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Abstract Dynamic programming is widely used for exact computations based on
tree decompositions of graphs. However, the space complexity is usually exponential
in the treewidth. We study the problem of designing efficient dynamic programming
algorithms based on tree decompositions in polynomial space. We show how to use a
tree decomposition and extend the algebraic techniques of Lokshtanov and Nederlof
(In: 42nd ACM Symposium on Theory of Computing, pp. 321–330, 2010) such that
a typical dynamic programming algorithm runs in time O∗(2h), where h is the tree-
depth (Nešetřil et al., Eur. J. Comb. 27(6):1022–1041, 2006) of a graph. In general,
we assume that a tree decomposition of depth h is given. We apply our algorithm
to the problem of counting perfect matchings on grids and show that it outperforms
other polynomial-space solutions. We also apply the algorithm to other set covering
and partitioning problems.
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1 Introduction

Exact solutions to NP-hard problems typically adopt a branch-and-bound, inclu-
sion/exclusion or dynamic programming framework. While algorithms based on
branch-and-bound or inclusion/exclusion techniques [26] have shown to be both,
time and space efficient, one problem with dynamic programming is that for many
NP-hard problems, it uses exponential space to store the computation table. As
in practice programs usually run out of space before they run out of time [33],
exponential-space algorithms are considered impractical. Lokshtanov and Nederlof
[24] have recently shown that algebraic tools like the zeta transform and Möbius
inversion [30, 31] can be used to obtain space efficient dynamic programming solu-
tions under some circumstances. The idea is sometimes referred to as the coefficient
extraction technique which also appears in [21, 22].

The principle of space saving is best illustrated with the better known Fourier
transform. Assume we want to compute a sequence of polynomial additions and mul-
tiplications modulo xn − 1. We can either use a linear amount of storage and do
many complicated convolution operations throughout, or we can start and end with
the Fourier transforms and do the simpler component-wise operations in between.
Because we can handle one component after another, very little space is needed dur-
ing the main computation. This principle works for the zeta transform and subset
convolution [5] as well.

In this paper, we study the problem of designing polynomial-space dynamic pro-
gramming algorithms based on tree decompositions. Lokshtanov et al. [23] have also
studied polynomial-space algorithms based on tree decompositions. They employ a
divide and conquer approach. For a general introduction of tree decomposition, see
the survey [9]. It is well-known that dynamic programming has wide applications
and produces prominent results on efficient computations defined on path decompo-
sitions or tree decompositions in general [6]. Tree decompositions are very useful on
low degree graphs as they are known to have a relatively low pathwidth [15]. For
example, it is known that any degree 3 graph of n vertices has a path decomposi-
tion of pathwidth n

6 . As a consequence, the minimum dominating set problem can
be solved in time O∗(3n/6)1, which is the best known running time in this case [29].
However, the algorithm trades large space usage for fast running time.

To tackle the high space complexity issue, we extend the method of [24] in a
novel way to problems based on tree decompositions. In contrast to [24], we do not
have a fixed ground set, and we cannot do the transformations only at the beginning
and the end of the computation. The underlying set changes continuously, therefore
a direct application to tree decompositions does not lead to an efficient algorithm.
We introduce the new concept of zeta transforms for dynamic sets. Guided by a tree
decomposition, the underlying set (of vertices in a bag) gradually changes. We adapt
the transform so that it always corresponds to the current set of vertices. Herewith, we
significantly expand the applicability of the space saving method by algebraization.

1O∗ notation hides the polynomial factors of the expression.
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We broadly explore problems which fit into this framework. Especially, we ana-
lyze the problem of counting perfect matchings on grids which is an interesting
problem in statistical physics [18]. There is no previous theoretical analysis on the
performance of any algorithm for counting perfect matchings on grids of dimen-
sion at least 3. We analyze two other natural types of polynomial-space algorithms,
branching algorithms and dynamic programming algorithms based on path decom-
positions of subgraphs [20]. We show that our algorithm outperforms these two
approaches. Our method is particularly useful when the treewidth of the graph is
large. For example, grids, k-nearest-neighbor graphs [25], and low degree graphs are
important graphs in practice with large treewidth. In these cases, standard dynamic
programming on tree decompositions requires exponential space.

The paper is organized as follows. In Section 2, we summarize the basics of tree
decomposition and techniques to save space by algebraization [24]. We also relate
tree decompositions to tree-depth. In Section 3, we present the framework of our
algorithm. In Section 4, we study the problem of counting perfect matchings on grids
and extend our algorithmic framework to other problems. We reach a conclusion in
Section 5.

2 Preliminaries

2.1 Saving Space Using Algebraic Transformations

Lokshtanov and Nederlof [24] introduce algebraic techniques to solve three types of
problems. The first technique is using discrete Fourier transforms (DFT) on problems
of very large domains, e.g., for the subset sum problem. The second one is using
Möbius and zeta transforms when recurrences used in dynamic programming can
be formulated as subset convolutions, e.g., for the unweighted Steiner tree problem.
The third one is to solve the minimization version of the second type of problems
by combining the above transforms, e.g., for the traveling salesman problem. As a
service to the reader of this paper, we explain the techniques used in the second type
of problems.

Given a universe V and a ring R, we consider functions from 2V to R. Denote the
collection of such functions by R[2V ]. A singleton fA[X] is an element of R[2V ]
which is zero unless X = A. The operator ⊕ is the pointwise addition, and the
operator � is the pointwise multiplication. We first define some useful algebraic
transforms.

The zeta transform of a function f ∈ R[2V ] is defined to be

ζf [Y ] =
∑

X⊆Y

f [X]. (1)

The Möbius transform/inversion [30, 31] of f is defined by

μf [Y ] =
∑

X⊆Y

(−1)|Y\X|f [X]. (2)
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The Möbius transform is the inverse transform of the zeta transform, as the two
transformations interact in the following way [30, 31]:

μ(ζf )[X] = f [X] and ζ(μf )[X] = f [X]. (3)

The high level idea of [24] is that a direct computation of f [V ] has a mirror image
where the zeta transformed versions of all intermediate results show up. Not only
can the whole computation be performed directly with the zeta transformed values,
but the computation is actually more convenient. While the direct computation stores
exponentially many intermediate results {f [X]}X⊆V , the computation operating on
the zeta transformed values is partitioned into exponentially many parallel strands
of computation. They can be executed sequentially, one strand after the other, using
only polynomial space. The final value f [V ] can be obtained by Möbius inversion
Eq. 2 as f [V ] = ∑

X⊆V (−1)|V \X|(ζf )[X].
Problems which can be solved in this manner have a common nature. They have

recurrences which can be formulated by subset convolutions. The subset convolution
[5] is defined to be

(f ∗R g)[X] =
∑

X′⊆X

f (X′) g(X \ X′). (4)

To apply the zeta transform to f ∗R g, we need the union product [5] which is
defined as

(f ∗u g)[X] =
∑

X1
⋃

X2=X

f (X1) g(X2). (5)

The relation between the union product and the zeta transform is as follows [5]:

ζ(f ∗u g)[X] = (ζf ) � (ζg)[X]. (6)

In [24], functions over (R[2V ]; ⊕, ∗R) are modeled by arithmetic circuits. Such
a circuit is a directed acyclic graph where every node is either a singleton (constant
gate), a ⊕ gate, or a ∗R gate. In order to take advantage of Eq. 6, the concept of a
relaxation has been introduced.

A relaxation of a function f ∈ R[2V ] is a sequence of functions

{f i : f i ∈ R[2V ], 0 ≤ i ≤ |V |},
such that ∀i, X ⊆ V ,

f i[X] =
⎧
⎨

⎩

f [X] if i = |X|,
0 if i < |X|,
an arbitrary value if i > |X|.

Given any circuit C over (R[2V ]; ⊕, ∗R) which outputs f , every gate in C com-
puting an output a from its inputs b, c is replaced by small circuits computing a
relaxation {ai}|V |

i=1 of a from relaxations {bi}|V |
i=1 and {ci}|V |

i=1 of b and c respectively.
For a ⊕ gate, replace a = b ⊕ c by ai = bi ⊕ ci , for 0 ≤ i ≤ |V |. For a ∗R gate,
replace a = b ∗R c by the circuits for ai = ∑i

j=0 bj ∗u ci−j , for 0 ≤ i ≤ |V |.
This new circuit C1 over (R[2V ]; ⊕, ∗u) is of size O(|C| · |V |). An output f [X]
shows up as f |X|[X]. The next step is to replace every ∗u gate by a gate � and every
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constant gate a by ζa. It turns C1 to a circuit C2 over (R[2V ]; ⊕, �), such that
for every gate of C1 with output a, the corresponding gate in C2 outputs ζa. Since
additions and multiplications in C2 are pointwise, C2 can be viewed as 2|V | dis-
joint circuits CY over (R[2V ]; +, ·) for every subset Y ⊆ V . The circuit CY outputs
(ζf )[Y ]. It is easy to see that the construction of every CY takes polynomial time.

As all problems of interest in this paper work on the integer domain Z, we con-
sider R = Z and replace ∗R by ∗ for simplicity. Assuming 0 ≤ f [V ] < m for some
integer m, we can view the computation as being done in the finite ring Zm. Addi-
tions and multiplications can be implemented efficiently in Zm (e.g., using the fast
algorithm of [16] for multiplication).

Theorem 1 (Theorem 5.1 [24]) Let C be a circuit over (Z[2V ]; ⊕, ∗) which outputs
f . Let all constants in C be singletons and let f [V ] < m for some integer m. Then
f [V ] can be computed in time O∗(2|V |) and space O(|V ||C| log m).

2.2 Tree Decomposition

For any graph G = (V , E), a tree decomposition of G is a tree T = (VT , ET ) such
that every node x in VT is associated with a set Bx (called the bag of x) of vertices
in G, and T has the following additional properties:

1. Every vertex is in the bag of some node, i.e.,
⋃

x∈VT Bx = V.

2. For any edge e = {u, v} ∈ E, there exists a node x such that u, v ∈ Bx .
3. For any nodes x, y, and any node z belonging to the path connecting x and y in

T , Bx ∩ By ⊆ Bz.

The width of a tree decomposition T is maxx∈VT |Bx |−1. The treewidth of a graph
G is the minimum width over all tree decompositions of G. In the following, we
reserve the letter k for treewidth. Constructing a tree decomposition with minimum
treewidth is an NP-hard problem. If the treewidth of a graph is bounded by a constant,
a linear time algorithm for finding the minimum treewidth is known [8]. An O(log n)-
approximation algorithm for the treewidth is given in [11]. The result has been further
improved to O(log k) in [1, 2, 12] and O(

√
log k) in [14]. There also is a series

of works studying constant factor approximations of treewidth k with running time
exponential in k, see [10] and references therein.

To simplify the presentation of dynamic programming based on tree decom-
positions, an arbitrary tree decomposition is usually transformed into a nice tree
decomposition. We employ a version of nice tree decomposition with explicit nodes
to introduce edges. A similar type of nodes has been used by Cygan et al. [13] to
introduce one edge at a time. Nice tree decompositions are tree decompositions with
the following additional properties. A node in a nice tree decomposition has at most
2 children. Let c be the only child of x or let c1, c2 be the two children of x. Any
node x in a nice tree decomposition is of one of the following five types:

1. A leaf node, a leaf of T .
2. An introduce vertex node (introduce vertex v), where Bx = Bc ∪ {v}.
3. A forget node (forget vertex v), where Bx = Bc \ {v}.
4. A join node, where x has two children and Bx = Bc1 = Bc2 .
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5. An introduce edges node (introduce edge set Ev), where Bx = Bc, Ev = E ∩
{{u, v} : u ∈ Bx} for the vertex v ∈ Bx that will be forgotten in the parent node
of x. Node x is labeled with the edge set Ev .

We further require the root node to be a forget node with empty bag.
We don’t require the leaves to have empty bags in order to keep the tree size linear

in n. Every edge of G belongs to the label of exactly one introduce edges node.
Notice that an introduce edges node is not a type of node in the standard definition of
a nice tree decomposition, where an edge belongs to every node which contains its
incident vertices. For any tree decomposition, a nice tree decomposition (according to
the standard definition) with the same width can easily be constructed in polynomial
time [19].

Our definition of nice tree decomposition also differs from the definition in [13]
in two ways. We allow more than one edge to be introduced in one node, and leaves
are not required to have empty bags. Without omitting these restrictions, one cannot
guarantee minimum width and O(n) tree size. On the other hand, our restriction of
the edge set in a node to be a star allows efficient handling of these edges for many
problems including the counting of perfect matchings, whereas for arbitrary edge
sets, this would be a more complicated problem.

With our definition, we can easily modify a tree decomposition into a nice one of
small size.

Proposition 1 Every tree decomposition can be modified in polynomial time into a
nice tree decomposition with the same width and size O(n).

Proof With our type of introduce edges node, still every edge can be introduced. If
{u, v} is an edge, then there is a bag Bx containing u and v. Assume v is forgotten in a
lower ancestor y of x than u. Then the edge {u, v} can be introduced in the child c of y.

We can require every subtree of the decomposition tree rooted at a child of a join
node to contain at least one forget node. If this property is not fulfilled, we just delete
such a subtree, as it is useless. As there are n forget nodes, we now have less than n

join nodes. With our definition, the number of introduce edges nodes is also at most
n. We insert such a node only as a child of a forget node.

To limit the number of introduce vertex nodes, we push them down the tree as far
as we can without increasing the width of the tree. This procedure involves dupli-
cation whenever we push down past a join node. If an introduce vertex node is the
parent of a leaf, then its introduced vertex is added to the leaf, and the introduce ver-
tex node is removed. Now every introduce vertex node is the parent of a forget node,
and there are at most n of them.

One should note that the tree modification in this proof, also does not increase the
tree-depth, which is defined next.

2.3 Tree-Depth

Our algorithms will crucially depend on the maximal number h of forget nodes along
a path from the root to a leaf in a decomposition tree T of a graph G with an empty
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bag in the root node. We may always assume that T is a nice tree decomposition, as
the simple transformation of any decomposition tree into a nice decomposition tree
does not change the parameter h. It is easy to see that h can also be characterized as
the maximum size of the union of all bags along any path from the root to a leaf in T .

Let hm(G) be the minimum value of h for all tree decompositions of G. We show
that hm(G) is equal to a well studied parameter, the tree-depth of a graph [27].

In the following definition, we measure the height of a tree by the maximal num-
ber of edges from the root to a leaf. (Some researchers use the number of nodes
instead).

Definition 1 (tree-depth [27]) Given a rooted tree T with vertex set V , the closure
of T , clos(T ) is the graph G with the same vertex set V , and the edge set consisting
of all pairs {x, y} such that one is a proper ancestor of the other. The tree-depth of T

is the height of T plus 1. The tree-depth td(G) of a graph G, is the minimum height
of trees T such that G ⊆ clos(T ).

Proposition 1 For any connected graph G, hm(G) = td(G).

Proof Given any tree decomposition of G, we first transform it to a nice tree decom-
position T . Then we contract T by deleting all nodes except the children of forget
nodes. Let Tf be this contracted tree such that for every forget node in T which for-
gets a vertex x in G, the corresponding vertex in Tf is x. We have G ⊆ clos(Tf ).
Therefore, td(G) ≤ h, where h is the maximum number of forget nodes along any
path from the root to a leaf in T .

For any tree T such that G ⊆ clos(T ), we construct a corresponding tree decom-
position T of G such that, T is initialized to be T and every bag associated with the
vertex x of T contains the vertex itself. For every vertex x ∈ T , we also put all ances-
tors of x in T into the bag associated with x. It is easy to verify that this is a valid
tree decomposition of G. Therefore, the tree-depth of T , td(T ) ≥ hm(G).

There is a close connection between treewidth k and tree-depth td(G) of a graph
G. First of all, td(G) = hm immediately implies td(G) ≥ k + 1. Moreover,
td(G) ≤ (k + 1) log |V | [27]. Furthermore, for any graph G = (V , E) with a given
tree decomposition of width k, one can find in polynomial time a tree decompo-
sition of width 3k + 2 and height O(log |V |) [7]. Thus, this tree has a tree-depth
O(k log |V |).

3 Algorithmic Framework

3.1 The Principal of Dynamic Algebraization

In the traditional static setting, we have a circuit computing convolutions and (point-
wise) additions of functions defined on all subsets of a fixed base set of size n.
Using relaxations to break the functions into levels and applying a zeta transform to
all functions, we obtain a mirror image of the original computation. The new zeta
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transformed computation is actually easier than the original computation, because
multiplications are pointwise.

What is new in our dynamic setting is that we don’t have a fixed base set. Instead
of working with the full set of vertices, the algorithm works with a small subset
defined by the bag of a node in the tree decomposition. This set changes dynam-
ically, as the algorithm works its way bottom-up through the tree decomposition.
Besides the convolution and addition operations, we also have operations, where the
underlying set changes by one element. The function on the subsets of a new set
is defined by case distinctions and linear combinations of some functions defined
on subsets of the preceding old set. We will show that with these dynamic sets, we
still can do the whole computation in the zeta transformed image, even as the set
changes.

3.2 Dynamic Algebraization for Bounded Treewidth

We explain the algorithmic framework using the problem of counting perfect match-
ings based on a tree decomposition as an example to help understand the recurrences.
The result can easily be applied to other problems. A perfect matching in a graph
G = (V , E) is a collection of |V |/2 edges such that every vertex in G belongs to
exactly one of these edges.

Consider a connected graph G and a nice tree decomposition T of treewidth k on
G. Let Tx be the subtree rooted at x. Let Tx be the set of vertices contained in bags
associated with nodes in Tx which are not in Bx . For any X ⊆ Bx , let YX be the union
of X and Tx . For every node x, we define a function fx ∈ Z[2Bx ] as follows. For
any X ⊆ Bx , let fx[X] be the number of perfect matchings in the subgraph whose
vertex set is YX and whose edges are the edges within YX that have already been
introduced in Tx . We will see that the recurrence for computing fx at a join node x

can be formulated as a subset convolution, while at other types of tree nodes it is a
linear combination or case distinction.

We go three times through the operations done by a dynamic programming algo-
rithm working bottom-up on the tree decomposition T in order to compute the
number of perfect matchings. First, we explain how to efficiently evaluate all fx on
a nice tree decomposition by dynamic programming in exponential space. X always
denotes an arbitrary subset of Bx . Second, we show how to compute relaxations f i

x

of all the functions fx . Finally, in the third round, we show how to compute (ζf i
x )[X]

for all x, i, and X. It is important that these entries are computed at a node x from the
entries at the children of x. This third round is the space efficient computation that
is actually done by the algorithm. It does not work by applying the zeta transform to
f i

x , but operates entirely within the transformed functions. The previous rounds are
just to motivate the algorithm and show its correctness.

Now we start the first round, showing how to compute fx[X] for the perfect
matching problem for all nodes x and all subsets X of Bx .

1. x is a leaf node. fx[∅] = 1, as there is one empty perfect matching for the empty
set of vertices. For all X �= ∅, fx[X] = 0, as there is no perfect matching without
edges. For other problems, fx[X] can be anything that is easily computable.
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2. x is an introduce vertex node. If the introduced vertex v is not in X, then fx[X] =
fc[X] by definition. If v ∈ X, then fx[X] = 0, as v has no incident edges.
For other problems, fx[X] may equal to fc[X \ {v}], which implies a similar
recurrence.

3. x is a forget node. fx[X] = fc[X ∪ {v}] by definition.
4. x is a join node with two children. By assumption, the computation of fx at a

join node can be formulated as a subset convolution. We have

fx[X] =
∑

X′⊆X

fc1[X′] fc2[X \ X′] = (fc1 ∗ fc2)[X]. (7)

For the problem of counting perfect matchings, it is easy to verify that fx[X] can
be computed using Eq. 7. This is so, because every vertex of X is either matched
in the left or the right subtree. Every matching in the left subtree involving X′
can be combined with every matching in the right subtree involving X \ X′ to
result in a matching involving X.

5. x is an introduce edges node introducing the edge set Ev = {{uj , v} : j =
1, . . . , q}. We have to consider matchings avoiding all edges of Ev , and match-
ings using one edge of Ev . If v /∈ X, then fx[X] = fc[X]. If v ∈ X and
Ev = {{uj , v} : j = 1, . . . , q} with u1, . . . , up ∈ X, but up+1, . . . , uq /∈ X then

fx[X] = fc[X] +
p∑

j=1

fc[X \ {uj , v}].

Here, fc[X] counts the matchings avoiding Ev , and fc[X \ {uj , v}] counts the
matchings using the edge {uj , v} of Ev .

For other problems, the recurrence can be different. Since the goal of the
analysis of this case is to explain why we need to modify the construction of an
introduce edges node, we consider only the recurrence for the counting perfect
matchings problem.

Here, we should notice some significant differences between our dynamic framework
and the static framework of Theorem 1. In case 2, we observe that there is no addition,
but a case distinction, and in cases 3 and 5, the addition operation is not a strictly
pointwise operation. This is because in a tree decomposition, the bags of different
nodes are not the same.

In case 2, the domain of fx is twice the size of the domain fc of the child c of x.
Depending on whether the new vertex v is in X or not, the value is copied or set to 0.

In case 3, the domain of fx is half the size of the domain fc of the child c of x.
The value at X is copied from X ∪ {v}, while the value of fc at X is not used. An
immediate implication is that ζfx is obtained as a simple linear combination of the
values of fc on the two halves of its domain, as we will see below.

Having defined the functions fx for all x, we show now how to obtain their relax-
ations f i

x for 0 ≤ i ≤ |Bi |. Computing all relaxations f i
x of all functions fx produces

all the results obtainable by computing fx for all x.
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1. For a leaf node x, we can choose f i
x [X] = fx[X] for i ≥ |X|, and f i

x [X] = 0
for i < |X|. Thus for the perfect matching problem, f i

x [X] = fx[X] for all X

and i, in other words, f i
x [∅] = 1 for all i, and f i

x [X] = 0 for all X �= ∅.
2. For an introduce vertex node x introducing the vertex v, f i

x [X] = f i
c [X] if v /∈ X

and f i
x [X] = 0 if v ∈ X.

3. For a forget node x forgetting the vertex v, f i
x [X] = f i+1

c [X ∪ {v}].
4. For a join node x, we want to compute f̃ i

x [X] = ∑i
j=0(f

j
c1 ∗ f

i−j
c2 )[X].

We replace the subset convolution by a union product to obtain f i
x [X] =∑i

j=0(f
j
c1 ∗u f

i−j
c2 )[X]. It does not matter that we compute f i

x instead of f̃ i
x ,

because these two functions agree on all arguments X of size i. The sequences
of functions f i

x (i = 0, 1, . . . , |Bx |) and f̃ i
x (i = 0, 1, . . . , |Bx |) are different

relaxations of the same function fx .
5. For an introduce edges node x, introducing the edges {{uj , v} : j = 1, . . . , q},

we have f i
x [X] = f i

c [X]+∑p

j=1 f i−2
c [X\{uj , v}] for i ≥ 2, where {uj , v} ⊆ X

for j = 1, . . . , p and {uj , v} �⊆ X for j = p + 1, . . . , q. For i ≤ 1 we have
f i

x [X] = f i
c [X].

Finally, in our third round, we explain how to efficiently evaluate all ζf i
x on a

nice tree decomposition by dynamic programming in polynomial space. Step 5, the
handling of an introduce edges node, is tentative. We will modify it afterwards. For
the root x, (ζf 0

x )[∅] = f 0
x [∅] = fx[∅], which is the value of interest, i.e., the number

of perfect matchings in the whole graph for our example.
As in the construction of Theorem 1, after replacing every fx by a relaxation

{f i
x }0≤i≤|Bx | of fx , we apply zeta transforms. Here we consider the zeta transforms

of f i
x , for all x and 0 ≤ i ≤ |Bx |.

1. For a leaf node x, f i
x [∅] = 1 and f i

x [X] = 0 for X �= ∅ for the perfect
matching problem. This immediately implies (ζf i

x )[X] = 1 for all i and all X.
2. For an introduce vertex node x introducing the vertex v, we have f i

x [X] = f i
c [X]

if v /∈ X and f i
x [X] = 0 if v ∈ X. By definition of the zeta transform, if v ∈ X,

we have

(ζf i
x )[X] =

∑

X′⊆X

f i
x [X′] =

∑

v /∈X′⊆X

f i
x [X′] =

∑

X′⊆X\{v}
f i

x [X′].

Therefore, we obtain

(ζf i
x )[X] =

{
(ζf i

c )[X] v /∈ X

(ζf i
c )[X \ {v}] v ∈ X

(8)

for the perfect matching problem. Thus,

(ζf i
x )[X] = (ζf i

c )[X \ {v}] for all X.

3. For a forget node x, we have f i
x [X] = f i+1

c [X ∪ {v}]. Therefore, we obtain

(ζf i
x )[X] =

∑

X′⊆X

f i
x [X′] =

∑

X′⊆X

f i+1
c [X′ ∪ {v}]

= (ζf i+1
c )[X ∪ {v}] − (ζf i+1

c )[X]. (9)
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4. In a join node x, we have f i
x [X] = ∑i

j=0(f
j
c1 ∗u f

i−j
c2 )[X]. Now we use the

big advantage of the zeta transform. Union products transform into pointwise
multiplication. We obtain

(ζf i
x )[X] =

i∑

j=0

(ζf
j
c1)[X] · (ζf

i−j
c2 )[X], for 0 ≤ i ≤ k + 1. (10)

5. For an introduce edges node x, introducing the edges {{uj , v} : j = 1, . . . , q},
we have f i

x [X] = f i
c [X]+∑p

j=1 f i−2
c [X\{uj , v}] for i ≥ 2, where {uj , v} ⊆ X

for j = 1, . . . , p and {uj , v} �⊆ X for j = p + 1, . . . , q and f i
x [X] = f i

c [X] for
i ≤ 1.

Therefore, we obtain

(ζf i
x )[X] =

∑

X′⊆X

f i
x [X′]

=
∑

X′⊆X

f i
c [X′] +

p∑

j=1

∑

{uj ,v}⊆X′⊆X

f i−2
c [X′ \ {uj , v}]

=
∑

X′⊆X

f i
c [X′] +

p∑

j=1

∑

X′⊆X\{uj ,v}
f i−2

c [X′]

= (ζf i
c )[X] +

p∑

j=1

(ζf i−2
c )[X \ {uj , v}]

for i ≥ 2, and (ζf i
x )[X] = (ζf i

c )[X] for i ≤ 1. Note that the sum over j depends
on X.

In cases 3 and 5, we see that the value of (ζfx)[X] depends on the values of ζfc

on more than one subset. We can visualize the computation along a path from a leaf
to the root as a computation tree. This computation tree branches on introduce edges
nodes and forget nodes. Suppose along any path from the root to a leaf in T , the
maximum number of introduce edges nodes is m′ and the maximum number of forget
nodes is h. To avoid exponentially large storage for keeping partial results in this
computation tree, we compute along every path from a leaf to the root in this tree.
This leads to an increase of the running time by an exponential factor in m′ and k,
but the computation is in polynomial space (explained in detail later). To reduce the
running time, we eliminate the branching introduced by introduce edges nodes. On
the other hand, the branching introduced by forget nodes seems inevitable.

We describe now a new way to handle the introduction of edges. It still allows to
introduce a whole star of edges. For any introduce edges node x which introduces an
edge set Ev = {{uj , v} : j = 1, . . . , q} and has a child c in the original nice tree
decomposition T , we add an new child c′ of x, such that Bc′ = Bx and introduce
the edge set Ev in c′. The node c′ is an auxiliary leaf. We assume the evaluation
of ζfc takes only polynomial time in general. For the counting perfect matchings
problem, fc′ [X] = 1 only when X = ∅ or X = {uj , v} for some edge {uj , v} ∈ Ev ,
otherwise it is equal to 0. We can define f i

c′ [∅] = 1 for all i, f 2
c′ [X] = 1 for X = ∅
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or X = {uj , v} for some j , and f i
c′ [X] = 0 for all other cases. Then (ζf 0

c′)[X] = 1
for all X, (ζf 2

c′)[X] is equal to one more than the number of edges {uj , v} which are
subsets of X, and (ζf i

c′)[X] = 0 for all i /∈ {0, 2} and all X.
We call x a modified introduce edges node and c′ an auxiliary leaf. As the com-

putation at x is the same as the computation at a join node, we do not talk about
the computation at modified introduce edges nodes separately. We call the new tree
decomposition a modified nice tree decomposition.

In Theorem 1, the transformed circuit C2 can be viewed as 2|V | disjoint circuits. In
the case of a tree decomposition, the computation branches on forget nodes in addi-
tion to the branching at join nodes. Therefore, we cannot take C2 as O(2k) disjoint
circuits.

Let h be the tree-depth of T . Let h′ be the number of forget nodes along any path
P from the root to a leaf of T . Then h′ ≤ h. Corresponding to this path P , there is a
computation tree with 2h′

leaves branching at each forget node on the path P .
The time spent on this path P is O∗(2h), as the computation traverses the tree

corresponding to P in a depth-first search order. The tree T has at most V leaves, and
therefore at most V paths from the root to a leaf. Hence, the total time is still O∗(2h)

and the space is polynomial.
We call our algorithm based on a modified nice tree decomposition Algorithm 1.

To summarize, we present the algorithm for the problem of counting perfect mat-
chings based on a modified nice tree decomposition T in Algorithm 1.

Theorem 2 Let G = (V , E) be any graph, and let T = (VT , ET ) be a modified
nice tree decomposition of G with depth h, width k, and size |VT | = O(|V |). Let
{fx : x ∈ VT } be a collection of functions with fx ∈ Z[2Bx ]. Assume, the function
fx at x is defined by the functions at its children as follows.

If x is a leaf: fx ∈ Z[2Bx ] is an arbitrary function with ζfx computable in linear
time from Bx .
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If x is an auxiliary leaf for some edge set Ex: fx ∈ Z[2Bx ] is an arbitrary function
with ζfx computable in linear time from (Bx, Ex).

If x is an introduce vertex v node with child c:
For some constants d1, d2, either

fx[X] =
{

d1fc[X] if v /∈ X

0 if v ∈ X
or fx[X] =

{
0 if v /∈ X

d2fc[X \ {v}] if v ∈ X.

If x is a forget node forgetting vertex v with child c: For some constants d ′
1, d

′
2,

fx[X] = d ′
1fc[X] + d ′

2fc[X ∪ {v}].
If x is a join node with children c1 and c2: fx[X] = fc1[X] ∗ fc2[X].
Assume, 0 ≤ fr [∅] < m for some integer m, where r is the root. Then, fr [∅] can be
computed in time O∗(2h) and space O(|V | + hk log m).

Proof As in the proof of Theorem 1, we have a circuit C defined by the decompo-
sition tree with the algebraic operations ⊕ and ∗. In addition, due to the dynamic
nature of the underlying set, we have modifications of the functions best described
by array operations. For insertion nodes, when the array size doubles, either half can
be padded with zeros, for forget nodes, when the array is divided in half, the array
can be a linear combination of the previous halves.

The size of the circuit C is the number of nodes of the decomposition tree T ,
which is O(|V |). Again, to obtain union products instead of subset convolutions, we
use relaxations. As all sets are of size at most k + 1, the relaxations have only the
levels 0, . . . , k + 1. Thus, we obtain a circuit C1 of size O(k|V |) operating on the
levels of the relaxations. The circuit C1 can easily be found in polynomial time. The
circuit C1 has O(k2|V |) edges, but there is no need to represent C1 explicitly.

The circuit C1 is transformed into a circuit C2 operating on the zeta transformed
functions. We now describe the circuit C2 recursively according to the types of nodes
involved. For all types of nodes, except for join nodes, the relaxations play no major
role, because no convolutions are involved. Therefore, to simplify the description, we
pretend to move directly from fx to ζfx . In reality, the described transformation is
not applied to fx but to every level f i

x of the relaxation of fx .
If x is an ordinary or auxiliary leaf, then we have assumed ζfx is linear time

computable.
If x is an introduce vertex node, then the theorem allows two options. If

fx[X] =
{

d1fc[X] if v /∈ X

0 if v ∈ X,

then
(ζfx)[X] = d1(ζfc)[X \ {v}].

If

fx[X] =
{

0 if v /∈ X

d2fc[X \ {v}] if v ∈ X.

then

(ζfx)[X] =
{

0 if v /∈ X

d2(ζfc)[X \ {v}] if v ∈ X.
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If x is a forget node, then fx[X] = d ′
1fc[X] + d ′

2fc[X ∪ {v}] implies

(ζfx)[X] = (d ′
1 − d ′

2)(ζfc)[X] + d ′
2(ζfc)[X ∪ {v}].

If x is a join node, then the operation is problem independent. Thus, the argument
is exactly the same as in the special case of counting perfect matchings Eqs. 7 and 10.

Finally, at the end of the computation a Möbius transform (inverse of zeta trans-
form) is required. But this is trivial if the root node r has an empty bag. We have
fr [∅] = (ζfr)[∅], and ∅ is the only element in the domain of fr .

The claim about the running time follows from the fact that only in case of a forget
node or a join node is (ζfx)[X] computed from two different previous values, i.e.,
we have a twofold branching in these nodes. In order to show a bound on the running
time, we map the computation tree T ′ with branchings at forget nodes and join nodes
in the natural way into the original tree T with branchings only at the join nodes.
In this way up to 2h nodes of the computation tree T ′ are mapped into one node of
T . During the computation, T ′ is traversed in depth-first order in time O(2h|V |),
because a single traversal of T takes O(|V |) steps. In the node of the computation
tree corresponding to (x, X), all levels of the relaxation f 0

x [X], . . . , f |X|
x [X] of fx are

handled together using space O(k) and time O(k2) if the small convolutions Eq. 10
are executed in a trivial manner.

Naturally, the implicit depth-first search evaluation, which proceeds as in Algo-
rithm 1, recomputes certain values. That’s why, it can save space at the cost of
increasing the exponent in the time from the treewidth k to the tree-depth h. Instead
of storing an array of length 2k+1, we compute up to 2h times an entry of this array.
(Here, an entry means a vector (f 0

x [X], . . . , f |X|
x [X]).)

The term |V | in the space bound is obtained by allowing to store the whole decom-
position tree T . It is not necessary to store the bags explicitly, because they are
determined by the introduce and forget nodes. During the computation, h tree nodes
are active. In each such node x, one component X of all k + 2 levels of the relaxation
f 0

x , . . . , f k+1
x is stored. It is sufficient to store all numbers modulo m.

Corollary 1 Let G = (V , E) be any graph, and let T = (VT , ET ) be a modified
nice tree decomposition of G with depth h and width k. Then the number of perfect
matchings in G can be computed in time O∗(2h) and space O(|V |hk log k).

Proof There are O(k|V |) perfect matchings in G, as every one of the O(|V |) auxiliary
leaves has at most k + 1 choices to select or not to select a matched edge. Thus,
m = O(|V | log k) is sufficient.

4 Counting Perfect Matchings

The problem of counting perfect matchings is �P-complete. It has long been known
that in a bipartite graph of size 2n, counting perfect matchings takes O∗(2n) time
using the inclusion and exclusion principle. A recent breakthrough [3] shows that the
same running time is achievable for general graphs. For low degree graphs, improved
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results based on dynamic programming on path decompositions of a sufficiently large
subgraph are known [4].

Counting perfect matchings on grids is an interesting problem in statistical physics
[18]. The more general problem is the Monomer-Dimer problem [18], which essen-
tially asks to compute the number of matchings of a specific size. We model the
Monomer-Dimer problem as the computation of the matching polynomial. For grids
in dimension 2, the pure Dimer (perfect matching) problem is polynomial-time
tractable and an explicit expression of the solution is known [32]. We consider the
problem of counting perfect matchings in a cube or hypercube in Section 4.1. Results
on counting perfect matchings in more general grids, computing the matching poly-
nomial and applications to other set covering and partitioning problems are presented
in Section 4.2.

4.1 Counting Perfect Matchings on Cube/hypercube

We consider the case of counting perfect matchings on grids of dimension d, where
d ≥ 3 and the length of the grid is n in each dimension. We denote this grid by
Gd(n). To apply Algorithm 1, we first construct a balanced tree decomposition on
Gd(n) with the help of balanced separators. The balanced tree decomposition can
easily be transformed into a modified nice tree decomposition. The results also hold
for any subgraph of Gd(n) of size �(nd).

Tree Decomposition Using Balanced Vertex Separators We first explain how to
construct a balanced tree decomposition using vertex separators of general graphs.
An α-balanced vertex separator of a graph/subgraph G is a set of vertices S ⊆ G,
such that after removing S, G is separated into two disjoint parts A and B with no
edge between A and B, and |A|, |B| ≤ α|G|, where α is a constant in (0, 1). Suppose
we have an oracle to find an α-balanced vertex separator of a graph. We begin with
creating the root of a tree decomposition T and associating the vertex separator S of
the whole graph with the root. Consider a subtree Tx in T with the root x associated
with a bag Bx . Denote the vertices belonging to nodes in Tx by Vx . Initially, Vx = V

and x is the root of T . Suppose we have a vertex separator Sx which partitions Vx

into two disjoint parts V ′
c1

and V ′
c2

. We create two children c1, c2 of x, such that the
set of vertices belonging to Tci

is Vci
= Sx ∪V ′

ci
. Denote the set of vertices belonging

to nodes in the path from x to the root of T by Ux , we define the bag Bci
to be

Sci
∪(Vci

∩Ux), for i = 1, 2. It is easy to verify that this is a valid tree decomposition.
Since Vx decreases by a factor of at least 1 − α in each partition, the height of the
tree is at most log 1

1−α
n. To transform this decomposition into a modified nice tree

decomposition, we only need to add a series of introduce vertex nodes, forget nodes
and modified introduce edges nodes between two originally adjacent nodes. We refer
to the algorithm of this paragraph as the Tree Decomposition Algorithm.

We observe that after the transformation, the number of forget nodes from ci to x

is the size of the balanced vertex separator of Vci
, i.e. |Sci

|. Therefore, the number
of forget nodes from the root to a leaf is the size of the union of the balanced vertex
separators used to construct this path in the tree decomposition.
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A grid graph Gd(n) has a nice symmetric structure. Denote the d dimensions
by x1, x2, ..., xd and consider an arbitrary subgrid G′

d of Gd(n) with length n′
i in

dimension xi . The hyperplane in G′
d which is perpendicular to xi and cuts G′

d into
roughly two halves can be used as a 1/2-balanced vertex separator. We always cut a
dimension with a longest length. If n′

i = n′
i+1, we choose to first cut the dimension

xi , then xi+1. We illustrate the construction of the 2-dimensional case in the following
example.

Example 1 (Balanced tree decomposition on G2(n)) The left picture is a partitioning
of a 2-dimensional grid. We always bipartition the longer side of the grid/subgrid.
The right picture is the corresponding balanced tree decomposition of this grid. The
letter P with the same indices on both sides represent the same set of nodes. Each Pi

represents a balanced vertex separator. We denote the left/top half of Pi by Pi1, and
the right/bottom part by Pi2 (see Fig. 1). The treewidth of this decomposition is 3

2n.

To run the Tree Decomposition Algorithm on Gd(n), we cut dimensions
x1, x2, ..., xd consecutively with separators of size 1

2i−1 nd−1, for i = 1, 2..., d .
Then we proceed with subgrids of length n/2 in every dimension. It is easy to see
that the width of this tree decomposition is 3

2nd−1. The tree-depth h of this tree

decomposition is at most
∑∞

j=0
∑d−1

i=0
1
2i · ( 1

2j n)d−1, which is 2d−1
2d−1−1

nd−1.

Lemma 1 The treewidth of the tree decomposition T on Gd(n) obtained by the
Tree Decomposition Algorithm is k = 3

2nd−1. The tree-depth of T is at most

h = 2d−1
2d−1−1

nd−1.

Together with Corollary 1, we obtain the result for our main example.

Theorem 3 The problem of counting perfect matchings on grids of dimension d and

uniform length n can be solved in time O∗(2
2d−1

2d−1−1
nd−1

) and in polynomial space.

P1

P2

P3

P4

P1

P2, P1

P3, P2, P11 P2,   P12

P3,   P22,    P11, P4

......

Partition on 2-Dim Grid Tree decomposition on 2-Dim Grid

P21,  P3

P112, P22  , P32, P4 P111,  P31, P4

Fig. 1 An illustrative figure for balanced tree decomposition on G2(n)
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To the best of our knowledge, there is no rigorous time complexity analysis of
the counting perfect matchings problem specifically for grids in the literature. But
the exponential space algorithm of [28] (see next paragraph) runs fast on grids. To
demonstrate the efficiency of Algorithm 1, we compare it to this and two other natural
algorithms.

1. Dynamic Programming Based on Path Decomposition A path decomposition
is a special tree decomposition where the underlying tree is a path. A path decompo-
sition with width 2nd−1 is obtained by putting all vertices with x1 coordinate equal
to j or j + 1 into the bag of node j , for j = 0, 1, ..., n − 1. A path decomposi-
tion with a smaller pathwidth of nd−1 can be obtained as follows. Construct n nodes
p1, p2, ..., pn where the bag of pj+1 contains all vertices with the x1 coordinate equal
to j , for j = 0, 1, ..., n−1. For any pj , pj+1, start from pj , add a sequence of nodes
by alternating between adding a vertex with x1 = j + 1 and deleting its neighbor
with x1 = j . The number of nodes increases by a factor of nd−1 compared to the first
path decomposition. We run the standard dynamic programming on the second path
decomposition. This algorithm runs in time O∗(2nd−1

), however the space complex-
ity is O∗(2nd−1

). It is of no surprise that it has a better running time than Algorithm
1 due to an extra space usage. We remark that van Rooij et al. [28] give a dynamic
programming algorithm for the problem of counting perfect matchings on any tree
decomposition of treewidth k with running time O∗(2k) and space exponential
to k.

2. Dynamic Programming Based on Path Decomposition on a Subgrid One way
to obtain a polynomial space dynamic programming algorithm is to construct a low
pathwidth decomposition on a sufficiently large subgraph. One can then run dynamic
programming on this path decomposition and do an exhaustive enumeration on the
remaining graph in a similar way as in [4]. To extract from Gd(n) a subgrid of path-
width O(log n) (notice that this is the maximum pathwidth for a polynomial space
dynamic programming algorithm), we can delete a portion of vertices from Gd(n)

to turn a “cube”-shaped grid into a long “stripe” with an O(log n) cross-section
area. It is sufficient to remove O(nd/(log n)1/(d−1)) vertices. This leads to a
polynomial-space algorithm with running time 2O(nd/(log n)1/(d−1)), which is worse
than Algorithm 1.

3. Branching Algorithm A naive branching algorithm starting from any vertex in
the grid could have time complexity 2O(nd) in the worst case. We analyze a branch-
ing algorithm with a careful selection of the starting point. The branching algorithm
works by first finding a balanced separator S and partitioning the graph into A∪S∪B.
The algorithm enumerates every subset X ⊆ S. A vertex in X either matches a ver-
tex in A or to a vertex in B while vertices in S \ X are matched within S. Then
the algorithm recurses on A and B. Let Td(n) be the running time of this branching
algorithm on Gd(n). We use the same balanced separator as in the Tree Decom-
position Algorithm. We have an asymptotically tight upper bound on the running
time of, Td(n) ≤ 2Td(

n−|S|
2 )

∑
X⊆S 2|X|Td−1(|S \ X|). We can use any polynomial
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space algorithm to count perfect matchings on S \ X. For example using Algo-
rithm 1, since the separator is of size O(nd−1), we have Td−1(|S \ X|) = 2O(nd−2).
Therefore, Td(n) ≤ 2Td(n

2 ) · 2o(nd−1)
∑|S|

i=0

(|S|
i

)
2i = 2Td(n

2 ) · 2o(nd−1)3|S|. We can-

not get anything better than Td(n) = O∗(3h), i.e. O∗(3
2d−1

2d−1−1
nd−1

), which is worse
than Algorithm 1. We remark that this branching algorithm can be viewed as a divide
and conquer algorithm on a balanced tree decomposition, which is similar to the
algorithm of [23].

4.2 Extensions

Counting Perfect Matchings on General Grids Consider more general grids of
dimension d with the ith dimension of length ni , 1 ≤ i ≤ d. Assume n1 ≥ n2 ≥
· · · ≥ nd . Let V be the volume, i.e., V = n1 · · · nd . We use the Tree Decomposition
Algorithm to construct a balanced tree decomposition T of a general grid and obtain
an upper bound on the tree-depth h of T . We always choose a middle hyperplane
partitioning the longest dimension as a separator. We define the volume V of a piece
as the number of the vertices not yet included in a previous separator. Likewise,
the lengths ni are measured without including any hyperplanes that have previously
served as separators, thus maintaining V = n1 · · · nd . Hence, after one cut, n1 and the
volume V decrease by at least a factor of 2. When n1 is even, then it is replaced by
n1/2 in one branch and n1/2 − 1 in the other branch. After cutting, the dimensions
are reordered to maintain the order n1 ≥ n2 ≥ · · · ≥ nd .

Lemma 2 Let 1 ≤ n1 ≤ · · · ≤ nd . Apply the Tree Decomposi-
tion Algorithm to the n1 × · · · × nd grid with dimension d and volume
V = n1 · · · nd to produce a balanced tree decomposition T . Then the
tree-depth of T is at most (2(1 + √

2) + log2
n1
n2

) V
n1

(where n2 = 1
for d=1).

Proof First, we assume n1 ≤ 2n2. By induction on the volume V , we first prove the
following modified statement.

Claim: The tree-depth of T is at most cV√
n1n2

, for a constant c to be determined

later.
Basis: For the 1 vertex grid with n1 = . . .=nd =1 the claim is true for every c ≥ 1.
Induction step: The Tree Decomposition Algorithm partitions the grid along the

first dimension into two sub-grids of roughly half the size. If the two subgrids are of
different size, we focus on the larger of the two. Let n′

1 ≤ n′
2 ≤ · · · ≤ n′

d be the
lengths of this sub-grid. n′

1, . . . , n
′
d is obtained from n2, . . . , nd by inserting n′

i =
�n1−1

2 � ≤ n1
2 . We can always choose i ≥ 2. By the inductive hypothesis, the sub-grid

has tree-depth at most c V ′√
n′

1n
′
2

, which we upper bound as follows.

cV ′
√

n′
1n

′
2

=
n′

i

n1
cV

√
n2n

′
2

≤
n′

i

n1
cV

√
n2n

′
i

=
√

n′
i

n1
cV

√
n2n1

≤ c√
2

V√
n1n2

.
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Adding the first separator of size V
n1

, we obtain

cV ′
√

n′
1n

′
2

+ V

n1
≤

(
c√
2

+ 1

)
V√
n1n2

.

This upper bound on the tree-depth of T is at most cV√
n1n2

for c ≥ 2 + √
2. This

proves the claim.

As we have assumed that n1 ≤ 2n2, we have cV√
n1n2

≤
√

2cV
n1

implying an upper

bound 2(1 + √
2) V

n1
on the tree-depth of T , and proving the lemma for the special

case of n1 ≤ 2n2.
The general case follows easily, because we encounter at most log2

n1
n2

separators

of size V
n1

= n2 · · · nd before n1 ≤ 2n2.

Based on Lemma 2, we give time complexity results for the algorithms discussed
in Section 4.1 applied to arbitrary grids. First, h is the only parameter to the run-
ning time of Algorithm 1 and the branching algorithm. Algorithm 1 runs in time

O∗(2
2(1+√

2)V
n1 ) and the branching algorithm runs in time O∗(3

2(1+√
2)V

n1 ). The dynamic
programming algorithm based on path decomposition on a subgrid has a running

time 2
O

(
V

(log n1)1/(d−1)

)

. These three algorithms have polynomial space complexity. For
constant d, Algorithm 1 has the best time complexity. For the dynamic programming

algorithm based on path decomposition, it runs in time O∗(2
V
n1 ) but in exponential

space.
The result can easily be generalized to the k-nearest-neighbor (kNN) graphs and

their subgraphs in d-dimensional space, as it is known that there exists a vertex sep-
arator of size O(k1/dn1−1/d) which splits the kNN graph into two disjoint parts with
size at most d+1

d+2n [25]. More generally, we know that a nontrivial result can be
obtained by Algorithm 1 if there exists a balanced separator of the graph G with the
following property. Let s(n′) be the size of a balanced separator S on any subgraph
G′ of G of size n′ ≤ n. S partitions the subgraph into two disjoint parts G′

1, G
′
2, such

that S∪G′
i is of size at most cn′, for some constant c ∈ (0, 1), i = 1, 2. If there exists

a constant γ < 1, such that for every n′ ≤ n, s(cn′) ≤ γ s(n′), then the tree-depth of
the resulting tree decomposition is at most s(n) + γ s(n) + γ 2s(n) + · · · ≤ s(n)

1−γ
. In

this case, the tree decomposition of treewidth k constructed by the Tree Decomposi-
tion Algorithm has the tree-depth h = �(k). For k = �(log n), Algorithm 1 has a
similar running time as the standard dynamic programming algorithm but with much
better space complexity.

Computing the Matching Polynomial The matching polynomial of a graph G is
defined to be m[G, λ] = ∑|G|/2

i=0 mi[G]λi , where mi[G] is the number of matchings
of size i in graph G. We put the coefficients of m[G, λ] into a vector m[G]. The
problem is essentially to compute the coefficient vector m[G].

For every node x in a tree decomposition, let vector mx[X] be the coefficient
vector of the matching polynomial defined on YX. Notice that every entry of mx[X]
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is at most |E||V |/2 and all constants are singletons (and therefore easily computable).
m0

x[X] = 1 and mi
x[X] = 0 for i > |X|/2. The case of x being a forget node follows

exactly from Algorithm 1. For any type of tree node x,

– x is a leaf node. mi
x[∅] = 1 if i = 0, or 0 otherwise.

– x is an introduce vertex node. If v ∈ X, mi
x[X] = mi

c[X \ {v}]. Hence
(ζmi

x)[X] = 2(ζmi
c)[X \ {v}] if v ∈ X, or (ζmi

x)[X] = (ζmi
c)[X] otherwise.

– x is an auxiliary leaf of a modified introduce edges node. mi
x[X] = 1 only when

u, v ∈ X and i = 1, or i = 0. Otherwise it is 0.
– x is a join node. mi

x[X] = ∑
X′⊆X

∑i
j=0 m

j
c1[X′]mi−j

c2 [X \ X′].

Counting l-packings Given a universe U of elements and a collection of subsets S
on U , an l-packing is a collection of l disjoint sets. The l-packings problem can be
solved in a similar way as computing the matching polynomial. Packing problems
can be viewed as matching problems on hypergraphs. Tree decomposition on graphs
can be generalized to tree decomposition on hypergraph, where we require every
hyperedge to be assigned to a specific bag [17]. A hyperedge is introduced after all
vertices covered by this edge are introduced.

Counting Dominating Sets, Counting Set Covers. The set cover problem is given
a universe U of elements and a collection of sets S on U , find a subcollection of sets
from S which covers the entire universe U . The dominating set problem is defined
on a graph G = (V , E). Let U = V , S = {N[v]}v∈V , where N[v] is the union of the
set of neighbors of v with {v} itself. The dominating set problem is to find a subset
of vertices S of V such that

⋃
v∈S N[v] covers V .

The set cover problem can be viewed as a covering problem on a hypergraph,
where one selects a collection of hyperedges which cover all vertices. The dominating
set problem is then a special case of the set cover problem. If S is closed under
subsets, a set cover can be viewed as a disjoint cover. We only consider the counting
set covers problem. For any subset X ⊆ Bx , we define fx[X] to be the number of set
covers of YX. We have fx[X] ≤ |U ||S|, and all constants are singletons. We omit the
recurrence for forget nodes as we can directly apply recurrence Eq. 9 in Algorithm 1.
For any node x, fx[∅] = 1.

– x is a leaf node. fx[∅] = 1.
– x is an introduce vertex node. If v ∈ X, fx[X] = 0. If v /∈ X, fx[X] = fc[X].
– x is an auxiliary leaf of a modified introduce hyperedge node introducing

hyperedge e. fx[X] = 1 when X ⊆ e, and fx[X] = 0 otherwise.
– x is a join node. fx[X] = ∑

X′⊆X fc1[X′]fc2[X − X′].
Finally, we point out that our framework has its limitations. First, it cannot be

applied to problems where the computation on a join node cannot be formalized as
a convolution. The maximum independent set problem is an example. Also it is not
known if there is a way to adopt the framework to the Hamiltonian path problem,
the counting l-path problems, and the unweighted Steiner tree problem. It seems that
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for theses problems we need a large storage space to record intermediate results. It is
interesting to find more problems which fit in our framework.

5 Conclusion

We study the problem of designing efficient dynamic programming algorithms based
on tree decompositions in polynomial space. We show how to construct a modified
nice tree decomposition T and extend the algebraic techniques in [24] to dynamic
sets such that we can run the dynamic programming algorithm in time O∗(2h) and
in polynomial space, with h being the tree-depth of a graph [27]. We apply our
algorithm to many problems. It is interesting to find more natural graphs with non-
trivial modified nice tree decompositions, and to find more problems which fit in our
framework.
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