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Abstract We study deterministic distributed broadcasting in synchronous multiple-
access channels. Packets are injected into n nodes by a window-type adversary that
is constrained by a window w and injection rates individually assigned to all nodes.
We investigate what queue size and packet latency can be achieved with the maxi-
mum aggregate injection rate of one packet per round, depending on properties of
channels and algorithms. We give a non-adaptive algorithm for channels with col-
lision detection and an adaptive algorithm for channels without collision detection
that achieve O(min(n + w, w log n)) packet latency. We show that packet latency
has to be either �(w max(1, logw n)), when w ≤ n, or �(w + n), when w > n,
as a matching lower bound to these algorithms. We develop a non-adaptive algo-
rithm for channels without collision detection that achieves O(n+w) queue size and
O(nw) packet latency. This is in contrast with the adversarial model of global injec-
tion rates, in which non-adaptive algorithms with bounded packet latency do not exist
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(Chlebus et al. Distrib. Comput. 22(2), 93–116 2009). Our algorithm avoids colli-
sions produced by simultaneous transmissions; we show that any algorithm with this
property must have �(nw) packet latency.

Keywords Multiple access channel · Dynamic broadcasting · Adversarial
queuing · Distributed algorithm · Deterministic algorithm · Stability · Packet latency

1 Introduction

A multiple access channel is a model of a communication environment supporting
broadcasting among a set of nodes. What defines such a network is the property
that a transmission by a node is heard by every node in the system precisely when
this transmission does not overlap with other transmissions. Overlapping multiple
transmissions collide with one another so that none can be received successfully.

There are two popular representations of multiple-access channels. One repre-
sentation is provided by single-hop radio networks. These are wireless networks in
which nodes use one radio frequency and a transmission by a node can be sensed
by any other node. In such networks, overlapping transmissions interfere with one
another, which results in receiving the contents attempted to be communicated as
garbled, while a single transmission is successfully received by every node. Another
representation is provided by the implementation of local area networks by a wired
Ethernet, as represented by the IEEE 802.3 collection of standards. Abstracting
multiple access channels from the medium access control of such communication
environments allows one to study the optimality of communication algorithms in
an idealized but precisely defined algorithmic communication setting, without the
constraints of continually evolving wireless technologies and IEEE standards.

We consider the synchronous slotted model of communication, in which execu-
tions are partitioned into rounds determined by a global clock. When a transmission
is successful, then the transmitted message is immediately received by every other
node attached to the multiple-access channel. Messages transmitted in one round by
different nodes are considered as overlapping and so colliding with one another. With
these stipulations, at most one message can be successfully broadcast in a round.

Performance of broadcast algorithms can be measured in terms of various natural
metrics. Among them, queue size and packet delay are the most often considered. Sta-
bility of a system means that the number of packets stored in local queues is bounded
in all rounds. An apparently weakest expectation about the amount of time spent by
packets in the system is that every packet is eventually successfully transmitted, see
[21] and [45]. Packet latency denotes the maximum time that a packet may spend in
a queue. Even when every packet is eventually successfully transmitted, there may
be no finite bound on the times that packets spend waiting in queues; when a finite
bound exists then the system is stable.

It is natural to consider packet generation as restricted by two parameters: (1) an
average frequency of injection at nodes and (2) an upper bound on the number of
packets that can be injected in one round. The frequency of packet injections into
the system is called injection rate. Such frequencies are typically determined by the
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statistical constraints when modeling and simulating networks; in this paper we do
not adhere to such approaches. The number of packets that can be injected into the
system in one round is often called the burstiness of traffic.

Using randomization is a natural means to implement efficient arbitration for
access to the channel; popular randomized algorithms include Aloha [1] and backoff
ones [13, 34, 37, 42]. We consider deterministic algorithms that do not resort to ran-
domization. We use adversarial queuing as the methodology to study the worst-case
performance of these deterministic communication algorithms. Adversarial queuing
is based on defining packet injection rates as upper bounds on the average number
of packets inserted into the system. The averages of the numbers of injections are
defined without resorting to stochastic notions.

Recent work on adversarial queuing for multiple access channels, see [5, 21, 22],
concerned adversaries constrained by “global” injection rates, in the sense that the
adversary is restricted by the number of packets injected into all nodes but not by
how many packets are injected into any specific node. We consider adversaries with
individual rates associated with nodes; in this model the adversary’s injection rate
is constrained separately for each node. An adversary with injection rates associated
with individual nodes is more restricted than one with a “global” injection rate. We
understand the throughput of an algorithm as the maximum (global) rate for which it
is stable. One may observe that the (global) injection rate of one packet per round is
the maximum rate that allows for a stable algorithm. It follows that the throughput of
any algorithm is at most 1.

A definition of injection rates depends on how we average injections. There
are two popular approaches to define averaging, which produce two correspond-
ing classes of adversaries, called leaky-bucket and window ones. The former class
comprises general adversaries for which all the time intervals are used to constrain
injection rate by averaging over them. The latter class restricts intervals over which
averages are taken to be of the same “window” length, which is a parameter of an
adversary. When injection rates are smaller than 1 then the two adversarial models of
“global” injection rates are equivalent, as shown by Rosén [44].

In the context of adversarial queuing in store-and-forward networks, “globally
constrained” window adversaries were first used by Borodin et al. [18] and similar
leaky-bucket ones by Andrews et al. [8]. For the multiple access channel, Chlebus et
al. [22] used window adversaries with injection rates smaller than 1, which does not
restrict the generality of results for such rates. Chlebus et al. [21] used both models
for “global” injection rate 1; for such highest possible “global” rate, the window
adversarial model is strictly weaker, see [21, 44].

We consider constraints on adversaries formulated as restrictions on what can be
injected separately at each node and also by what can be injected into all the nodes
combined. Constraints on adversaries are global if they are formulated in terms of
the numbers of packets injected in suitable time intervals, without any concern about
the nodes in which the packets are injected. Traffic constraints are local when the
patterns of injection are considered separately for each node. Constraints for the
whole network implied by local ones are called aggregate in this paper. In particu-
lar, we may have local and aggregate and global burstiness, and local and aggregate
and global injection rates. Observe that global constraints are logically weaker than
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aggregate constraints. Global and aggregate injection rate 1 is the maximum that a
channel can handle in a stable way, since stability provides that the throughput rate
is at least as large as the injection rate. Adversaries with global injection rates were
used in [21, 22] to model traffic requirements in multiple access channels. In this
paper, we introduce adversaries with local injection rates.

To categorize algorithms, we use the terminology similar to that in in [21, 22].
Algorithms may either use control bits piggybacked on transmitted packets or not;
when they do, then they are called adaptive.

A summary of the results We study effectiveness of broadcasting when traffic
demands are specified as adversarial environments with individual injection rates
associated with nodes and when algorithms are both distributed and deterministic. We
allow the adversaries to be such that the associated aggregate injection rate (the sum
of all the individual rates) is 1, which is the maximum value allowing for stability.
This is the first study of adversaries injecting packets into multiple-access channels
and restricted this way by individual rates, to the authors’ knowledge.

A general goal is to explore what quality of broadcast can be achieved for indi-
vidual injection rates. In particular, we want to compare adversarial environments
defined by individual rates with those determined by global ones, under the max-
imum average broadcast load of one packet per round. The underlying motivation
for this work was that individual injection rates are more realistic in moderate time
spans and hopefully the limitations on the quality of broadcast with throughput 1 dis-
covered in [21] could be less severe when the rates are individual. Indeed, we show
that bounded packet latency is achievable with individual injection rates when the
aggregate rate is 1. This is in contrast with the model of global injection rates, for
which achieving bounded waiting times is impossible when the throughput equals 1,
as demonstrated in [21].

We denote the number of stations by n and the adversary’s window size by w.
The comparison of the two models of global and individual injection rates for a

window-type adversary with respect to possibility/impossibility of obtaining stability
or bounded packet latency is summarized in Table 1. Additional explanation of this
table is as follows. The possibility in a given row means the existence of a broadcast
algorithm of a given class (either acknowledgment-based or non-adaptive or adap-
tive) that always achieves the claimed performance characteristic (either stability or
bounded packet latency) in a system of a given size (either n = 2 or n = 3 or n ≥ 4).
The column for the model of global injection rates reflects the results given in [21].

We further investigate the model of individual injections by deriving bounds on
queue size and packet latency. Acknowledgment-based algorithms cannot achieve
throughput 1, which strengthens the result for global injection rates [21]. We give
a non-adaptive algorithm of O(min(n + w, w log n)) packet latency when colli-
sion detection is available. An adaptive algorithm can achieve similar performance
without collision detection; this is because control bits allow to simulate collision
detection with a constant overhead per round. Bounded packet latency can also
be achieved by non-adaptive algorithms in channels without collision detection.
More precisely, we develop a non-adaptive algorithm with O(n + w) size queues
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Table 1 A comparison of possibilities and impossibilities to achieve performance characteristics, depend-
ing on whether a window adversary of the aggregate injection rate 1 is constrained by a global injection
rate or individual injection rates

Class of algorithms Size Quality Global rate Individual rates

Ack-based n = 2 stable I I

Non-adaptive n = 2 bounded latency P P

Non-adaptive n = 3 stable I P

Adaptive n = 3 bounded latency P P

Adaptive n ≥ 4 stable P P

Adaptive n ≥ 4 bounded latency I P

The parameter n denotes the number of stations. Letter P denotes possibility and I impossibility. The
impossibility results hold for channels with collision detection and the possibility results hold for channels
without collision detection

and O(nw) packet latency. The optimality of our non-adaptive algorithm for chan-
nels without collision detection, in terms of packet latency, is left open, but we
demonstrate optimality in the class of algorithms that avoid collisions altogether.

Previous work Most of the previous work on dynamic broadcasting in multiple-
access channels has been carried out under the assumption that packets were injected
subject to stochastic constraints. Such systems can be modeled as Markov chains
with stability usually understood as ergodicity, but alternatively, stability may mean
that throughput under the given injection rate is as large as the injection rate. Gallager
[30] gives an overview of early work in this direction and Chlebus [19] surveys later
work. In particular, the popular and early developed broadcast algorithms, like Aloha
[1] and binary exponential backoff [42], have been extensively studied for stochastic
injection rates. For recent work, see the papers by Bender et al. [14], Goldberg et al.
[34, 35], Håstad et al. [37], and Raghavan and Upfal [43]. Stability of backoff algo-
rithms for multiple-access channels with packet injection controlled by a window
adversary was studied by Bender et al. [13] in the queue-free model; they showed that
the exponential backoff is stable for O(1/ log n) arrival rates and it is unstable for
arrival rates that are �(log log n/ log n). Awerbuch et al. [12] developed a random-
ized algorithm for multiple-access channels competing against an adaptive jamming
adversary that achieves a constant throughput for the non-jammed rounds.

Deterministic distributed broadcast algorithms for multiple-access channels in
the model with queues were first studied by Chlebus et al. [22] according to the
methodology of adversarial queuing. They considered classes of deterministic dis-
tributed algorithms, including adaptive and acknowledgment based. They defined
latency to be fair when it was O(burstiness/rate) and considered stability to be
strong when queues were O(burstiness). That paper [22] gave a non-adaptive algo-
rithm achieving fair latency for O(1/polylog n) rates and showed that no algorithm
could be strongly stable for rates that are ω( 1

log n
). They also showed that no obliv-

ious acknowledgment-based algorithm could be stable for rates larger than 3
1+lg n

,
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and hence that there are no universally stable oblivious acknowledgment-based algo-
rithms. Two oblivious acknowledgment-based algorithms were developed in [22]:
one of fair latency for rates at most 1

cn lg2 n
, for a sufficiently large c > 0, and an

explicit one of fair latency for rates at most 1
27n2 ln n

. In the subsequent work on the
deterministic distributed algorithms for the multiple access channel with global injec-
tion rates, Chlebus et al. [21] investigated the quality of broadcast for the maximum
throughput, that is, the maximum rate for which stability is achievable. They defined
fairness to mean that each packet is eventually heard on the channel. They developed
a stable algorithm with O(n2 + burstiness) queues against leaky-bucket adversaries
of injection rate 1, which demonstrated that throughput 1 is achievable. They also
showed the following inherent limitations on broadcasting with throughput 1: no such
algorithm can be fair for a system of at least two nodes against leaky-bucket adver-
saries, queues may need to be �(n2 + burstiness), and broadcast algorithms need to
be adaptive.

Anantharamu et al. [5] studied packet latency of broadcasting on adversarial mul-
tiple access channels by deterministic distributed algorithms when injection rates
was less than 1. This was continued by Anantharamu et al. [6] who considered
adversarial queuing on multiple-access channels when the adversary can jam the
channel.

Anantharamu and Chlebus [4] considered the adversarial model in which the
adversary can activate otherwise passive and anonymous nodes by injecting packets
into them. The adversary was constrained to be able to activate at most one passive
node in a round; such a node remains active as long as it has packets to broadcast.
They showed that positive injection rates could be handled with bounded packet
latency; the specific magnitude of rates depends on the class of algorithms, with the
injection rate of 1

2 being the largest one among them. They also demonstrated that
no algorithm could achieve bounded packet latency when an injection rate is greater
than 3

4 .

Related work Adversarial queuing has proved to be a viable methodology to rep-
resent stability of communication algorithms without statistical assumptions about
packet injection. This methodology was first applied to store-and-forward routing.
Borodin et al. [18] proposed this in the context of work-preserving routing algo-
rithms when packets are routed along paths stipulated by the adversary at the time
of injection, so that routing is restricted to a scheduling policy. The subsequent work
by Andrews et al. [8] concentrated on the notion of universal stability, which for a
scheduling policy means stability in any network, and for a network denotes stabil-
ity of an arbitrary scheduling policy, both properties to hold under injection rates
smaller than 1. Lotker et al. [41] demonstrated that every work-conserving schedul-
ing policy is stable if the injection rate is suitably small, as determined by the length
of the longest path traversed by a packet. FIFO as one of the most popular schedul-
ing policies was studied extensively, see [15, 23]. Rosén and Tsirkin [45] considered
routing against rate-1 adversaries; they defined reliability of an algorithm to mean
that each packet is eventually delivered and showed that reliability is achievable only
in networks with no cycles of length at least 3. Álvarez et al. [2] applied adversarial
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models to capture phenomena related to routing with varying priorities of packets and
to study their impact on universal stability. Andrews and Zhang [9] gave a universal
algorithm to control traffic when nodes operate as switches that need to reserve the
suitable input and output ports to move a packet from the input port to the respective
output one. Álvarez et al. [3] addressed the stability of algorithms in networks with
links prone to adversarial failures. Andrews and Zhang [10] proposed suitable adver-
sarial models for networks in which nodes represent switches connecting inputs with
outputs so that routed packets encounter additional congestion constrains at nodes
when they compete with other packets for input and output ports. Andrews and Zhang
[11] studied routing in wireless networks when data arrivals and transmission rates
are governed by an adversary. Blesa et al. [17] extended the adversarial model of
wired networks to capture variability of speeds of links and sizes of packets.

Static broadcasting in multiple-access channels was considered by Greenberg and
Winograd [36], Komlós and Greenberg [39], and more recently by Kowalski [40].
Bieńkowski et al. [16] and Czyżowicz et al. [25] considered algorithmic solutions
on multiple-access channels for distributed-computing primitives like consensus and
mutual exclusion. Chlebus et al. [20] and Clementi et al. [24] studied the problem of
performing independent idempotent tasks by distributed algorithms when processors
communicate over a multiple-access channel. The problem of waking up a multiple-
access channel was first considered by Ga̧sieniec et al. [31]; see [26, 27, 38] for later
work.

Gilbert et al. [33] proposed to model disruptive interference in multi-channel
single-hop networks by a jamming adversary. This was further investigated in a num-
ber of papers including the following ones. Dolev et al. [29] considered restricted
gossiping in which a constant fraction of rumors needs to be disseminated when the
adversary can disrupt one frequency per round. Gilbert et al. [32] studied gossiping
in which the adversary can disrupt up to t frequencies per round and eventually all
but t nodes learn all but t rumors. Dolev et al. [28] considered synchronization of a
multi channel under adversarial jamming.

Document structure This paper is organized as follows. We summarize and review
technical preliminaries in Section 2. Impossibility results and lower bounds are all
grouped together in Section 3. The two cases of non-adaptive algorithms for chan-
nels with collision detection and adaptive algorithms for channels without collision
detection are presented in Section 4. A non-adaptive algorithm for channels without
collision detection is given in Section 5. We conclude with final remarks in Section 6.

2 Technical Preliminaries

Multiple access channels are specialized communication networks that support
broadcast through their architecture. In this section, we specify what properties
of a communication network make it a multiple access channel. Next, we define
adversarial models, classes of broadcast algorithms and performance metrics.

We consider networks that operate in a slotted time, which means that an execution
of an algorithm is a sequence of rounds. All nodes begin and end a round at the same
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time. These stipulations determine that a network operates synchronously, as if the
nodes were coordinated by a global clock.

A node may choose either to transmit or pause in a round. Everything that a node
transmits in a round is called message. Intuitively, messages overlapping in time col-
lide with each other and none can be successfully received. We assume that messages
are big enough so that when two nodes transmit messages in the same round then the
transmissions overlap in time.

Multiple access channels A node receives a feedback from the channel in each
round. A message successfully received by a node is heard by the node. A broadcast
system is a multiple-access channel when a message is heard by a node if and only
if it is the only message transmitted in this round by any node in the network. This
implies that at most one message per round can be heard, so that the throughput rate
of a multiple access channel is at most 1. We consider the following three cases deter-
mined by the multiplicity of transmissions in a round in order to introduce additional
terminology.

There are no transmissions in a round: nodes receive silence from the channel as
feedback. Such a round is called silent.
There is one transmission in a round: the message is heard by all the nodes in the
same round.
More than one transmissions in a round: no node can hear any message. Multiple
transmission in the same round result in a conflict for access to the channel, which
we call a collision.

Transmitting and listening to the channel are considered independent activities, in
that a transmitting node obtains the same feedback from the channel as a node that
does not transmit in the round. The channel is with collision detection when the feed-
back from the channel allows the nodes to distinguish between silence and collision,
otherwise the channel is without collision detection. If no collision detection mech-
anism is available, then nodes obtain the same feedback from the channel during a
collision as during a silent round.

We define a round void when no packet is heard in this round. When a round is
void then either it is silent or a collision occurs in it.

Adversaries An adversary is defined by a set of allowable patterns of injections of
packets into nodes. An adversary generates a number of packets in each round and
assigns to each packet the node into which the packet is injected. We first recall
the standard definition of globally constrained window-type adversaries. Next we
constrain adversaries further by separately specifying how packets are injected into
each node.

A (globally constrained) window-type adversary is restricted by injection rate ρ

and window size w. These two numbers w and ρ constrain the adversary’s behavior
as follows: for any contiguous time interval τ of w rounds, the adversary may inject
at most ρw packets in τ .

Window adversaries with individual injection rates are defined as follows: Let
there be given a positive integer number w, which is again called window size. Each
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node i is assigned a share si , which is a non-negative integer. The shares satisfy
the requirement

∑n
i=1 si ≤ w. These numbers constrain the adversary’s behavior as

follows: in any time interval of w contiguous rounds, the adversary may insert up to
si packets into node i. The local injection rate of node i is defined to be the number
ρi = si/w. The aggregate injection rate is denoted by ρ = (

∑n
i=1 si)/w. We refer

to such a window adversary, with individual injection rates, as being of local type
(〈si〉1≤i≤n, w) and of aggregate type (ρ, w). Let a window adversary be of local type
(〈si〉1≤i≤n, w) with aggregate rate ρ. For this adversary, the local burstiness at node i

is defined to be its share si , and the aggregate burstiness is defined to be the number
δ = ∑n

i=1 si , so that ρ = δ/w.
The notion of aggregate type is similar to that of global type as considered in [21, 22].

Broadcast algorithms We consider communication algorithms that are distributed,
in that they are event driven. An algorithm is determined by specifying what consti-
tutes a possible state of a node and what are the rules governing transitions between
states.

When a property of a communication environment can be used by algorithms,
to be executed in this environment, then we say that this property is known. The
adversaries we consider are not known, which means that our algorithms are not
tailored to any parameters of the adversary.

The letter n denotes the number of nodes attached to a channel, which we may call
the size of the network. Each node has a unique integer name in the range between 1
and n. We assume that each node knows both its name and the number n.

When multiple packets are pending transmission then some of them need to be
parked at nodes waiting to be transmitted. This occurs, for example, when multi-
ple packets are injected simultaneously in the same node. Each node has its packets
stored in a private queue. The capacity of such a queue is assumed to be unbounded,
in that a queue can store any number of packets in principle.

A message may include at most one packet and possibly some control bits. We do
not assume an upper bound on the number of control bits. For example, an algorithm
may have nodes attach an “over” bit to a transmitted packet to indicate that the node
will not transmit in the next round. A message consisting entirely of control bits
is legitimate. The contents of packets do not affect an execution of a broadcasting
algorithm, in that packets are treated as abstract markers.

Executions of algorithms All the nodes start executing a communication algorithm
simultaneously. In the course of an execution, the state of a node is determined by
the values of its private variables, which correspond to the variables used in the code
of the algorithm. A node’s action in a round of an algorithm’s execution consists of
the following, in the order given:

(1) the node either transmits or pauses, as determined by its state,
(2) the node receives a feedback from the channel, in the form of either

hearing a message or collision or silence,
(3) new packets are injected into the node, if any,
(4) a state transition occurs in the node.
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An event in a round is defined as a vector of nodes’ actions in the round, indexed by
the nodes. An execution of an algorithm is defined as a sequence of events occurring
in consecutive rounds. All executions we consider are infinite.

A state transition of a node is determined by the state at the end of the previous
round, the packets injected in the round, and the feedback from the channel in the
round. Such a transition involves the following operations performed by a node. Any
injected packet is enqueued in the same round. A successfully transmitted packet is
discarded. When the queue of a node is nonempty, including the packets injected in
this round, then the node obtains the next packet to broadcast by dequeuing the queue.

Performance of algorithms The number of packets stored in a queue in a given
round is called the size of the queue in the round. An algorithm is stable in an exe-
cution when there is an upper bound on the sizes of all the queues in this execution.
An algorithm is stable against an adversary if it is stable in each execution against
this adversary. This terminology is naturally extended for classes of adversaries, to
mean stability against any adversary in the class. Classes of adversaries are usually
determined by properties of their types, like the magnitude of injection rates.

The time spent by a packet waiting in a queue at a station is called this packet’s
delay. An upper bound on packet delay is called packet latency. Observe that the size
of a queue in a station in a round is a lower bound on some packet’s delay, because
at most one packet is dequeued in a round. It follows that an algorithm of bounded
latency is stable, as latency is an upper bound on queue size.

If an algorithm is stable for a multiple access channel with the first-in first-out
(FIFO) queuing discipline in each station, then it is also stable with any other queu-
ing policy. We use the FIFO queuing in each station in each of our algorithms. The
reasons are that this discipline minimizes latency and provides fairness even when
packet latency is infinite, in the sense that no packet lingers “at the bottom of a queue”
forever.

Classes of algorithms Natural subclasses of deterministic distributed broadcast
algorithms in multiple access channels were defined in [21, 22]. We use the same
classification, which we give next.

We call an algorithm adaptive when control bits can be used in its messages;
otherwise an algorithm is called non-adaptive.

An algorithm is acknowledgment based when a node without packets to
transmit stays in an initial state and resets its state to an initial state immediately
after a successful transmission.

An acknowledgment-based algorithm is oblivious if the decision whether a
packet is to be transmitted or not depends only on the station’s name and which
consecutive round it is devoted to broadcasting a currently handled packet by
this station, counting rounds from the first one assigned to this packet.

A related terminology is used in the literature to contrast algorithms that sense chan-
nel continuously, called “full sensing,” with ones that do not sense channel when
not having pending packets to broadcast. All algorithms we consider are “full sens-
ing,” as our definition of broadcast algorithm stipulates that stations obtain feedback
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from the channel in each round and make state transitions in each round. The term
“acknowledgment-based” is sometimes used to mean that the algorithm has the
property that when a station keeps attempting to transmit a packet and eventually
succeeds, then the channel “acknowledges” this fact by its feedback, which triggers
the station to reset its state to an initial one.

When an oblivious algorithm is executed, then a node may ignore feedback from
the channel, except for detecting whether the packet transmitted was heard on the
channel, which serves as an “acknowledgment” from the channel. Formally, an obliv-
ious algorithm is determined by unbounded binary sequences assigned to nodes;
such a sequence is called a transmission sequence. Different nodes, executing the
same algorithm concurrently, may have different transmission sequences. These dif-
ferent sequences are interpreted as follows. If the ith bit of the transmission sequence
of a node equals 1, then the node transmits the currently processed packet in the
ith round, counting rounds from the first one when the packet was started to be
processed, while a 0 as the ith bit makes the node pause in the corresponding ith
round. Oblivious acknowledgment-based algorithms were considered in [22]. In this
paper, acknowledgment-based algorithms are defined by the property that a node
begins execution in an initial state and resets its state to initial after a successful
transmission; a station without pending packets loops in an initial state.

An algorithm is conflict free if in any execution at most one node transmit in
any round. An algorithm that is not conflict free is called conflict prone. When an
algorithm is conflict free then we assume that a channel is without collision detection.

Algorithm design Now we give an overview of design principles of our algorithms.
It is a natural approach to have nodes work to discover the parameters defining the

adversary at hand. The nodes could gradually improve their estimates of the shares
si and the aggregate maximum burstiness δ = ∑n

i=1 si . The nodes would adjust the
frequency of their individual transmissions to the knowledge gained in the process of
discovering the adversary. The aggregate burstiness δ is a lower bound on the window
w of an adversary. Observe that the aggregate burstiness in the case of injection rate
1 equals the window size.

For a given window adversary of local injection rates, node i is active when its
share si is a positive number; otherwise, when si = 0, the node i is passive. Node
i has been discovered in the course of an execution when a packet transmitted by i

has been heard on the channel. A discovered node is clearly active. In the context of
a specific execution, a node that has not been discovered by a given round is called
a candidate in this round. A passive node is doomed to be a candidate forever. We
describe two data structures used to schedule transmissions and have nodes discover
their shares.

In one approach, each node i has a private array Ci of n entries. The entry Ci[j ]
stores an estimate of the share sj of node j , for 1 ≤ j ≤ n. Every node i will modify
the entry Ci[k] in a round in the same way; therefore we may drop the indices and
refer to the entries of the arrays as C[j ] rather than as Ci[j ]. The array C is initialized
to C[j ] = 0 for every 1 ≤ j ≤ n. The sum γ = ∑n

i=1 C[i] is an estimate of the
aggregate burstiness δ = ∑n

i=1 si .
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The nodes running an algorithm keep adjusting the estimates stored in the array C.
When node i enters a state implying si > C[i] then i considers itself underestimated.
Detecting underestimation is implemented by having every node keep track of the
transmissions in the past γ rounds. When a node i detects that some k > C[i] packets
have been injected within the respective γ consecutive rounds, where k is maximum
with this property so far, then i decides in this round that it is underestimated by the
amount k − C[i].

Another approach to schedule transmissions and discover shares is to have each
node i use a list Di of bits. Such a list Di has its terms listed as a sequence
〈di(1), di(2), . . . , di(�)〉. The length � may be modified, but it is the same in all
nodes, and additionally the inequality � ≤ w holds at all times. The lists are
initialized to be empty.

The number � will be an estimate on the burstiness of the adversary, similarly as
the number γ is for the array C. The number of occurrences of 1 in Di has the same
meaning as C[i] and so is interpreted as the current estimate of the share of i. The
lists are maintained so as to satisfy the following invariant: for each 1 ≤ j ≤ �, when
di(j) has been determined for all i, then di(j) = 1 for precisely one i, and dk(j) = 0
for any other value k �= i such that 1 ≤ k ≤ n. When lists D are only used and arrays
C are not explicitly maintained, then C[i] will denote the number of occurrences of
1 in Di . We will use � and γ interchangeably when lists Di are used.

Our algorithms will have the property that C[i] is increased at most by the amount
that node i considers to be underestimated by. This conservative mechanism of esti-
mating the shares is safe, in that the shares are never overestimated, as we show
next.

Lemma 1 If C[i] is increased at most by the amount that node i considers to be
underestimated by, then the inequalityC[i] ≤ si holds at all times, for every 1 ≤ i ≤ n.

Proof We show that the invariant “the inequality C[i] ≤ si holds for every 1 ≤
i ≤ n” is preserved throughout the execution. Initially C[i] = 0 ≤ si , for every
1 ≤ i ≤ n, so the invariant holds true in the first round. Observe that if C[i] ≤ si , for
every 1 ≤ i ≤ n, then also the inequalities

γ =
n∑

i=1

C[i] ≤
n∑

i=1

si = δ ≤ w

hold true. The adversary can inject at most sk packets into a node k during any seg-
ment of γ contiguous rounds, as the inequality γ ≤ w means that any segment of γ

contiguous rounds could be extended to one of w rounds of the execution. A node k

can detect to be underestimated by at most sk − C[k] in any round, while the invari-
ant holds. This makes the invariant still hold in the next round, because an update of
C[k] raises C[k] to a value that is at most sk .

The algorithms we develop will be such that the assumptions of Lemma 1 hold
true, and for them the inequalities γ ≤ δ ≤ w hold as well. We will use arrays C

when each node knows the node for which an update of the current estimate of its
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share is to be performed. It may happen that such knowledge is lacking: an under-
estimated node transmits successfully but the other nodes do not know which node
transmitted. This is a scenario in which to use lists D, as a transmitting node can
append 1 at the end of D while every other node appends 0.

Our algorithms have nodes manipulate auxiliary lists, including the lists D. For
each list, there is the main pointer associated with this list, which points at an entry
we call current for the list, when the list is nonempty. In a round, a main pointer
either stays put or it is advanced by one position in the cyclic ordering of the entries
on the list.

3 Impossibilities and Lower Bounds

In this section, we present impossibility results for acknowledgment-based algo-
rithms and lower bounds on packet latency.

Impossibility results for acknowledgment-based algorithms We begin by exam-
ining acknowledgment-based algorithms. The action that a node performs when it
begins processing a new packet is always the same, as it is determined by the initial
state. Such an action maybe either to transmit or to pause in the first round.

Lemma 2 Let us consider an execution of an acknowledgment-based algorithm. If
there is a node that pauses in the first round after starting to process a new packet,
then, for any number ρ > 1

2 , the algorithm is unstable for some adversary with
aggregate rate ρ.

Proof Suppose that some node p pauses in the first round of processing a new packet.
Consider an adversary who injects only into such a node p as often as possible subject
to an individual injection rate that is between 1

2 and ρ. This results in an execution in
which a packet is heard not more often than every second round, while the aggregate
rate is greater than 1

2 , so the queue at p grows unbounded.

Theorem 1 Any acknowledgment-based algorithm is unstable in the multiple-access
channel with collision detection that consists of just two nodes, when executed
against some window adversary of burstiness 2 and aggregate injection rate 1.

Proof Consider an acknowledgment-based algorithm for two nodes p and q. Sup-
pose, to arrive at a contradiction, that the algorithm is stable for the aggregate
injection rate 1. This implies, by Lemma 2, that a node transmits a new packet
immediately.

We define an execution of the algorithm with an infinite sequence of rounds
t1, t2, . . . determined so that there are at least i void rounds by round ti . (Recall that
a round is void when no packet is heard in this round.) The adversary will inject two
packets in each odd-numbered round, a packet per node, and it will inject no packets
in even-numbered rounds. This means that each node has its individual injection rate
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equal to 1
2 . The aggregate injection rate of the adversary is 1, and so there will be at

least i packets in queues in round ti . Next we stipulate how such a scenario can occur.
Let us set t1 to be the first round. This round is silent as the nodes did not have any

packets in round zero. A collision occurs in the second round. This is because each
node got a new packet in the first round, so it transmitted it immediately. Let us define
t2 to be the second round. As our construction continues, each round number ti , for
i > 1, will be even. The adversary will not inject packets in these specific rounds ti ,
as packets will not be injected in any even-numbered round, as a general rule.

Suppose the execution has been determined through an even-numbered round ti .
If ti + 1 is void then define ti+1 = ti + 2. Otherwise some node, say p, transmits
in round ti + 1. The node p will continue transmitting for as long as it has packets,
because it transmits a new packet immediately. If in one such a round t the node q

transmits concurrently with p, then this results in a collision and we define ti+1 to be
t if t is even or t + 1 otherwise. Let us suppose that this is not the case, so p keeps
transmitting alone. The node p will not have a packet to transmit in some round after
ti +1, since its injection rate is 1

2 and so smaller than 1; let t ′ > ti +1 be the first such
a round. Observe that t ′ has to be an odd number, as otherwise a new packet would
have got injected into p in the round t ′ − 1 resulting in p having a packet to transmit
in round t ′. If q does not transmit in round t ′, then this round t ′ is silent and we are
done; in this case we define ti+1 to be t ′ + 1, as such a round number is to be even.
Otherwise, the node q transmits in round t ′ successfully. Simultaneously both nodes
obtain new packets in round t ′, so each has at least one available packet at the end of
this round. Each node transmits in round t ′ + 1, as for each of them it is a first round
of processing a new packet. This is because p did not have a packet in round t ′ and
q transmitted in round t ′. Define ti+1 to be the void round t ′ + 1. This completes the
inductive construction of the sequence ti , and by this produces a contradiction with
the assumption that the algorithm is stable.

Next we investigate how large could an injection rate be, as a function of the
number of nodes attached to a multiple access channel, that can be handled in a stable
manner by an acknowledgment-based algorithm. It was shown by Chlebus et al. [22]
(Theorem 5.1) that an oblivious acknowledgment-based algorithm cannot be stable
when the global injection rate is at least as large as 3

1+lg n
, for n ≥ 4 nodes, where lg n

denotes the binary logarithm of n. We show a related result for individual injection
rates and acknowledgment-based algorithms that are not necessarily oblivious. The
following theorem was inspired by the related result in [22] and its proof is similar to
that given in [22].

Theorem 2 If an acknowledgment-based algorithm is executed by n ≥ 4 nodes on a
multiple-access channel with collision detection, then the system is unstable against
an adversary for which only two nodes have positive shares, one such share is equal
to 1 and the other to 2, and the window size is larger than �lg n	.

Proof Let A be a specific acknowledgment-based algorithm for the n nodes. For
each node p, consider an execution of algorithm A when p starts to work on a new
packet. Let us consider an execution, understood as an experiment, such that when
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p transmits then p hears a collision and when p does not transmit then the round
is silent. The purpose of this experiment is to determine a sequence of bits s(p) =
(b1, b2, . . .) such that bi = 1 when p transmits in the ith round and bi = 0 when p

pauses in the ith round in this execution, where we count rounds from the first one
when p begins to process the packet. Let s(p, i) be this sequence truncated to the first
i terms, for i ≥ 1. There exist two nodes, p1 and p2, for which s(p1, �lg n	 − 1) =
s(p2, �lg n	 − 1) by the pigeonhole principle, because �lg n	 − 1 ≥ 1 for n ≥ 4 and
2�lg n	−1 = 2�lg n	/2 < n.

If the two sequences s(p1) and s(p2) are identical then it is sufficient for the
adversary to simultaneously inject one packet into p1 and another into p2 and these
packets will never be heard on the channel. Then instability follows, because packets
subsequently injected into p1 and p2 will need to be queued and none of them will
ever be heard. Otherwise, let k ≥ �lg n	 be the first position in which the sequences
s(p1) and s(p2) differ. Without loss of generality, suppose that the kth term of s(p1)

is 1 and the corresponding term of s(p2) is 0. Let j be the smallest position of the
sequence s(p2) such that j > k and there is 1 at this position in s(p2). We determine
an adversary as follows. The window size w = j and node p1 has share 1 and node
p2 has share 2, which is possible for n ≥ 4 because then j ≥ 3.

This adversary may inject the packets as follows. At round number 0, the adver-
sary injects into each node the number of packets equal to that node’s share. This is
followed by w rounds so that two packets are successfully transmitted, one in round
k by node p1 and the other in round w = j by node p2, while node p2 still has one
packet. At round w = j , the adversary injects into each node the number of packets
equal to this node’s share. This makes the behavior of the channel during the rounds
w + 1 through 2w be the same as during the rounds from 1 through w, with the only
difference that at round 2w node p2 has two packets pending transmissions. This pat-
tern can be iterated forever, with the result that at the round number �w node p2 has
� pending packets.

Due to the inherent limitations of acknowledgment-based algorithms, as expressed
in Theorems 1 and 2, the algorithms we develop in this paper are not acknowledgment
based.

Lower bounds Next we present two lower bounds on packet latency. We begin by
showing that an algorithm with performance close to optimal needs to have bounds
�(n + w) or �(w polylogn) on packet latency.

Theorem 3 For any broadcast algorithm for a channel with n nodes and for an
adversary of windoww and aggregate injection rate 1, packet latency provided by the
algorithm in some execution is �(w max(1, logw n)), when w ≤ n, and it is �(w),
when w > n.

Proof The adversary can inject w packets in one round because the aggregate
injection rate is 1 so the burstiness equals w.

For the case w ≤ n, we consider adversaries for which each node has a share
that is either 0 or 1. Greenberg and Winograd [36] considered a static version of the
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broadcast problem, in which k packets are located initially among k nodes, for some
k ≤ n, at most one packet per node, and the goal is to have all of them heard on

the channel. They showed that for any algorithm it takes �
(
k

log n
log k

)
time to achieve

this goal in some execution of the algorithm. Algorithms that we use handle dynamic
broadcast, but they can be applied to the static version. Namely, a translation to the
static version of broadcast is as follows: let the adversary inject w packets in the
first round, at most one packet per node, the algorithm needs to broadcast only these

packets. This gives the bound �
(
w

log n
log w

)
= �(w max(1, logw n)).

Next consider the case w > n. Let the adversary inject w packets in the first
round and then execute the algorithm. It will take at least w rounds to hear these
packets.

The next observation is that to attain latency o(nw), the algorithm has to be
conflict prone.

Theorem 4 For any conflict free algorithm, a system of sufficiently many nodes
n, and any sufficiently large window w, there is an execution in which a packet
is delayed by �(nw) rounds against a window adversary with window w and an
aggregate injection rate smaller than 1.

Proof Let us consider a specific conflict-free algorithm and its execution. The adver-
sary is specified in two stages. The first stage is by declaring some node to be heavy
and the remaining ones to be mavericks. The share of the heavy node is w − 2, and
one of the mavericks has its share equal to 1, so that the aggregate injection rate is
w−1
w

= 1 − 1
w

< 1. At this point, the heavy node may be “known to the algorithm”
while the maverick with a positive share will be declared in the second stage, some
time later in the execution, depending on the algorithm’s actions.

Consider an execution E1 in which the adversary injects only into the heavy node,
with full capacity of w − 2 packets per w consecutive rounds, and does not inject
into any maverick node at all. Let us partition any execution into disjoint segments of
consecutive (n−1)w

2 rounds. The adversary injects (n−1)(w−2)
2 packets into the heavy

node during each segment. This leaves a room for n − 1 rounds during a segment of
E1 that are available to locate the maverick with a positive share. We argue that an
algorithm cannot locate such a maverick without incurring �(nw) delay.

We specify an execution E2 which has the same prefix as E1 until the first injection
into a maverick. To this end, we consider the consecutive segments of E1 one by one,
starting from the first segment; let S denote a current segment of E1. We proceed
through a sequence of cases, depending on how many mavericks are scheduled to
transmit in S.

If fewer than n − 1 mavericks are scheduled to transmit in S, then some maverick
is not scheduled to transmit in S at all. We switch to E2 by having the adversary
inject a packet into a maverick that is not scheduled to transmit in S, the injection
occurring at the round just before segment S is to begin. This packet waits at least the
duration of a segment, which is �(nw). If such a segment S exists then the argument
is completed.
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Let us suppose that, alternatively, every maverick is scheduled to transmit at least
once during every segment of E1. If some maverick is scheduled to transmit more
than once in S, then the number of packets in the heavy node increases during this
segment S, because at least one time slot contributes to delaying the heavy node
in unloading its packets; in such a case we proceed to the next segment of E1. If
only such segments are in E1, then the algorithm is not stable and packet delays are
arbitrarily large. Otherwise, suppose that there is a segment S during which every
maverick is scheduled to transmit exactly once. Let us partition S into first and second
halves, each of (n−1)w

4 rounds. We consider two sub cases next.
The first sub-case occurs when the last maverick to transmit in S is scheduled to

transmit in the first half of S. We switch to E2 by having the adversary inject into this
last maverick just after its scheduled transmission in S. This packet needs to wait at
least for the duration of the second half, which is �(nw).

The other sub-case occurs when the last maverick to transmit in S is scheduled to
transmit in the second half of S. We switch to E2 by having the adversary inject into
this last maverick just before segment S is to begin. This packet needs to wait at least
for the duration of the first half, which is �(nw).

The considered cases and sub-cases exhaust all the possibilities, and we conclude
that a packet’s delay �(nw) may occur for the considered adversary and injection
rate 1 − 1

w
.

In Section 5 we give a collision-free non-adaptive algorithm for channels without
collision detection that has O(nw) packet latency. The question if packet latency has
to be �(nw) when a collision-free non-adaptive algorithm is executed on channels
without collision detection is left open.

4 Two Algorithms of Small Latency

In this section we present algorithms with packet latencies that are close to optimal
against an adversary of aggregate injection rate 1. The algorithms are developed for
the two scenarios when either (1) collision detection is available, in which case we do
not use control bits in messages, or (2) collision detection is not available, in which
case we do use control bits in messages.

4.1 A non-adaptive algorithm with collision detection

We develop a non-adaptive algorithm NON-ADAPTIVE-DISCOVER-SHARES which
uses collision detection to bound latency. Algorithm NON-ADAPTIVE-DISCOV-
ER-SHARES in turn uses two algorithms SEARCH-COLLISION-UPDATE and
CYCLE-COLLISION-UPDATE executed in sequence. Algorithm SEARCH-COLLI-
SION-UPDATE is executed first and next we switch to CYCLE-COLLISION-UPDATE

after a certain number of collisions is reached in an execution of SEARCH-COLLI-
SION-UPDATE.

A node i uses the list of bits Di to implement its estimate of shares. The nodes
manipulate the lists according to the principles given at the end of Section 2, we recall
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them next. Each such a list D is initially empty. There is a (main) pointer associated
with each list, which points at the current entry. The pointer is set to the first position
on a list, when the first entry is inserted into the list, and after that it is advanced in
the circular order of the list by one position in each round.

The lists D are used to schedule transmissions as follows: a node i transmits in a
round when its current entry in Di is 1 and otherwise it pauses. A node i that upgrades
its share appends an entry with 1 to the end of its list Di , while at the same time all
the other nodes append 0’s to their lists. This provides conflict freeness, because the
following invariants about lists Di , for 1 ≤ i ≤ n are maintained in each round:

(i) the lists at the nodes are all of the same length,
(ii) the main pointers of all lists are on the same position in their respective lists,

(iii) at most one main pointer indicates a current entry with 1 while all the
remaining pointers indicate at 0’s.

Each of algorithms SEARCH-COLLISION-UPDATE and CYCLE-COLLISION-
UPDATE has two threads, the main one and the update one, but they are implemented
and cooperate differently.

Algorithm SEARCH-COLLISION-UPDATE Now we explain in detail how algo-
rithm SEARCH-COLLISION-UPDATE works. The algorithm starts by invoking the
main thread. The main thread occasionally calls the update thread, when it is needed.
The update thread uses a binary search among the nodes to locate processors that
consider themselves underestimated. Next we describe the threads in detail.

The main thread uses the lists D. This prevents conflicts for access to the channel,
as long as there are no transmissions beyond those schedule by the lists D. While
the main thread is executed, some nodes may detect that there are underestimated.
Any such an underestimated node becomes persistent, which means it will work to
create a collision in order to gain an opportunity to upgrade its share. A persistent
node transmits in each round, even when it is not scheduled to transmit by its array
D, as long as it has packets. If a collision occurs, then the update thread is invoked,
while the main thread pauses. This means that the main pointers associated with the
lists D are not advanced and persistent nodes do not transmit, except as participants
of the binary search performed by the update thread. The main thread resumes after
the update thread terminates.

The update thread operates as follows. It performs search over the range of nodes
by referring to intervals of names of nodes. In each round one interval is distinguished
as current. In a round, each node in the current interval that wants to upgrade its share
transmits a pending packet. The search starts with the interval [1, n], comprising all
the names, which is set as current. If a collision is heard then the current interval is
partitioned in two subintervals in a balanced way. These intervals will be processed
recursively using a stack. The left interval is pursued first, by becoming current, while
the right interval is pushed on the stack. If a silence is heard for some current interval
then such an interval is abandoned and the next interval is popped from the stack
and made current. If a packet is heard then the node that transmitted the packet is
considered as having reserved the channel to transmits a number of packets up to its
share’s upgrade, which then is followed by silence. Such a transmitting node appends
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an entry with 1 to its list Di for each transmission of a packet during upgrading
its share, while the other nodes append 0’s each. The silence after a sequence of
transmissions makes all stations abandon the currently processed interval and the next
interval is popped from the stack and made current. The update thread terminates
after the stack becomes empty and the main thread resumes.

This completes the specification of algorithm SEARCH-COLLISION-UPDATE. Let
us recall the notation γ = ∑n

i=1 C[i] interpreted as an estimate of the aggregate
burstiness δ = ∑n

i=1 si , as it was introduced in Section 2. In what follows, when
we refer to γ then we mean the ultimate value it attains in an execution, like in the
formulations of Lemmas 3 and 4, unless indicated otherwise, like, for example, in the
specification of algorithm NON-ADAPTIVE-DISCOVER-SHARES.

Lemma 3 Packet latency of SEARCH-COLLISION-UPDATE isO(γ (1+log n))when
it is executed in a system of n nodes.

Proof We observe that once all the upgrades in an execution have been performed,
packet latency is proportional to the maximum number of packets queued simultane-
ously plus burstiness. The burstiness experienced in an execution is at most (the final
value of) γ . Each upgrade of a share involves the upgrade thread, which takes at most
�1+ lg n	 rounds per upgrade. There are at most γ invocations of the upgrade thread,
so the total number of rounds spent on upgrades is at most �γ (1 + lg n)	. The num-
ber of packets injected during the rounds spent on upgrades is at most the number of
these rounds plus burstiness δ, which is O(γ (1 + log n)). It follows that the maxi-
mum number of packets queued simultaneously is O(γ (1 + log n)), and the packet
latency is also O(γ (1 + log n)).

Algorithm CYCLE-COLLISION-UPDATE Now we explain in detail how algorithm
CYCLE-COLLISION-UPDATE operates. The two threads, main and update, start
simultaneously. They work concurrently, unless stated otherwise, for example when
the main thread is paused for upgrading shares.

The main thread uses the lists D, similarly as the main thread of algorithm
SEARCH-COLLISION-UPDATE. This means that a node i that has a 1 as a current
entry in its list Di in a round transmits if it has a packet. The update thread uses a
separate list of the names of all the nodes ordered in a circular order. It is represented
by a copy in each station, with a main pointer associated with it. A node that is cur-
rent on this list is referred to as current for update. A node transmits in this round
when the following is satisfied: the node is current for update, it considers itself
underestimated, and it has a pending packet.

The feedback from the channel after a transmission by a node current for update
can be of two kinds: either a collision or a packet heard. We consider each of them
next.

If the message is heard then the transmitting node turns persistent, which means
in will transmit a packet in every subsequent round, as long as it has pending packets.
Simultaneously, the main pointer on the circular list is advanced so that the next node
becomes current for update; such an advance of this pointer occurs in each round
until a collision is heard. A node that is persistent turns back to non-persistent when
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either its queue becomes empty or when a collision occurs or when the node becomes
current for update again.

Notice that there is only one persistent node at any time. This is because when a
node becomes persistent after a successful transmission, it continues to transmit until
either it exhausts its packets or a collision occurs, which terminate the property of
being persistent. In particular, no other node can become simultaneously persistent
because this would mean two simultaneous successful transmissions: one by the first
persistent node and another one by a contender node.

Now we discuss the case of a collision, which is caused by either two or three
concurrent transmissions. This bound on the number of concurrent transmissions is
the case because only the following cases of transmissions are possible. First occurs
when a transmitter executes the main thread, which means the transmission is deter-
mined by the D list. Second occurs when a transmitter is ready for update. Third
occurs when a transmitter is persistent.

When a collision is heard then the main thread pauses and the update threads pro-
ceeds to upgrade shares. First a possible transmitter that is ready for update is given
a chance to transmit. If it wants to upgrade its share then it transmits a number of
times, up to its share’s upgrade, followed by a silent round. Next a possible persis-
tent transmitter is given a chance to upgrade its share. This is performed similarly, by
having it transmit a number of times, up to its share’s upgrade, followed by a silent
round. These two upgrades are performed by appending 1’s to the list D of the trans-
mitting node and 0’s to such lists of the other nodes, an entry for each transmission
of a packet. Such two silent rounds occur eventually. The first indicates a completion
of upgrade by a transmitter that is ready for update, if there is any. The other indi-
cating a completion of upgrade by a persistent node, if there is any. After the second
of these two silent rounds occurs, both the main thread and the update one resume
regular operations, by having pointers on their respective lists advance in each round.

Lemma 4 Packet latency of algorithm CYCLE-COLLISION-UPDATE isO(n+q+γ )

when the algorithm is executed in a system of n nodes with q packets in queues at the
start.

Proof A packet delay may be attributed to either to the number of packets inher-
ited in the queue or to the time spent waiting for an upgrade of a node, in which
a packet resides and that considers itself underestimated, or to the time spent to
upgrade shares. There are q packets inherited in queues. The time waiting to start an
upgrade is at most n, because the list used by the upgrade thread consists of n entries.
An update costs at most three void rounds, as they comprise one collision and two
silences. These void rounds for each share’s upgrade happen only once. As there are
γ upgrades, the total packet delay is as claimed.

The ultimate algorithm NON-ADAPTIVE-DISCOVER-SHARES Algorithm
NON-ADAPTIVE-DISCOVER-SHARES starts by invoking algorithm SEARCH-
COLLISION-UPDATE. The estimate γ of the aggregate burstiness is available in each
round, as explained in Section 2. As long as the inequality n + γ ≥ γ (1 + lg n)
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holds, where γ is understood as changing in time, then algorithm SEARCH-COLLI-
SION-UPDATE is executed. When the inequality n + γ < γ (1 + lg n) starts to hold
then algorithm SEARCH-COLLISION-UPDATE stops and algorithm CYCLE-COL-
LISION-UPDATE takes over. The algorithm is well specified because the inequality
n + γ ≥ γ (1 + lg n) holds for small values of γ , for example for γ = 0, and the
inequality n+ γ < γ (1 + lg n) holds for sufficiently large γ , for example for γ ≥ n.

Theorem 5 Algorithm NON-ADAPTIVE-DISCOVER-SHARES provides O(min(n +
w, w(1 + log n))) packet latency for a channel with collision detection against the
adversary of window w and aggregate injection rate 1 in a system of n nodes.

Proof If algorithm CYCLE-COLLISION-UPDATE is not invoked, then n+γ ≥ γ (1+
lg n) holds in all rounds. In this case, packet latency is O(γ (1 + log n)) by Lemma 3.

When CYCLE-COLLISION-UPDATE is invoked, then n + γ < γ (1 + lg n) holds,
when γ is understood to denote the value of this parameter at the round of invocation
of CYCLE-COLLISION-UPDATE. This is the first round when the inequality holds,
so then γ = 	(n/ log n). There are O(n + γ ) = O(n) packets in queues in a round
of invocation of CYCLE-COLLISION-UPDATE, because the time spent on upgrades
is O(γ (1+ lg n)) and the experienced burstiness is O(γ ). In this case, packet latency
is O(n + q + γ ), by Lemma 4, where q = O(n) is the number of packets in queues
at the start of CYCLE-COLLISION-UPDATE. We obtain that O(n + γ ) is an upper
bound on packet latency.

It follows that algorithm NON-ADAPTIVE-DISCOVER-SHARES provides
O(min(n + γ, γ log n)) packet latency. The number γ depends on an execu-
tion, but the inequality γ ≤ w holds, by Lemma 1. We observe that this implies
min(n + γ, γ (1 + log n)) ≤ min(n + w, w(1 + log n)). This can be shown consider-
ing the following three cases. If n + w ≥ w(1 + log n) then n + γ ≥ γ (1 + lg n) and
w(1 + lg n) ≥ γ (1 + lg n). If n + w < w(1 + log n) and also n + γ < γ (1 + lg n)

then n + γ > n + w. If n + w < w(1 + log n) but n + γ ≥ γ (1 + lg n) then we note
that γ (1 + lg n) ≤ n + γ ≤ n + w.

4.2 An adaptive algorithm without collision detection

Now we give an adaptive algorithm for channels in which collision detection is
not available. We call the algorithm ADAPTIVE-DISCOVER-SHARES. This algo-
rithm simulates the two algorithms in NON-ADAPTIVE-DISCOVER-SHARES by way
of running algorithms SEARCH-SILENCE-UPDATE and CYCLE-SILENCE-UPDATE.
The simulation proceeds as follows.

In both simulations of the corresponding main threads, a node scheduled to trans-
mit but without pending packets in its queue transmits a control bit to indicate this,
rather than pause and produce a silent round. It follows that a silence occurs only
when a thread modified in this way creates a collision. Such a silent round results in
invoking the update thread.

The update thread in SEARCH-COLLISION-UPDATE relies on collision detection
to implement a binary search. Now we need to detect a collision among silent rounds.
Silence heard in a round t during the update thread indicates that either there was no
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transmissions or a collision occurred. We resolve which of these is the case in the next
t + 1-st round as follows. All the nodes that transmitted in round t transmit together
with node 1. Node 1 may have transmitted in round t , but it transmits a message with
a control bit in round t + 1, so it does not need to have a pending packet. There are
two possible events occurring in round t +1: either the round is silent or a message is
heard. A silence in round t +1 indicates that more than one node transmitted, as node
1 certainly did transmit, so there was at least one node transmitting in the previous
round t . This means that there was a collision in round t , as no message was heard
in that round. If a message is heard in round t + 1, then this only can be the message
transmitted by node 1. Therefore no other node transmitted in the previous round t ,
and so round t was silent.

The simulation of CYCLE-SILENCE-UPDATE proceeds as follows. When the sim-
ulated main thread is running, then, in each round, some node transmits a message,
as prompted by the occurrence of 1 in its list D. Therefore a silent round indicates
a collision. When this occurs, some two nodes (a candidate for update and a persis-
tent one) are given an opportunity to upgrade their shares. This is performed by a
sequence of transmissions in consecutive rounds, each resulting in a message heard.
Each among these two nodes, if any, indicates a completion of this task by a silent
round (when there is no corresponding node then a silent round indicates that). There-
fore two silent rounds in this situation indicate lack of transmissions in them, which
triggers the two threads to resume advancing pointers on their lists.

Theorem 6 Algorithm ADAPTIVE-DISCOVER-SHARES provides O(min(n +
w, w log n)) packet latency for a channel without collision detection against an
adversary of window w and aggregate injection rate 1 in a system of n nodes.

Proof The simulation we employ produces a constant overhead per each simulated
round, which is verified by a direct inspection of the simulation mechanism. There-
fore packet latency of the simulating algorithms is of the same order of magnitude as
that of the simulated algorithm. Theorem 5 gives a bound for the simulated algorithm,
and the same asymptotic bound holds true for the simulating algorithm.

5 A Non-adaptive Algorithm without Collision Detection

In this section we consider channels without collision detection. We develop a non-
adaptive algorithm of bounded packet latency for aggregate injection rate 1. The
algorithm is called COLORFUL-NODES. The algorithm has each node maintain a pri-
vate list of names of discovered active nodes. The name of a newly discovered node
is apparent to each node so it is immediately appended to the lists. There is a pointer
associated with the list of names of discovered nodes, which is occasionally advanced
by one position in a circular manner; when this happens then all the nodes do this in
unison. It follows that these lists are identical and are manipulated in the same way
by each node

An execution of algorithm COLORFUL-NODES begins with a stage we call prepa-
ration, which is followed by phases that are iterated in an unbounded loop. A phase
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consists of three consecutive stages. A pure stage occurs first in a phase, it is followed
by an update, and finally a makeup concludes the phase. It may happen in some phase
that the update and makeup stages are missing, to the effect that the initial pure stage
of the phase comprises the whole remaining part of the execution. Such a situation
may occur only when, starting from a certain point in time in this pure stage, a packet
is heard in every round.

Intuitions and motivation behind stage designs The following are the intuitions
that have motivated and guided the design of stages in algorithm COLORFUL-
NODES.

The purpose of the preparation stage is merely to discover at least one active node.
This stage occurs only once.

Pure stages are for transmissions by the active nodes that are already discovered.
The amount of time allotted for such transmissions is determined by the bounds on
shares of the nodes as they have been estimated up to this stage. It is during pure
stages that most of the work of broadcasting is expected to be accomplished.

An update stage serves the purpose to give nodes an opportunity to announce to
be underestimated. Such announcements result in the respective entries of the array
C getting incremented in order to improve the current estimates of shares. Nodes
that are not underestimated pause during an update stage, so these rounds could be
considered wasted for them. Eventually, no node is underestimated in an execution.
After this happens, update stages consist of silent rounds only, if any occur.

In any scenario, an update stage includes n silent rounds. We do not rush into an
update stage when a pure stage is under way; we wait until n silent rounds have been
accrued during a pure stage. Each such a silent round indicates that the corresponding
node scheduled to transmit has no packets.

When a pure stage ends, then the nodes are partitioned into those that have been
detected to have no packets at some point of the last pure stage and the remaining
“busy” ones that have not been detected as such. The silent rounds in pure and update
stages create a potential for the queues to grow unbounded at nodes that consistently
obtain their maximum load of packets. It is the purpose of a makeup stage to com-
pensate “busy” nodes for the rounds wasted during the forced silent rounds of the
preceding pure and update stages.

Details of stage implementation We describe the details of implementation for each
kind of stage: preparation, pure, update, and makeup.

The preparation stage is organized such that every node has one round to transmit,
assigned in a round robin manner. A node with a packet available transmits one when
the node’s turn comes up, otherwise the node pauses during its time slot. The prepa-
ration terminates after some node performs the first transmission. The node i whose
packet has been heard during the preparation becomes discovered, which is recorded
by setting C[i] ← 1.

During a pure stage, the discovered nodes proceed through a sequence of trans-
missions, starting from the current node on the list of discovered nodes. A node i

has a segment of consecutive C[i] > 0 rounds allotted for exclusive transmissions.
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During this segment of rounds, the node i keeps transmitting as long as it has pack-
ets, otherwise the node i pauses. The pointer is advanced, and the next node takes
over, when either the current node i has used up the whole segment of C[i] assigned
rounds or just after node i did not transmit while scheduled to. After n silences occur
during a pure stage, then this concludes the stage and an update stage follows.

During a pure stage, a marker is generated each time a silent round occurs. Mark-
ers come with one of two colors. When a node i holds a green marker, then this color
indicates that the marker was generated when i was silent during a round in a segment
of C[i] rounds allotted for i to transmit. A red marker held by node i indicates that it
was some other node j , for i �= j , that was silent during a round in a segment of C[j ]
rounds allotted to j to transmit, which generated the marker. Every node keeps a list
of markers and their assignments to nodes in its private memory. All nodes perform
operations on markers in exactly the same way in unison. No node holds a marker in
the beginning of a pure stage. Only nodes already discovered get markers assigned to
them during a pure stage. A discovered node may hold either no markers or a green
one or a red one in a round of a pure stage.

All operations on markers are triggered by silences during update stages. When
a new marker is created and assigned to a node then some old markers may be
reassigned. The details are as follows.

Let a node i be silent in a round assigned to i to transmit in an update stage: this
generates a marker.

1. If i does not hold a marker yet, then the new marker is colored green and it is
assigned to i.

2. If i already holds a green marker, then the new marker is colored red and it is
assigned to the first available discovered node, in the order of their names, that
does not hold a marker yet.

3. If i holds a red marker, then the new marker is colored green, it is assigned to i,
while the original red marker held by i is reassigned to a discovered node that
does not hold a marker yet.

A pure stage terminates after every discovered node gains a marker. A discovered
node is considered colored by the same color as the marker it holds when an update
begins. We need markers only to assign colors to discovered nodes. After every dis-
covered node has gained a marker, and hence a color, then we refer only to the nodes’
colors. Colors remain assigned to the discovered nodes through the end of the next
makeup stage, and so to the end of the phase. Some colors will be modified during
the makeup stage.

An update stage is to give every node one opportunity to transmit exclusively for
a contiguous segment of rounds. This does include candidate nodes. A node i that
is underestimated by an amount x transmits x times, which is followed by a silent
round. (It might happen that an underestimated node does not have sufficiently many
packets ready to be used to announce by how much it is underestimated in an update
stage. This does not create a design issue, as this indicates that so far the node has
had enough room to transmit its packets.) A number y ≤ x of transmissions in such
a situation results in an immediate increment C[i] ← C[i] + y at all nodes. In
particular, when a new node k becomes discovered, then this results in setting C[k] to
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a positive value. When a node simply pauses in the first round assigned to it, then the
corresponding entry in the array C is not modified. In particular, when a candidate
node j does not transmit then it maintains its candidate status, which is represented
by C[j ] = 0. After each node has had a chance to perform all its transmissions in a
update stage, then the stage terminates and a makeup stage follows next.

Green nodes have had their queues empty at some point in the last pure stage.
A makeup stage has a purpose to have red nodes empty their queues as well. These
nodes transmit in the order inherited from the list of discovered nodes, starting from
the current node, if it is red, or otherwise the next red one following the current
node on the list. A red node i has a segment of consecutive C[i] rounds allotted for
exclusive transmissions each time it becomes current while red. After a red node i

performs C[i] transmissions then it maintains the red status but stops being current,
unless it is the only red node in a round. A silent round by a red node i, during C[i]
assigned rounds, results in changing the color of the node to green immediately and
advancing the pointer to the next red node, if any. A makeup stage concludes as soon
as there are no more red nodes.

This concludes the specification of all kinds of stages, and hence of algorithm
COLORFUL-NODES.

Observe that algorithm COLORFUL-NODES is conflict free. This follows by the
design of stages. The relevant property is that each stage uses a list of nodes and a
pointer on this list indicates which node is to transmit in a given round.

The performance of algorithm COLORFUL-NODES The algorithm uses four
kinds of stages. Assuming that some packets are injected, three stages are of bounded
duration while one is not necessarily so. A preparation stage ends as soon as a packet
is heard, which is a certain event assuming that some packets are injected. An update
stage takes up to n + w rounds. A makeup stage is also of bounded duration, as we
will show in Lemma 7. Pure stages are different in that it is possible that some pure
stage does not end. If this is the case, then there are finitely many phases, with the
last one ending in a pure stage. In such a scenario, starting from some round, a packet
is heard in every round.

Lemma 5 A packet stays in a queue during at most two consecutive phases.

Proof Let us consider a packet injected into some node v in a phase J . If either phase
J or phase J + 1 are the last phases then the packet cannot stay beyond them.

In what follows, we assume that both phases J and J + 1 end, which means
that each stage in them ends. This implies that the queue of each node becomes
empty at some point during each phase. This property is provided by the design of
the algorithm and by the meaning of colors of nodes. Green nodes get their queues
empty early in a phase, during the respective pure stage, which comes to an end by
the assumption in this case. Red nodes accomplish getting their queues empty during
the next makeup stage, which also comes to an end by the same assumption. A packet
is heard by the first round following its injection in which its queue becomes empty.

If the considered packet gets injected before the queue at v becomes empty during
phase J , then all the rounds when the packet stays in its queue are included in phase
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J . When the queue of v gets empty in the phase J before the packet is injected in this
very phase J , then the packet will be heard by the end of the next phase J + 1 at the
latest, by the round in which the v’s queue gets empty in phase J + 1. In any case, a
packet injected in phase J gets heard by the end of phase J + 1.

At most n silent rounds occur during the preparation stage, starting from the first
packet injection. Similarly, there are at most n silent rounds during every stage that
follows. For accounting purposes, we partition silent rounds into blocks defined as
follows. The first block comprises the silent rounds that occur during the last n rounds
of the preparation stage (or all the silent rounds during the preparation stage, in case
there are less than n rounds in the preparation stage), and those silent rounds that
occur during the first pure stage and, assuming that this pure stage ends, the silent
rounds of the first update stage. The next block, if it exists, consists of at most 3n

silences incurred during the immediately following makeup, pure and update stages,
assuming that all these stages exist. This continues throughout an execution, a block
comprising silences in consecutive makeup, pure and update stages. When some
stage does not end, then this results in some block occurring last and having fewer
silent rounds than it would have otherwise.

Lemma 6 There are O(n + w) packets in queues in any round of an execution
of algorithm COLORFUL-NODES against adversaries of window w and aggregate
injection rate 1 in a channel with n nodes.

Proof First let us consider the case of execution in which each stage ends. Such
executions have infinitely many phases and infinitely many blocks.

The total net increase of the number of packets in queues during up to 3n silent
rounds of a block is at most 3n + w, where the number 3n is due to the injection
rate and w to the burstiness δ ≤ w. We argue that the number 6n + w of packets is
an upper bound on the number of packets queued at all times. The argument is by
induction on the phase number, where we show the invariant that 6n + w is an upper
bound on the number of packets in all the queues.

The silent rounds occurring in a makeup stage are accounted for in the next
makeup stage, so we may consider only rounds with successful transmissions in a
makeup stage for the sake of accounting purposes. These rounds result in suppress-
ing the number of packets in the red nodes. While the number of packets of the red
nodes is shrinking over a makeup stage, with possible variations due to burstiness,
the number of packets accumulated in the green nodes could be increasing. This has
the effect of trading (a decrease of the number of) packets in red nodes for some
(increase of the corresponding number of) packets in green nodes. This means that
the increase of the number of packets in queues, due to silent rounds, by 3n + w

packets, may affect both red and green nodes.
For a specific block of up to 3n silent rounds, this increase of the number of

packets is neutralized in a node when its queue becomes empty. As the neutralization
process is spread over at most two consecutive phases, by Lemma 5, the increases
contributed by two consecutive blocks may exist simultaneously, which may result
in the effect of up to doubling the increase of 3n packets, contributed by one block,
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due to injection rate, while the contribution of w to the bound, due to the burstiness,
is a global one-time effect.

Next consider the case of executions in which some stage does not end. It is not the
first preparation stage, unless there are no packets to transmit. This stage that does not
end would end if only sufficiently many silent rounds occurred. It follows that, in this
case, a packet is heard in every round starting from some round t . Any increase of the
number of packets starting from round t can be due only to burstiness. Clearly, there
exists another execution, that proceeds in exactly the same manner as the considered
one up to round t , and which afterwards has the property that each stage ends. The
number of queued packets up to round t is the same in both executions. This number
of packets is O(n + w), because one of these executions has infinitely many phases
and the bound O(n + w) on the number of packets in queues applies to any round in it.

A block of silent rounds may result in an increase of the number of packets in
queues of red nodes, as compared to the beginning of the immediately preceding pure
stage. A makeup stage is there to alleviate this effect.

Lemma 7 A makeup stage of algorithm COLORFUL-NODES takes O(nw) rounds
against adversaries of window w and aggregate injection rate 1 in a channel with n

nodes.

Proof We denote by G and R the sets of nodes that begin a makeup stage as green
and red, respectively. Let g equal the sum

∑
i∈G C[i] = g of the entries of the array

C over the green nodes, and r be the similar sum
∑

i∈R C[i] = r of the entries of the
array C over the red nodes, as at the start of the makeup stage. We have g + r = γ ,
because G and R make a partition of all the nodes. By Lemma 1, the sets G of green
nodes and R of red nodes have had packets injected into them with the cumulative
rates of at most g/γ and r/γ , respectively, during the previous phase.

The rounds of the makeup stage, when only the red nodes transmit, can be con-
ceptually partitioned into disjoint segments of γ rounds each. We may employ the
following accounting to assign roles to rounds in each such a segment. The first r

rounds could be considered as devoted to unloading new packets injected into red
nodes during this segment. The remaining g rounds could be treated as accounting
for unloading packets injected into red nodes during the preceding block of silent
rounds.

There are some p packets in red nodes in the beginning of this makeup stage. We
need to account for the packets injected into these nodes during at most two phases,
as each node gets its queue empty at least once during a phase. A phase contributes at
most 3n silent rounds, which translates into at most 6n packets, by Lemma 5. There
could be a surge of up to w packets injected due to burstiness, but this fluctuation
needs to be compensated by the corresponding number of rounds that follow within
the window of w rounds with no packets injected in them, due to the definition of a
window-type adversary. This means that such surges are compensated by the adver-
sary’s behavior and may contribute up to w to packet latency. We conclude that we
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can use p = 6n in our estimates of the duration of a makeup stage, as we account for
rounds spent on transmissions compensating rounds when the adversary could inject.

It takes p
g

segments of γ rounds each to dispose of all the packets in the red

nodes, possibly increased by at most w rounds due to burstiness. This makes pγ
g

+w

rounds of the makeup stage when packets are heard. There are also r silent rounds in
this stage. The total number of rounds is therefore O(nw), because p = 6n and the
inequalities γ ≤ w, r ≤ n, and g ≥ 1 hold.

The following theorem summarizes the performance of algorithm COLORFUL-
NODES.

Theorem 7 When algorithm COLORFUL-NODES is executed against adversaries of
window w and aggregate injection rate 1 in a channel with n nodes, then packet
latency is O(nw), while the number of queued packets is O(n + w) in any round.

Proof The estimate of a bound on the number of queued packets in any round is given
by Lemma 6. To consider packet latency, we proceed through two cases determined
by whether all stages eventually end or rather some stage lasts forever.

Suppose first that each stage eventually ends. We examine how stages of all kinds
contribute to the length of phases and through that to packet latency.

Each of the preparation, update and makeup stages contributes at most their own
duration to the length of a phase. In the case of the preparation stage, we mean that
is over in at most n rounds since the first packet is injected. An update stage takes
O(n + w) rounds, by its design. A makeup stage takes O(nw) rounds, by Lemma 7.

Next we consider pure stages. There is no general upper bound on the duration of
any such a stage. A pure stage ends after n silent rounds. In the course of a pure stage,
the rate of transmitting packets is equal to the rate with which they were injected in
the preceding phase, by how the array C is used in scheduling transmissions. This
means that a packet gets delayed by at most n plus the maximum number of packets
queued while this packet is handled, which is O(n + w) by Lemma 6.

Next we consider the case when some stage never ends. It needs to be a pure
stage, as makeup stages are excluded by Lemma 7. Up to this pure stage, a bound
on packet latency derived with the assumption that each stage ends applies. The rate
of transmitting packets during the last (unbounded) pure stage is equal to the rate
with which packets were injected in the preceding phase, because a packet is heard in
every round, starting from some round in the pure stage. It follows that packet latency
during such an unbounded pure stage is of the order of magnitude of the number of
queued packets, which is O(n + w) by Lemma 6.

There are finitely many cases, as considered above, each producing a partial bound
on packet delay. Each is either of the form O(n + w) or O(nw), which gives O(nw)

as the overall bound.

Observe that the bound on packet latency in Theorem 7 is tight. This is because
algorithm COLORFUL-NODES is conflict free, so packet latency can be �(nw) in
some executions when the algorithm is executed against adversaries of sufficiently
large windows w in systems of sufficiently large sizes n, by Theorem 4.
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6 Conclusion

We introduced a model of adversarial queuing on multiple access channels in which
individual injection rates are associated with nodes. The partitioning of the aggre-
gate rate among the nodes constrains the adversary but is unknown to the nodes. We
developed a number of algorithms for the aggregate rate 1 that transmit packets with
bounded latency. The bounds on queue size and packet latency of our algorithms are
not expressed in terms of the distribution of the aggregate injection rate among the
nodes as their individual rates, but are given only in terms of the number of nodes n

and the burstiness, which equals the window size w for the aggregate rate 1.
The purpose of this work was to compare the communication environments deter-

mined by multiple access channels in which adversaries are determined by individual
injection rates with channels in which adversaries are constrained only by global
injection rates, as studied in [21]. In both environments, no property of adversaries
is known to algorithms. A comparison of these adversarial models was to be in
terms of the attainable quality of broadcasting, for the maximum throughput of 1.
The main discovered difference between the globally-restrained and individually-
restrained adversaries is that bounded packet latency by non-adaptive algorithms is
achievable in an adversarial model in which individual injection rates are associated
with nodes, which is impossible for adversaries that are globally-restrained only.

We developed algorithms for a window-type adversary with packet latency that is
close to asymptotically optimal in the following two cases. One is when the algo-
rithms are adaptive and channels are without collision detection. Another is when
algorithms are non-adaptive but channels are with collision detection. Packet latency
of non-adaptive algorithms for channels without collision detection turned out to be
more challenging to restrict. The algorithm we developed achieves O(nw) bound
on packet latency. This algorithm avoids conflicts for access to the channel. As
we showed, packet latency has to be �(nw) for such conflict-avoiding algorithms.
This means that the developed algorithm is best possible in this class in terms of
asymptotic packet latency.

The question if a non-adaptive algorithm can achieve packet latency that is
asymptotically smaller than nw, for channels without collision detection and for
window-type adversaries of individual injection rates, remains open.

The adversarial model considered in this work is of the window type. It is a natu-
ral question to ask how to extend the adversarial model of individual injection rates
to the general leaky-bucket case, and how would such an adversarial model affect
algorithms’ performance. In the case of globally-constrained adversaries with injec-
tion rate 1, it was shown in [21] that the two models of window and leaky-bucket
adversaries make a difference even for small size systems.
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17. Blesa, M.J., Calzada, D., Fernández, A., López, L., Martı́nez, A.L., Santos, A., Serna, M.J., Thraves,
C.: Adversarial queueing model for continuous network dynamics. Theory Comput. Syst. 44(3), 304–
331 (2009)

18. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adversarial queuing theory.
J. ACM 48(1), 13–38 (2001)

19. Chlebus, B.S.: Randomized communication in radio networks. In: Pardalos, P.M., Rajasekaran, S.,
Reif, J.H., Rolim, J.D.P. (eds.) Handbook of Randomized Computing, volume I, pp. 401–456. Kluwer
Academic Publishers (2001)

20. Chlebus, B.S., Kowalski, D.R., Lingas, A.: Performing work in broadcast networks. Distrib. Comput.
18(6), 435–451 (2006)

21. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Maximum throughput of multiple access channels in
adversarial environments. Distrib. Comput. 22(2), 93–116 (2009)

22. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple access channel.
ACM Trans. Algorithm. 8(1), 5:15:31 (2012)
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