lemma 3
we bound the data cut of data trees witnessing consistency of non-mixing constraints.
The proof relies on a simple compositionality property for conjunctive queries over
trees, shown in Lemma 2.

1Provided by Michał Pilipczuk, during the Warsaw Automata Group’s research camp Autobóz 2015.
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Lemma 2 Let α(x̄, ȳ) be a conjunction of atoms over signav, where x̄ and ȳ are
disjoint, and let w be a node of a data tree t . For all tuples ū, ū′ of nodes from tw and
tuples v̄, v̄′ of nodes from t − tw, if

t |= α(ū, v̄) and t |= α(ū′, v̄′) ,

then
t |= α(ū, v̄′) and t |= α(ū′, v̄) .

Proof Let ū, ū′, v̄, v̄′ be as in the statement of the lemma. Since α(x̄, ȳ) is a con-
junction of atoms, we only need to check that each atom of α(ū, v̄′) and α(ū′, v̄) is
satisfied in t . Given that t |= α(ū, v̄) and t |= α(ū′, v̄′), it is enough to examine
atoms using variables from both x̄ and ȳ. That excludes unary relations and leaves
us with atoms of the forms xi ↓ yj , xi ↓+ yj , xi → yj , xi →+ yj , and symmetri-
cal. Given that variables x̄ are matched within tw, and variables ȳ are matched within
t − tw, atoms xi ↓ yj , xi ↓+ yj , yj → xi , and yj →+ xi are excluded by the com-
bination of two things: the way tw and t − tw are positioned within tree t (see Fig. 1
on page 5), and the fact that t |= α(ū, v̄). That is, it remains to consider yj ↓ xi ,
yj ↓+ xi , xi → yj , and xi →+ yj . Suppose yj ↓ xi occurs in α. We know that
vj ↓ ui and v′

j ↓ u′
i . Since nodes ui, u

′
i are from tw and nodes vj , v

′
j are from t − tw,

it follows immediately that vj and v′
j are equal to the parent of node w, and ui, u

′
i

are siblings of w or w itself. Consequently, vj ↓ u′
i and v′

j ↓ ui . For the remaining
three kinds of atoms the reasoning is similar. If vj ↓+ ui and v′

j ↓+ u′
i , then vj , v′

j

are ancestors of w and ui, u
′
i are nodes in tw, so vj ↓+ u′

i and v′
j ↓+ ui follows. If

ui → vj and u′
i → v′

j , then ui = u′
i = w and vj = v′

j is w’s next sibling. Finally,
if ui →+ vj and u′

i →+ v′
j , then ui, u

′
j are preceding siblings of w (or w itself) and

vj , v
′
j are following siblings of w.

Lemma 3 If 	∼ ∪ 	� is satisfied in a data tree t , it is also satisfied in some data
tree t ′ obtained from t by changing data values, such that

datacut(t ′) ≤ 
 · 2
 · (
 + m)

2 · |	∼| ,

where 
 and m are the maximal numbers of, respectively, variables and predicates
from D ∪ Ď in the constraints from 	∼.

Proof Assume that t |= 	∼ ∪ 	�. We show that for each node w of the data tree t ,
one can replace all but 
 · 2
 · (
 + m)


2 · |	∼| data values used in tw with distinct
fresh data values without violating 	∼ ∪ 	�. After this operation is performed for
a node w, the number of data values used both in tw and t − tw is bounded by 
 ·
2
 · (
 + m)


2 · |	∼|. Moreover, as the fresh data values are to be distinct, the new
∼ relation over nodes of t is a subset of the old one. In consequence, the operation
does not increase the number of data values shared by tw′ and t − tw′ for other nodes
w′. Consequently, applying this operation for each node of t in an arbitrary order, we
obtain a model of bounded data cut.

Let us fix a node w of t . As long as the fresh values are pairwise different, the
obtained tree will still satisfy 	�. Hence, we only need to ensure that 	∼ is not
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violated. Consider a constraint α ⇒ η∼ in 	∼. Recall that we assume that α is
quantifier free. Let x̄, ȳ be a partition of variables used in α (one of the tuples x̄, ȳ

may be empty). We shall indicate the partition of variables by writing the constraint
as α(x̄, ȳ) ⇒ η∼(x̄, ȳ). The intended meaning is that the variables x̄ refer to nodes
in tw, and the variables ȳ refer to nodes outside of tw. Directly from the definition it
follows that t |= α ⇒ η∼, if and only if for each partition x̄, ȳ of variables in α, for
each tuple ū of nodes from tw and each tuple v̄ of nodes from t − tw, if t |= α(ū, v̄),
then t |= η∼(ū, v̄).

Fix a partition x̄, ȳ. By Lemma 2, the condition above is equivalent to: for all
tuples ū, ū′ of nodes from tw and all tuples v̄, v̄′ of nodes from t − tw, if t |= α(ū, v̄)

and t |= α(ū′, v̄′), then t |= η∼(ū, v̄′). Let us turn this into a condition on stored data
values. Define η(x̄, ȳ) as the formula obtained from η∼(x̄, ȳ) by replacing ∼ with =,
and d(z) with z = d for all variables z and all d ∈ D. Reformulating the condition
above we obtain: for each tuple ū of nodes from tw such that t |= α(ū, v̄) for some
tuple v̄ of nodes from t − tw, the tuple valt (ū) of data values belongs to the set

Zα(x̄,ȳ)⇒η∼(x̄,ȳ) =
⋂

v̄′

{
c̄ ∈ D

|x̄| ∣∣ η(c̄, valt (v̄
′))

}
,

where v̄′ ranges over tuples of nodes from t − tw satisfying t |= α(ū′, v̄′) for some
tuple ū′ of nodes from tw.

Writing η(x̄, valt (v̄′)) in the disjunctive normal form, we see that the set{
c̄ ∈ D

|x̄| ∣∣ η(c̄, valt (v̄′))
}

is a union of subspaces of D|x̄|. How many subspaces? The
canonical definition of each nonempty subspace has for each coordinate i either an
equality xi = xj for some j > i, or an equality xi = d for some d ∈ D, or nothing. In
our case, d is a data value used explicitly in η or occurring in the data tuple valt (v̄′).
Consequently, the number of these subspaces can be bounded by (N + |x̄| + |ȳ|)|x̄|,
where N is the number of data values used explicitly in η. That is, Zα(x̄,ȳ)⇒η∼(x̄,ȳ) is
an intersection of unions of at most (N +|x̄|+|ȳ|)|x̄| subspaces of D|x̄|. By Lemma 1,
it can be represented as a union of at most (N +|x̄|+|ȳ|)|x̄|2 subspaces. In the canon-
ical definition of each of these subspaces, there are at most |x̄| equalities of the form
xi = d for d ∈ D. That is, we can define Zα(x̄,ȳ)⇒η∼(x̄,ȳ) using explicitly at most

|x̄| · (N + |x̄| + |ȳ|)|x̄|2 data values. From this we shall derive a bound on the number
of important data values in tw that ensure satisfaction of 	∼, and conclude that we
can safely replace others with fresh ones.

Let val′ : domt → D be a new data labelling of t . As we are only going to change
data values in tw, keeping a constraint α ⇒ η∼ satisfied requires only that for each
partition x̄, ȳ of its variables, for each tuple ū of nodes from tw, if t |= α(ū, v̄) for
some tuple v̄ of nodes from t − tw, then val′(ū) ∈ Zα(x̄,ȳ)⇒η∼(x̄,ȳ). Moreover, replac-
ing all occurrences of a data value d in tw with a given data value d ′ does not affect
equalities of the form xi = xj in the canonical definition of the set Zα(x̄,ȳ)⇒η∼(x̄,ȳ).
We only need to ensure that equalities of the form xi = d are not violated. Let D ⊆ D

be the set of data values occurring in these equalities for all sets Zα(x̄,ȳ)⇒η∼(x̄,ȳ), with
α(x̄, ȳ) ⇒ η∼(x̄, ȳ) ranging over constraints from 	∼ with all possible partitions of
variables. A labelling val′ that replaces each data value from D − D used in tw with
a fresh data value does not violate 	∼. For each constraint α ⇒ η∼ there is at most
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2
 partitions x̄, ȳ of variables; each partition corresponds to a set Zα(x̄,ȳ)⇒η∼(x̄,ȳ),

which contributes at most
(

 · (m+ 
)


2)
data values, where 
 and m are the maximal

numbers of variables and predicates from D ∪ Ď in constraints from 	∼. Hence, we
have |D| ≤ |	∼| · 2
 · (


 · (m + 
)

2)

.

3.3 From Bounded Data Cut to Automata

In order to use automata, we need to encode data trees of bounded data cut as trees
over a finite alphabet. Let C, D ⊆ D be two disjoint finite sets of data values; we
shall call elements of C colours and elements of D distinguished data values. As
encodings we shall use trees over the alphabet

� × (C ∪ D) × P(C) ;
we shall refer to the values in the third component of label as refresh sets. The distin-
guished data values (corresponding to data values used explicitly in the constraints)
are represented explicitly in the encoding. The remaining data values are represented
implicitly by colours and refresh sets: two nodes u, v store the same data value if
and only if they have the same colour c and there is no node w such that u ∈ tw and
v ∈ t − tw (or symmetrically), and the refresh set for w contains c. We define the
semantics of the encoding slightly more generally: to every forest f over the alpha-
bet �×(C∪D)×P(C) we associate a data forest f̂ . It has the same domain as f , the
structure and labelling with elements of � is inherited from f , and the assignment
of data values is defined inductively based on the remaining two components of the
labelling of f . If the forest f is empty, so is f̂ . Otherwise, let us decompose f into
a forest f ′ followed by a tree further decomposed into the root and a forest f ′′ (see
Fig. 2); both f ′ and f ′′ may be empty. Assume the root has label (a, d, R).

The forest f̂ is obtained by plugging f̂ ′′ under a root with label a and data value d,
appending the resulting tree to f̂ ′, and then replacing each colour from the refresh set
R used in the resulting forest with a globally fresh data value from D−(C∪D). Note
that f̂ is unique up to permutations of D− (C ∪ D). By construction, datacut(f̂ ) ≤
|C ∪ D|.

Lemma 4 For each data forest f of data cut n and all finite disjoint sets C, D ⊆ D

such that

|C| >
3

2
· n ,

there exists a forest g over � × (C ∪D)×P(C) such that ĝ = f up to a permutation
of D − D.

Fig. 2 Forest f decomposed
into a forest f ′ followed by a
tree further decomposed into the
root and a forest f ′′
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Proof Since we only aim at equality modulo a permutation of D−D, we may assume
that no data value from C is used in f . As the structure of g must be identical to
that of f , we only need to define the labelling. Moreover, in the label (a, d, R) of a
node w, we must always have a = labf (w). The remaining two components, d and
R, are defined in the course of a procedure processing nodes in the usual bottom-up,
left-to-right order, maintaining the following invariants:

1. ĝw = fw up to a bijection iw between the colours from C used in ĝw and the
data values from D − D shared by fw and f − fw;

2. if v is the last child of the next sibling of w, then iv and iw coincide over
dom(iv) ∩ dom(iw), and |dom(iv) ∪ dom(iw)| ≤ 3

2 · n.

For a node w the procedure first sets the values d and R in such a way that the first
invariant is satisfied, and then applies a permutation of C to the whole gw to ensure
the second invariant. Note that applying such a permutation affects ĝw, but does not
violate the first invariant.

Let w′ and w′′ be the previous sibling and the last child of w (if some of these do
not exist, the argument is adjusted easily). For d there are three cases:

– if valf (w) ∈ D, set d = valf (w);
– if valf (w) = iw′(c) or valf (w) = iw′′(c) for some colour c ∈ C, set d = c;
– otherwise, set d = c for an arbitrary colour c ∈ C − (

dom(iw′) ∪ dom(iw′′)
)
,

which exists by the second invariant.

The refresh set R contains each colour c ∈ C currently used in ĝw, that represents a
data value occurring in fw but not in f −fw. After these colours have been refreshed,
all colours C0 ⊆ C used in ĝw represent different data values shared by fw and
f − fw; the bijection iw can be defined by restricting to C0 the union of iw′ , iw′′ , and
{(d, valf (w))} if d ∈ C0 − (

dom(iw′) ∪ dom(iw′′)
)
.

If w has no next sibling or the next sibling has no children, we are done. Otherwise,
let v be the last child of the next sibling u of w. We need a permutation π of C such
that iv and the updated bijection iw ◦ (π � C0)

−1 satisfy the second invariant. Let
W,V,U ⊆ D − D be the sets of data values used, respectively, in the fragments fw,
fv , and f − (fw ∪ fv) shown in Fig. 3, and let k = |W ∩ U − V |, 
 = |V ∩ U − W |,
m = |W ∩ V − U |, and r = |W ∩ V ∩ U |.

By the definition of data cut applied to w, v, and u, we have

k + m + r ≤ n , 
 + m + r ≤ n , k + 
 + r + e ≤ n ,

where e = 1 if the data value in u is used in f − fu and does not belong V ∪ W , and
e = 0 otherwise. In order to represent values in W ∩ U , V ∩ U , and W ∩ V , we need
exactly k + 
 + m + r colours. By adding the three inequalities above, we obtain that
k + 
 + m + r ≤ 3n−r−e

2 . Hence, 3
2 · n colours are sufficient to accommodate the

domains of iv and the updated bijection iw ◦ (π � C0)
−1.

As the bounds in the three inequalities above can be attained simultaneously, with
r = 0 and e = 0, 3

2 · n colours are also necessary. Consequently, the assumption in
the lemma is tight, because if the data value in the node w does not occur anywhere
else, we need one more colour to represent it.
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Fig. 3 The positioning of fw , fv , and f − (fw ∪ fv) in a forest f , when v is the last child of the next
sibling u of w

Let 	∼ ∪ 	� be a set of non-mixing integrity constraints and let A be a tree
automaton. By Lemma 3, it is enough to test satisfiability of 	∼ ∪ 	� over trees of
data cut bounded by a number n, singly exponential in the total size of constraints
in 	∼ ∪ 	�. Let D ⊆ D be the set of data values used explicitly in 	∼ ∪ 	�, and

let C ⊆ D − D be a fixed set such that |C| =
⌊

3
2 · n

⌋
+ 1. By Lemma 4, each tree

of data cut bounded by n can be encoded as a tree over � × (C ∪ D) × P(C) up
to a permutation of D − D. Since such permutations do not affect relations used in
	∼ ∪ 	�, there exists a data tree accepted by A and satisfying 	∼ ∪ 	� if and only
if there exists a tree t such that the data tree t̂ is accepted by A and satisfies 	∼∪	�.
We reduce consistency of 	∼ ∪ 	� to the emptiness problem for tree automata, by
constructing an automaton that recognizes such trees t .

The automaton is obtained by taking the product of two automata, testing accep-
tance by A and satisfaction of 	∼ ∪ 	�, respectively. The first automaton is just the
automaton A lifted to the product alphabet � × (C ∪ D) × P(C): it looks only at
the first component of each label. Note that already this automaton has doubly expo-
nential size, because of the size of the alphabet. The second automaton is the product
over all constraints σ ∈ 	∼∪	� of automata Bσ recognizing trees t such that t̂ |= σ ,
which will be constructed in the next subsection. Each automaton Bσ is doubly expo-
nential and so is the whole construction. As the emptiness problem for tree automata
is in PTIME, we can conclude that the consistency problem is in 2EXPTIME.

3.4 Translating Constraints to Automata Over Encodings

To complete the proof of the upper bound of Theorem 1, it remains to construct an
automaton recognizing encodings of trees that satisfy a given constraint.

Let us fix a constraint α(x̄) ⇒ η(x̄) with x̄ = (x1, x2, . . . , x
); for the present
construction, it needs not to be non-mixing. Let D ⊆ D be a finite set of data values,
containing each data value used explicitly in η(x̄), and let C ⊆ D−D be an arbitrary
finite set. We shall construct an automaton B over the alphabet � × (C ∪ D) × P(C)

recognizing the language
{
t
∣∣ t̂ |= α(x̄) ⇒ η(x̄)

}
.
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It will read a tree t , compute a representation of tuples selected from the associated
data tree t̂ by the selector query α(x̄), and accept if all these tuples satisfy the asser-
tion η(x̄). The representation of the selected tuples will be computed based on the
maintained information about partial matchings of the selector query in the forest
encoded by the processed part of the tree. This can be done in the usual way, except
that we need to systematically refresh the colours, as specified in t . To explain the
details, we need some auxiliary notions.

Recall that t and t̂ have the same domain, structure, and labelling with elements
of �; the only difference lies in the way data values are represented: encoded in t

and explicit in t̂ . Consequently, as long as we do not care about data values, we can
blur the distinction between the encoded and decoded data tree. Similarly, tw, t̂w, and(
t̂
)
w

are the same forest, up to the representation of data values. A partial valuation
of variables x1, x2, . . . , x
 is a function

g : {x1, x2, . . . , x
} → domt ∪ {⊥} .

If g(xi) = ⊥, we say that xi is matched at g(xi), and if ui = ⊥ we say that xi is
not matched. Two partial valuations of x1, x2, . . . , x
 are disjoint, if no variable is
matched by both of them. The union of disjoint partial valuations g, h of variables
x1, x2, . . . , x
 is given as

(g ∪ h)(xi) =
{

g(xi) if g(xi) = ⊥ ,

h(xi) otherwise .

Recall that α(x̄) is a conjunction of atoms. A partial matching of α(x̄) in t̂w is a
partial valuation g of variables x̄ such that

– variables are matched only in the nodes of tw;
– each atom in α(g(x̄)) that does not contain ⊥ holds true in t̂w; and
– each atom that contains both a node from tw and ⊥ is of the form

w → ⊥, w′ →+ ⊥, ⊥ ↓ w′, or ⊥ ↓+ v ,

where w′ is a preceding sibling of w or w itself, and v is an arbitrary node of tw.

The last condition means that each such atom can be made true (independently of
others) by replacing ⊥ with a node from t − tw, unless w has no following siblings
or no ancestors in t .

If t̂ |= α(ū), each partial valuation matching a subset of variables xi at nodes ui

from t̂w is a partial matching of α. Conversely, if a partial matching g matches all
variables x̄, then t̂ |= α(g(x̄)). Note, however, that not every partial matching can be
extended so that it matches all variables: remaining atoms may be satisfiable on their
own, but not together.

The automaton collects information about tuples selected by α(x̄) node by node:
when it is in a node w of the input tree t , it has information corresponding to partial
matchings of α(x̄) in t̂w. More precisely, the states of the automaton B are subsets �

of

(C ∪ D ∪ {�1, �2, . . . , �
, ⊥})
 .
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Each such tuple represents a partial matching of α(x̄) in t̂w, and the whole � repre-
sents a set of such partial matchings. The intended meaning of the symbolic values is
as follows:

– c ∈ C ∪ D in the coordinate j of the tuple means that the variable xj is matched
in a node of t̂w storing the data value c;

– �i means that the variable xj is matched in a node storing some data value
dj ∈ D − (C ∪ D), where d1, d2, . . . , d
 are distinct and depend on the tuple;

– ⊥ means that variable xj has not been matched yet.

The initial state is {(⊥, ⊥, . . . , ⊥)}. The accepting states are the ones whose each
tuple either contains ⊥ or satisfies the assertion η(x̄).

Let us describe the transition relation. Assume that automaton B is about to deter-
mine the state in a node w. Let w′ and w′′ be, respectively, the previous sibling and
the last child of w. The set of partial matchings of α(x̄) in t̂w depends only on the sets
of partial matchings in t̂w′ and t̂w′′ , and the label of w. Indeed, a partial valuation of
x̄ is a partial matching of α(x̄) in t̂w if it is the union of disjoint partial matchings of
α(x̄) in t̂w′ and t̂w′′ possibly extended by matching some (yet unmatched) variables at
node w, respecting two conditions. For all atoms xi → xj , xi →+ xj in α(x̄), either
xi, xj are both matched in t̂w′′ or none is; and the new matching of variables at w does
not violate the definition of partial matching. The latter can be expressed as follows:

– if α(x̄) contains xi ↓ xj or xi ↓+ xj , we may match xi at w only if xj is matched
in tw′′ ; for xi ↓ xj , if xj is matched, we must match xi , unless it is matched in
tw′′ already;

– if α(x̄) contains xi → xj or xi →+ xj , we may match xj at w only if xi is
matched in tw′ ; for xi → xj , if xi is matched, we must match xj , unless it is
matched in tw′ already;

– if α(x̄) contains a(xi), we may match xi at w only if labt (w) = (a, c, R) for
some c, R.

Checking the conditions above requires only information about which variables are
matched in t̂w′ and t̂w′′ ; the used tree nodes are not relevant. Consequently, one can
determine the set of tuples representing partial matchings in t̂w based on the sets of
tuples representing partial matchings in t̂w′ and t̂w′′ , and the label (a, c, R) of the
current node w. Notice that the symbolic values �i represent different data values in
t̂w′ and t̂w′′ , so before combining two tuples we rename these values to guarantee that
none is used in both tuples (
 values are always sufficient for this). The final step is
to refresh colours: in each tuple we replace all occurrences of c ∈ R with some �i

not yet used in this tuple.

3.5 Lower Bound

Lemma 5 Consistency of non-mixing constraints is 2EXPTIME-hard.

Proof Relying on the fact that 2EXPTIME = AEXPSPACE, we will be using alter-
nating Turing machines. Such machines can be defined in multiple similar ways, and
we use a definition that is most convenient for our encoding. We do not divide states
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of our machine into existential and universal; we only distinguish accepting states.
Instead, we use the following notion of a run tree, requiring that from every config-
uration two different transitions can be applied. A run tree of an alternating Turing
machine M on input word w is a tree labelled by configurations of M , where

– the root is labelled by the initial configuration for the input word w;
– every node not labelled by an accepting configuration has exactly two chil-

dren, labelled by successors of this configuration, reached by applying to it two
different transitions;

– every node labelled by an accepting configuration is a leaf.

We say that an input word w is accepted by M if there is a finite run tree of M for w.
To turn a standard machine with existential and universal states into a machine of

the form above, one simply ensures that in universal states the machine has exactly
two available transitions, and duplicates transitions available in existential states.

Consider an alternating Turing machine M (of the form described above) that
works in space bounded by 2|w|, where w is the input word. Note that we limit the
space to 2|w| instead of considering any exponential function, but already among such
machines there is one solving an AEXPSPACE-hard problem. We show that for every
input word w we can construct (in polynomial time) a tree automaton A and a set 	

of non-mixing constraints such that A and 	 are consistent if and only if M accepts
w. More precisely, every tree t ∈ L(A) such that t |= 	 describes a run tree of M on
w. Below we specify how such a tree t encodes a run tree of M on w, simultaneously
saying how these properties are ensured by A or 	.

Nodes labelled by s form a prefix of t that is a binary tree: the parent of every
s-labelled node (if exists) is s-labelled, and every s-labelled node has zero or two
s-labelled children. This is ensured by the automaton A. This part of t is called the
skeleton, and will have the same shape as the run tree.

Additionally, each node of the skeleton has a c-labelled child (in addition to the
zero or two children from the skeleton). The subtree rooted in this child forms a path,
whose labels match the regular expression

cAQAQ(l + n + r) ($ (h + n) (p + n) c2n+1)+ # ,

where b, l, n, r, h, p are new alphabet symbols, Q and A are the state set and the
tape alphabet of M , and n = |w|, Again, this is ensured by A. Such path, called
a configuration path, describes a configuration of M assigned to the corresponding
node of the skeleton (which is also a node of the run tree).

At the beginning of each configuration path we have the transition used to reach
this configuration: the second node is labelled by the letter present on the tape under
the head in the previous configuration; the third node is labelled by the previous
state; the fourth by the letter written on the tape; the fifth by the new state; the sixth
by the direction in which the head was moved (left, no move, right). The automaton
ensures that this is indeed a valid transition of M (except for the configuration path
directly below the root, where we only ensure that the fifth node contains the initial
state); that the label of the third node (previous state) is equal to the label of the fifth
node (current state) of the parent configuration; that the transitions assigned to sibling
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configurations are different (as required in the definition of a run tree); that states are
accepting in leaf configurations and not accepting in non-leaf configurations.

The next part of a configuration path consists of multiple blocks of length 2n + 4;
each of them describes a single letter on the tape. To identify a block, we use the first
n c-labelled nodes for a binary counter encoding the position in the tape, using data
values 0, 1 ∈ D. We assign data values 0, . . . , 0, 0 to these nodes in the first block,
0, . . . , 0, 1 in the second block, and so on, until 1, . . . , 1, 1 in the last block (we have
2n blocks, which equals to the length of the tape). The next n nodes of the block
also contain such a counter, but going back: we assign 1, . . . , 1, 1 to these nodes
in the first block, and 0, . . . , 0, 0 in the last block. Notice that when one counter
of a block contains bits b1, . . . , bn, then the other counter contains their inverses
1 − b1, . . . , 1 − bn. This double encoding of the position is the key trick that allows
using non-mixing integrity constraints to check correctness of the run between two
consecutive configurations. To enforce this behaviour of counters we use constraints.
In the constraints we shall use queries matching tuples of variables

x̄ = (x$, xh, xp, x1, . . . , xn, x
′
1, . . . , x

′
n, xd)

to the 2n + 4 consecutive nodes of blocks in configuration paths. It is easy to write a
conjunctive query αfb(x̄) that matches x̄ to the first block in any configuration path.
We include in 	 the constraint

αfb(x̄) ⇒ 0(x1) ∧ · · · ∧ 0(xn) ∧ 1(x′
1) ∧ · · · ∧ 1(x′

n) .

We deal analogously with the last block. Then, using a conjunctive query αcb(x̄, ȳ)

with ȳ defined as x̄ above, that matches two consecutive blocks, we include the
constraint

αcb(x̄, ȳ) ⇒ η∼(x̄, ȳ)

ensuring that the counters in these two blocks encode consecutive numbers. It is a
standard task to express this property as a positive Boolean combination η∼(x̄, ȳ) of
atoms over {∼, 0, 1}, of a quadratic size.

The second node of each block is marked by h if the head of M is placed over
this position of the tape, and the third node is marked by p if the head was placed
over this position in the previous configuration. The automaton ensures that in each
configuration path exactly one block is marked by h and exactly one block is marked
by p; that in the initial configuration the head is over the first letter; that the relation
between the p and h markers on a configuration path is as described by the sixth node
of that path (l, n, or r). To ensure that the position of p corresponds to the position of
h in the previous configuration we use the constraint

αch(x̄, ȳ) ⇒ x1 ∼ y1 ∧ · · · ∧ xn ∼ yn ,

where αch(x̄, ȳ) matches x̄ to the h-marked block of a configuration and ȳ to the
p-marked block of a child configuration.

The last node of each block carries the tape letter (from A) in the data value. To
ensure that the initial configuration starts with the input word, we write a constraint

αini(x1, . . . , xn) ⇒ η∼(x1, . . . , xn) ,



960 Theory Comput Syst (2018) 62:941–976

where αini(x1, . . . , xn) selects the last node from each of the first n blocks of the
topmost configuration path (to make sure that only the topmost configuration path is
selected, we can check for the presence of the initial state, assuming w.l.o.g. that M

cannot reach the initial state in any transition). Another constraint

αbl(x) ⇒ b(x)

ensures that the rest of the initial tape contains blanks b ∈ A, where αbl(x) matches
the last node of a block of the topmost configuration path other than the first n blocks.
Next |A| constraints ensure that the p-marked block contains the letter written in the
fourth node of the configuration path (letter written under the head), and another |A|
constraints that the h-marked block of the previous configuration contains the letter
written in the second node of the configuration path (letter seen under the head).

Finally, we have to ensure that the content of the tape is preserved (except the
single letter under the head). Let α2b(x̄, ȳ) be a conjunctive query matching some
blocks on consecutive configuration paths, where the first of them is not marked by h.
For every such pair x̄, ȳ, we want to enforce that either the two corresponding blocks
carry the same letter or they represent two different positions in the tape. Using the
double complementary encoding of the position in the blocks, this can be enforced
using only ∼ in the following constraint:

α2b(x̄, ȳ) ⇒ x1 ∼ y′
1 ∨ · · · ∨ xn ∼ y′

n ∨ xd ∼ yd .

Notice that the property “x̄ and ȳ encode different positions in the tape” seems to
require �, but thanks to the inverted counter stored in each block we may use ∼
instead, avoiding the illegal mixture of ∼ and � in the assertion of the constraint.

By construction, witnesses for the obtained automaton A and set of constraints 	

correspond to run trees of the machine M , which ensures correctness of the reduction.

We remark that all conjunctive queries used in the above proof could be written
using tree patterns (see Section 4.2 for the definition), and that the set 	� was empty.
Thus the 2EXPTIME-hardness result holds already for constraints of this form. If we
only allow tree patterns as selectors and 	∼ is empty, the complexity might be lower.
In Section 4.3 we shall see a different hardness argument, showing that there is no
hope for lower complexity without restricting selectors.

4 Extensions, Connections, and Applications

4.1 Entailment of Non-mixing Constraints

A static analysis problem more general than consistency is entailment. Recall that a
set of constraints 	′ is entailed by a set of constraints 	 modulo a tree automaton A,
written as 	 |=A 	′, if for each data tree t accepted by automaton A,

t |= 	 implies t |= 	′ .
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The entailment problem is then defined as follows:

Entailment is a more general problem than consistency, but for non-mixing
constraints the results on consistency generalize to entailment almost effortlessly.

Theorem 2 Entailment of non-mixing constraints is 2EXPTIME-complete.

Proof Inconsistency is a special case of entailment: 	 is inconsistent with respect to
an automaton A if and only if 	 |=A ⊥, where ⊥ is an inconsistent set of constraints,
say

{
a(x) ⇒ 0(x) ∧ 1(x)

∣∣ a ∈ �
}
. Thus, the lower bound follows.

Lemma 3 shows that witnesses for consistency can have bounded data cut. The
same is true for counter-examples to entailment. Suppose t |= 	 and t |= 	′. Then,
t |= α′(ū) ∧ ¬η′(ū) for some constraint α′(x̄) ⇒ η′(x̄) from 	′ and some tuple ū of
nodes of t . Let D0 be the set of data values used in the nodes ū. We can repeat the
construction of the tree t ′ word for word, except that we replace the set D of values
not to be touched by D ∪ D0. This increases datacut(t ′) by the maximal number of
variables in the constraints of 	′.

The automata construction in Section 3.3 is modified similarly: the set D contains
also the data values used explicitly in 	′, in the product automaton we include addi-
tionally the automata Bσ for σ ∈ 	′, and we let it accept if at least one of these
components rejects and all previously described components accept. As the automata
Bσ are deterministic, this does not involve any additional cost.

Note that the argument above works also if 	′ mixes predicates from sig∼ and
sig

�
.

4.2 A Singly Exponential Fragment

A closer look at the complexity of our algorithm reveals that it is doubly exponential
only in the maximal number 
 of variables in the constraints. This number appears
in three roles: in the exponent in the factors (
 + m)


2
and 2
 of the bound on the

data cut, and as the length of tuples representing partial matchings of selectors. A
slightly more detailed analysis of the proof of Lemma 3 shows that in the first role, 


could be replaced by the maximal number 
′ of variables actually used in the asser-
tions. Indeed, since data equalities involve only variables occurring in the atoms of
the assertions, everything is in fact happening in a space of dimension at most 
′.
While limiting the size of selector queries to lower the complexity makes little sense,
limiting the number of variables actually used in assertions seems acceptable. But
what about the other two roles of 
 ?

Concerning the third role, the need to represent all partial matchings (up to data
equality type) comes from the fact that the automaton is essentially evaluating con-
junctive queries. The standard technique to lower the complexity in such cases is to
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replace conjunctive queries with tree patterns, which are essentially tree-structured
conjunctive queries. In the most basic form, with only ↓ and ↓+ axes allowed, a tree
pattern is a conjunctive query α over signature {↓,↓+} ∪ �, such that graph

(Aα, ↓α ∪ ↓+
α )

is a directed tree, where

Aα = (Aα, ↓α, ↓+
α , {aα}a∈�)

is the canonical relational structure associated to query α in the usual way: the uni-
verse Aα is the set of variables of α, and relations are given by the respective atoms
in α.

Finally, we also have the factor 2
 in the bound on the data cut. This factor appears
because in the proof of Lemma 3, we consider separately each partition of variables
into two tuples. As we shall see, the number of partitions can also be reduced for tree
patterns. To this end, we prove the following analogue of Lemma 2.

Lemma 6 Let α(x̄, ȳ, z̄) be a tree pattern, where x̄, ȳ, and z̄ are pairwise disjoint,
and in ↓α ∪ ↓+

α there are no edges from variables in z̄ to variables in x̄, ȳ. Let w be
a node of a data tree t . For all tuples ū, ū′ of nodes from tw, and tuples v̄, v̄′ of nodes
from t − tw, if

t |= ∃z̄ α(ū, v̄, z̄) and t |= ∃z̄ α(ū′, v̄′, z̄) ,

then
t |= ∃z̄ α(ū, v̄′, z̄) and t |= ∃z̄ α(ū′, v̄, z̄) .

Proof We only prove that t |= ∃z̄ α(ū, v̄′, z̄), as the other part is symmetric. Let w̄

and w̄′ be tuples of nodes from t such that t |= α(ū, v̄, w̄) and t |= α(ū′, v̄′, w̄′).
The claim holds trivially if both x̄ and ȳ are empty. Assume that at least one of
these tuples is nonempty. Then the root of the tree pattern belongs to x̄ or to ȳ. Let
z̄ = (z1, . . . , zk), w̄ = (w1, . . . , wk), w̄′ = (w′

1, . . . , w
′
k). For i ∈ {1, . . . , k} we

look at the nearest ancestor of zi that is in x̄ or in ȳ. If it is in x̄, we take w′′
i = wi ,

otherwise w′′
i = w′

i , and we define w̄′′ = (w′′
1 , . . . , w′′

k ).
We need to check that every atom of α(ū, v̄′, w̄′′) is satisfied in t . This is clear

for unary atoms. Assume a binary atom involves a variable from z̄ that is valuated
as in ū, v̄, w̄. From the definition of w̄′′ it then follows that the other variable, being
its child or its parent in the tree pattern, is also valuated as in ū, v̄, w̄. It follows
that the atom is satisfied, because t |= α(ū, v̄, w̄). We argue analogously for binary
atoms with a variable from z̄ valuated as in ū′, v̄′, w̄′. It remains to consider binary
atoms involving only variables from x̄ and ȳ, and this can be done as in the proof of
Lemma 2.

We remark that for non-mixing integrity constraints, restricting selectors to tree
patterns alone does not suffice to lower the complexity: the reduction in Lemma 5
uses only such constraints (and no assertions over sig

�
). But together with the bound

on the number of variables in assertions, it does suffice.
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Proposition 1 For non-mixing constraints whose selectors are tree patterns and
whose assertions use constantly many variables, consistency and entailment are
EXPTIME-complete.

Proof We first complete the proof that the data cut can be bounded polynomially. We
have already argued that in the factor 
 · (
 + m)


2
of the bound given by Lemma 3

we can replace 
 by the maximal number 
′ of variables used in the assertions, which
is assumed to be constant. It remains to deal with the factor 2
. We show that the
number of considered partitions can be limited by a polynomial.

Fix a tree t , its node w, and a constraint α ⇒ η∼ in 	∼. We say that a variable
x used in α is important if either x or some descendant of x (in the sense of ↓α

∪ ↓+
α ) is used in η∼; otherwise x is unimportant. We shall partition only important

variables: we write the tree pattern as α(x̄, ȳ, z̄), where x̄, ȳ is a partition of important
variables, and z̄ contains all unimportant variables. Notice that in ↓α ∪ ↓+

α there are
no edges from unimportant variables to important variables, and thus Lemma 6 can be
used.

We additionally restrict ourselves to tame partitions, defined as follows: a partition
x̄, ȳ of important variables is tame if in ↓α ∪ ↓+

α there are no edges from variables
in x̄ to variables in ȳ. This way we only prune empty cases, because in the proof of
Lemma 3 we only valuate variables from x̄ with nodes from tw, and variables from ȳ

with nodes from t − tw.
We thus have the following statement: t |= α ⇒ η∼ if and only if for each tame

partition x̄, ȳ of important variables in α, for each tuple ū of nodes from tw, each
tuple v̄ of nodes from t − tw, and each tuple w̄ of nodes of t , if t |= ∃z̄ α(ū, v̄, z̄), then
t |= η∼(ū, v̄). This allows us to continue as in the proof of Lemma 3; the unimportant
variables do not appear in η∼, so it is irrelevant whether they are valuated in tw or in
t − tw. Finally, we observe that the number of tame partitions of important variables
is polynomial in the size of the tree pattern, assuming that the number of variables
used in η∼ is constant. Indeed, for each of the constantly many variables used in η∼,
we only have to decide how many of its closest ancestors (including itself) are to be
taken to x̄ (the ancestors being farther are then taken to ȳ).

We have thus proved that the bound on the data cut is polynomial. Hence, the size
of the set of colours C is also polynomial. It remains to optimize the automaton Bσ

verifying a single constraint σ , assuming that the selector of σ is a tree pattern.
We use the standard method relying on the fact that subtrees of a tree pattern can

be matched independently. By definition, the domain of a partial matching of a tree
pattern is a collection of disjoint full subtrees of the pattern. Such a collection can
be matched, if each of its elements can be matched independently; the information
sufficient to represent all possible matchings is a set of subtrees that can be matched.
For our purposes this is insufficient: we are interested not in just matching the selec-
tor, but in all tuples of data values that can be associated with the variables used in
the assertion. This information cannot be stored separately for each subtree, as we
are interested in the equalities and inequalities between data values assigned to vari-
ables in different subtrees; this is a property of a set of matched subtrees, and there
can be ways of matching the same set that yield different equalities and inequalities.
The solution is to treat subtrees with variables used in the assertion in a special way.



964 Theory Comput Syst (2018) 62:941–976

The automaton remembers in each state a collection of subtrees without assertion
variables and a collection of pairs consisting of

– a set of pairwise disjoint subtrees with assertion variables, and
– a tuple representing the associated data values (like before).

As the number of assertion variables is constant, the number of such sets and such
tuples is polynomial. Hence, the whole automaton is singly exponential. This shows
that both consistency and entailment are in EXPTIME.

The lower bound follows immediately from EXPTIME-hardness of consistency
of schema mappings with trivially unsatisfiable right hand sides of dependen-
cies [1, Proposition 18.2], which can be also reinterpreted as validity of unions of
tree patterns modulo a given tree automaton.

4.3 Static Analysis of Unions of Conjunctive Queries

Our results can be reinterpreted in the framework of static analysis of unions of
conjunctive queries (UCQs). Note that

t |= α(x̄) ⇒ η(x̄) if and only if t |= ∃x̄ α(x̄) ∧ ¬η(x̄) .

It follows immediately that the problem of validity of UCQs over signature sigdt that
never mix predicates from sig∼ and sig

�
—call them non-mixing UCQs—reduces in

polynomial time to inconsistency of non-mixing constraints. Similarly, containment
of such queries reduces to entailment of non-mixing constraints. The converse reduc-
tion is also possible, but it involves exponential blow-up when arbitrary Boolean
combinations in assertions are rewritten in disjunctive normal form. This corre-
spondence brings our results very close to the work by Björklund, Martens, and
Schwentick on static analysis for UCQs over signature signav ∪ {∼,�} [6].

On one hand, our results immediately give the following new decidability result
for the setting considered by Björklund, Martens, and Schwentick (constraints used
in the lower bound of Lemma 5 can be rewritten without blow-up).

Theorem 3 Over signav ∪ {∼,�}, both validity of non-mixing UCQs and contain-
ment of UCQs in non-mixing UCQs (with respect to a given tree automaton) are
2EXPTIME-complete.

Results of Björklund, Martens, and Schwentick give 2EXPTIME upper bound for
containment (with respect to a tree automaton) in UCQs over signav ∪ {∼} and UCQs
over signav ∪ {�}. The original work is on CQs, but arguments for UCQs are the
same [12]. Essentially, they amount to an observation that in counter-examples to
containment of a query p in a query q, all data values can be set equal (in the case
with �) or different (in the case with ∼), except for a bounded number of them
needed to witness satisfaction of p; such counter-examples can be easily encoded as
trees over a finite alphabet, and recognized by an automaton evaluating p and q in
the usual way. Theorem 3 extends both these results. Since we have both ∼ and �

in query q, we cannot assume that all data values are equal, nor that all are different;
our more involved approach seems necessary. The third relevant result of [6] is that
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containment of p in q is 2EXPTIME-complete under the assumption that p is a CQ
over signav ∪ {∼} and q is a CQ over signav ∪ {∼,�}. It looks stronger than ours
because query q can mix ∼ and �. In fact, it is much weaker, depending entirely
on the fact that q is a single CQ, not a UCQ. More specifically, the argument is as
follows: if q uses �, the answer is yes if and only if p is not satisfiable with respect
to the tree automaton (otherwise p is satisfiable in a tree with all data values equal,
and no such tree can satisfy q because of its � atoms); if q does not use �, we are
back in the case of UCQs over signav ∪ {∼}.

On the other hand, some results of Björklund, Martens, and Schwentick give a
broader context to our results. They show that validity with respect to a given automa-
ton is already 2EXPTIME-complete for unions of conjunctive queries over signature
signav, that is, for trees without data. Consequently, restricting only assertions of non-
mixing constraints would not lower the complexity. This is complementary to our
lower bound of Lemma 5, which shows 2EXPTIME-hardness for constraints using
tree patterns as selectors. Hence, the only way to lower the complexity is to restrict
both, selectors and assertions. Björklund, Martens, and Schwentick also show that
for UCQs over signav ∪ {∼,�} validity is undecidable; this means that we cannot go
beyond non-mixing assertions.

4.4 XML Constraints

Non-mixing constraints form an instance of the general framework of XML-to-
relational (X2R) constraints proposed by Niewerth and Schwentick [27], where
selectors are arbitrary queries defining relations by selecting tuples of nodes and
data values (in separate columns), and assertions are arbitrary relational constraints
over the defined relations; the considered problem is entailment modulo schema. Our
setting corresponds to a fragment in which selectors are conjunctive queries over
signav interpreted as queries selecting tuples of data values, assertions are positive
quantifier-free formulas using constants and either = or =, and schemas are tree
automata. Niewerth and Schwentick investigate two classes of assertions: functional
dependencies (FDs) and XML-key FDs (XKFDs). In an FD

A1 A2 . . . Am → B ,

A1, A2, . . . , Am, B are arbitrary columns of the relation defined by the selector
(each referring either to nodes or to data values); in an XKFD, B is required to
be a node column. Our setting captures XKFDs, but not general FDs. Consider
an X2R constraint given by a CQ α(x1, . . . , xn) populating a table with tuples
(x1, . . . , xn, @x1, . . . , @xn), where @xi stands for the data value stored in the node
represented by variable xi , and an XKFD x1, . . . , xj , @xj+1, . . . , @xn−1 → xn (it
makes no sense to use both xi and @xi in the same constraint). Such constraint can
be rewritten as

α(x1, . . . , xn) ∧ α(x1, . . . , xj , x
′
j+1, . . . , x

′
n) ∧ xn = x′

n ⇒
⇒ xj+1 � x′

j+1 ∨ · · · ∨ xn−1 � x′
n−1
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which can be turned into a set of five non-mixing constraints by replacing xn = x′
n

with simple subqueries describing possible ways of arranging two different nodes in a
tree, as explained in Section 2.3. Note that these constraints do not use ∼. Hence, for
XKFDs with UCQs over signav as tuple selectors decidability of entailment follows
already from the results on containment of UCQs over signav ∪ {∼}, discussed in
the previous subsection; the challenge tackled by Niewerth and Schwentick is to
determine the exact complexity and identify tractable fragments.

If we replace the XKFD above with an FD x1, . . . , xj , @xj+1, . . . , @xn−1 →
@xn we have

α(x1, . . . , xn) ∧ α(x1, . . . , xj , x
′
j+1, . . . , x

′
n) ⇒

⇒ xj+1 � x′
j+1 ∨ · · · ∨ xn−1 � x′

n−1 ∨ xn ∼ x′
n ,

which cannot be expressed without mixing ∼ and �. As we have explained, con-
sistency and entailment is undecidable for such constraints, but one can investigate
fragments with restricted schemas and tuple-selectors. This is what Niewerth and
Schwentick do.

As XKFDs with tree patterns as tuple-selectors can express XML Schema key and
unique constraints [18], XML keys by Arenas et al. [2], and XFDs by Arenas and
Libkin [3], so can non-mixing constraints. A technical subtlety is that some of these
classes of constraints apply to nodes of a specified type (playing the role of a state in
XML Schemas). As proposed by Niewerth and Schwentick, we can deal with it by
annotating tree nodes with types (verified by the automaton encoding the schema),
and let the patterns refer to types and labels. This slight extension does not affect our
complexity bounds. Also, XML Schema unique constraints demand that each field
path selects at most one node, and XML Schema key constraints demand exactly one
node; the latter can be checked by the automaton too. In practice, one often wants at
most (or exactly) one data value, not tree node. This may or may not be equivalent.
To express that at most one data value is selected, we can use the singleton constraints
discussed in Section 2.3. Note that this requires assertions over sig∼.

4.5 Consistency of XML Schema Mappings

Schema mappings are a formalism used in data exchange scenarios to specify rela-
tions between instances of two database schemas, a source schema and a target
schema [1, 14]. In the basic setting for XML [4], schemas can be abstracted as tree
automata, and the relation between source and target instances can be defined by a
set 	 of dependencies of the form

α(x̄) ⇒ α′(x̄)

where α, α′ are conjunctive queries over signav , treated as queries selecting data val-
ues, not nodes. That is, a pair of data trees (t, t ′) satisfies dependency σ of the form
above, written as (t, t ′) |= σ , if

{
valt (ū)

∣∣ t |= α(ū)
} ⊆ {

valt ′(ū)
∣∣ t ′ |= α′(ū)

}
.
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The consistency problem for XML schema mappings [4] is to decide for a given
schema mapping M = (A,A′, 	), whether there exists a tree t accepted by automa-
ton A and a tree t ′ accepted by automaton A′ such that (t, t ′) |= 	. This problem is
known to be decidable: without loss of generality one may assume that all data values
in t and t ′ are equal, and use standard automata techniques ignoring data values. This
is not only uninspiring theoretically, but also not very practical: an instance with all
data values equal is not a convincing witness that the mapping makes sense. What if
the source schema includes constraints, say XML Schema key or unique constraints?
We cannot assume that all data values are equal any more. As we have argued in the
previous subsection, such constraints can be expressed with non-mixing constraints,
which leads us to the problem of consistency with source constraints, a common
generalization of consistency of constraints and schema mappings: given a schema
mapping M = (A,A′, 	) and a set of non-mixing constraints 	src, decide if there
exist a tree t accepted by automaton A and a tree t ′ accepted by automaton A′ such
that t |= 	src and (t, t ′) |= 	.

The following lemma gives the connection between XML schema mappings and
non-mixing constraints that allows us to apply our decidability result. It was proved
in a slightly different but equivalent form in [13]. A non-mixing constraint with free
data value predicates uses additional unary predicate symbols in the assertions. A
data tree t satisfies a set 	 of such constraints (possibly sharing some additional
predicate symbols) if it satisfies 	′ obtained from 	 by replacing each additional
predicate symbol with some d ∈ D. Free data value predicates are not problematic for
the consistency algorithm, as it can guess the data values to replace them; up to equal-
ity type with respect to data values already used in 	, there are only exponentially
many possibilities.

Lemma 7 For each schema mapping M = (A,A′, 	) one can compute in dou-
bly exponential time sets 	1∼, 	2∼, . . . , 	m∼ of non-mixing constraints with free data
value predicates, each obtained from 	 by replacing target-side queries α′(x̄) with
assertions η∼(x̄) of exponential size, such that for each data tree t , t |= 	i∼ for some
i ∈ {1, . . . , m} if and only (t, t ′) |= 	 for some data tree t ′ accepted by automaton
A′.

Thus, mapping M is consistent with source constraints 	src if and only if at
least one of the sets 	i∼ ∪ 	src obtained via Lemma 7 is consistent with respect to
automaton A. Since the number of variables in each involved constraint is linear, the
latter can be tested in 2EXPTIME, as the algorithm from Section 3 is doubly expo-
nential only in the maximal number of variables. As Lemma 7 translates mappings
into constraints with assertions over sig∼, even if 	src is just a set of key con-
straints (expressible with assertions over sig

�
), we need the full power of non-mixing

constraints, allowing assertions over sig∼ and sig
�

.

4.6 Data Cut and Clique-Width

A classical measure of simplicity for relational structures is that of clique-width [11].
As has been noticed before for unordered data trees, clique-width and data cut are
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Fig. 4 A tree of data-cut n and clique width bounded by 7

related [7]. We shall now reexamine briefly this relationship for ordered data trees,
and in the following subsection we shall see how it can be used to extend our
decidability results to constraints with much more expressive selector queries.

Let τ = {R1, . . . , R
} be a relational signature, that is, a set of predicate symbols
with arities ar(Ri). A (finite) τ -structure A is a tuple 〈A, RA

1 , . . . , RA


 〉 consisting of
a finite universe A and relations RA

i ⊆ Aar(Ri) (interpretations of the predicates). A
k-coloured τ -structure is a pair (A, γ ), consisting of a τ -structure A and a mapping
γ : A → {1, . . . , k}, assigning colours to elements of the universe of A.

Clique-width of structures is defined by means of an appropriate notion of decom-
position, traditionally known as k-expression (over τ ). It is defined as a term over the
following set of operations (function symbols) Op(τ, k):

– new(i) for 1 ≤ i ≤ k, nullary,
– col(i, j) for 1 ≤ i, j ≤ k, unary,
– R(i1, . . . , ir ) for predicates R ∈ τ of arity r and 1 ≤ i1, . . . , ir ≤ k, unary,
– ⊕, binary.

With each k-expression e we associate a k-coloured τ -structure [[e]]:
– [[new(i)]] is a structure with a single element, coloured i, and empty relations;
– [[col(i, j)(e)]] is obtained from [[e]] by recolouring all elements of colour i to j ;
– [[R(i1, . . . , ir )(e)]] is obtained from [[e]] = (A, γ ) by adding to R[[e]] all tuples

(a1, . . . , ar ) such that aj ∈ A and γ (aj ) = ij for 1 ≤ j ≤ r;
– [[e ⊕ e′]] is the disjoint union of [[e]] and [[e′]].
A k-expression for A is any k-expression e such that [[e]] = (A, γ ) for some γ . The
clique-width of A is the least k such that there exists a k-expression for A.

Example 2 Consider a data tree tn consisting of a root w and two branches
u1, u2, . . . , un and v1, v2, . . . , vn, in which all nodes have label a and the data values
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correspond to the node’s depth in the tree, as shown in Fig. 4. Then, tu1 and t − tu1

share n different data values, and the data cut of tn is n.
Let us see tn as a relational structure over the signature signav ∪ {∼}, where ∼ is

interpreted as the equivalence relation with abstraction classes {w} and {ui, vi} for
i = 1, 2, . . . , n. We claim that the clique width of tn is bounded by 7: if we construct
tn top-down, level by level, at any point of the construction it is enough to distinguish
between the root, the internal nodes on two branches, the two current leaves, and the
two new nodes.

To see this, begin with a node of colour root and set its label with a(root), add two
nodes of colours leaf1 and leaf2 with relations specified by

a(leafi ), ↓ (root, leafi ), ↓+ (root, leafi ), → (leaf1, leaf2), →+ (leaf1, leaf2),

∼ (leaf1, leaf2)

for i = 1, 2 and then repeat the following n−1 times: add two nodes of colours new1
and new2 with relations specified by

a(newi ), ↓ (leafi , newi ), ↓+ (root, newi ), ↓+ (internali , newi ), ↓+ (leafi , newi ),

∼ (new1, new2)

and recolour using col(leafi , internali ), col(newi , leafi ) for i = 1, 2.

The example shows that trees of bounded clique width can have arbitrary large
data cut. We shall now see that bounded data cut implies bounded clique width.

For each set D ⊆ D, data trees can be seen as relational structures over the signa-
ture signav ∪ sigD∼ , where sigD∼ = {∼} ∪ D; that is, we restrict the unary predicates in
sig∼ to those associated to data values from D.

Proposition 2 For each finite D ⊆ D and each data tree t seen as a relational
structure over signav ∪ sigD∼ ,

cliquewidth(t) ≤ 4 ·
(

3

2
· datacut(t) + 2 + |D|

)
.

Proof Let C = {1, 2, . . . , N} with N =
⌊

3
2 · datacut(t)

⌋
+ 1. By Lemma 4, there

exists a tree s over the alphabet � × (C ∪ D) × P(C) such that the encoded data
tree ŝ equals t up to a permutation of D − D. That is, ŝ and t are equal when seen
as relational structures over signav ∪ sigD∼ . We shall turn s into a 4(|C| + |D| +
1)-expression for ŝ, interpreting colours as elements of the set

{last-root, other-root, new-root, not-root} × (
C ∪ D ∪ {⊥}) .

Processing the nodes of s in the usual order (bottom-up and left-to-right), for each
node w we construct a 4(|C| + |D| + 1)-expression ew such that

[[ew]] = (ŝw, γ )

and for each node u the colour γ (u) satisfies the following properties:

1. the first coordinate describes the status of the node u in the forest ŝw: the last
root, one of the other roots, or not a root (the value new-root will be used later);
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2. the second coordinate is the data value stored in the node in ŝw if this value
belongs to C ∪ D, or ⊥ if it does not.

Let w be a node of s, labelled with (a, c, R). To build ew, we begin by creating a new
node and specifying the unary relations for it (label and data value) with operations

new
(
(new-root, c)

)
, a

(
(new-root, c)

)
, c

(
(new-root, c)

)
,

where the last operation is included only if c ∈ D (that is, c is in the signature). If w

has children, let w′′ be its last child. Then, the expression ew′′ is already constructed
and we incorporate it into the expression ew as follows:

– combine the expression built so far with ew′′ using the operation ⊕;
– specify structural relations between the two parts using the operations

↓ (
(new-root, c), (last-root, d)

)
, ↓+ (

(new-root, c), (last-root, d)
)
,

↓ (
(new-root, c), (other-root, d)

)
, ↓+ (

(new-root, c), (other-root, d)
)
,

↓+ (
(new-root, c), (not-root, d)

)

for all d ∈ C ∪ D ∪ {⊥};
– change last-root and other-root to not-root with the operations

col
(
(last-root, d), (not-root, d)

)
, col

(
(other-root, d), (not-root, d)

)

for all d ∈ C ∪ D ∪ {⊥};
Similarly, if w′ is the previous sibling of w, we incorporate the expression ew′ as
follows:

– combine the expression build so far with ew′ using the operation ⊕;
– specify structural relations between the two parts using the operations

→ (
(last-root, d), (new-root, c)

)
, →+ (

(last-root, d), (new-root, c)
)
,

→+ (
(other-root, d), (new-root, c)

)

for all d ∈ C ∪ D ∪ {⊥};
– change last-root to other-root with the operations

col
(
(last-root, d), (other-root, d)

)

for all d ∈ C ∪ D ∪ {⊥}.
Finally, we take care of data equalities and clean up the colours:

– specify data equalities between the combined parts using the operations

∼ ((ξ, d), (ζ, d))

for all ξ, ζ ∈ {new-root, other-root, not-root} and d ∈ C ∪ D;
– change new-root to last-root with the operation

col
(
(new-root, c), (last-root, c)

) ;
– refresh the colours with the operations

col ((ξ, d), (ξ, ⊥))

for all ξ ∈ {last-root, other-root, not-root} and d ∈ R;
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By construction, the resulting expression ew satisfies properties 1 and 2.

Thus, bounded data cut is a stronger property than bounded clique width. It
can be seen as a strengthening of bounded clique-width for data trees, in which
decompositions must closely follow the structure of data trees.

4.7 MSO Constraints

Our decidability results for consistency and entailment of non-mixing constraints can
be naturally extended by allowing selectors expressed in monadic second-order logic
(MSO), a powerful extension of first order-logic in which quantification over subsets
of the universe is available. However, as is usually the case when MSO is involved,
the complexity will be non-elementary.

The syntax of MSO formulae over signav is

ϕ, ψ ::= ∃X ϕ
∣∣ ∃x ϕ

∣∣ϕ ∧ ψ
∣∣ ¬ϕ

∣∣ x ∈ X
∣∣ x ↓ y

∣∣ x ↓+ y
∣∣ x → y

∣∣ x →+ y
∣∣ a(x)

for a ∈ �; the semantics is the natural one, with the usual distinction between first-
order variables (lower case) referring to elements of the universe and second-order
variables (upper case) referring to subsets of the universe.

We consider MSO constraints of the form

ϕ(x̄) ⇒ η∼(x̄) ∧ η�(x̄) ,

where the selector ϕ(x̄) is an MSO formula over signav in which all free variables are
first-order.

As a first step, we reprove the bound on the data cut, shown in Lemma 3. Instead
of using Lemma 2 we rely on the compositionality of MSO. For a forest f over �, a
tuple v̄ = (v1, . . . , vm) of nodes of f , and a tuple V̄ = (V1, . . . , Vn) of sets of nodes
of f , let

〈f ; v̄; V̄ 〉
be the forest over the alphabet � × {0, 1}m+n obtained from f by extending labels
with binary vectors encoding v̄ and V̄ : a node w is labelled with

(labf (w), e1, . . . em, E1, . . . , En) ,

where ei = 1 if and only if w = vi , and Ej = 1 if and only if w ∈ Vj . If v̄ or V̄

is empty, we skip it and write, for instance, 〈f ; v̄〉. It is well known that for a given
MSO formula

ϕ(x1, . . . , xm, X1, . . . Xn)

one can effectively construct a deterministic automaton Aϕ (of non-elementary size)
recognizing the tree language

{〈t; v̄; V̄ 〉 ∣∣ t |= ϕ(v̄, V̄ )
}

.

The construction follows the syntactic structure of MSO formulas: it begins with
explicit automata for atomic formulas, and then turns logical connectives into
Boolean operations on automata, and existential quantification into projecting out the
corresponding binary coordinate from the alphabet. Defining the ϕ − type of a forest
f over � × {0, 1}m+n as the state of the automaton Aϕ in the root of the last tree of
f (in the unique run over f ), we obtain the following analogue of Lemma 2.
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Lemma 8 Let ϕ(x̄, ȳ) be an MSO formula over signav, where x̄ and ȳ are disjoint
tuples of first-order variables, and let w be a node of a data tree t . For all tuples ū, ū′
of nodes from tw and tuples v̄, v̄′ of nodes from t − tw, if

t |= ϕ(ū, v̄) and t |= ϕ(ū′, v̄′) ,

and the ϕ-types of 〈tw; ū〉 and 〈tw; ū′〉 are equal, then
t |= ϕ(ū, v̄′) and t |= ϕ(ū′, v̄) .

Proof As t |= ϕ(ū, v̄) and t |= ϕ(ū′, v̄′), the trees 〈t; ū, v̄〉 and 〈t; ū′, v̄′〉 are
accepted by the deterministic automaton Aϕ . Moreover, the state in the node w in
the unique runs of Aϕ over these trees is the same, because 〈t; ū, v̄〉w = 〈tw; ū〉
and 〈t; ū′, v̄′〉w = 〈tw; ū′〉, and the ϕ-types of 〈tw; ū〉 and 〈tw; ū′〉 are equal. Hence,
swapping 〈t; ū, v̄〉w and 〈t; ū′, v̄′〉w does not affect acceptance by Aϕ . That is, the
resulting trees 〈t; ū′, v̄〉 and 〈t; ū, v̄′〉 are accepted by Aϕ . Consequently, t |= ϕ(ū′, v̄)

and t |= ϕ(ū, v̄′).

Now, we can show a bound on the data cut for non-mixing MSO constraints.
Unlike in Lemma 3, the bound is non-elementary: it is proportional to the maximal
size of the automata for the MSO formulas used in the constraints.

Lemma 9 If a set 	∼ ∪	� of non-mixing MSO constraints is satisfied in a data tree
t , it is also satisfied in some data tree t ′ obtained from t by changing data values,
such that

datacut(t ′) ≤ S · 
 · 2
 · (
 + m)

2 · |	∼| ,

where 
 and m are the maximal numbers of, respectively, free variables and predi-
cates from D ∪ Ď in the constraints from 	∼, and S is the maximal number of types
for the selector formulas in the constraints from 	∼.

The same is true for counter-examples to entailment, except that the bound on the
data cut needs to be increased by the number of variables in the violated assertion.

Proof We proceed just like for Lemma 3. Let us take a node w of the data tree t

and an MSO constraint ϕ(x̄, ȳ) ⇒ η∼(x̄, ȳ) from 	∼ with a fixed partition x̄, ȳ of
the free variables of ϕ. Using Lemma 8, we arrive at the following condition: for all
tuples ū, ū′ of nodes from tw and all tuples v̄, v̄′ of nodes from t − tw, if t |= ϕ(ū, v̄),
t |= ϕ(ū′, v̄′), and the ϕ-types of 〈tw, ū〉 and 〈tw, ū′〉 are equal, then t |= η∼(ū, v̄′).
This can be reformulated as follows: for each tuple ū of nodes from tw such that the
ϕ-type of 〈tw; ū〉 is q and t |= ϕ(ū, v̄) for some tuple v̄ of nodes from t − tw, the
tuple valt (ū) of data values belongs to the set

Z
q

ϕ(x̄,ȳ)⇒η∼(x̄,ȳ) =
⋂

v̄′

{
c̄ ∈ D

|x̄| ∣∣ η(c̄, valt (v̄
′))

}
,

where v̄′ ranges over tuples of nodes from t − tw satisfying t |= ϕ(ū′, v̄′) for some
tuple ū′ of nodes from tw such that the ϕ-type of 〈tw; ū′〉 is q.

Like before, we modify the tree t by changing to a fresh one each data value used
in tw, except for those from the set D ⊆ D of data values used in the definitions of
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the sets Z
q

ϕ(x̄,ȳ)⇒η∼(x̄,ȳ), with ϕ(x̄, ȳ) ⇒ η∼(x̄, ȳ) ranging over constraints from 	∼
with all possible partitions of free variables, and q ranging over all possible ϕ-types.
As the bound on the number of data values used in the canonical definition of a single
set Z

q

ϕ(x̄,ȳ)⇒η∼(x̄,ȳ) remains unchanged, we have |D| ≤ |	∼| · 2
 · S · (
 · (m + 
)

2)

.
Performing this modification for each node w, we guarantee the bound on data cut as
stated in the lemma.

For the second claim, extend the set D with the data values used in the tuple of
nodes violating the assertion, as described in Section 4.1 for constraints with CQ
selectors.

As each set of MSO constraints can be rewritten as a single MSO formula over
the signature signav ∪ sig∼, by Lemma 9 and Proposition 2 from Section 4.6, the
consistency problem and the entailment problem reduce to satisfiability of MSO over
structures of bounded clique-width (one has to ensure that the structure is indeed
a data tree, but this can be easily expressed in MSO). As the latter is known to be
decidable [10], we immediately obtain decidability of consistency and entailment.
For completeness, we give a direct proof, avoiding the notion of clique-width.

Theorem 4 Consistency and entailment of non-mixing MSO constraints is decid-
able.

Proof Let 	∼∪	� be a set of non-mixing constraints and let A be a tree automaton.
By Lemma 9, it is enough to test satisfiability of 	∼ ∪ 	� over trees of data cut
bounded by a number N , computable from 	∼ ∪ 	�. Let D ⊆ D be the set of data
values used explicitly in 	∼ ∪ 	�, and let C ⊆ D − D be a fixed set such that

|C| =
⌊

3
2 · N

⌋
+ 1. Like before, by Lemma 4, the proof boils down to constructing

an automaton recognizing the set of trees t over �×(C∪D)×P(C) such that the data
tree t̂ satisfies 	∼∪	�. Each MSO constraint ϕ(x̄) ⇒ η(x̄) is equivalent to a closed
MSO formula ∀x̄

(
ϕ(x̄) → η(x̄)

)
over the signature signav ∪ sig∼ (in the presence of

negation, sig
�

is redundant). Hence, a finite set of MSO constraints is equivalent to
a conjunction of such formulas. Thus, it suffices to construct an automaton accepting
trees t over � × (C ∪ D) × P(C) such that t̂ satisfies ϕ, where ϕ is an MSO formula
over signav ∪ sig∼, using only predicates associated with data values from the set D.

We modify the standard construction of the automaton Aϕ for a formula ϕ of
MSO over signav. As the structure of the tree and the labelling with elements of �

is the same in t and t̂ , we only need to provide explicit constructions for the atomic
formulas over sig∼.

For formulas of the form d(x), we have d ∈ D, so the data value d is represented
explicitly in t . Hence, the automaton simply identifies the node with value 1 in the
corresponding binary coordinate of the label, and accepts if and only if the non-binary
component of this label is (a, d, R) for some a and R.

For formulas of the form x ∼ x′, the automaton also identifies the nodes x and x′
in the input tree t , and then accepts if they are labelled with (a, d, R) and (a′, d, R′)
for some a, a′, R, R′, and additionally, if d ∈ C, then it is not refreshed before
reaching the first node w such that tw contains both x and x′.
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For entailment, we use the additional claim of Lemma 9 and include in D also the
data values used explicitly in the second set of constraints, 	′∼ ∪ 	′

�
. As the fact

that 	∼ ∪ 	� holds and 	′∼ ∪ 	′
�

does not hold can also be expressed with a single
closed MSO formula, we can use directly the construction described above.

Both approaches give non-elementary complexity, as already the bound of
Lemma 9 is non-elementary. This cannot be improved, as the satisfiability prob-
lem for MSO over signav, well known to be non-elementary, easily reduces to
inconsistency of MSO constraints: a closed formula ϕ is satisfiable if and only if

{
ϕ ∧ a(x) ⇒ 0(x) ∧ 1(x)

∣∣ a ∈ �
}

is inconsistent with respect to the trivial automaton accepting all trees.

5 Conclusions

We have shown that consistency and entailment of non-mixing constraints are
decidable. Both problems are 2EXPTIME-complete, but become EXPTIME-complete
when we restrict selector queries to tree patterns and bound the number of variables
in assertions; decidability can be pushed further to constraints with selector queries
defined in monadic second order logic over the signature signav, but the complex-
ity becomes non-elementary. We have reinterpreted these results in terms of validity
and containment of conjunctive queries, as well as consistency of schema mappings.
The latter setting best illustrates the benefits of combining assertions over sig∼ and
sig

�
. Indeed, equalities are involved even in the simplest schema mappings, and

inequalities allow to cover key constraints over the source database.
We worked with ordered trees, but all discussed results immediately carry over to

unordered trees: as long as the signature does not contain the horizontal axes, one can
freely move back and forth between ordered and unordered trees by forgetting the
sibling order or introducing it arbitrarily. As both 2EXPTIME lower bounds, the one
from Lemma 5 and the one from [6], do not use the horizontal axes, they also hold
for unordered trees. The same is true of the undecidability for the settings that mix
equality and inequality [6]. Similarly, restricting to ranked trees does not change the
picture: the upper bounds carry over immediately, and the lower bounds only use trees
of bounded branching. The reductions can be also adapted to the case of unlabelled
trees: one can simulate labels with unique small tree gadgets attached to the main
nodes of the tree and use the automaton to ensure that each main node has exactly
one gadget attached. However, referring to the gadgets with selector queries requires
either the next sibling or the following sibling relation. For unordered unlabelled trees
the complexity might drop.

One might also ask how the presence of the schema affects the complexity. The
fact that we model schemas as tree automata is inessential: all lower bounds can be
adjusted to the setting where the schema language is restricted to DTDs [6]. When
there is no schema at all, the consistency problem trivializes, because if a tree satisfies
a set of constraints, so does any tree obtained by removing nodes. Hence, it suffices to
look for witnesses among trees with a single node, which leads to a polynomial-time
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algorithm. The question is more interesting for the entailment problem, because there
the counter-example must contain enough nodes to falsify the non-entailed constraint.
It is plausible that the complexity is lower than with a schema.

Acknowledgements We thank the anonymous referees of ICDT 2016 and TOCS for their insightful
questions.
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