Theory Comput Syst (2017) 61:191-232
DOI 10.1007/500224-016-9718-9 CrossMark

From Causes for Database Queries to Repairs
and Model-Based Diagnosis and Back

Leopoldo Bertossi! © - Babak Salimi?

Published online: 25 November 2016
© Springer Science+Business Media New York 2016

Abstract In this work we establish and investigate connections between causes
for query answers in databases, database repairs with respect to denial constraints,
and consistency-based diagnosis. The first two are relatively new research areas in
databases, and the third one is an established subject in knowledge representation.
We show how to obtain database repairs from causes, and the other way around.
Causality problems are formulated as diagnosis problems, and the diagnoses provide
causes and their responsibilities. The vast body of research on database repairs can
be applied to the newer problems of computing actual causes for query answers and
their responsibilities. These connections are interesting per se. They also allow us,
after a transition inspired by consistency-based diagnosis to computational problems
on hitting-sets and vertex covers in hypergraphs, to obtain several new algorithmic
and complexity results for database causality.

Keywords Causality - Diagnosis - Repairs - Consistent query answering - Integrity
constraints

P4 Leopoldo Bertossi
bertossi @scs.carleton.ca

Babak Salimi
bsalimi @cs.washington.edu

School of Computer Science,
Carleton University, Ottawa, Canada

Computer Science and Engineering,
University of Washington, Seattle, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-016-9718-9&domain=pdf
http://orcid.org/0000-0002-1144-3179
mailto:bertossi@scs.carleton.ca
mailto:bsalimi@cs.washington.edu

192 Theory Comput Syst (2017) 61:191-232

1 Introduction

When querying a database, a user may not always obtain the expected results, and the
system could provide some explanations. They could be useful to further understand
the data or check if the query is the intended one. Actually, the notion of explanation
for a query result was introduced in [47], on the basis of the deeper concept of actual
causation.!

A tuple ¢ is an actual cause for an answer a to a conjunctive query Q from a
relational database instance D if there is a contingent set of tuples I, such that, after
removing I" from D, a is still an answer, but after further removing ¢ from D \ T,
a is not an answer anymore (cf. Section 2.1 for a precise definition). Here, I" is a set
of tuples that has to accompany ¢ so that the latter becomes a counterfactual cause
for answer a. Actual causes and contingent tuples are restricted to be among a pre-
specified set of endogenous tuples, which are admissible, possible candidates for
causes, as opposed to exogenous tuples, which may also be present in the database.
In rest of this paper, whenever we simply say “cause”, we mean “actual cause”.

In applications involving large data sets, it is crucial to rank potential causes by
their responsibilities [47, 48], which reflect the relative (quantitative) degrees of their
causality for a query result. The responsibility measure for a cause is based on its
contingency sets: the smallest (one of) its contingency sets, the strongest it is as a
cause.

Actual causation, as used in [47], can be traced back to [32, 33], which provides a
model-based account of causation on the basis of counterfactual dependence. Causal
responsibility was introduced in [19], to provide a graded, quantitative notion of
causality when multiple causes may over-determine an outcome.

Apart from the explicit use of causality, research on explanations for query results
has focused mainly, and rather implicitly, on provenance [13-15, 22, 38, 40, 61].
A close connection between causality and provenance has been established in [47].
However, causality is a more refined notion that identifies causes for query results on
the basis of user-defined criteria, and ranks causes according to their responsibilities
[48].

Consistency-based diagnosis [53], a form of model-based diagnosis [60, sec.
10.3], is an area of knowledge representation. The problem here is, given the specifi-
cation of a system in some logical formalism and a usually unexpected observation
about the system, to obtain explanations for the observation, in the form of a
diagnosis for the unintended behavior (cf. Section 2.3 for a precise definition).

In a different direction, a database instance, D, that is expected to satisfy certain
integrity constraints may fail to do so. In this case, a repair of D is a database D’ that
does satisfy the integrity constraints and minimally departs from D. Different forms
of minimality can be applied and investigated. A consistent answer to a query from
D and with respect to the integrity constraints is a query answer that is obtained from

n contrast with general causal claims, such as “smoking causes cancer”, which refer some sort of related
events, actual causation specifies a particular instantiation of a causal relationship, e.g., “Joe’s smoking is
a cause for his cancer”.

@ Springer

Theory Comput Syst (2017) 61:191-232 193

all possible repairs, i.e. is invariant or certain under the class of repairs (cf. Section
2.2 for a precise definition). These notions were introduced in [2] (see [7, 9] for
surveys).?

These three forms of reasoning, namely inferring causes from databases,
consistency-based diagnosis, and consistent query answering (and repairs) are all
non-monotonic [55]. For example, a (most responsible) cause for a query result may
not be such anymore after the database is updated. Furthermore, they all reflect some
sort of uncertainty about the information at hand. In this work we establish natural,
precise, useful, and deeper connections between these three reasoning tasks.

More precisely, we unveil a strong connection between computing causes and their
responsibilities for conjunctive query answers, on one hand, and computing repairs
in databases with respect to denial constraints, on the other. These computational
problems can be reduced to each other. In order to obtain repairs with respect to a set
of denial constraints from causes, we investigate causes for queries that are unions of
conjunctive queries, and develop algorithms to compute causes and responsibilities.

We show that inferring and computing actual causes and their responsibilities
in a database setting become diagnosis reasoning problems and tasks. Actually, a
causality-based explanation for a conjunctive query answer can be viewed as a diag-
nosis, where in essence the first-order logical reconstruction of the relational database
provides the system description [54], and the observation is the query answer. We
obtain causes and their responsibilities -and as a side result, also database repairs-
from diagnosis.

Being the causality problems the main focus of this work, we take advantage of
algorithms and complexity results both for consistency-based diagnosis on one side;
and database repairs and consistent query answering [9], on another. In this way, we
obtain new complexity results for the main problems of causality, namely comput-
ing actual causes, determining their responsibilities, and obtaining most responsible
causes; and also for their decision versions. In particular, we obtain fixed-parameter
polynomial-time algorithms for some of them. More precisely, our main results are
as follows: (the complexity results are all in data complexity)

1. We characterize actual causes and most responsible actual causes for a Boolean
conjunctive query in terms of subset- and cardinality-repairs of the instance
with respect to the denial constraint associated to the query (the query being
the violation view of the constraint). In this way we can compute causes from
repairs.

In the other direction, we obtain repairs of databases with respect to sets
of denial constraints from causes for query results. For this, we extend the
treatment of causality to unions of conjunctive queries (to represent multiple
denial constraints). We characterize an actual cause’s responsibility in terms of
cardinality-repairs. Along the way we provide PTIME algorithms to compute
causes and their (minimal) contingency sets for unions of conjunctive queries.

2 Although not in the context of repairs, consistency-based diagnosis has been applied to consistency
restoration of a database with respect to integrity constraints [30].

@ Springer

194 Theory Comput Syst (2017) 61:191-232

2. We reduce causes for a Boolean conjunctive query to consistency-based diagno-
sis for the query being unexpectedly true according to a system description. In
particular, we show how to compute actual causes, their contingency sets, and
responsibilities using the diagnosis characterization. As a side result, we obtain
database repairs from diagnosis.

Hitting-set-based algorithmic approaches to diagnosis [53] inspire our algo-
rithmic/complexity approaches to causality. In particular, we reformulate the
causality problems as hitting-set problems and vertex cover problems on hyper-
graphs, which allows us to apply results and techniques for the latter to
causality.

3. We obtain several new computational complexity results:

(a) Checking minimal contingency sets can be done in PTIME.

(b) The responsibility decision problem for conjunctive queries, which is about
deciding if a tuple’s responsibility is greater that a bound v (that is part of
the input) is NP-complete. However, this problem becomes fixed-parameter
tractable, with the parameter being %

(c) The problem of computing responsibilities of causes is FPNPUogm)_
complete. Deciding most responsible causes is PVU220))_complete.

(d) The structure of the resulting hitting-set problem allows us to obtain effi-
cient parameterized algorithms and good approximation algorithms for
computing causes and minimal contingency sets.

(e) From the repair connection we obtain that, for consistency based-diagnosis
with specifications given by positive implications with disjunctive con-
sequents, the problems of computing minimum-cardinality diagnoses and
computing minimum-cardinality diagnoses that contain a given atom are
both FPNPU98M)_hard in the size of their underlying Herbrand structure.

4. We define notions of preferred causes; in particular one based on prioritized
repairs [59]. We also propose an approach to causality based on interventions
that are repair actions that replace attribute values by null values.

The paper is structured as follows. Section 2 introduces technical preliminaries
for relational databases, causality in databases, database repairs and consistent query
answering, consistency-based diagnosis, and relevant complexity classes. Section 3
characterizes actual causes and responsibilities in terms of database repairs. Section 4
characterizes repairs and consistent query answers in terms of causes and contingency
sets for queries that are unions of conjunctive queries, and presents an algorithm for
computing both of the latter. Section 5 formulates causality and repair problems as
consistency-based diagnosis problems. Section 6 shows complexity and algorithmic
results; in particular a fixed-parameter tractability result for causes’ responsibilities,
and also about consistency based-diagnosis. Section 7 deals with preferred causes.
Section 8 discusses several relevant issues, connections and open problems around
causality in databases. It also draws some final conclusions. We provide proofs for
all the results except for those that are rather straightforward. This is an extended
version of [58]. It contains proofs, many improvements in the presentation, and also
new developments and results, mainly in Sections 6.2 and 7.

@ Springer

Theory Comput Syst (2017) 61:191-232 195

2 Preliminaries

We consider relational database schemas of the form & = (U, P), where U is the
possibly infinite database domain of constants and P is a finite set of database pred-
icates® of fixed arities. A database instance D compatible with S can be seen as a
finite set of ground atomic formulas (in databases aka. atoms or tuples), of the form
P(cy,...,cn), where P € P has arity n,and ¢y, ...,c, € U.

A conjunctive query (CQ) is a formula Q(x) of the first-order (FO) logic lan-
guage, L(S), associated to S of the form 3Iy(Pi(51) A -+ A Py (5y)), where the
P;(5;) are atomic formulas, i.e. P; € P, and the 5; are sequences of terms, i.e.
variables or constants.* The ¥ in Q(x) shows all the free variables in the formula,
i.e. those not appearing in y. If x is non-empty, the query is open. If X is empty,
the query is Boolean (a BCQ), i.e. the query is a sentence, in which case, it is
true or false in a database, denoted by D = Q and D [Q, respectively. A
sequence ¢ of constants is an answer to an open query Q(x) if D = Q[c], i.e. the
query becomes true in D when the free variables are replaced by the corresponding
constants in c.

An integrity constraint is a sentence of language £(S), and then, may be true or
false in an instance for schema S. Given a set I C of integrity constraints for schema
S, a database instance D is consistent with IC if D |= IC; otherwise it is said to
be inconsistent. In this work we assume that sets of integrity constraints are always
finite and logically consistent.

A particular class of integrity constraints is formed by denial constraints
(DCs) which are sentences x of the form: Vs—(A;(5;) A --- A A,(5,), wWhere
s U5 and each A;(5;) is a database atom, i.e. predlcate A; € P. So
as w1th conjunctive queries, the atoms may contain constants. Denial constraints
are exactly the negations of BCQs. Sometimes we use the common represen-
tation of DCs as “negative rules” of the form: <« A(s1),..., A,(5,). We
will also consider functional dependencies (FDs) as DCs. They are represented
by negative rules of the form: <« A(x1,x2,y), A(X1,X3,2),y # 2z, saying
that the last attribute of relation A functionally depends upon the attributes hold-
ing variables x;. They do not contain constants, and correspond to BCQs with
inequality.

2.1 Causality and responsibility

Assume that the database instance is split in two, i.e. D = D" U D¥, where D" and

D* denote the disjoint sets of endogenous and exogenous tuples, respectively.
Actual causes and contingent tuples are usually restricted to be among a pre-

specified set of endogenous tuples, which are admissible, possible candidates for

3 As opposed to built-in predicates (e.g. #) that we assume do not appear, unless explicitly stated otherwise.
“4In this work, we will assume, unless otherwise explicitly said, that CQs may contain inequality atoms
(equality atoms are not an issue, because they can always be eliminated).

@ Springer

196 Theory Comput Syst (2017) 61:191-232

causes, as opposed to the exogenous tuples. Actually, the latter provide the con-
text or the background for the problem, and are considered as external factors
that are not of interest to the current problem statement or beyond our control.
Since no intervention (or update, in database parlance) is conceivable on exoge-
nous tuples, they can not be included in any contingency set or be an actual
cause. They are assumed to be included in all conceivable hypothetical states of a
database.

The endogenous/exogenous partition is application-dependent and captures prede-
termined factors, such as users preferences that may affect QA-causal analysis. For
example, certain tuples or full tables might be identified as irrelevant (or exogenous)
in relation to a particular query at hand, or decided to be exogenous or endogenous a
priori, independently from the query.

A tuple t € D" is called a counterfactual cause for a BCQ Q, if D = Q and
D~ {t} = Q. Atuple t € D" is an actual cause for Q if there exists I' C D", called
a contingency set, such that ¢ is a counterfactual cause for Q in D . I" [47].

We will concentrate mostly on CQs. However, the definitions of actual cause and
contingency set can be applied without a change to monotone queries in general [47],
in particular to unions of BCQs (UBCQs), with or without built-ins.

The responsibility of an actual cause ¢ for Q, denoted by p,(¢), is the numerical
value \FI%’ where |I"| is the size of the smallest contingency set for r. We can extend
responsibility to all the other tuples in D" by setting their value to 0. Those tuples
are not actual causes for Q.

Example 1 Consider D = D" = {R(a4, a3), R(az, a1), R(a3, a3), S(as), S(az),
S(a3)}, and the query Q : Ix3y(S(x) A R(x, y) A S(y)). Itholds: D = Q.

Tuple S(a3) is a counterfactual cause for Q. If S(a3) is removed from D, Q is
not true anymore. Therefore, the responsibility of S(a3) is 1. Besides, R (a4, a3) is an
actual cause for Q with contingency set { R (a3, a3)}. If R(a3, a3) is removed from D,
Q is still true, but further removing R (a4, a3) makes Q false. The responsibility of
R(ayg, a3) is % because its smallest contingency sets have size 1. Likewise, R (a3, a3)
and S(aq) are actual causes for Q with responsibility %

For the same Q, but with D = {S(a3), S(as), R(a4, a3)}, and the partition D" =
{S(aq), S(az)} and D* = {R(a4, a3)}, it turns out that both S(a3) and S(ay4) are
counterfactual causes for Q.

Remark 1 In the rest of this paper, we will assume in the context of causality that
database instances D are partitioned as D = D" U DY, into a subset of endogenous
and a set of exogenous tuples, respectively. We will denote with Causes(D, Q) the
set of actual causes for the BCQ Q (being true) from instance D.

2.2 Database repairs

Given a set IC of integrity constraints, a subset repair (simply, S-repair) of a possi-
bly inconsistent instance D for schema S is an instance D’ for S that satisfies IC and

@ Springer

Theory Comput Syst (2017) 61:191-232 197

makes A(D, D') = (D ~. D) U (D’ ~. D) minimal under set inclusion.> Srep(D, IC)
denotes the set of S-repairs of D with respect to IC [2]. Similarly, D’ is a cardi-
nality repair (simply C-repair) of D if D’ satisfies /C and minimizes |A(D, D)|.
Crep(D, IC) denotes the class of C-repairs of D with respect to IC. C-repairs are
always S-repairs. For DCs, S-repairs and C-repairs are obtained from the original
instance by deleting an S-minimal, resp. C-minimal, set of tuples. In other words, S-
and C-repairs under DCs become maximal (under set inclusion), resp. maximum (in
cardinality), consistent subsets of the given instance.

In more general terms, we say that a set is S-minimal in a class of sets C if it
is minimal under set inclusion in C. Similarly, a set is C-minimal (or minimum) if
it is minimal in cardinality within C. S-maximality and C-maximality are defined
similarly.

Example 2 (ex. 1 cont.) Consider the denial constraint «: < S(x), R(x, y), S(y),
whose body corresponds to the CQ in Example 1, and is violated by the given instance D.

Here, Srep(D, k) = {D1, D2, D3} with D1 = {R(a4, a3), R(az, a1), R(az, a3),
S(aq), S(a2)}, D2 = {R(az, a1), S(a4), S(az), S(az)}, D3 = {R(a4, a3), R(az, ay),
S(az), S(az)}. The only C-repair is Dy, i.e. Crep(D, k) = {D1}.

More generally, different repair semantics may be considered to restore con-
sistency with respect to general integrity constraints. They depend on the kind
of allowed updates on the database (i.e. tuple insertions/deletions, changes of
attribute values), and the minimality conditions on repairs, e.g. subset-minimality,
cardinality-minimality, etc.

Given D and IC, a repair semantics, S, defines a class RepS(D, 1C) of S-repairs,
which are the intended repairs [9, Sec. 2.5]. All the elements of RepS(D, IC) are
instances over the same schema of D, and consistent with respect to IC. If D is
already consistent, Reps(D, IC) contains D as its only member.

Given a repair semantics, S, ¢ is a S-consistent answer to an open query Q(x) if
D' |= Q[¢] for every D' € RepS(D, IC). A BCQ is S-consistently true if it is true
in every D' € RepS(D, IC). In particular, if ¢ is a consistent answer to Q(x) with
respect to S-repairs, we say it is an S-consistent answer. Similarly for C-consistent
answers. Consistent query answering for DCs under S-repairs was investigated in
detail [18]. C-repairs and consistent query answering under them were investigated
in detail in [43]. (Cf. [9] for more references.)

2.3 Consistency-based diagnosis
Consistency-based diagnosis, a form of model-based diagnosis [60, Sec. 10.4],

considers problems M = (SD, COMPS, OBS), where SD is the description in logic of
the intended properties of a system under the explicit assumption that all the components

>In general, in the context of repairs, partitions on instances are not considered. However, in Section 7.3
we will bring them into the repair scene.

@ Springer

198 Theory Comput Syst (2017) 61:191-232

in COMPS are working normally. OBS is a FO sentence that represents the observa-
tions. If the system does not behave as expected (as shown by the observations),
then the logical theory obtained from SD U OBS plus the explicit assumption, say
NAcecomps ~Ab(c), that the components are indeed behaving normally, becomes
inconsistent. Ab is an abnormality predicate.®

The inconsistency is captured via the, i.e. those minimal subsets COMPS’
of COMPS, such that SD U OBS U{\ cecomps "Ab(c)} is inconsistent. As expected,
different notions of minimality can be used at this point.

A minimal diagnosis for M is a minimal subset A of COMPS, such that
SD U OBS U {—Ab(c) | c € COMPS ~. A} U {Ab(c) | ¢ € A} is consistent. That
is, consistency is restored by flipping the normality assumption to abnormality for
a minimal set of components, and those are the ones considered to be (jointly)
faulty. The notion of minimality commonly used is S-minimality, i.e. a diagno-
sis that does not have a proper subset that is a diagnosis. We will use this kind
of minimality in relation to diagnosis. Diagnosis can be obtained from conflict
sets [53].

Example 3 Consider a simple logical gate Or, denoted with o (the only system com-
ponent in this case), that receives two digits, x, y, as inputs and outputs a digit
val(x, y).

This simple system can be specified in terms of normal behavior by the log-
ical formula o : —AB(0) — VaxVyval(x,y) = 0 «— x =y = 0)),
saying that, when the gate is not abnormal, the output is O iff the inputs are
both 0.

The logical theory {o, val(0,1) = 0} is logically consistent (it can be made
true) despite the unexpected observation (namely, output O with inputs 0, 1). This
is because the system’s model allows for abnormal behaviors. However, this theory
together with the extra assumption —Ab(0), i.e. that the gate is normal, form the
theory {o, val(0,1) = 0, —Ab(0)} that is inconsistent in the sense that it can not
be made true (in technical terms, it has not models).

2.4 Complexity classes

We recall some complexity classes [52] used in this paper. FP is the class of
functional problems associated to decision problem in the class PTIME, i.e. that are
solvable in polynomial time. PV (or Ag) is the class of decision problems solvable
in polynomial time by a machine that makes calls to an NP oracle. For pNP(og(m)
the number of calls is logarithmic. It is not known if PNP(102) ig strictly contained
in PN ppNPlog) i similarly defined.

%Here, and as usual, the atom Ab(c) expresses that component ¢ is (behaving) abnormal(ly).

@ Springer

Theory Comput Syst (2017) 61:191-232 199

3 Actual Causes From Database Repairs

In this section we characterize actual causes for a BCQ Q being true in a database
instance D in terms of the repairs of D with respect to a denial constraint whose
violation view is Q, i.e. the latter asks if the constraint is violated. In essence, the
actual causes will become the tuples outside an S-repair. The complement of the
latter contains the cause plus a contingency set for the cause. In order to capture
responsibility, C-repairs are considered.

Let D be an instance for schema S, and Q: Ix(P;(X1) A -+ A Py (X)) a BCQ.
O may be unexpectedly true, i.e. D = Q. Now, —Q is logically equivalent to the DC
k(Q): Vx—(Pi(X1) A+ A Pp(x;)). The requirement that —Q holds can be captured
by imposing « (Q) on D. Due to D = Q, it holds D }~= x(Q). So, D is inconsistent
with respect to « (Q), and could be repaired.

Repairs for (violations of) DCs are obtained by tuple deletions. Intuitively, a tuple
that participates in a violation of « (Q) in D is an actual cause for Q. S-minimal sets
of tuples like this are expected to correspond to S-repairs for D with respect to « (Q).

More precisely, given an instance D, a BCQ O, and a tuple t € D", we consider:

— The class containing the sets of differences between D and those S-repairs that
do not contain ¢, and are obtained by removing a subset of D":

Diff (D, k(Q),t) = {D~ D' | D' € Srep(D, k(Q)),
t e (D~ D) C D"} (1)

— The class containing the sets of differences between D and those C-repairs that
do not contain ¢, and are obtained by removing a subset of D":

Diff'(D,x(Q),1) = {D ~ D' | D' € Crep(D, k(Q)),
te (D~ D)< D"}. 2)

It holds Diff* (D, k(Q), t) C Diff* (D, k(Q), t).

Now, any A € Diff (D, k(Q), t) can be written as A = A’ U {t}. From the S-
minimality of S-repairs, it follows that D~ (A'U{r}) = «(Q),but D\ A" = =k (Q).
That is, D ~ (A’ U {t}) = Q,but D ~ A’ = Q. As a consequence, ¢ is an actual
cause for Q with contingency set A’. We have obtained the following result.

Proposition 1 Given an instance D and a BCQ O, t € D" is an actual cause for
Q iff Difff(D,«k(Q),t) # @. Furthermore, if D ~ D' € Diff (D, k(Q), t), then
D ~. (D’ U {t}) is a minimal contingency set for .

Proposition 2 Given an instance D, a BCQ Q, andt € D":

(@) IfDiff (D,k(Q),t) =0, then p,(t) = 0.
(b) Otherwise, p, (1) = ﬁ where A € Diff*(D, x(Q), t) and there is no A' €
Diff *(D, k(Q), t) such that |A'| < |Al.

@ Springer

200 Theory Comput Syst (2017) 61:191-232

Corollary 1 Given an instance D and a BCQ Q: t € D" is a most responsible

actual cause for Q iff Diff*(D, «x(Q),t) # @.

Example 4 (ex. 1 and 2 cont.) Consider the same instance D and query Q. The asso-
ciated DCis x(Q): < S(x), R(x, y), S(y) that we considered in Example 2, where
we obtained Srep(D, k(Q)) = {D1, Dy, D3} and Crep(D, k(Q)) = {D1}.

For tuple R(ay, a3), Diff’ (D, k(Q), R(as, az)) = {D~ D2} = {{R(a4, a3), R(as,
a3z)}}, which, by Propositions 1 and 2, confirms that R(a4, a3) is an actual cause,
with responsibility % The complement of D ~\ D; contains the actual cause R (a3, a3)
plus a contingency set of it, namely that formed by tuple R(a3, az), which has to be
deleted together with the actual cause R(a4, a3) to restore consistency (cf. Example
2).

For tuple S(a3), Diff* (D, k(Q), S(a3)) = {D ~ D1} = {{S(a3)}}. So, S(a3) is an
actual cause with responsibility 1.

Similarly, R(a3, a3) is an actual cause with responsibility %, because Diff* (D,
k(Q), R(az,a3)) = {D \ D2, D~ D3} = {{R(as, a3), R(az, a3)}, {R(a3, a3),
S(as)}}.

It holds Diff*(D, k(Q), S(az)) = Diff’ (D, k(Q), R(az,a;)) = @, because all
repairs contain S(az), R(az, ar). This means they do not participate in the violation
of K (Q) or contribute to make Q true. So, they are not actual causes for Q, confirming
the result in Example 1.

Diff* (D, k(Q), S(az)) = {{S(a3)}}. From Corollary 1, S(a3) is the most respon-
sible cause. O

Remark 2 The results in this section can be easily extended to unions of BCQs. This
can be done by associating a DC to each disjunct of the query, and considering the
corresponding problems for database repairs with respect to several DCs (cf. Section
4.1).

4 Database Repairs from Actual Causes

In this section we characterize repairs for inconsistent databases with respect to a set
of DCs in terms of actual causes with their contingency sets. The reduction of repair-
related computations to cause-related computations is particularly relevant, because
we can take advantage of known complexity results for repairs to obtain new lower-
bound complexity results for causality.

Causality has been investigated so far mainly for single conjunctive queries. How-
ever, database repairs appear in the context of sets of constraints. We concentrate
on sets of DCs, which requires extending the analysis of causality to unions of
conjunctive queries.

More concretely, in this section we characterize repairs of a database instance D
with respect to a set £ of DCs in terms of the actual causes (with their contingency
sets) for the union of the conjunctive queries naturally associated to the (bodies of
the) DCs. In essence, an S-repair D’ is a maximal subset of D that does not contain

@ Springer

Theory Comput Syst (2017) 61:191-232 201

any actual cause ¢, and the tuples other than ¢ and outside D’ form a contingency set
for t. As expected, C-repairs require the use of most responsible tuples.

Consider an instance D for schema S, and a set of DCs X on S. For each k € X,
say k: <« A1(x1),...,A,(x,), consider its associated violation view defined by a
BCQ, namely V*: 3x(A1(x1) A --- A Ay(x,)). The answer yes to V¥ shows that «
is violated (i.e. not satisfied) by D.

Next, consider the query that is the union of the individual violation views:
VE o= Ves V¥, a union of BCQs (UBCQs). Clearly, D violates (is inconsistent
with respect to) X iff D = V=

It is easy to verify that D, with D* = {, is consistent with respect to ¥ iff
Causes(D, V¥) = {, i.e. there are no actual causes for V> when all tuples are
endogenous.

Now, let us collect all S-minimal contingency sets associated with an actual cause
t for V*:

Definition 1 For an instance D and a set X of DCs:

Cont(D,V¥,t) :={T CD"|D~T E VX, D~ (TU{t}) &V, (3)
andVI" G T, D~ (I"U{t}) | VZ}.

Notice that for I' € Cont(D, V*,t), it holds t ¢ T'. When D¥ = @, if r €
Causes(D, VE) and T € Cont(D, V=, 1), from the definition of actual cause and
the S-minimality of T, it holds that ' = " U {} is an S-minimal subset of D with
D ~T” = VE.So, D \. T is an S-repair for D. Then, the following holds.

Proposition 3 For an instance D, with D* = {, and a set DCs ¥: D' C D is an
S-repair for D with respect to X iff, for everyt € D ~. D': t € Causes(D, V*) and
D ~ (D' U {t}) € Cont(D, V=, 1).

To establish a connection between most responsible actual causes and C-repairs,
assume that D* = J, and collect the most responsible actual causes for vz,

Definition 2 For an instance D with D* = (J:

MRC(D, V¥) := {t € D |t € Causes(D, V¥), At € Causes(D,V¥) (4)
with p, (') > p, ()}
Proposition 4 For instance D, with D* = (, and set of DCs ¥: D' C D isa C-

repair for D with respect to ¥ iff, for everyt € D ~. D': t € MRC(D, V*¥) and
D~ (D' U{t}) € Cont(D, V*,1).

Actual causes for V=, with their contingency sets, account for the violation of

some k € X. Removing those tuples from D should remove the inconsistency. From
Propositions 3 and 4 we obtain:

@ Springer

202 Theory Comput Syst (2017) 61:191-232

Corollary 2 Given an instance D and a set DCs X, the instance obtained from D
by removing an actual cause, resp. a most responsible actual cause, for V= together
with any of its S-minimal, resp. C-minimal, contingency sets forms an S-repair, resp.
a C-repair, for D with respect to X.

Example 5 Consider D = {P(a), P(e), Q(a, b), R(a,c)} and ¥ = {«1, k2}, with
K1: < P(x), Q(x,y)and ko: < P(x), R(x, y).

The violation views are V*! : Axy(P(x)AQ(x, y)) and V<2: Ixy(P(x)AR(x, y)).
For VZ := V¥L v V<2 D = VZ and D is inconsistent with respect to X.

Now assume all tuples are endogenous. It holds Causes(D,V*) = {P(a),
Q(a, b), R(a, c)}, and its elements are associated with sets of S-minimal contingency
sets, as follows: Cont(D, V=, Q(a, b)) = {{R(a,c)}}, Cont(D,V* R(a,c)) =
{{0(a, b)}}, and Cont(D, V=, P(a)) = {#}.

From Corollary 2, and Cont(D, V>, R(a,c)) = {{Q(a,b)}}, Dy = D ~
({R(a, c)}u{Q(a, b)}) = {P(a), P(e)}isan S-repair. Sois Dy = D~ ({P(a)}Ud) =
{P(e), Q(a, b), R(a, c)}. These are the only S-repairs.

Furthermore, MRC(D, V*) = {P(a)}. From Corollary 2, D, is also a C-repair for D.

Remark 3 An actual cause ¢ with any of its S-minimal contingency sets determines a
unique S-repair. The last example shows that, with different combinations of a cause
and one of its contingency sets, we may obtain the same repair (e.g. for the first two
Cont sets). So, we may have more minimal contingency sets than minimal repairs.
However, we may still have exponentially many minimal contingency sets, so as we
may have exponentially many minimal repairs of an instance with respect to DCs, as
the following example shows.’

Example 6 Consider D = {R(1,0), R(1,1),..., R(n,0), R(n, 1), S(1), S(0)} and
the DCk: < R(x, y), R(x, 2), S(y), S(2). D is inconsistent with respect to «. There
are exponentially many S-repairs of D: D' = D~ {S(0)}, D" = D ~ {S(1)}, D| =
D~ {R(1,0),...,R(n,0)}, ..., Don = D~ {R(1,1),..., R(n, 1)}. The C-repairs
are only D" and D”.

For the BCQ V¥ associated to k, D = V¥, and S(1) and S(0) are actual causes
for V¥ (courterfactual causes with responsibility 1). All tuples in R are actual causes,
each with exponentially many S-minimal contingency sets. For example, R(1, 0) has
the S-minimal contingency set {R(2,0), ..., R(n,0)}, among exponentially many
others (any set built with just one element from each of the pairs {R(2, 0), R(2, 1)},
v {R(n,0), R(n, 1)} is one).

4.1 Causes for Unions of Conjunctive Queries

If we want to compute repairs with respect to sets of DCs from causes for UBCQs
using, say Corollary 2, we first need an algorithm for computing the actual causes

7Cf. [4] for an example of the latter that uses key constraints, which are DCs with inequalities (with
violation views that contain inequality).

@ Springer

Theory Comput Syst (2017) 61:191-232 203

and their (minimal) contingency sets for UBCQs. These algorithms could be used as
a first stage of the computation of S-repairs and C-repairs with respect to sets of DCs.
However, these algorithms (developed in Section 4.2), are also interesting and useful
per se.

The PTIME algorithm for computing actual causes in [47] is for single conjunctive
queries, but does not compute the actual causes’ contingency sets. Actually, doing
the latter increases the complexity, because deciding responsibility® of actual causes
is NP-hard [47] (which would be tractable if we could efficiently compute all (mini-
mal) contingency sets).’ In principle, an algorithm for responsibilities can be used to
compute C-minimal contingency sets, by iterating over all candidates, but Example
6 shows that there can be exponentially many of them.

We first concentrate on the problem of computing actual causes for UBCQs,
without their contingency sets, which requires some notation.

Definition 3 Given Q@ = C; Vv --- Vv Cy, where each C; a BCQ, and an instance D:

(a) G&(D) is the collection of all S-minimal subsets of D that satisfy a disjunct C;
of Q.

(b) &"™(D) consists of the S-minimal subsets A of D" for which there exists a
A e &(D)with A € A’and A N\ A’ C D*. O

&"(D) contains all S-minimal sets of endogenous tuples that simultaneously (and
possibly accompanied by exogenous tuples) make the query true. It is easy to see that
&(D) and S"(D) can be computed in polynomial time in the size of D.

Now, generalizing a result for CQs in [47], actual causes for a UBCQs can be com-
puted in PTIME in the size of D without computing contingency sets. We formulate
this results in terms of the corresponding causality decision problem (CDP).

Proposition 5 Given an instance D, a UBCQ Q, andt € D":

(a) tisanactual cause for Q iff there is A € & (D) witht € A.
(b) The causality decision problem (about membership of)

CDP :={(D,t)|t € D", and t € Causes(D, Q)} 5)
belongs to PTIME.

Proof

(a) Assume &(D) = {Aq,..., A}, and there exists a A € &"(D) witht € A.
Consider aset I' € D" such that, for all A; € &" (D) where A; Z A, TNA; #
@and I' N A = @. With such a I, 7 is an actual cause for Q with contingency
set I". So, it is good enough to prove that such I always exists. In fact, since
all subsets of G" (D) are S-minimal, then, for each A; € G (D) with A; # A,

8For a precise formulation, see Definition 5.
9 Actually, [47] presents a PTIME algorithm for computing responsibilities for a restricted class of CQs.

@ Springer

204 Theory Comput Syst (2017) 61:191-232

A; N A = @. Therefore, I" can be obtained from the set of difference between
each A; and A.

Now, if ¢ is an actual cause for Q, then there exist an S-minimal I' € D",
such that D ~ (' U {¢t}) &= Q, but D ~\ T = Q. This implies that there
exists an S-minimal subset A of D, such that 1 € A and A = Q. Due
to the S-minimality of T, it is easy to see that ¢ is included in a subset of

G (D).
(b) This is a simple generalization of the proof of the same result for single
conjunctive queries found in [47]. O

Example 7 (ex.5 cont.) Consider the query Q: Ixy(P(x) A Q(x,y))VIxy(P(x)A
R(x, y)), and assume that for D, D" = {P(a), R(a, ¢)} and D* = {P(e), Q(a, b)}.
It holds &(D) = {{P(a), Q(a,b)},{P(a), R(a,c)}}. Since {P(a)} < {P(a),
R(a,)}, & (D) = {{P(a)}}. So, P(a) is the only actual cause for Q.

4.2 Contingency Sets for Unions of Conjunctive Queries

It is possible to develop a (naive) algorithm that accepts as input an instance D and a
UBCQ 9, and returns Causes(D, Q); and also, for each t € Causes(D, Q), its (set
of) S-minimal contingency sets Cont(D, Q, t).

The basis for the algorithm is a correspondence between the actual causes for Q
with their contingency sets and a hitting-set problem.' More precisely, for a fixed
UBCQ Q, consider the hitting-set framework

9" (D) = (D", 6" (D)), (6)

with &"(D) as in Definition 3. Different computational and decision problems are
based on $" (D), and we will confront some below. Notice that hitting-sets (HSs) are
all subsets of D".

The S-minimal hitting-sets for £ (D) correspond to actual causes with their S-
minimal contingencies for Q. Most responsible causes for Q are in correspondence
with hitting-sets for " (D). This is formalized as follows:

Proposition 6 For an instance D, a UBCQ Q, andt € D":

(a) t is an actual cause for Q with S-minimal contingency set I' iff T U {t} is an
S-minimal hitting-set for)" (D).

(b) t is a most responsible actual cause for Q with C-minimal contingency set I iff
" U {t} is a minimum hitting-set for H" (D).

101f C is a collection of non-empty subsets of a set S, a subset S C S is a hitting-set for C if, for every
CelC,CNS #@. § isan S-minimal hitting-set if no proper subset of it is also a hitting-set. S is a
minimum hitting-set if it has minimum cardinality.

@ Springer

Theory Comput Syst (2017) 61:191-232 205

The proof is similar to that of part (a) of Proposition 5.

Example 8 (ex. 5 and 7 cont.) D and Q are as before, but now all tuples are
endogenous. Here, (D) = &*(D) = {{P(a), Q(a, b)}, {P(a), R(a, c)}}. 5" (D)
has two S-minimal hitting-sets: H; = {P(a)} and H = {Qf(a,b), R(a,c)}.
Each of them implicitly contains an actual cause (any of its elements) with an
S-minimal contingency set (what’s left after removing the actual cause). H is
also the C-minimal hitting-set, and contains the most responsible actual cause,
P(a).

Remark 4 For $H"(D) = (D", & (D)), &*(D) can be computed in PTIME in data
complexity, and its elements are bounded in size by |Q|, which is the maximum num-
ber of atoms in one of Q’s disjuncts. This is a special kind of hitting-set problems.
For example, deciding if there is a hitting-set of size at most k as been called the d-
hitting-set problem [50], and d is the bound on the size of the sets in the set class. In
our case, d would be |Q].

4.3 Causality, Repairs, and Consistent Answers

Corollary 2 and Proposition 6 can be used to compute repairs. If the classes of S- and
C-minimal hitting-sets for $"*(D) (with D" = D) are available, computing S- and
C-repairs will be in PTIME in the sizes of those classes. However, it is well known
that computing minimal hitting-sets is a complex problem. Actually, as Example 6
implicitly shows, we can have exponentially many of them in | D|; so as exponentially
many minimal repairs for D with respect to a denial constraint. We can see that
the complexity of contingency sets computation is in line with the complexities of
computing hitting-sets and repairs.

As Corollary 2 and Proposition 6 show, the computation of causes, contingency
sets, and most responsible causes via minimal/minimum hitting-set computation
can be used to compute repairs and decide about repair questions. Since the
hitting-set problems in our case are of the d-hitting-set kind, good algorithms and
approximations for the latter (cf. Section 6.1) could be used in the context of repairs.

In the rest of this section we consider an instance D whose tuples are all endoge-
nous, and a set ¥ of DCs. For the disjunctive violation view V*, the following result
is obtained from Propositions 3 and 4, and Corollary 2.

Corollary 3 For an instance D, with D* = (4, and a set % of DCs, it holds:

(a) Foreveryt € Causes(D, V*), there is an S-repair that does not contain t.

(b) Foreveryt € MRC(D, V¥), there is a C-repair that does not contain .

(¢c) For every D' € Srep(D,X) and D" € Crep(D, %), it holds D ~ D' C
Causes(D, V=) and D ~ D" C MRC(D, V=),

For a projection-free, and a possibly non-Boolean CQ Q, we are interested in its
consistent answers from D with respect to X. For example, for Q(x, y, z): R(x, y)A

@ Springer

206 Theory Comput Syst (2017) 61:191-232

S(y, z), the S-consistent (C-consistent) answers would be of the form (a, b, c), where
R(a, b) and S(b, c) belong to all S-repairs (C-repairs) of D.

From Corollary 3, (a, b, c) is an S-consistent (resp. C-consistent) answer iff
R(a,b) and S(b,c) belong to D, but they are not actual causes (resp. most
responsible actual causes) for V.

The following simple result and its corollary will be useful in Section 6.

Proposition 7 For an instance D, with D* = §, a set ¥ of DCs, and a projection-free
CO Q): Pi(x) A+ A Pr(Xp):

(a) ¢ is an S-consistent answer iff, for each i, P;i(¢;) € (D ~ Causes(D, V*)).
(b) ¢ is a C-consistent answer iff, for each i, P;(¢;) € (D ~ MRC(D, VE).

Example 9 (ex. 5 cont.) Consider Q(x) : P(x). We had Causes(D, V*) =
{P(a), O(a,b), R(a,c)}, MRC(D, V¥) = {P(a)}. Then, {e) is both an S- and a
C-consistent answer.

Notice that Proposition 7 can easily be extended to conjunctions of ground atomic
queries.

Corollary 4 Given an instance D and a set ¥ of DCs, the ground atomic query
Q: P(c) is C-consistently true iff P(c) € D and it is not a most responsible cause
for V=,

Example 10 For D = {P(a,b),R(b,c),R(a,d)} and the DC k : <«
P(x,y), R(y, z), we obtain: Causes(D, V¥) = MRC(D, V¥) = {P(a, b), R(b, ¢)}.

From Proposition 7, the ground atomic query Q: R(a,d) is both S- and C-
consistently true in D with respect to «, because, D . Causes(D,V*) = D ~
MRC(D, V*) = {R(a, d)}.

The CQs considered in Proposition 7 and its Corollary 4 are not particularly inter-
esting per se, but we will use those results to obtain new complexity results for
causality later on, e.g. Theorem 3.

5 Causes and Repairs from Consistency-Based Diagnosis

The main objective in this section is to characterize database causality computation
as a diagnosis problem.!! This is interesting per se, and will also allow us to apply
ideas and techniques from model-based diagnosis to causality. As a side result we
obtain a characterization of database repairs in terms of diagnosis.

1I'The other direction is beyond the scope of this work. More importantly, logic-based diagnosis in general
is a much richer scenario than that of database causality. In the former, we can have arbitrary logical
specification, whereas under data causality, we have only monotone queries at hand.

@ Springer

Theory Comput Syst (2017) 61:191-232 207

Let D be an instance for schema S, and Q : Ix(Pi(x1) A -+ A Pyu(Xy)),
a BCQ. Assume Q is, possibly unexpectedly, true in D. So, for the associated
DC «(Q) : Vx—=(Pi(x1) A -+ AN Py(Xn)), D = «k(Q). Q is our observa-
tion, for which we want to find explanations, using a consistency-based diagnosis
approach.

For each predicate P € P, we introduce predicate Abp, with the same arity as P.
Intuitively, a tuple in its extension is abnormal for P. The “system description”, SD,
includes, among other elements, the original database, expressed in logical terms,
and the DC as true “under normal conditions”.

More precisely, we consider the following diagnosis problem, M = (SD, D", Q),
associated to Q. The FO system description, S D, contains the following elements:

(a) Th(D), which is Reiter’s logical reconstruction of D as a FO theory [54] (cf.
Example 11).
(b) Sentence x (Q)'?, which is x (Q) rewritten as follows:

K (QN: VE—(Py(X1) A —Abp (X1) A -+ A Ppy(Zm) A —=Abp, (). (7)

(c) Formula (7) can be refined by applying the abnormality predicate, Ab, to
endogenous tuples only. For this we need to use additional auxiliary predicates
Endp, with the same arity of P € &, which contain the endogenous tuples
in P’s extension (see Example 11). Accordingly, we introduce the inclusion
dependencies: For each P € P,

VX(Abp(x) — Endp(x)), and Vx(Endp(x) — P(x)).

The last entry, Q, in M is the “observation”, which together with SD will produce
and inconsistent theory, because we make the initial and explicit assumption that all
the abnormality predicates are empty (equivalently, that all tuples are normal), i.e. we
consider, for each predicate P, the sentence!?

VX(Abp(x) — false),)

where, false is a propositional atom that is always false.

The second entry in M is D". This is the set of “components” that we can use to
try to restore consistency, in this case, by (minimally) changing the abnormality con-
dition on tuples in D”. In other words, the universal rules (8) are subject to exceptions
or qualifications: some endogenous tuples may be abnormal. Each diagnosis shows
an S-minimal set of endogenous tuples that are abnormal.

Example 11 (ex. 1 cont.) Consider the query Q : Ix3y(S(x) A R(x, y) A S(y)), and
the instance D = {S(a3), S(a4), R(a4, a3)}, with D" = {S(a4), S(a3z)}, consider the
diagnostic problem M = (SD, {S(as), S(a3)}, Q), with SD containing the sentences
in (a)-(c) below:

12Notice that these can also be seen as DCs, since they can be written as Vx—Abp (X).

@ Springer

208 Theory Comput Syst (2017) 61:191-232

(a) Predicate completion axioms plus unique names assumption:
Vxy(R(x,y) <> x=as Ny =a3), Yx(Sx) < x=a3Vx=ay), 9
Vxy(Endg(x,y) < false), Vx(Ends(x) <> x =a3V x = ay), (10)
a4 # as. (11D
(b) The denial constraint qualified by non-abnormality, & (QY*0:
Vxy=(S(x) A —=Abs(x) A R(x, y) A =Abgr(x, y) A S(y) A —Abs(y)).
In diagnosis formalizations this formula would be usually presented as:
Vxy((mAbs(x) A =Abg(x, y) A =Abs(y)) —> —(S(x) A R(x, y) A S(»))).

That is, under the normality assumption, the “system” behaves as intended; in
this case, there are no violations of the denial constraint. This main formula in
the diagnosis specification can also be written as a disjunctive positive rule:

Vxy(S(x) A R(x, y) AS(y) —> Abs(x) V Abr(x,y) Vv Abs(y)). (12)

(c) Abnormality/endogenousity predicates are in correspondence to the database
schema, and only endogenous tuples can be abnormal:

Vxy(Abg(x,y) = Endg(x,y)), Vxy(Endg(x,y) — R(x,y)), (13)
Vx(Abs(x) — Endgs(x)), Vx(Ends(x) — S(x)). (14)
In addition to this specification, we have the observation Q:
Iy (S(x) A R(x, y) A S(y)). 15)
Finally, we make the assumption that there are not abnormal tuples:
Vxy(Abgr(x,y) — false), Vx(Abs(x) — false). (16)

The FO theory formed by (9) - (16) (more precisely, (9), (11), (12), (15) and (16)) is
inconsistent.

Now, in more general terms, the observation is Q (being true), obtained by evalu-
ating query Q on (theory of) D. In this case, D [~ «(Q). Since all the abnormality
predicates are assumed to be empty, x(Q) is equivalent to x(Q)4?, which also
becomes false with respect to D. As a consequence, SD U {(8)} U {Q]} is an inconsis-
tent FO theory. A diagnosis is a set of endogenous tuples that, by becoming abnormal,
restore consistency.

Definition 4

(a) A diagnosis for M isa A C D", such that

SD U {Abp(c) | P(c) € A} U {=Abp(c) | P(¢c) € D~ A} U {Q}
is consistent.
(b) Diag®(M, t) denotes the set of S-minimal diagnoses for M that contain tuple
t € D",
(¢) Diag®(M, t) denotes the set of C-minimal diagnoses in Diag® (M, t).

@ Springer

Theory Comput Syst (2017) 61:191-232 209

Example 12 (ex. 11 cont.) The theory can be made consistent by giving up (16), and
making S-minimal sets of tuples abnormal. According to (13)-(14), those tuples have
to be endogenous.

M has two S-minimal diagnosis: A} = {S(a3)} and Ay = {S(as)}. The first one
corresponds to replacing the second formula in (16) by Vx(Abs(x) A x # a3 —
false), obtaining now a consistent theory.

Here, Diag®(M, S(a3z)) = Diag®(M, S(a3)) = {{S(a3)}}, and Diag®(M,
S(as)) = Diag®(M, S(as)) = {{ S(as)}}.

If R(a4,a3) is also endogenous, then also {R(as,a3)} becomes a minimal
diagnosis.

By definition, Diag®(M, t) C Diag®(M, t). Diagnoses for M and actual causes
for Q are related.

Proposition 8 Consider an instance D, a BCQ Q, and the diagnosis problem M
associated to Q. Tuple t € D" is an actual cause for Q iff Diag® (M., t) # (.

The responsibility of an actual cause ¢ is determined by the cardinality of the
diagnoses in Diag®(M, t).

Proposition 9 For an instance D, a BCQ Q, the associated diagnosis problem M,
and a tuple t € D", it holds:

(@ pp(1) =0 iff Diag®(M, 1) = 0.
(b) Otherwise, p,(t) = ﬁ, where A € Diag®(M,t).

For the proofs of Propositions 8 and 9, it is easy to verify that the conflict sets of
M coincide with the sets in &(D") (cf. Definition 3). The results are obtained from
the characterization of minimal diagnosis as minimal hitting-sets of sets of conflict
sets (cf. Section 2 and [53]) and Proposition 6.

Example 13 (ex. 12 cont.) From Propositions 8 and 9, S(a3) and S(a4) are actual
cases, with responsibility 1. If R(a4, a3) is also endogenous, it also becomes an actual
cause with responsibility 1.

In consistency-based diagnosis, minimal diagnoses can be obtained as S-minimal
hitting-sets of the collection of S-minimal conflict sets (cf. Section 2) [53]. In our
case, conflict sets are S-minimal sets of endogenous tuples that, if not abnormal (only
endogenous ones can be abnormal), and together, and possibly in combination with
exogenous tuples, make (7) false.

It is easy to verify that the conflict sets of M coincide with the sets in S(D") (cf.
Definition 3 and Remark 4). As a consequence, conflict sets for M can be computed
in PTIME, the hitting-sets for M contain actual causes for Q, and the hitting-set
problem for the diagnosis problems is of the d-hitting-set kind.

The reduction from causality to consistency-based diagnosis allows us to apply
constructions and techniques for the latter (cf. [27, 49]), to the former.

@ Springer

210 Theory Comput Syst (2017) 61:191-232

Example 14 (ex. 11 cont.) The diagnosis problem M = (SD, {S(a4), S(a3)}, Q)
gives rise to the hitting-set framework $" (D) = ({S(a4), S(a3z)}, {{(S(a3), S(as)}}),
with {S(a3), S(as)} corresponding to the conflict set ¢ = {S(a4), S(az)}.

$H"(D) has two minimum hitting-sets: {S(a3)} and {S(as)}, which are the S-
minimal diagnosis for M. Then, the two tuples are actual causes for Q (cf.
Proposition 8). From Proposition 9, p,,(S(a3)) = pp(S(as)) = 1.

The solutions to the diagnosis problem can be used for computing repairs.

Proposition 10 Consider an instance D with D* = (), a set of DCs of the form
K: YX=(P1 (X)) A+ A Py (X)), and their associated “abnormality-aware” integrity
constraints'3 in (7) (in this case we do not need Endp atoms).

Each S-minimal diagnosis A gives rise to an S-repair of D, namely Dn = D \
{P(c) € D|Abp(c) € A}, and every S-repair can be obtained in this way. Similarly,
for C-repairs using C-minimal diagnoses.

Example 15 (ex. 13 cont.) The instance D = {S(a3), S(as), R(as,a3)}, with
all tuples endogenous, has three (both S- and C-) repairs with respect to the DC
Kk @ Yxy—=(S(x) A R(x,y) A S(y)), namely D1 = {S(a3), R(aa,a3)}, D» =
{S(as), R(a4, a3)}, and D3 = {S(az), S(as)}. They can be obtained as Da,, Da,,
D, from the only (S- and C-) diagnoses, A1 = {S(a3)}, Ay = {S(as)}, Az =
{R(a4, a3)}, resp.

We have characterized repairs in terms of diagnosis. Thinking of the other direc-
tion, and as a final remark, it is worth observing that the very particular kind of
diagnosis problem we introduced above (with restricted logical formulas) can be for-
mulated as a preferred-repair problem [9, Sec. 2.5]. Without going into the details,
the idea is to materialize tables for the auxiliary predicates Abp and Endp, and
consider the DCs of the form (7) (with the Endp atoms when not all tuples are
endogenous), plus the DCs (8), saying that the initial extensions for the Abp pred-
icates are empty. If D is inconsistent with respect to this set of DCs, the S-repairs
that are obtained by only inserting endogenous tuples into the extensions of the Abp
predicates correspond to S-minimal diagnosis, and each S-minimal diagnosis can be
obtained in this way.

6 Complexity Results

There are three main computational problems in database causality. For a BCQ Q
and database D:

(@) The causality problem (CP) is about computing the actual causes for Q. Its
decision version of this problem, CDP, is stated in (5). Both CP and CDP

3Notice that these are not denial constraints.

@ Springer

Theory Comput Syst (2017) 61:191-232 211

are solvable in polynomial time [47], which can be extended to UBCQs (cf.
Proposition 5).

(b) The responsibility problem (RP) is about computing the responsibility p,,(¢) of
a given actual cause 7. (Since a tuple that is not an actual cause has respon-
sibility 0, this problem subsumes (a).) This is a maximization problem due to
the minimization of |I'| in the denominator.

We will consider the decision version of this problem that, as usual for maxi-
mization problems [29], asks whether the real-valued function being computed
(responsibility in this case) takes a value greater than a given threshold v of the
form %, for a positive integer k.

Definition 5 For a BCQ Q, the responsibility decision problem (RDP) is (deciding
about membership of):

RDP(Q) ={(D,t,v) |t € D", ve {O}U{% | k e NT}, and
D = Q and p,(t) > v},

that is, deciding if a tuple has a responsibility greater than a bound v (as a cause for

Q).

The complexity analysis of RDP in [47] is restricted to conjunctive queries without
self-joins. Here, we will generalize the complexity analysis for RDP to general CQs.

(c) Computing the most responsible actual causes (MRC). Its decision version,
MRCDP, the most responsible cause decision problem, is a natural problem,
because actual causes with the highest responsibility tend to provide most
interesting explanations for query answers [47, 48].

Definition 6 For a BCQ Q, the most responsible cause decision problem is (mem-
bership of):
MRCDP(Q) ={(D,)|t € D" and 0 < p,(¢) is a maximum for D}.

We start by analyzing a more basic decision problem, that of deciding if a set of
tuples I' is an S-minimal contingency set associated to a cause ¢ (cf. (3)). Due to the
results in Sections 3 and 4, it is clear that there is a close connection between this
problem and the S-repair checking problem [9, Chap. 5], about deciding if instance
D' is an S-repair of instance D with respect to a set of integrity constraints. Actually,
the following result is obtained from the PTIME solvability of the S-repair checking
problem for DCs [18] (see also [1]).

Proposition 11 For a BCQ Q, the minimal contingency set decision problem
(MCSDP), i.e. MCSDP(Q) :={(D,t,T')|T is minimal element in Cont(D, Q, t)},
belongs to PTIME.

Proof To decide if (D,t,T") € MCSDP(Q), it is good enough to observe, from
Proposition 1, that (D, #, ') € MCSDP(Q) iff D ~. (I' U {t}) is an S-repair for D
with respect to x (Q). S-repair checking can be done in PTIME in data [18]. O

@ Springer

212 Theory Comput Syst (2017) 61:191-232

We could also consider the decision problem defined in Proposition 11, but with C-
minimal I". We will not use results about this problem in the following. Furthermore,
its connection with the C-repair checking problem is less direct. As one can see from
Section 3, C-minimal contingency sets correspond to a repair semantics somewhere
between the S-minimal and C-minimal repair semantics (a subclass of Srep, but a
superclass of Crep): It is about an S-minimal repair with minimum cardinality that
does not contain a particular tuple.

Now we establish that RDP is NP-complete for CQs in general. The NP-hardness
is shown in [47]. Membership of NP is obtained using Proposition 11.

Theorem 1 (a) Forevery BCQ Q, RDP(Q) € NP.
(b) [47] There are CQs Q for which RDP(Q) is NP-hard.

Proof (a) We give a non-deterministic PTIME algorithm to solve RDP. Non-
deterministically guess a subset I' € D", return yes if |[I'| < % and (D, t,
I') € MCSDP; otherwise return no. According to Proposition 11 this can be
done in PTIME in data complexity. O

In order to better understand the complexity of RP, the responsibility computation
problem, we will investigate the functional, non-decision version of RDP.

The main source of complexity when computing responsibilities is related to the
hitting-set problem associated to $" (D) = (D", &"(D)) in Remark 4 (cf. (6)). In
this case, it is about computing the cardinality of a minimum hitting-set that contains
a given vertex (tuple) 7. That this is a kind of d-hitting-set problem [50] will be useful
in Section 6.1.

Remark 5 Our responsibility problem can also be seen as a vertex cover problem on
the hypergraph'*

&"(D) = (D", 6"(D)) a7)

associated to (D) = (D", G"(D)) (that is, the hitting-set framework can be seen
as a hypergraph). In it, the hyperedges are the members of &" (D). Determining the
responsibility of a tuple # becomes the problem on hypergraphs of determining the
size of a minimum vertex cover that contains vertex ¢ (among all vertex covers that
contain the vertex). Again, in this problem the hyperedges are bounded in size by

|Q].13

14Tn an hypergraph H, a set of vertices is a vertex cover if it intersects every hyperedge. A minimal vertex
cover has no proper subset that is also a vertex cover. A minimum vertex cover has minimum cardinality
among the vertex covers. Similarly, an independent set of H is a set of vertices such that no pair of them
is contained in a hyperedge. Maximal and maximum independent sets are defined in an obvious manner.
15We recall that repairs of databases with respect to DCs can be characterized as maximal independent
sets of conflict hypergraphs (conflict graphs in the case of FDs) whose vertices are the database tuples,
and hyperedges connect tuples that together violate a DC [4, 18].

@ Springer

Theory Comput Syst (2017) 61:191-232 213

Example 16 For Q : 3xy(P(x) A R(x,y) A P(y)), and D = D" = {P(a), P(c),
R(a, c), R(a,a)}, &(D) = &"(D) ={{P(a), R(a, a)}, {P(a), P(c), R(a, c)}}.

The hypergraph &" (D) has D as set of vertices, and its hyperedges are {P (a),
R(a,a)} and {P(a), P(c), R(a, ¢)}. Its minimal vertex covers are: vc; = {P(a)},
vea = {P(c), R(a,a)}, ve3 = {R(a, a), R(a, c)}. Only the first has minimum cardi-
nality. Accordingly, its only element, P(a), is an actual cause with responsibility 1.
The other tuples are actual causes with responsibility %

Remark 6 To simplify the presentation of the next computational problems (Lemmas
1 and 2 and Proposition 12), we will formulate and address them in terms of graphs.
However, they still hold for hypergraphs [43, 44], which is what we need for the
complexity results obtained in the rest of this section.

Lemma 1 (representation lemma) There is a fixed database schema S and a BCQ
Q € L(S), without built-ins, such that, for every graph G = (V, E), with non-empty
E, and v € V, there is an instance D for S and a tuple t € D, such that the size of a
minimum vertex cover of G containing v is the inverse of the responsibility of t as an
actual cause for Q.

Proof Consider a graph G = (V, E), and assume the vertices of G are uniquely
labeled.

Consider the database schema with relations Ver(vg) and Edges(v1, va, e), and the
conjunctive query Q : Jvjvoe(Ver(vy) A Ver(va) A Edges(vy, v, €)). Ver stores the
vertices of G, and Edges, the labeled edges. For each edge (vy,v2) € E, Edges
contains n tuples of the form (vy, v, i), where n is the number of vertices in G.
All the values in the third attribute of Edges are different, say from 1 to n x |E]|.
This padding of relation Edge will ensure in the rest of the proof that C-minimal
contingency sets for the query answer consist only of vertices, i.e. elements of Ver
(as opposed to Edge tuples). The size of the padded instance is still polynomial in
the size of G. Itis clear that D &= Q.

Assume VC is the minimum vertex cover of G that contains vertex v, where tuple
t is Ver(v). Consider the set of tuples A = {Ver(x) | x € VC}. Since v € VC,
A = A U {Ver(v)}. Then, D ~. (A" U Ver(v)) & Q. This is because for every tuple
Edge(v;, v}, k) in the instance, either v; or v; belongs to VC. Due to the minimality
of VC, D ~ A’ = Q. Therefore, tuple Ver(v) is an actual cause for Q.

Suppose I' is a C-minimal contingency set associated to Ver(v). Due to the C-
minimality of I, it entirely consists of tuples in Ver. It holds that D~ (T'U{Ver(v)}) &
Qand D N\ T = Q. Consider the set VC’' = {x | Ver(x) € T'} U {v}. Since D \
(T U {Ver(v)}) &= Q, for every tuple Edge(v;, vj, k) in D, either v; € VC' or vj €
VC'. Therefore, VC' is a minimum vertex cover of G that contains v. It holds that
pp(Ver(v)) = %\FI So, the size of a minimum vertex cover of G that contains v can
be obtained from p,(Ver(v)). O]

Having represented our responsibility problem as a graph-theoretic problem, we
first consider functional computational problems in graphs.

@ Springer

214 Theory Comput Syst (2017) 61:191-232

Definition 7 The minimal vertex cover membership problem (MVCMP) consists in,
given a graph G = (V, E), and a vertex v € V as inputs, computing the size of a
minimum vertex cover of G that contains v.

Lemma 2 Given a graph G and a vertex v in it, there is a graph G’ extending G that
can be constructed in polynomial time in |G|, such that the size of a minimum vertex
cover for G that contains v and the size of a minimum vertex cover for G’ coincide.

Proof The size of VCg(v), the minimum vertex cover of G that contains the vertex
v, can be computed from the size of /5, the maximum independent set of G, that
does not contain v. In fact,

[VCc ()| =G| = |Igl. (18)

Since /g is a maximum independent set that does not contain v, it must contain one
of the adjacent vertices of v (otherwise, I is not maximum, and v can be added to
I). Therefore, |V Cg (v)| can be computed from the size of a maximum independent
set I that contains v’, one of the adjacent vertices of v.

Given a graph G and a vertex v’ in it, a graph G’ that extends G can be con-
structed in polynomial time in the size of G, in such a way that: there is a maximum
independent set I of G containing v’ iff v" belongs to every maximum indepen-
dent set of G’ iff the sizes of maximum independent sets for G and G’ differ by
one.

Actually, graph G’ can be obtained by adding a new vertex v” that is connected
only to the neighbors of v’. It holds:'®

gl = lg| -1, (19)
llg'| = |G| = |VCql, (20)

where I/ is a maximum indent set in G’, and VCg’ is a minimum vertex cover of
G’. From (18), (19) and (20), we obtain: |VCgs(v)| = |[VCq|. O

From Lemma 2 and the FPNP(08™)_completeness of determining the size of a
maximum clique in a graph [39], we obtain:

Proposition 12 The MVCMP problem for graphs is FPNP(28™)_complete.

Proof We prove membership by describing an algorithm in FPNP(020") for comput-
ing the size of the minimum vertex cover of a graph G = (V, E) that contains a
vertex v € V. We use Lemma 2, and build the extended graph G’.

The size of a minimum vertex cover for G’ gives the size of the minimum vertex
cover of G that contains v. Since computing the maximum cardinality of a clique can
be done in time FPVPU02() [39] computing a minimum vertex cover can be done

16This construction is inspired by [43, Lemma 1]. More details can be found in [44].

@ Springer

Theory Comput Syst (2017) 61:191-232 215

in the same time (just consider the complement graph). Therefore, MVCMP belong
to FPNP(ogm)

Hardness can be obtained by a reduction from computing minimum vertex covers
in graphs to MVCMP. Given a graph G construct the graph G’ as follows: Add a
vertex v to G and connect it to all vertices of G. It is easy to see that v belongs to
all minimum vertex covers of G’. Furthermore, the sizes of minimum vertex covers
for G and G’ differ by one. Consequently, the size of a minimum vertex cover of
G can be obtained from the size of a minimu