
Theory Comput Syst (2017) 61:191–232
DOI 10.1007/s00224-016-9718-9

From Causes for Database Queries to Repairs
and Model-Based Diagnosis and Back

Leopoldo Bertossi1 ·Babak Salimi2

Published online: 25 November 2016
© Springer Science+Business Media New York 2016

Abstract In this work we establish and investigate connections between causes
for query answers in databases, database repairs with respect to denial constraints,
and consistency-based diagnosis. The first two are relatively new research areas in
databases, and the third one is an established subject in knowledge representation.
We show how to obtain database repairs from causes, and the other way around.
Causality problems are formulated as diagnosis problems, and the diagnoses provide
causes and their responsibilities. The vast body of research on database repairs can
be applied to the newer problems of computing actual causes for query answers and
their responsibilities. These connections are interesting per se. They also allow us,
after a transition inspired by consistency-based diagnosis to computational problems
on hitting-sets and vertex covers in hypergraphs, to obtain several new algorithmic
and complexity results for database causality.

Keywords Causality · Diagnosis · Repairs · Consistent query answering · Integrity
constraints

� Leopoldo Bertossi
bertossi@scs.carleton.ca

Babak Salimi
bsalimi@cs.washington.edu

1 School of Computer Science,
Carleton University, Ottawa, Canada

2 Computer Science and Engineering,
University of Washington, Seattle, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-016-9718-9&domain=pdf
http://orcid.org/0000-0002-1144-3179
mailto:bertossi@scs.carleton.ca
mailto:bsalimi@cs.washington.edu

192 Theory Comput Syst (2017) 61:191–232

1 Introduction

When querying a database, a user may not always obtain the expected results, and the
system could provide some explanations. They could be useful to further understand
the data or check if the query is the intended one. Actually, the notion of explanation
for a query result was introduced in [47], on the basis of the deeper concept of actual
causation.1

A tuple t is an actual cause for an answer ā to a conjunctive query Q from a
relational database instance D if there is a contingent set of tuples �, such that, after
removing � from D, ā is still an answer, but after further removing t from D � �,
ā is not an answer anymore (cf. Section 2.1 for a precise definition). Here, � is a set
of tuples that has to accompany t so that the latter becomes a counterfactual cause
for answer ā. Actual causes and contingent tuples are restricted to be among a pre-
specified set of endogenous tuples, which are admissible, possible candidates for
causes, as opposed to exogenous tuples, which may also be present in the database.
In rest of this paper, whenever we simply say “cause”, we mean “actual cause”.

In applications involving large data sets, it is crucial to rank potential causes by
their responsibilities [47, 48], which reflect the relative (quantitative) degrees of their
causality for a query result. The responsibility measure for a cause is based on its
contingency sets: the smallest (one of) its contingency sets, the strongest it is as a
cause.

Actual causation, as used in [47], can be traced back to [32, 33], which provides a
model-based account of causation on the basis of counterfactual dependence. Causal
responsibility was introduced in [19], to provide a graded, quantitative notion of
causality when multiple causes may over-determine an outcome.

Apart from the explicit use of causality, research on explanations for query results
has focused mainly, and rather implicitly, on provenance [13–15, 22, 38, 40, 61].
A close connection between causality and provenance has been established in [47].
However, causality is a more refined notion that identifies causes for query results on
the basis of user-defined criteria, and ranks causes according to their responsibilities
[48].

Consistency-based diagnosis [53], a form of model-based diagnosis [60, sec.
10.3], is an area of knowledge representation. The problem here is, given the specifi-
cation of a system in some logical formalism and a usually unexpected observation
about the system, to obtain explanations for the observation, in the form of a
diagnosis for the unintended behavior (cf. Section 2.3 for a precise definition).

In a different direction, a database instance, D, that is expected to satisfy certain
integrity constraints may fail to do so. In this case, a repair of D is a database D′ that
does satisfy the integrity constraints and minimally departs from D. Different forms
of minimality can be applied and investigated. A consistent answer to a query from
D and with respect to the integrity constraints is a query answer that is obtained from

1In contrast with general causal claims, such as “smoking causes cancer”, which refer some sort of related
events, actual causation specifies a particular instantiation of a causal relationship, e.g., “Joe’s smoking is
a cause for his cancer”.

Theory Comput Syst (2017) 61:191–232 193

all possible repairs, i.e. is invariant or certain under the class of repairs (cf. Section
2.2 for a precise definition). These notions were introduced in [2] (see [7, 9] for
surveys).2

These three forms of reasoning, namely inferring causes from databases,
consistency-based diagnosis, and consistent query answering (and repairs) are all
non-monotonic [55]. For example, a (most responsible) cause for a query result may
not be such anymore after the database is updated. Furthermore, they all reflect some
sort of uncertainty about the information at hand. In this work we establish natural,
precise, useful, and deeper connections between these three reasoning tasks.

More precisely, we unveil a strong connection between computing causes and their
responsibilities for conjunctive query answers, on one hand, and computing repairs
in databases with respect to denial constraints, on the other. These computational
problems can be reduced to each other. In order to obtain repairs with respect to a set
of denial constraints from causes, we investigate causes for queries that are unions of
conjunctive queries, and develop algorithms to compute causes and responsibilities.

We show that inferring and computing actual causes and their responsibilities
in a database setting become diagnosis reasoning problems and tasks. Actually, a
causality-based explanation for a conjunctive query answer can be viewed as a diag-
nosis, where in essence the first-order logical reconstruction of the relational database
provides the system description [54], and the observation is the query answer. We
obtain causes and their responsibilities -and as a side result, also database repairs-
from diagnosis.

Being the causality problems the main focus of this work, we take advantage of
algorithms and complexity results both for consistency-based diagnosis on one side;
and database repairs and consistent query answering [9], on another. In this way, we
obtain new complexity results for the main problems of causality, namely comput-
ing actual causes, determining their responsibilities, and obtaining most responsible
causes; and also for their decision versions. In particular, we obtain fixed-parameter
polynomial-time algorithms for some of them. More precisely, our main results are
as follows: (the complexity results are all in data complexity)

1. We characterize actual causes and most responsible actual causes for a Boolean
conjunctive query in terms of subset- and cardinality-repairs of the instance
with respect to the denial constraint associated to the query (the query being
the violation view of the constraint). In this way we can compute causes from
repairs.

In the other direction, we obtain repairs of databases with respect to sets
of denial constraints from causes for query results. For this, we extend the
treatment of causality to unions of conjunctive queries (to represent multiple
denial constraints). We characterize an actual cause’s responsibility in terms of
cardinality-repairs. Along the way we provide PTIME algorithms to compute
causes and their (minimal) contingency sets for unions of conjunctive queries.

2Although not in the context of repairs, consistency-based diagnosis has been applied to consistency
restoration of a database with respect to integrity constraints [30].

194 Theory Comput Syst (2017) 61:191–232

2. We reduce causes for a Boolean conjunctive query to consistency-based diagno-
sis for the query being unexpectedly true according to a system description. In
particular, we show how to compute actual causes, their contingency sets, and
responsibilities using the diagnosis characterization. As a side result, we obtain
database repairs from diagnosis.

Hitting-set-based algorithmic approaches to diagnosis [53] inspire our algo-
rithmic/complexity approaches to causality. In particular, we reformulate the
causality problems as hitting-set problems and vertex cover problems on hyper-
graphs, which allows us to apply results and techniques for the latter to
causality.

3. We obtain several new computational complexity results:

(a) Checking minimal contingency sets can be done in PTIME.
(b) The responsibility decision problem for conjunctive queries, which is about

deciding if a tuple’s responsibility is greater that a bound v (that is part of
the input) is NP-complete. However, this problem becomes fixed-parameter
tractable, with the parameter being 1

v
.

(c) The problem of computing responsibilities of causes is FPNP(log(n))-
complete. Deciding most responsible causes is PNP(log(n))-complete.

(d) The structure of the resulting hitting-set problem allows us to obtain effi-
cient parameterized algorithms and good approximation algorithms for
computing causes and minimal contingency sets.

(e) From the repair connection we obtain that, for consistency based-diagnosis
with specifications given by positive implications with disjunctive con-
sequents, the problems of computing minimum-cardinality diagnoses and
computing minimum-cardinality diagnoses that contain a given atom are
both FPNP(log(n))-hard in the size of their underlying Herbrand structure.

4. We define notions of preferred causes; in particular one based on prioritized
repairs [59]. We also propose an approach to causality based on interventions
that are repair actions that replace attribute values by null values.

The paper is structured as follows. Section 2 introduces technical preliminaries
for relational databases, causality in databases, database repairs and consistent query
answering, consistency-based diagnosis, and relevant complexity classes. Section 3
characterizes actual causes and responsibilities in terms of database repairs. Section 4
characterizes repairs and consistent query answers in terms of causes and contingency
sets for queries that are unions of conjunctive queries, and presents an algorithm for
computing both of the latter. Section 5 formulates causality and repair problems as
consistency-based diagnosis problems. Section 6 shows complexity and algorithmic
results; in particular a fixed-parameter tractability result for causes’ responsibilities,
and also about consistency based-diagnosis. Section 7 deals with preferred causes.
Section 8 discusses several relevant issues, connections and open problems around
causality in databases. It also draws some final conclusions. We provide proofs for
all the results except for those that are rather straightforward. This is an extended
version of [58]. It contains proofs, many improvements in the presentation, and also
new developments and results, mainly in Sections 6.2 and 7.

Theory Comput Syst (2017) 61:191–232 195

2 Preliminaries

We consider relational database schemas of the form S = (U,P), where U is the
possibly infinite database domain of constants and P is a finite set of database pred-
icates3 of fixed arities. A database instance D compatible with S can be seen as a
finite set of ground atomic formulas (in databases aka. atoms or tuples), of the form
P(c1, ..., cn), where P ∈ P has arity n, and c1, . . . , cn ∈ U .

A conjunctive query (CQ) is a formula Q(x̄) of the first-order (FO) logic lan-
guage, L(S), associated to S of the form ∃ȳ(P1(s̄1) ∧ · · · ∧ Pm(s̄m)), where the
Pi(s̄i) are atomic formulas, i.e. Pi ∈ P , and the s̄i are sequences of terms, i.e.
variables or constants.4 The x̄ in Q(x̄) shows all the free variables in the formula,
i.e. those not appearing in ȳ. If x̄ is non-empty, the query is open. If x̄ is empty,
the query is Boolean (a BCQ), i.e. the query is a sentence, in which case, it is
true or false in a database, denoted by D |= Q and D �|= Q, respectively. A
sequence c̄ of constants is an answer to an open query Q(x̄) if D |= Q[c̄], i.e. the
query becomes true in D when the free variables are replaced by the corresponding
constants in c̄.

An integrity constraint is a sentence of language L(S), and then, may be true or
false in an instance for schema S. Given a set IC of integrity constraints for schema
S, a database instance D is consistent with IC if D |= IC; otherwise it is said to
be inconsistent. In this work we assume that sets of integrity constraints are always
finite and logically consistent.

A particular class of integrity constraints is formed by denial constraints
(DCs), which are sentences κ of the form: ∀s̄¬(A1(s̄1) ∧ · · · ∧ An(s̄n), where
s̄ = ⋃

s̄i and each Ai(s̄i) is a database atom, i.e. predicate Ai ∈ P. So
as with conjunctive queries, the atoms may contain constants. Denial constraints
are exactly the negations of BCQs. Sometimes we use the common represen-
tation of DCs as “negative rules” of the form: ← A1(s̄1), . . . , An(s̄n). We
will also consider functional dependencies (FDs) as DCs. They are represented
by negative rules of the form: ← A(x̄1, x̄2, y), A(x̄1, x̄3, z), y �= z, saying
that the last attribute of relation A functionally depends upon the attributes hold-
ing variables x̄1. They do not contain constants, and correspond to BCQs with
inequality.

2.1 Causality and responsibility

Assume that the database instance is split in two, i.e. D = Dn ∪ Dx , where Dn and
Dx denote the disjoint sets of endogenous and exogenous tuples, respectively.

Actual causes and contingent tuples are usually restricted to be among a pre-
specified set of endogenous tuples, which are admissible, possible candidates for

3As opposed to built-in predicates (e.g. �=) that we assume do not appear, unless explicitly stated otherwise.
4In this work, we will assume, unless otherwise explicitly said, that CQs may contain inequality atoms
(equality atoms are not an issue, because they can always be eliminated).

196 Theory Comput Syst (2017) 61:191–232

causes, as opposed to the exogenous tuples. Actually, the latter provide the con-
text or the background for the problem, and are considered as external factors
that are not of interest to the current problem statement or beyond our control.
Since no intervention (or update, in database parlance) is conceivable on exoge-
nous tuples, they can not be included in any contingency set or be an actual
cause. They are assumed to be included in all conceivable hypothetical states of a
database.

The endogenous/exogenous partition is application-dependent and captures prede-
termined factors, such as users preferences that may affect QA-causal analysis. For
example, certain tuples or full tables might be identified as irrelevant (or exogenous)
in relation to a particular query at hand, or decided to be exogenous or endogenous a
priori, independently from the query.

A tuple t ∈ Dn is called a counterfactual cause for a BCQ Q, if D |= Q and
D � {t} �|= Q. A tuple t ∈ Dn is an actual cause forQ if there exists � ⊆ Dn, called
a contingency set, such that t is a counterfactual cause for Q in D � � [47].

We will concentrate mostly on CQs. However, the definitions of actual cause and
contingency set can be applied without a change to monotone queries in general [47],
in particular to unions of BCQs (UBCQs), with or without built-ins.

The responsibility of an actual cause t for Q, denoted by ρ
D
(t), is the numerical

value 1
|�|+1 , where |�| is the size of the smallest contingency set for t . We can extend

responsibility to all the other tuples in Dn by setting their value to 0. Those tuples
are not actual causes for Q.

Example 1 Consider D = Dn = {R(a4, a3), R(a2, a1), R(a3, a3), S(a4), S(a2),

S(a3)}, and the query Q : ∃x∃y(S(x) ∧ R(x, y) ∧ S(y)). It holds: D |= Q.
Tuple S(a3) is a counterfactual cause for Q. If S(a3) is removed from D, Q is

not true anymore. Therefore, the responsibility of S(a3) is 1. Besides, R(a4, a3) is an
actual cause forQ with contingency set {R(a3, a3)}. If R(a3, a3) is removed from D,
Q is still true, but further removing R(a4, a3) makes Q false. The responsibility of
R(a4, a3) is 1

2 , because its smallest contingency sets have size 1. Likewise, R(a3, a3)

and S(a4) are actual causes for Q with responsibility 1
2 .

For the same Q, but with D = {S(a3), S(a4), R(a4, a3)}, and the partition Dn =
{S(a4), S(a3)} and Dx = {R(a4, a3)}, it turns out that both S(a3) and S(a4) are
counterfactual causes for Q.

Remark 1 In the rest of this paper, we will assume in the context of causality that
database instances D are partitioned as D = Dn ∪ Dx , into a subset of endogenous
and a set of exogenous tuples, respectively. We will denote with Causes(D,Q) the
set of actual causes for the BCQ Q (being true) from instance D.

2.2 Database repairs

Given a set IC of integrity constraints, a subset repair (simply, S-repair) of a possi-
bly inconsistent instance D for schema S is an instance D′ for S that satisfies IC and

Theory Comput Syst (2017) 61:191–232 197

makes �(D, D′) = (D�D′)∪ (D′
�D) minimal under set inclusion.5 Srep(D, IC)

denotes the set of S-repairs of D with respect to IC [2]. Similarly, D′ is a cardi-
nality repair (simply C-repair) of D if D′ satisfies IC and minimizes |�(D, D′)|.
Crep(D, IC) denotes the class of C-repairs of D with respect to IC. C-repairs are
always S-repairs. For DCs, S-repairs and C-repairs are obtained from the original
instance by deleting an S-minimal, resp. C-minimal, set of tuples. In other words, S-
and C-repairs under DCs become maximal (under set inclusion), resp. maximum (in
cardinality), consistent subsets of the given instance.

In more general terms, we say that a set is S-minimal in a class of sets C if it
is minimal under set inclusion in C. Similarly, a set is C-minimal (or minimum) if
it is minimal in cardinality within C. S-maximality and C-maximality are defined
similarly.

Example 2 (ex. 1 cont.) Consider the denial constraint κ : ← S(x), R(x, y), S(y),
whose body corresponds to theCQ inExample 1, and is violated by the given instanceD.

Here, Srep(D, κ) = {D1, D2, D3} with D1 = {R(a4, a3), R(a2, a1), R(a3, a3),

S(a4), S(a2)}, D2 = {R(a2, a1), S(a4), S(a2), S(a3)}, D3 = {R(a4, a3), R(a2, a1),

S(a2), S(a3)}. The only C-repair is D1, i.e. Crep(D, κ) = {D1}.

More generally, different repair semantics may be considered to restore con-
sistency with respect to general integrity constraints. They depend on the kind
of allowed updates on the database (i.e. tuple insertions/deletions, changes of
attribute values), and the minimality conditions on repairs, e.g. subset-minimality,
cardinality-minimality, etc.

Given D and IC, a repair semantics, S, defines a class RepS(D, IC) of S-repairs,
which are the intended repairs [9, Sec. 2.5]. All the elements of RepS(D, IC) are
instances over the same schema of D, and consistent with respect to IC. If D is
already consistent, RepS(D, IC) contains D as its only member.

Given a repair semantics, S, c̄ is a S-consistent answer to an open query Q(x̄) if
D′ |= Q[c̄] for every D′ ∈ RepS(D, IC). A BCQ is S-consistently true if it is true
in every D′ ∈ RepS(D, IC). In particular, if c̄ is a consistent answer to Q(x̄) with
respect to S-repairs, we say it is an S-consistent answer. Similarly for C-consistent
answers. Consistent query answering for DCs under S-repairs was investigated in
detail [18]. C-repairs and consistent query answering under them were investigated
in detail in [43]. (Cf. [9] for more references.)

2.3 Consistency-based diagnosis

Consistency-based diagnosis, a form of model-based diagnosis [60, Sec. 10.4],
considers problems M = (SD, COMPS, OBS), where SD is the description in logic of
the intended properties of a system under the explicit assumption that all the components

5In general, in the context of repairs, partitions on instances are not considered. However, in Section 7.3
we will bring them into the repair scene.

198 Theory Comput Syst (2017) 61:191–232

in COMPS are working normally. OBS is a FO sentence that represents the observa-
tions. If the system does not behave as expected (as shown by the observations),
then the logical theory obtained from SD ∪ OBS plus the explicit assumption, say∧

c∈COMPS ¬Ab(c), that the components are indeed behaving normally, becomes
inconsistent. Ab is an abnormality predicate.6

The inconsistency is captured via the, i.e. those minimal subsets COMPS′
of COMPS, such that SD ∪ OBS ∪{∧c∈COMPS′ ¬Ab(c)} is inconsistent. As expected,
different notions of minimality can be used at this point.

A minimal diagnosis for M is a minimal subset � of COMPS, such that
SD ∪ OBS ∪ {¬Ab(c) | c ∈ COMPS � �} ∪ {Ab(c) | c ∈ �} is consistent. That
is, consistency is restored by flipping the normality assumption to abnormality for
a minimal set of components, and those are the ones considered to be (jointly)
faulty. The notion of minimality commonly used is S-minimality, i.e. a diagno-
sis that does not have a proper subset that is a diagnosis. We will use this kind
of minimality in relation to diagnosis. Diagnosis can be obtained from conflict
sets [53].

Example 3 Consider a simple logical gate Or, denoted with o (the only system com-
ponent in this case), that receives two digits, x, y, as inputs and outputs a digit
val(x, y).

This simple system can be specified in terms of normal behavior by the log-
ical formula σ : ¬AB(o) −→ ∀x∀yval(x, y) = 0 ←→ x = y = 0)),
saying that, when the gate is not abnormal, the output is 0 iff the inputs are
both 0.

The logical theory {σ, val(0, 1) = 0} is logically consistent (it can be made
true) despite the unexpected observation (namely, output 0 with inputs 0, 1). This
is because the system’s model allows for abnormal behaviors. However, this theory
together with the extra assumption ¬Ab(o), i.e. that the gate is normal, form the
theory {σ, val(0, 1) = 0, ¬Ab(o)} that is inconsistent in the sense that it can not
be made true (in technical terms, it has not models).

2.4 Complexity classes

We recall some complexity classes [52] used in this paper. FP is the class of
functional problems associated to decision problem in the class PTIME, i.e. that are
solvable in polynomial time. PNP (or �P

2) is the class of decision problems solvable
in polynomial time by a machine that makes calls to an NP oracle. For PNP(log(n))

the number of calls is logarithmic. It is not known if PNP(log(n)) is strictly contained
in PNP. FPNP(log(n)) is similarly defined.

6Here, and as usual, the atom Ab(c) expresses that component c is (behaving) abnormal(ly).

Theory Comput Syst (2017) 61:191–232 199

3 Actual Causes From Database Repairs

In this section we characterize actual causes for a BCQ Q being true in a database
instance D in terms of the repairs of D with respect to a denial constraint whose
violation view is Q, i.e. the latter asks if the constraint is violated. In essence, the
actual causes will become the tuples outside an S-repair. The complement of the
latter contains the cause plus a contingency set for the cause. In order to capture
responsibility, C-repairs are considered.

Let D be an instance for schema S, and Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) a BCQ.
Qmay be unexpectedly true, i.e. D |= Q. Now, ¬Q is logically equivalent to the DC
κ(Q) : ∀x̄¬(P1(x̄1)∧· · ·∧Pm(x̄m)). The requirement that ¬Q holds can be captured
by imposing κ(Q) on D. Due to D |= Q, it holds D �|= κ(Q). So, D is inconsistent
with respect to κ(Q), and could be repaired.

Repairs for (violations of) DCs are obtained by tuple deletions. Intuitively, a tuple
that participates in a violation of κ(Q) in D is an actual cause for Q. S-minimal sets
of tuples like this are expected to correspond to S-repairs for D with respect to κ(Q).

More precisely, given an instance D, a BCQ Q, and a tuple t ∈ Dn, we consider:

– The class containing the sets of differences between D and those S-repairs that
do not contain t , and are obtained by removing a subset of Dn:

Diffs(D, κ(Q), t) = {D � D′ | D′ ∈ Srep(D, κ(Q)),

t ∈ (D � D′) ⊆ Dn}. (1)

– The class containing the sets of differences between D and those C-repairs that
do not contain t , and are obtained by removing a subset of Dn:

Diffc(D, κ(Q), t) = {D � D′ | D′ ∈ Crep(D, κ(Q)),

t ∈ (D � D′) ⊆ Dn}. (2)

It holds Diffc(D, κ(Q), t) ⊆ Diffs(D, κ(Q), t).
Now, any � ∈ Diffs(D, κ(Q), t) can be written as � = �′ ∪ {t}. From the S-

minimality of S-repairs, it follows that D�(�′∪{t}) |= κ(Q), but D��′ |= ¬κ(Q).
That is, D � (�′ ∪ {t}) �|= Q, but D � �′ |= Q. As a consequence, t is an actual
cause for Q with contingency set �′. We have obtained the following result.

Proposition 1 Given an instance D and a BCQ Q, t ∈ Dn is an actual cause for
Q iff Diffs(D, κ(Q), t) �= ∅. Furthermore, if D � D′ ∈ Diffs(D, κ(Q), t), then
D � (D′ ∪ {t}) is a minimal contingency set for t .

Proposition 2 Given an instance D, a BCQ Q, and t ∈ Dn:

(a) If Diffs(D, κ(Q), t) = ∅, then ρ
D
(t) = 0.

(b) Otherwise, ρ
D
(t) = 1

|�| , where � ∈ Diffs(D, κ(Q), t) and there is no �′ ∈
Diff s(D, κ(Q), t) such that |�′| < |�|.

200 Theory Comput Syst (2017) 61:191–232

Corollary 1 Given an instance D and a BCQ Q: t ∈ Dn is a most responsible
actual cause for Q iff Diffc(D, κ(Q), t) �= ∅.

Example 4 (ex. 1 and 2 cont.) Consider the same instance D and queryQ. The asso-
ciated DC is κ(Q) : ← S(x), R(x, y), S(y) that we considered in Example 2, where
we obtained Srep(D, κ(Q)) = {D1, D2, D3} and Crep(D, κ(Q)) = {D1}.

For tuple R(a4, a3), Diffs(D, κ(Q), R(a4, a3)) = {D�D2} = {{R(a4, a3), R(a3,

a3)}}, which, by Propositions 1 and 2, confirms that R(a4, a3) is an actual cause,
with responsibility 1

2 . The complement ofD�D2 contains the actual cause R(a3, a3)

plus a contingency set of it, namely that formed by tuple R(a3, a3), which has to be
deleted together with the actual cause R(a4, a3) to restore consistency (cf. Example
2).

For tuple S(a3), Diffs(D, κ(Q), S(a3)) = {D � D1} = {{S(a3)}}. So, S(a3) is an
actual cause with responsibility 1.

Similarly, R(a3, a3) is an actual cause with responsibility 1
2 , because Diffs(D,

κ(Q), R(a3, a3)) = {D � D2, D � D3} = {{R(a4, a3), R(a3, a3)}, {R(a3, a3),

S(a4)}}.
It holds Diffs(D, κ(Q), S(a2)) = Diffs(D, κ(Q), R(a2, a1)) = ∅, because all

repairs contain S(a2), R(a2, a1). This means they do not participate in the violation
of κ(Q) or contribute to makeQ true. So, they are not actual causes forQ, confirming
the result in Example 1.

Diffc(D, κ(Q), S(a3)) = {{S(a3)}}. From Corollary 1, S(a3) is the most respon-
sible cause. �

Remark 2 The results in this section can be easily extended to unions of BCQs. This
can be done by associating a DC to each disjunct of the query, and considering the
corresponding problems for database repairs with respect to several DCs (cf. Section
4.1).

4 Database Repairs from Actual Causes

In this section we characterize repairs for inconsistent databases with respect to a set
of DCs in terms of actual causes with their contingency sets. The reduction of repair-
related computations to cause-related computations is particularly relevant, because
we can take advantage of known complexity results for repairs to obtain new lower-
bound complexity results for causality.

Causality has been investigated so far mainly for single conjunctive queries. How-
ever, database repairs appear in the context of sets of constraints. We concentrate
on sets of DCs, which requires extending the analysis of causality to unions of
conjunctive queries.

More concretely, in this section we characterize repairs of a database instance D

with respect to a set � of DCs in terms of the actual causes (with their contingency
sets) for the union of the conjunctive queries naturally associated to the (bodies of
the) DCs. In essence, an S-repair D′ is a maximal subset of D that does not contain

Theory Comput Syst (2017) 61:191–232 201

any actual cause t , and the tuples other than t and outside D′ form a contingency set
for t . As expected, C-repairs require the use of most responsible tuples.

Consider an instance D for schema S, and a set of DCs � on S. For each κ ∈ �,
say κ : ← A1(x̄1), . . . , An(x̄n), consider its associated violation view defined by a
BCQ, namely Vκ : ∃x̄(A1(x̄1) ∧ · · · ∧ An(x̄n)). The answer yes to Vκ shows that κ

is violated (i.e. not satisfied) by D.
Next, consider the query that is the union of the individual violation views:

V� := ∨
κ∈� V κ , a union of BCQs (UBCQs). Clearly, D violates (is inconsistent

with respect to) � iff D |= V�.
It is easy to verify that D, with Dx = ∅, is consistent with respect to � iff

Causes(D, V�) = ∅, i.e. there are no actual causes for V� when all tuples are
endogenous.

Now, let us collect all S-minimal contingency sets associated with an actual cause
t for V� :

Definition 1 For an instance D and a set � of DCs:

Cont(D, V�, t) := {� ⊆ Dn | D � � |= V�, D � (� ∪ {t}) �|= V�, (3)

and ∀�′
� �, D � (�′ ∪ {t}) |= V�}.

Notice that for � ∈ Cont(D, V�, t), it holds t /∈ �. When Dx = ∅, if t ∈
Causes(D, V�) and � ∈ Cont(D, V�, t), from the definition of actual cause and
the S-minimality of �, it holds that �′′ = � ∪ {t} is an S-minimal subset of D with
D � �′′ �|= V� . So, D � �′′ is an S-repair for D. Then, the following holds.

Proposition 3 For an instance D, with Dx = ∅, and a set DCs �: D′ ⊆ D is an
S-repair for D with respect to � iff, for every t ∈ D � D′: t ∈ Causes(D, V�) and
D � (D′ ∪ {t}) ∈ Cont(D, V�, t).

To establish a connection between most responsible actual causes and C-repairs,
assume that Dx = ∅, and collect the most responsible actual causes for V� :

Definition 2 For an instance D with Dx = ∅:

MRC(D, V�) := {t ∈ D | t ∈ Causes(D, V�), � ∃t ′ ∈ Causes(D, V�) (4)

with ρ
D
(t ′) > ρ

D
(t)}.

Proposition 4 For instance D, with Dx = ∅, and set of DCs �: D′ ⊆ D is a C-
repair for D with respect to � iff, for every t ∈ D � D′: t ∈ MRC(D, V�) and
D � (D′ ∪ {t}) ∈ Cont(D, V�, t).

Actual causes for V� , with their contingency sets, account for the violation of
some κ ∈ �. Removing those tuples from D should remove the inconsistency. From
Propositions 3 and 4 we obtain:

202 Theory Comput Syst (2017) 61:191–232

Corollary 2 Given an instance D and a set DCs �, the instance obtained from D

by removing an actual cause, resp. a most responsible actual cause, for V� together
with any of its S-minimal, resp. C-minimal, contingency sets forms an S-repair, resp.
a C-repair, for D with respect to �.

Example 5 Consider D = {P(a), P (e), Q(a, b), R(a, c)} and � = {κ1, κ2}, with
κ1 : ← P(x), Q(x, y) and κ2 : ← P(x), R(x, y).

The violation views are V κ1 : ∃xy(P (x)∧Q(x, y)) and V κ2 : ∃xy(P (x)∧R(x, y)).
For V� := V κ1 ∨ V κ2 , D |= V� and D is inconsistent with respect to �.

Now assume all tuples are endogenous. It holds Causes(D, V�) = {P(a),

Q(a, b), R(a, c)}, and its elements are associated with sets of S-minimal contingency
sets, as follows: Cont(D, V�, Q(a, b)) = {{R(a, c)}}, Cont(D, V�, R(a, c)) =
{{Q(a, b)}}, and Cont(D, V�, P (a)) = {∅}.

From Corollary 2, and Cont(D, V�, R(a, c)) = {{Q(a, b)}}, D1 = D �

({R(a, c)}∪{Q(a, b)}) = {P(a), P (e)} is an S-repair. So isD2 = D�({P(a)}∪∅) =
{P(e), Q(a, b), R(a, c)}. These are the only S-repairs.

Furthermore,MRC(D, V�) = {P(a)}. From Corollary 2,D2 is also a C-repair forD.

Remark 3 An actual cause t with any of its S-minimal contingency sets determines a
unique S-repair. The last example shows that, with different combinations of a cause
and one of its contingency sets, we may obtain the same repair (e.g. for the first two
Cont sets). So, we may have more minimal contingency sets than minimal repairs.
However, we may still have exponentially many minimal contingency sets, so as we
may have exponentially many minimal repairs of an instance with respect to DCs, as
the following example shows.7

Example 6 Consider D = {R(1, 0), R(1, 1), . . . , R(n, 0), R(n, 1), S(1), S(0)} and
the DC κ : ← R(x, y), R(x, z), S(y), S(z). D is inconsistent with respect to κ . There
are exponentially many S-repairs of D: D′ = D � {S(0)}, D′′ = D � {S(1)}, D1 =
D � {R(1, 0), . . . , R(n, 0)}, ..., D2n = D � {R(1, 1), . . . , R(n, 1)}. The C-repairs
are only D′ and D′′.

For the BCQ V κ associated to κ , D |= V κ , and S(1) and S(0) are actual causes
for V κ (courterfactual causes with responsibility 1). All tuples in R are actual causes,
each with exponentially many S-minimal contingency sets. For example, R(1, 0) has
the S-minimal contingency set {R(2, 0), . . . , R(n, 0)}, among exponentially many
others (any set built with just one element from each of the pairs {R(2, 0), R(2, 1)},
..., {R(n, 0), R(n, 1)} is one).

4.1 Causes for Unions of Conjunctive Queries

If we want to compute repairs with respect to sets of DCs from causes for UBCQs
using, say Corollary 2, we first need an algorithm for computing the actual causes

7Cf. [4] for an example of the latter that uses key constraints, which are DCs with inequalities (with
violation views that contain inequality).

Theory Comput Syst (2017) 61:191–232 203

and their (minimal) contingency sets for UBCQs. These algorithms could be used as
a first stage of the computation of S-repairs and C-repairs with respect to sets of DCs.
However, these algorithms (developed in Section 4.2), are also interesting and useful
per se.

The PTIME algorithm for computing actual causes in [47] is for single conjunctive
queries, but does not compute the actual causes’ contingency sets. Actually, doing
the latter increases the complexity, because deciding responsibility8 of actual causes
is NP -hard [47] (which would be tractable if we could efficiently compute all (mini-
mal) contingency sets).9 In principle, an algorithm for responsibilities can be used to
compute C-minimal contingency sets, by iterating over all candidates, but Example
6 shows that there can be exponentially many of them.

We first concentrate on the problem of computing actual causes for UBCQs,
without their contingency sets, which requires some notation.

Definition 3 Given Q = C1 ∨ · · · ∨ Ck , where each Ci a BCQ, and an instance D:

(a) S(D) is the collection of all S-minimal subsets of D that satisfy a disjunct Ci

of Q.
(b) Sn(D) consists of the S-minimal subsets � of Dn for which there exists a

�′ ∈ S(D) with � ⊆ �′ and � � �′ ⊆ Dx . �

Sn(D) contains all S-minimal sets of endogenous tuples that simultaneously (and
possibly accompanied by exogenous tuples) make the query true. It is easy to see that
S(D) and Sn(D) can be computed in polynomial time in the size of D.

Now, generalizing a result for CQs in [47], actual causes for a UBCQs can be com-
puted in PTIME in the size of D without computing contingency sets. We formulate
this results in terms of the corresponding causality decision problem (CDP).

Proposition 5 Given an instance D, a UBCQ Q, and t ∈ Dn:

(a) t is an actual cause for Q iff there is � ∈ Sn(D) with t ∈ �.
(b) The causality decision problem (about membership of)

CDP := {(D, t) | t ∈ Dn, and t ∈ Causes(D,Q)} (5)

belongs to PTIME.

Proof

(a) Assume S(D) = {�1, . . . , �m}, and there exists a � ∈ Sn(D) with t ∈ �.
Consider a set � ⊆ Dn such that, for all �i ∈ Sn(D) where �i �= �, �∩�i �=
∅ and � ∩ � = ∅. With such a �, t is an actual cause for Q with contingency
set �. So, it is good enough to prove that such � always exists. In fact, since
all subsets of Sn(D) are S-minimal, then, for each �i ∈ Sn(D) with �i �= �,

8For a precise formulation, see Definition 5.
9Actually, [47] presents a PTIME algorithm for computing responsibilities for a restricted class of CQs.

204 Theory Comput Syst (2017) 61:191–232

�i ∩ � = ∅. Therefore, � can be obtained from the set of difference between
each �i and �.

Now, if t is an actual cause for Q, then there exist an S-minimal � ∈ Dn,
such that D � (� ∪ {t}) �|= Q, but D � � |= Q. This implies that there
exists an S-minimal subset � of D, such that t ∈ � and � |= Q. Due
to the S-minimality of �, it is easy to see that t is included in a subset of
Sn(D).

(b) This is a simple generalization of the proof of the same result for single
conjunctive queries found in [47].

Example 7 (ex. 5 cont.) Consider the queryQ : ∃xy(P (x)∧Q(x, y))∨∃xy(P (x)∧
R(x, y)), and assume that for D, Dn = {P(a), R(a, c)} and Dx = {P(e), Q(a, b)}.
It holds S(D) = {{P(a), Q(a, b)}, {P(a), R(a, c)}}. Since {P(a)} ⊆ {P(a),

R(a, c)}, Sn(D) = {{P(a)}}. So, P(a) is the only actual cause for Q.

4.2 Contingency Sets for Unions of Conjunctive Queries

It is possible to develop a (naive) algorithm that accepts as input an instance D and a
UBCQ Q, and returns Causes(D,Q); and also, for each t ∈ Causes(D,Q), its (set
of) S-minimal contingency sets Cont(D,Q, t).

The basis for the algorithm is a correspondence between the actual causes for Q
with their contingency sets and a hitting-set problem.10 More precisely, for a fixed
UBCQ Q, consider the hitting-set framework

Hn(D) = 〈Dn,Sn(D)〉, (6)

with Sn(D) as in Definition 3. Different computational and decision problems are
based on Hn(D), and we will confront some below. Notice that hitting-sets (HSs) are
all subsets of Dn.

The S-minimal hitting-sets for Hn(D) correspond to actual causes with their S-
minimal contingencies for Q. Most responsible causes for Q are in correspondence
with hitting-sets for Hn(D). This is formalized as follows:

Proposition 6 For an instance D, a UBCQ Q, and t ∈ Dn:

(a) t is an actual cause for Q with S-minimal contingency set � iff � ∪ {t} is an
S-minimal hitting-set for Hn(D).

(b) t is a most responsible actual cause forQ with C-minimal contingency set � iff
� ∪ {t} is a minimum hitting-set for Hn(D).

10If C is a collection of non-empty subsets of a set S, a subset S′ ⊆ S is a hitting-set for C if, for every
C ∈ C, C ∩ S′ �= ∅. S′ is an S-minimal hitting-set if no proper subset of it is also a hitting-set. S is a
minimum hitting-set if it has minimum cardinality.

Theory Comput Syst (2017) 61:191–232 205

The proof is similar to that of part (a) of Proposition 5.

Example 8 (ex. 5 and 7 cont.) D and Q are as before, but now all tuples are
endogenous. Here, S(D) = Sn(D) = {{P(a), Q(a, b)}, {P(a), R(a, c)}}. Hn(D)

has two S-minimal hitting-sets: H1 = {P(a)} and H2 = {Q(a, b), R(a, c)}.
Each of them implicitly contains an actual cause (any of its elements) with an
S-minimal contingency set (what’s left after removing the actual cause). H1 is
also the C-minimal hitting-set, and contains the most responsible actual cause,
P(a).

Remark 4 For Hn(D) = 〈Dn,Sn(D)〉, Sn(D) can be computed in PTIME in data
complexity, and its elements are bounded in size by |Q|, which is the maximum num-
ber of atoms in one of Q’s disjuncts. This is a special kind of hitting-set problems.
For example, deciding if there is a hitting-set of size at most k as been called the d-
hitting-set problem [50], and d is the bound on the size of the sets in the set class. In
our case, d would be |Q|.

4.3 Causality, Repairs, and Consistent Answers

Corollary 2 and Proposition 6 can be used to compute repairs. If the classes of S- and
C-minimal hitting-sets for Hn(D) (with Dn = D) are available, computing S- and
C-repairs will be in PTIME in the sizes of those classes. However, it is well known
that computing minimal hitting-sets is a complex problem. Actually, as Example 6
implicitly shows, we can have exponentially many of them in |D|; so as exponentially
many minimal repairs for D with respect to a denial constraint. We can see that
the complexity of contingency sets computation is in line with the complexities of
computing hitting-sets and repairs.

As Corollary 2 and Proposition 6 show, the computation of causes, contingency
sets, and most responsible causes via minimal/minimum hitting-set computation
can be used to compute repairs and decide about repair questions. Since the
hitting-set problems in our case are of the d-hitting-set kind, good algorithms and
approximations for the latter (cf. Section 6.1) could be used in the context of repairs.

In the rest of this section we consider an instance D whose tuples are all endoge-
nous, and a set � of DCs. For the disjunctive violation view V� , the following result
is obtained from Propositions 3 and 4, and Corollary 2.

Corollary 3 For an instance D, with Dx = ∅, and a set � of DCs, it holds:

(a) For every t ∈ Causes(D, V�), there is an S-repair that does not contain t .
(b) For every t ∈ MRC(D, V�), there is a C-repair that does not contain t .
(c) For every D′ ∈ Srep(D, �) and D′′ ∈ Crep(D, �), it holds D � D′ ⊆

Causes(D, V�) and D � D′′ ⊆ MRC(D, V�).

For a projection-free, and a possibly non-Boolean CQ Q, we are interested in its
consistent answers fromD with respect to�. For example, forQ(x, y, z) : R(x, y)∧

206 Theory Comput Syst (2017) 61:191–232

S(y, z), the S-consistent (C-consistent) answers would be of the form 〈a, b, c〉, where
R(a, b) and S(b, c) belong to all S-repairs (C-repairs) of D.

From Corollary 3, 〈a, b, c〉 is an S-consistent (resp. C-consistent) answer iff
R(a, b) and S(b, c) belong to D, but they are not actual causes (resp. most
responsible actual causes) for V� .

The following simple result and its corollary will be useful in Section 6.

Proposition 7 For an instanceD, withDx = ∅, a set� of DCs, and a projection-free
CQ Q(x̄) : P1(x̄1) ∧ · · · ∧ Pk(x̄k):

(a) c̄ is an S-consistent answer iff, for each i, Pi(c̄i) ∈ (D � Causes(D, V�)).
(b) c̄ is a C-consistent answer iff, for each i, Pi(c̄i) ∈ (D �MRC(D, V�)).

Example 9 (ex. 5 cont.) Consider Q(x) : P(x). We had Causes(D, V�) =
{P(a), Q(a, b), R(a, c)}, MRC(D, V�) = {P(a)}. Then, 〈e〉 is both an S- and a
C-consistent answer.

Notice that Proposition 7 can easily be extended to conjunctions of ground atomic
queries.

Corollary 4 Given an instance D and a set � of DCs, the ground atomic query
Q: P(c) is C-consistently true iff P(c) ∈ D and it is not a most responsible cause
for V� .

Example 10 For D = {P(a, b), R(b, c), R(a, d)} and the DC κ : ←
P(x, y), R(y, z), we obtain: Causes(D, V κ) = MRC(D, V κ) = {P(a, b), R(b, c)}.

From Proposition 7, the ground atomic query Q : R(a, d) is both S- and C-
consistently true in D with respect to κ , because, D � Causes(D, V κ) = D �

MRC(D, V κ) = {R(a, d)}.

The CQs considered in Proposition 7 and its Corollary 4 are not particularly inter-
esting per se, but we will use those results to obtain new complexity results for
causality later on, e.g. Theorem 3.

5 Causes and Repairs from Consistency-Based Diagnosis

The main objective in this section is to characterize database causality computation
as a diagnosis problem.11 This is interesting per se, and will also allow us to apply
ideas and techniques from model-based diagnosis to causality. As a side result we
obtain a characterization of database repairs in terms of diagnosis.

11The other direction is beyond the scope of this work. More importantly, logic-based diagnosis in general
is a much richer scenario than that of database causality. In the former, we can have arbitrary logical
specification, whereas under data causality, we have only monotone queries at hand.

Theory Comput Syst (2017) 61:191–232 207

Let D be an instance for schema S, and Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)),
a BCQ. Assume Q is, possibly unexpectedly, true in D. So, for the associated
DC κ(Q) : ∀x̄¬(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), D �|= κ(Q). Q is our observa-
tion, for which we want to find explanations, using a consistency-based diagnosis
approach.

For each predicate P ∈ P , we introduce predicate AbP , with the same arity as P .
Intuitively, a tuple in its extension is abnormal for P . The “system description”, SD,
includes, among other elements, the original database, expressed in logical terms,
and the DC as true “under normal conditions”.

More precisely, we consider the following diagnosis problem,M = (SD, Dn, Q),
associated to Q. The FO system description, SD, contains the following elements:

(a) Th(D), which is Reiter’s logical reconstruction of D as a FO theory [54] (cf.
Example 11).

(b) Sentence κ(Q)Ab, which is κ(Q) rewritten as follows:

κ(Q)Ab : ∀x̄¬(P1(x̄1) ∧ ¬AbP1(x̄1) ∧ · · · ∧ Pm(x̄m) ∧ ¬AbPm(x̄m)). (7)

(c) Formula (7) can be refined by applying the abnormality predicate, Ab, to
endogenous tuples only. For this we need to use additional auxiliary predicates
EndP , with the same arity of P ∈ S, which contain the endogenous tuples
in P ’s extension (see Example 11). Accordingly, we introduce the inclusion
dependencies: For each P ∈ P ,

∀x̄(AbP (x̄) → EndP (x̄)), and ∀x̄(EndP (x̄) → P(x̄)).

The last entry,Q, inM is the “observation”, which together with SD will produce
and inconsistent theory, because we make the initial and explicit assumption that all
the abnormality predicates are empty (equivalently, that all tuples are normal), i.e. we
consider, for each predicate P , the sentence12

∀x̄(AbP (x̄) → false), (8)

where, false is a propositional atom that is always false.
The second entry in M is Dn. This is the set of “components” that we can use to

try to restore consistency, in this case, by (minimally) changing the abnormality con-
dition on tuples inDn. In other words, the universal rules (8) are subject to exceptions
or qualifications: some endogenous tuples may be abnormal. Each diagnosis shows
an S-minimal set of endogenous tuples that are abnormal.

Example 11 (ex. 1 cont.) Consider the queryQ : ∃x∃y(S(x)∧R(x, y)∧ S(y)), and
the instance D = {S(a3), S(a4), R(a4, a3)}, with Dn = {S(a4), S(a3)}, consider the
diagnostic problemM = (SD, {S(a4), S(a3)}, Q), with SD containing the sentences
in (a)-(c) below:

12Notice that these can also be seen as DCs, since they can be written as ∀x̄¬AbP (x̄).

208 Theory Comput Syst (2017) 61:191–232

(a) Predicate completion axioms plus unique names assumption:

∀xy(R(x, y) ↔ x = a4 ∧ y = a3), ∀x(S(x) ↔ x = a3 ∨ x = a4), (9)

∀xy(EndR(x, y) ↔ false), ∀x(EndS(x) ↔ x = a3 ∨ x = a4), (10)

a4 �= a3. (11)

(b) The denial constraint qualified by non-abnormality, κ(Q)Ab:

∀xy¬ (S(x) ∧ ¬AbS(x) ∧ R(x, y) ∧ ¬AbR(x, y) ∧ S(y) ∧ ¬AbS(y)).

In diagnosis formalizations this formula would be usually presented as:

∀xy((¬AbS(x) ∧ ¬AbR(x, y) ∧ ¬AbS(y)) −→ ¬(S(x) ∧ R(x, y) ∧ S(y))).

That is, under the normality assumption, the “system” behaves as intended; in
this case, there are no violations of the denial constraint. This main formula in
the diagnosis specification can also be written as a disjunctive positive rule:

∀xy(S(x) ∧ R(x, y) ∧ S(y) −→ AbS(x) ∨ AbR(x, y) ∨ AbS(y)). (12)

(c) Abnormality/endogenousity predicates are in correspondence to the database
schema, and only endogenous tuples can be abnormal:

∀xy(AbR(x, y) → EndR(x, y)), ∀xy(EndR(x, y) → R(x, y)), (13)

∀x(AbS(x) → EndS(x)), ∀x(EndS(x) → S(x)). (14)

In addition to this specification, we have the observation Q:

∃x∃y(S(x) ∧ R(x, y) ∧ S(y)). (15)

Finally, we make the assumption that there are not abnormal tuples:

∀xy(AbR(x, y) → false), ∀x(AbS(x) → false). (16)

The FO theory formed by (9) - (16) (more precisely, (9), (11), (12), (15) and (16)) is
inconsistent.

Now, in more general terms, the observation is Q (being true), obtained by evalu-
ating query Q on (theory of) D. In this case, D �|= κ(Q). Since all the abnormality
predicates are assumed to be empty, κ(Q) is equivalent to κ(Q)Ab, which also
becomes false with respect to D. As a consequence, SD ∪ {(8)} ∪ {Q} is an inconsis-
tent FO theory. A diagnosis is a set of endogenous tuples that, by becoming abnormal,
restore consistency.

Definition 4

(a) A diagnosis forM is a � ⊆ Dn, such that

SD ∪ {AbP (c̄) | P(c̄) ∈ �} ∪ {¬AbP (c̄) | P(c̄) ∈ D � �} ∪ {Q}
is consistent.

(b) Diags(M, t) denotes the set of S-minimal diagnoses for M that contain tuple
t ∈ Dn.

(c) Diagc(M, t) denotes the set of C-minimal diagnoses in Diags(M, t).

Theory Comput Syst (2017) 61:191–232 209

Example 12 (ex. 11 cont.) The theory can be made consistent by giving up (16), and
making S-minimal sets of tuples abnormal. According to (13)-(14), those tuples have
to be endogenous.

M has two S-minimal diagnosis: �1 = {S(a3)} and �4 = {S(a4)}. The first one
corresponds to replacing the second formula in (16) by ∀x(AbS(x) ∧ x �= a3 →
false), obtaining now a consistent theory.

Here, Diags(M, S(a3)) = Diagc(M, S(a3)) = {{S(a3)}}, and Diags(M,

S(a4)) = Diagc(M, S(a4)) = {{ S(a4)}}.
If R(a4, a3) is also endogenous, then also {R(a4, a3)} becomes a minimal

diagnosis.

By definition, Diagc(M, t) ⊆ Diags(M, t). Diagnoses for M and actual causes
for Q are related.

Proposition 8 Consider an instance D, a BCQ Q, and the diagnosis problem M
associated to Q. Tuple t ∈ Dn is an actual cause for Q iff Diags(M, t) �= ∅.

The responsibility of an actual cause t is determined by the cardinality of the
diagnoses in Diagc(M, t).

Proposition 9 For an instance D, a BCQ Q, the associated diagnosis problem M,
and a tuple t ∈ Dn, it holds:

(a) ρ
D
(t) = 0 iff Diagc(M, t) = ∅.

(b) Otherwise, ρ
D
(t) = 1

|�| , where � ∈ Diagc(M, t).

For the proofs of Propositions 8 and 9, it is easy to verify that the conflict sets of
M coincide with the sets in S(Dn) (cf. Definition 3). The results are obtained from
the characterization of minimal diagnosis as minimal hitting-sets of sets of conflict
sets (cf. Section 2 and [53]) and Proposition 6.

Example 13 (ex. 12 cont.) From Propositions 8 and 9, S(a3) and S(a4) are actual
cases, with responsibility 1. IfR(a4, a3) is also endogenous, it also becomes an actual
cause with responsibility 1.

In consistency-based diagnosis, minimal diagnoses can be obtained as S-minimal
hitting-sets of the collection of S-minimal conflict sets (cf. Section 2) [53]. In our
case, conflict sets are S-minimal sets of endogenous tuples that, if not abnormal (only
endogenous ones can be abnormal), and together, and possibly in combination with
exogenous tuples, make (7) false.

It is easy to verify that the conflict sets ofM coincide with the sets inS(Dn) (cf.
Definition 3 and Remark 4). As a consequence, conflict sets forM can be computed
in PTIME, the hitting-sets for M contain actual causes for Q, and the hitting-set
problem for the diagnosis problems is of the d-hitting-set kind.

The reduction from causality to consistency-based diagnosis allows us to apply
constructions and techniques for the latter (cf. [27, 49]), to the former.

210 Theory Comput Syst (2017) 61:191–232

Example 14 (ex. 11 cont.) The diagnosis problem M = (SD, {S(a4), S(a3)}, Q)

gives rise to the hitting-set framework Hn(D) = 〈{S(a4), S(a3)}, {{(S(a3), S(a4)}}〉,
with {S(a3), S(a4)} corresponding to the conflict set c = {S(a4), S(a3)}.

Hn(D) has two minimum hitting-sets: {S(a3)} and {S(a4)}, which are the S-
minimal diagnosis for M. Then, the two tuples are actual causes for Q (cf.
Proposition 8). From Proposition 9, ρ

D
(S(a3)) = ρ

D
(S(a4)) = 1.

The solutions to the diagnosis problem can be used for computing repairs.

Proposition 10 Consider an instance D with Dx = ∅, a set of DCs of the form
κ : ∀x̄¬(P1(x̄1)∧· · ·∧Pm(x̄m), and their associated “abnormality-aware” integrity
constraints13 in (7) (in this case we do not need EndP atoms).

Each S-minimal diagnosis � gives rise to an S-repair of D, namely D� = D �

{P(c̄) ∈ D | AbP (c̄) ∈ �}; and every S-repair can be obtained in this way. Similarly,
for C-repairs using C-minimal diagnoses.

Example 15 (ex. 13 cont.) The instance D = {S(a3), S(a4), R(a4, a3)}, with
all tuples endogenous, has three (both S- and C-) repairs with respect to the DC
κ : ∀xy¬(S(x) ∧ R(x, y) ∧ S(y)), namely D1 = {S(a3), R(a4, a3)}, D2 =
{S(a4), R(a4, a3)}, and D3 = {S(a3), S(a4)}. They can be obtained as D�1 , D�2 ,

D�3 from the only (S- and C-) diagnoses, �1 = {S(a3)}, �2 = {S(a4)}, �3 =
{R(a4, a3)}, resp.

We have characterized repairs in terms of diagnosis. Thinking of the other direc-
tion, and as a final remark, it is worth observing that the very particular kind of
diagnosis problem we introduced above (with restricted logical formulas) can be for-
mulated as a preferred-repair problem [9, Sec. 2.5]. Without going into the details,
the idea is to materialize tables for the auxiliary predicates AbP and EndP , and
consider the DCs of the form (7) (with the EndP atoms when not all tuples are
endogenous), plus the DCs (8), saying that the initial extensions for the AbP pred-
icates are empty. If D is inconsistent with respect to this set of DCs, the S-repairs
that are obtained by only inserting endogenous tuples into the extensions of the AbP

predicates correspond to S-minimal diagnosis, and each S-minimal diagnosis can be
obtained in this way.

6 Complexity Results

There are three main computational problems in database causality. For a BCQ Q
and database D:

(a) The causality problem (CP) is about computing the actual causes for Q. Its
decision version of this problem, CDP, is stated in (5). Both CP and CDP

13Notice that these are not denial constraints.

Theory Comput Syst (2017) 61:191–232 211

are solvable in polynomial time [47], which can be extended to UBCQs (cf.
Proposition 5).

(b) The responsibility problem (RP) is about computing the responsibility ρ
D
(t) of

a given actual cause t . (Since a tuple that is not an actual cause has respon-
sibility 0, this problem subsumes (a).) This is a maximization problem due to
the minimization of |�| in the denominator.

We will consider the decision version of this problem that, as usual for maxi-
mization problems [29], asks whether the real-valued function being computed
(responsibility in this case) takes a value greater than a given threshold v of the
form 1

k
, for a positive integer k.

Definition 5 For a BCQ Q, the responsibility decision problem (RDP) is (deciding
about membership of):

RDP(Q) = {(D, t, v) | t ∈ Dn, v ∈ {0} ∪ {1
k

| k ∈ N
+}, and

D |= Q and ρ
D
(t) > v},

that is, deciding if a tuple has a responsibility greater than a bound v (as a cause for
Q).

The complexity analysis of RDP in [47] is restricted to conjunctive queries without
self-joins. Here, we will generalize the complexity analysis for RDP to general CQs.

(c) Computing the most responsible actual causes (MRC). Its decision version,
MRCDP, the most responsible cause decision problem, is a natural problem,
because actual causes with the highest responsibility tend to provide most
interesting explanations for query answers [47, 48].

Definition 6 For a BCQ Q, the most responsible cause decision problem is (mem-
bership of):

MRCDP(Q) = {(D, t)|t ∈ Dn and 0 < ρ
D
(t) is a maximum for D}.

We start by analyzing a more basic decision problem, that of deciding if a set of
tuples � is an S-minimal contingency set associated to a cause t (cf. (3)). Due to the
results in Sections 3 and 4, it is clear that there is a close connection between this
problem and the S-repair checking problem [9, Chap. 5], about deciding if instance
D′ is an S-repair of instance D with respect to a set of integrity constraints. Actually,
the following result is obtained from the PTIME solvability of the S-repair checking
problem for DCs [18] (see also [1]).

Proposition 11 For a BCQ Q, the minimal contingency set decision problem
(MCSDP), i.e. MCSDP(Q) := {(D, t, �) | � is minimal element in Cont(D,Q, t)},
belongs to PTIME.

Proof To decide if (D, t, �) ∈ MCSDP(Q), it is good enough to observe, from
Proposition 1, that (D, t, �) ∈ MCSDP(Q) iff D � (� ∪ {t}) is an S-repair for D

with respect to κ(Q). S-repair checking can be done in PTIME in data [18].

212 Theory Comput Syst (2017) 61:191–232

We could also consider the decision problem defined in Proposition 11, but with C-
minimal �. We will not use results about this problem in the following. Furthermore,
its connection with the C-repair checking problem is less direct. As one can see from
Section 3, C-minimal contingency sets correspond to a repair semantics somewhere
between the S-minimal and C-minimal repair semantics (a subclass of Srep, but a
superclass of Crep): It is about an S-minimal repair with minimum cardinality that
does not contain a particular tuple.

Now we establish that RDP is NP-complete for CQs in general. The NP-hardness
is shown in [47]. Membership of NP is obtained using Proposition 11.

Theorem 1 (a) For every BCQ Q, RDP(Q) ∈ NP.
(b) [47] There are CQs Q for whichRDP(Q) is NP-hard.

Proof (a) We give a non-deterministic PTIME algorithm to solve RDP. Non-
deterministically guess a subset � ⊆ Dn, return yes if |�| < 1

v
and (D, t,

�) ∈ MCSDP; otherwise return no. According to Proposition 11 this can be
done in PTIME in data complexity.

In order to better understand the complexity of RP, the responsibility computation
problem, we will investigate the functional, non-decision version of RDP.

The main source of complexity when computing responsibilities is related to the
hitting-set problem associated to Hn(D) = 〈Dn,Sn(D)〉 in Remark 4 (cf. (6)). In
this case, it is about computing the cardinality of a minimum hitting-set that contains
a given vertex (tuple) t . That this is a kind of d-hitting-set problem [50] will be useful
in Section 6.1.

Remark 5 Our responsibility problem can also be seen as a vertex cover problem on
the hypergraph14

Gn(D) = 〈Dn,Sn(D)〉 (17)

associated to Hn(D) = 〈Dn,Sn(D)〉 (that is, the hitting-set framework can be seen
as a hypergraph). In it, the hyperedges are the members of Sn(D). Determining the
responsibility of a tuple t becomes the problem on hypergraphs of determining the
size of a minimum vertex cover that contains vertex t (among all vertex covers that
contain the vertex). Again, in this problem the hyperedges are bounded in size by
|Q|.15

14In an hypergraphH, a set of vertices is a vertex cover if it intersects every hyperedge. A minimal vertex
cover has no proper subset that is also a vertex cover. A minimum vertex cover has minimum cardinality
among the vertex covers. Similarly, an independent set of H is a set of vertices such that no pair of them
is contained in a hyperedge. Maximal and maximum independent sets are defined in an obvious manner.
15We recall that repairs of databases with respect to DCs can be characterized as maximal independent
sets of conflict hypergraphs (conflict graphs in the case of FDs) whose vertices are the database tuples,
and hyperedges connect tuples that together violate a DC [4, 18].

Theory Comput Syst (2017) 61:191–232 213

Example 16 For Q : ∃xy(P (x) ∧ R(x, y) ∧ P(y)), and D = Dn = {P(a), P (c),

R(a, c), R(a, a)}, S(D) = Sn(D) = {{P(a), R(a, a)}, {P(a), P (c), R(a, c)}}.
The hypergraph Gn(D) has D as set of vertices, and its hyperedges are {P(a),

R(a, a)} and {P (a), P (c), R(a, c)}. Its minimal vertex covers are: vc1 = {P(a)},
vc2 = {P(c), R(a, a)}, vc3 = {R(a, a), R(a, c)}. Only the first has minimum cardi-
nality. Accordingly, its only element, P(a), is an actual cause with responsibility 1.
The other tuples are actual causes with responsibility 1

2 .

Remark 6 To simplify the presentation of the next computational problems (Lemmas
1 and 2 and Proposition 12), we will formulate and address them in terms of graphs.
However, they still hold for hypergraphs [43, 44], which is what we need for the
complexity results obtained in the rest of this section.

Lemma 1 (representation lemma) There is a fixed database schema S and a BCQ
Q ∈ L(S), without built-ins, such that, for every graph G = (V , E), with non-empty
E, and v ∈ V , there is an instance D for S and a tuple t ∈ D, such that the size of a
minimum vertex cover of G containing v is the inverse of the responsibility of t as an
actual cause for Q.

Proof Consider a graph G = (V , E), and assume the vertices of G are uniquely
labeled.

Consider the database schema with relations Ver(v0) and Edges(v1, v2, e), and the
conjunctive query Q : ∃v1v2e(Ver(v1) ∧ Ver(v2) ∧ Edges(v1, v2, e)). Ver stores the
vertices of G, and Edges, the labeled edges. For each edge (v1, v2) ∈ E, Edges

contains n tuples of the form (v1, v2, i), where n is the number of vertices in G.
All the values in the third attribute of Edges are different, say from 1 to n × |E|.
This padding of relation Edge will ensure in the rest of the proof that C-minimal
contingency sets for the query answer consist only of vertices, i.e. elements of V er

(as opposed to Edge tuples). The size of the padded instance is still polynomial in
the size of G. It is clear that D |= Q.

Assume VC is the minimum vertex cover of G that contains vertex v, where tuple
t is Ver(v). Consider the set of tuples � = {Ver(x) | x ∈ VC}. Since v ∈ VC,
� = �′ ∪ {Ver(v)}. Then, D � (�′ ∪ Ver(v)) �|= Q. This is because for every tuple
Edge(vi, vj , k) in the instance, either vi or vj belongs to VC. Due to the minimality
of VC, D � �′ |= Q. Therefore, tuple Ver(v) is an actual cause for Q.

Suppose � is a C-minimal contingency set associated to Ver(v). Due to the C-
minimality of �, it entirely consists of tuples in Ver. It holds thatD�(�∪{Ver(v)}) �|=
Q and D � � |= Q. Consider the set V C′ = {x | Ver(x) ∈ �} ∪ {v}. Since D �

(� ∪ {Ver(v)}) �|= Q, for every tuple Edge(vi, vj , k) in D, either vi ∈ VC′ or vj ∈
VC′. Therefore, VC′ is a minimum vertex cover of G that contains v. It holds that
ρ

D
(Ver(v)) = 1

1+|�| . So, the size of a minimum vertex cover of G that contains v can
be obtained from ρ

D
(Ver(v)).

Having represented our responsibility problem as a graph-theoretic problem, we
first consider functional computational problems in graphs.

214 Theory Comput Syst (2017) 61:191–232

Definition 7 The minimal vertex cover membership problem (MVCMP) consists in,
given a graph G = (V , E), and a vertex v ∈ V as inputs, computing the size of a
minimum vertex cover of G that contains v.

Lemma 2 Given a graph G and a vertex v in it, there is a graph G′ extending G that
can be constructed in polynomial time in |G|, such that the size of a minimum vertex
cover for G that contains v and the size of a minimum vertex cover for G′ coincide.

Proof The size of V CG(v), the minimum vertex cover of G that contains the vertex
v, can be computed from the size of IG, the maximum independent set of G, that
does not contain v. In fact,

|V CG(v)| = |G| − |IG|. (18)

Since IG is a maximum independent set that does not contain v, it must contain one
of the adjacent vertices of v (otherwise, IG is not maximum, and v can be added to
IG). Therefore, |V CG(v)| can be computed from the size of a maximum independent
set I that contains v′, one of the adjacent vertices of v.

Given a graph G and a vertex v′ in it, a graph G′ that extends G can be con-
structed in polynomial time in the size of G, in such a way that: there is a maximum
independent set I of G containing v′ iff v′ belongs to every maximum indepen-
dent set of G′ iff the sizes of maximum independent sets for G and G′ differ by
one.

Actually, graph G′ can be obtained by adding a new vertex v′′ that is connected
only to the neighbors of v′. It holds:16

|IG| = |IG′ | − 1, (19)

|IG′ | = |G′| − |VCG′ |, (20)

where IG′ is a maximum indent set in G′, and VCG′ is a minimum vertex cover of
G′. From (18), (19) and (20), we obtain: |V CG(v)| = |V CG′ |.

From Lemma 2 and the FPNP(log(n))-completeness of determining the size of a
maximum clique in a graph [39], we obtain:

Proposition 12 The MVCMP problem for graphs is FPNP(log(n))-complete.

Proof We prove membership by describing an algorithm in FPNP(log(n)) for comput-
ing the size of the minimum vertex cover of a graph G = (V , E) that contains a
vertex v ∈ V. We use Lemma 2, and build the extended graph G′.

The size of a minimum vertex cover for G′ gives the size of the minimum vertex
cover of G that contains v. Since computing the maximum cardinality of a clique can
be done in time FPNP(log(n)) [39], computing a minimum vertex cover can be done

16This construction is inspired by [43, Lemma 1]. More details can be found in [44].

Theory Comput Syst (2017) 61:191–232 215

in the same time (just consider the complement graph). Therefore, MVCMP belong
to FPNP(log(n)).

Hardness can be obtained by a reduction from computing minimum vertex covers
in graphs to MVCMP. Given a graph G construct the graph G′ as follows: Add a
vertex v to G and connect it to all vertices of G. It is easy to see that v belongs to
all minimum vertex covers of G′. Furthermore, the sizes of minimum vertex covers
for G and G′ differ by one. Consequently, the size of a minimum vertex cover of
G can be obtained from the size of a minimum vertex cover of G′ that contains v.
Computing the minimum vertex cover is FPNP(log(n))-complete. This follows from
the FPNP(log(n))-completeness of computing the maximum cardinality of a clique in
a graph [39].

Theorem 2

(a) For every BCQ, Q, computing the responsibility of a tuple as a cause for Q is
in FPNP(log(n)).

(b) There is a database schema and a BCQ Q, without built-ins, such that comput-
ing the responsibility of a tuple as a cause for Q is FPNP(log(n))-complete.

Proof For membership, we observe from Remark 5 that computing a tuple’s respon-
sibility amounts to computing the size of a minimum vertex cover containing the
tuple in the graph associated to the query and instance at hand. By Proposition 12,
this problem belongs to FPNP(log(n)).

Hardness follows from Lemma 1 and the hardness result in Proposition 12.

Now we address the most responsible causes problem, MRCDP (cf. Definition 6).
We use the connection with consistent query answering of Section 4.3, namely Corol-
lary 4, and the PNP(log(n))-completeness of consistent query answering under the
C-repair semantics for queries that are conjunctions of ground atoms and a particular
DC [43, Theorem 4].

Theorem 3

(a) For every BCQ,MRCDP(Q) ∈ PNP(log(n)).
(b) There is a database schema and a BCQ Q, without built-ins, for which

MRCDP(Q) is PNP(log(n))-complete.

Proof

(a) To show that MRCDP(Q) belongs to PNP(log(n)), consider first the hitting-set
framework Hn(D) = 〈Dn,Sn(D)〉 (cf. Definition 3 and 6) and its associated
hypergraph Gn(D) (cf. (17)).

It holds that t is a most responsible cause for Q iff Hn(D) has a C-minimal
hitting-set that contains t (cf. Proposition 6). Therefore, t is a most responsible
cause for Q iff t belongs to some minimum vertex cover of Gn(D).

216 Theory Comput Syst (2017) 61:191–232

It is easy to see that Gn(D) has a minimum vertex cover that contains t iff
Gn(D) has a maximum independent set that does not contains t . Checking if t

belongs to all maximum independent set of Gn(D) can be done in PNP(log(n))

[43, Lemma 2].
If t belongs to all independent sets of Gn(D), then (D, t) �∈ MRCDP(Q);

otherwise (D, t) ∈ MRCDP(Q). As a consequence, the decision can be made
in time PNP(log(n)).

(b) The proof is by a reduction, via Corollary 4, from consistent query answering
under the C-repair semantics for queries that are conjunctions of ground atoms,
which was proved to be PNP(log(n))-complete in [43, Theorem 4]. Actually, that
proof (of hardness) uses a particular database schema S and a DC κ . In our case,
we can use the same schema S and the violation query V κ associated to κ (cf.
Section 4).

From Proposition 6 and the FPNP(log(n))-completeness of determining the size of
C-repairs for DCs [43, Theorem 3], we obtain the following for the computation of
the highest responsibility value.

Proposition 13

(a) For every BCQ, computing the responsibility of the most responsible causes is
in FPNP(log(n)).

(b) There is a database schema and a BCQQ, without built-ins, for which comput-
ing the responsibility of the most responsible causes is FPNP(log(n))-complete.

Proof

(a) To show the membership of FPNP(log(n)), consider the hypergraph Gn(D) as
obtained in Theorem 3. The responsibility of most responsible causes for Q
can be obtained from the size of the minimum vertex cover of Gn(D) (cf.
Proposition 6). The size of the minimum vertex cover in a graph can be com-
puted in FPNP(log(n)), which is obtained from the membership of FPNP(log(n))

of computing the maximum cardinality of a clique in graph [39].
It is easy to verify that minimum vertex covers in hypergraphs can be

computed in the same time.
(b) This is by a reduction from the problem of determining the size of C-repairs

for DCs shown to be FPNP(log(n))-complete in [43, Theorem 3]. Actually, that
proof (of hardness) uses a particular database schema S and a DC κ . In our case,
we may consider the same schema S and the violation query V κ associated to
κ (cf. Section 4).

The size of C-repairs for an inconsistent instance D of the schema S with respect
to κ can be obtained from the responsibility of most responsible causes for V κ (cf.
Corollary 2).

Theory Comput Syst (2017) 61:191–232 217

6.1 FPT of Responsibility

We need to cope with the intractability of computing most responsible causes. The
area of fixed parameter tractability (FPT) [28] provides tools to attack this prob-
lem. In this regard, we recall that a decision problem with inputs of the form (I, p),
where p is a distinguished parameter of the input, is fixed parameter tractable (or
belongs to the class FPT), if it can be solved in time O(f (|p|) · |I |c), where
c and the hidden constant do not depend on |p| or |I |, and f does not depend
on |I |.

In our case, the parameterized version of the decision problemRDP(Q) (cf. Def-
inition 5) is denoted withRDPp(Q), and the distinguished parameter is k, such that
v = 1

k
.

That RDPp(Q) belongs to FPT can be obtained from its formulation as a d-
hitting-set problem (d being the fixed upper bound on the size of the sets in the set
class). The latter problem consists in, given a hitting-set framework with d-bounded
subsets and an element t (a tuple in our case), deciding if there is a hitting-set of
cardinality smaller that k that contains t . This problem belongs to FPT.

Theorem 4 For every BCQ Q, RDPp(Q) belongs to FPT, where the parameter is
the inverse of the responsibility bound.

Proof First, there is a PTIME parameterized algorithm for the d-hitting-set problem
about deciding if there is a hitting-set of size at most k that runs in time O(ek + n),
with n the size of the underlying set and e = d − 1 + o(d−1) [50]. In our case,
n = |D|, and d = |Q| (cf. also [26]).

Now, to decide if the responsibility of a given tuple t is greater than v = 1
k
, we

consider the associated hypergraphGn(D), and we decide if it has a vertex cover that
contains t and whose size is less than k. In order to answer this, we use Lemma 2,
and build the extended hypergraph G′.

The size of a minimum vertex cover for G′ gives the size of the minimum vertex
cover of Gn(D) that contains t . If Gn(D) has a vertex cover that contains t of size
less than k, then G′ has a vertex cover of size less than k. If G′ has a vertex cover
of size less than k, its minimum size for a vertex cover is less than k. Since this
minimum is the same as the size of a minimum vertex cover for Gn(D) that contains
t ,Gn(D) has a vertex cover of size less than k that contains t . As a consequence, it is
good enough to decide ifG′ has a vertex cover of size less than k. For this, we use the
hitting-set formulation of this hypergraph problem, and the already mentioned FPT
algorithm.

This result and the corresponding algorithm sketched in its proof show that the
higher the required responsibility degree, the lower the computational effort needed
to compute the actual causes with at least that level of responsibility. In other terms,
parameterized algorithms are effective for computing actual causes with high respon-
sibility or most responsible causes. In general, parameterized algorithms are very
effective when the parameter is relatively small [28].

218 Theory Comput Syst (2017) 61:191–232

Now, in order to compute most responsible causes, we could apply, for each actual
cause t , the just presented FPT algorithm on the hypergraphGn(D), starting with k =
1, i.e. asking if there is vertex cover of size less than 1 that contains t . If the algorithm
returns a positive result, then t is a counterfactual cause, and has responsibility 1.
Otherwise, the algorithm will be launched with k = 2, 3, . . . , |Dn|, until a positive
result is returned. (The procedure can be improved through binary search on k =
1, 2, 3, . . . , m, with m possibly much smaller than |D|.)

The complexity results and algorithms provided in this section can be extend to
UBCQs. This is due to Remark 2 and the construction of Sn(D), which the results
in this section build upon.

For the d-hitting-set problem there are also efficient parameterized approxima-
tion algorithms [11]. They could be used to approximate the responsibility problem.
Furthermore, approximation algorithms developed for the minimum vertex cover
problem on bounded hypergraphs [34, 51] should be applicable to approximate
most responsible causes for query answers. Via the causality/repair connection (cf.
Section 4.3), it should be possible to develop approximation algorithms to compute
S-repairs of particular sizes, C-repairs, and consistent query answers with respect
to DCs.

6.2 Complexity of Diagnosis with Positive Disjunctive Rules

It is known that consistency-based diagnosis decision problems can be unsolvable
[53]. However, there are decidable classes of FO diagnosis specifications, and those
classes are amenable to complexity analysis. However, there is little research on the
complexity analysis of solvable classes of consistency-based diagnosis problems.
The connection we established in the previous sections between causality, repairs
and consistency-based diagnosis can be used to obtain new algorithmic and com-
plexity results for the latter. Without trying to be exhaustive about this, which is
beyond the scope of this paper, we give an example of the kind of results that can be
obtained.

Considering the diagnosis problem we obtained in Section 5, we can define a class
of diagnosis problems. Cf. Example 11, in particular (12), for motivation.

Definition 8 A disjunctive positive (DP) diagnosis specification � is a consistent
FO logical theory, such that:

(a) � has a signature (schema) consisting of a finite set of constants, a set of pred-
icates S, a set Sab of predicates of the form AbR ,17 with R ∈ S, and AbR with
the same arity of R. S and Sab are mutually disjoint.

(b) � is inconsistent with ABS := {∀x̄(AbR(x̄) → false) | R ∈ S}.
(c) Consists of:

(c1) Sentences of the form ∀x̄(C(x̄) −→ ∨
iAbRi

(x̄i)), with x̄i ⊆ x̄, and
C(x̄) a conjunction of atoms that does not include Ab-atoms of any kind.

17Or any other “abducible” predicates that are different from those in S.

Theory Comput Syst (2017) 61:191–232 219

(c2) Sentences of the forms ∀x̄(AbR(x̄) −→ (R(x̄) ∧ S(x̄))), with S ∈ S.
(c3) A finite background universal theory T expressed in terms of predicates

in S (and constants) that has a unique Herbrand model.18

As above, a diagnosis is a set of AbR-atoms that, when assumed to be true, restores
the consistency of the correspondingly modified � ∪ ABS .

There are at least two important computational tasks that emerge, namely, given a
disjunctive positive (DP) diagnosis specification � together with ABS :

1. The minimum-cardinality diagnosis (MCD) problem, about computing
minimum-cardinality diagnoses.

2. The minimal membership diagnosis, (MMD) about computing minimum-
cardinality diagnoses that contain a given Ab-atom.

It is not difficult to see that these problems are computable (or solvable in their
decision versions). Now we can obtain complexity lower bounds for them. Actually,
in Section 5, the responsibility and most responsible causes problem were reduced to
diagnosis problems for specifications that turned out to be disjunctive positive (see
(12)).

More specifically, Proposition 9 reduces computing responsibility of a tuple to
computing the size of a minimum-cardinality diagnosis that contains the tuple. Fur-
thermore, as a simple corollary of Proposition 9, we obtain the computation of
minimum-cardinality diagnoses allows us to compute most responsible causes. Now,
combining all this with Proposition 13 and Theorem 2, we obtain the following lower
bounds for our diagnosis problems.

Theorem 5 For disjunctive positive diagnosis specifications, the MCD and MMD
problems are FPNP(log(n))-hard in the size of their underlying Herbrand structure.

7 Preferred Causes for Query Answers

In Section 3 we characterized causes and most responsible causes in terms of S-
repairs and C-repairs, resp. We could generalize the notion of a cause and/or its
responsibility by using, in principle, any repair semanticsS. The latter is represented
by a class of repairs RepS(D, �), of D with respect to a set of denial constraints (cf.
Section 2.2). When dealing with (sets of) DCs, the repair actions can only be of cer-
tain kinds. Usually tuple deletions have been considered. This is the case of the S-
and C-repairs we have considered in this work so far.

We could go beyond and consider the notion of prioritized repair [59]. Also
changes of attribute values can be the chosen repair actions, including the use of null
values, to “destroy” joins (again, with different semantics, e.g. with nulls à la SQL
[8, 12]).

18This condition is clearly satisfied by the logical reconstruction of a relational database, but can be relaxed
in several ways.

220 Theory Comput Syst (2017) 61:191–232

In this section we explore the possibility of introducing a notion of preferred cause
that is based on a given repair semantics. This idea is inspired by (and generalizes)
the characterization of causes in terms of repairs that we obtained before, namely (1),
(2), Proposition 1, and Corollary 1.

If we define causes and their (minimal) contingency sets on the basis of a given
repair semantics, the minimality condition involved in the latter will have an impact
on the notion of minimal (or preferred) contingency set, and indirectly, on the notions
of responsibility and most responsible cause.19

In Section 7.1 we summarize prioritized repairs. In Section 7.2 we impose prefer-
ences on causes on the basis of the prioritized repairs introduced in [59] (and further
investigated in [25]). In Section 7.3, we briefly investigate the possibility of capturing
endogenous repairs, i.e. that do not change exogenous tuples, by means of a prior-
ity relation. Finally, in Section 7.4, we briefly consider the possibility of defining
(preferred) causes via attribute-based repairs that use null values.

7.1 Prioritized Repairs

The prioritized repairs in [59] are based on a priority relation, �, on the set of
database tuples. In the case of a pair of (mutually) conflicting tuples, i.e. that simul-
taneously violate a constraint in a given set set of DCs (possibly in company of other
tuples), the repair process reflects the user preference -as captured by the priority
relation- on the tuples that are privileged to be kept in the database, i.e. in the intended
repairs.

Given such a priority relation, in [59] different classes of prioritized repairs are
introduced, namely the class of globally optimal repairs, that of Pareto-optimal
repairs, and that of completion-optimal repairs. Intuitively, each class relies on a
different optimality criterion that is used to extend the priority relation � on pairs
of conflicting facts to a priority relation on the set of S-repairs. As a consequence,
each of these three classes is contained in that of the S-repairs. In particular, all these
repairs are based on tuple deletions.

Let us denote with Rep�,X (D, �) the class of all prioritized repairs based on �
and the optimality criterion X . Its elements are called (�,X)-prioritized repairs of
D with respect to a the set � of DCs. It holds Rep�,X (D, �) ⊆ Srep(D, �), and
then, all the elements of Rep�,X (D, �) are subsets of D.

In order to show a concrete class Rep�,X (D, �), we first recall the definitions of
priority relation and global-optimal repair from [59].

19We could say that the efforts in [35, 36] to modify the Halpern-Pearl (HP) original definition of causality
are about considering more appropriate restrictions on contingencies. Since in some cases the original HP
definition does not provide intuitive results regarding causality, the modifications avoid this by recognizing
some contingencies as “unreasonable” or “farfetched”.

Theory Comput Syst (2017) 61:191–232 221

Definition 9 Given an instance D and a set of denial constraints � , a binary relation
� on D is a priority relation with respect to � if: (a) � is acyclic, and (b) for every
t, t ′ ∈ D, if t � t ′, then t and t ′ are mutually conflicting.20

Definition 10 Let D be an instance, � a set of DCs, and � a corresponding pri-
ority relation. Let D′ and D′′ be two consistent sub-instances of D. D′ is a global
improvement of D′′ if D′ �= D′′, and for every tuple t ′ ∈ D′′

�D′, there exists a tuple
t ∈ D′

�D′′ such that t � t ′. D′ is a global-optimal repair of D, if D′ is an S-repair
and does not have a global improvement.

In this definition, the optimality criterion, a possible X above, is that of global-
optimal repair, or (�, go)-repair, which leads to a class Rep�,go(D, �). We consider
this repair semantics just for illustration purposes.

Example 17 Consider the database schema Author(Name, JournalN), Journal

(JournalN, T opic, Paper#), and the following instance D:

D:

Author Name JournalN Journal JournalN Paper# Topic

John TKDE TKDE 30 XML
Tom TKDE TKDE 31 CUBE
John TODS TODS 32 XML

Consider the following denial constraint:

κ : ∀xyzz′¬(Author(x,y) ∧ Journal(y, z, z′) ∧ x = John ∧ z′ = XML), (21)

capturing the condition that “John has not published a paper in a journal that has
published papers on XML”.

D is inconsistent with respect to κ , and contains the following sets of conflicting
tuples:

C1 = {Author(John,TKDE), Journal(TKDE,30,XML)},
C2 = {Author(John,TODS), Journal(TODS,32,XML)}.

20We can say {t, t ′} is a conflict, i.e. the two tuples jointly participate in the violation of one of the DCs in
�.

222 Theory Comput Syst (2017) 61:191–232

D has the following S-repairs, each obtained by deleting one tuple from each of C1
and C2, to resolve the conflicts:

D1 = {Author(T om,TKDE), Journal(TKDE, 31,CUBE), Author(John,TODS),

J ournal(TKDE, 30,XML)}
D2 = {Author(T om,TKDE), Journal(TKDE, 31,CUBE), Journal(TKDE, 30,XML),

J ournal(TODS, 32,XML)}
D3 = {Author(T om,TKDE), Journal(TKDE, 31,CUBE), Author(John,TKDE),

J ournal(TODS, 32,XML)}
D4 = {Author(T om,TKDE), Journal(TKDE, 31,CUBE), Author(John,TKDE),

Author(John,TODS)}

(a) Now, assume a user prefers to resolve a conflict by removing tuples from the
Author table rather than the Journal table, maybe because he considers the latter
more reliable than the former. This is expressed the following priority relation-
ships on conflicting tuples: Journal(TKDE, 30, XML) � Author(John, TKDE)
and Journal(TODS, 32, XML) � Author(John, TODS).

In this case only D2 is a global-optimal repair. Actually, D2 is a global
improvement over each of D1, D3 and D4. For D1, for example: D2 � D1 =
{Journal(TODS, 32,XML)} and D1 � D2 = {Author(John, TODS)}. We can
see that, for each tuple in D2 � D1, there is a tuple in D1 � D2 that has a
higher priority. Therefore, D2 is a global improvement on D1. So, in this case
Rep�,go(D, κ) = {D2}

In this case, the uniqueness of the global-optimal repair is quite natural as
the preference relation among conflicting tuples is a total relation. So, we know
how to resolve every conflict according to the user preferences.

(b) For a more subtle situation, assume the user has the priorities as before,
but in addition he tends to believe that John has a paper in TODS.
In this case we have only the relationship Journal(TKDE, 30,XML) �′
Author(John,TKDE), and no preference for resolving the second conflict.
Now both D1 and D2 are global-optimal repairs. That is, now Rep�′,go(D, κ) =
{D1, D2}.

7.2 Preferred causes from prioritized repairs

According to the motivation provided at the beginning of this section, we now define
preferred causes on the basis of a class of prioritized repairs. (Compare (22) below
with (1) and (2).) To keep things simple, we concentrate on single BCQs, Q, whose
associated denial constraints are denoted by κ(Q).

Before providing technical details, we motivate the notion of preference in the con-
text of causality. In this direction, first notice that under actual causality, we already
make a difference -and only this difference- between endogenous and exogenous
tuples. We can think of extending this priority relation among tuples in such a way

Theory Comput Syst (2017) 61:191–232 223

that, for example, we prioritize -as causes- tuples in a given relationR, and we are not
interested in tuples in another relation S. So, the user can specify a priority relation
between the two relations, or different scores for these relations [46].

In Section 4.2 actual causes and their minimal contingency sets for a UBCQ were
characterized as the minimal hitting-sets of the collection C of minimal subsets of a
database that entail the query. Those minimal hitting-sets are obtained by removing
at least one tuple from each of the elements of C (cf. Proposition 6). At this point,
user preferences, or priorities, could be applied to tuples that belong to a same set C.

Definition 11 Given an instance D and a BCQ Q, tuples t and t ′ are jointly-
contributing if t �= t ′, and there exists an S-minimal � ⊆ D such that � |= Q and
t, t ′ ∈ �.

Now we define priority relations on jointly-contributing tuples.

Definition 12 Given an instance D and a BCQ Q, a binary relation �c on D is
a causal priority relation with respect to Q if: (a) �c is acyclic, and (b) for every
t, t ′ ∈ D, if t �c t ′, then t and t ′ are jointly-contributing tuples.

This definition introduces a natural notion of preference on causality. Actually,
this way of approaching priorities on causes is in (inverse) correspondence with pref-
erence on repairs as based on priority relations on conflicting tuples. To see this, first
observe that for a given instance D and BCQ Q: t and t ′ are jointly-contributing
tuples for Q iff t and t ′ are mutually conflicting tuples for κ(Q).

Next, in the context of prioritized repairs, a priority relation reflects a user pref-
erence on tuples that are preferred to be kept in the database. This is the inverse of
causality, where a causal priority relation, as we defined it, reflects the tuples that are
preferred to be (hypothetically or counterfactually) removed from database, to make
them preferred causes.

In the following assume �r
c is the inverse of a causal priority relation �c. That is,

t �r
c t ′ iff t ′ �c t . Clearly, �r

c is acyclic, and can be imposed, with the expected
result, on pairs of conflicting tuples. As a consequence, �r

c can be used to define
prioritized repairs.

Definition 13 Let D be an instance, Q a BCQ, t a tuple in D, �c a causal priority
relation on D’s tuples.

(a)

Diff �r
c ,X(D, κ(Q), t) := {D � D′ | D′ ∈ Rep�r

c ,X(D, κ(Q)), and

t ∈ D � D′}. (22)

(b) t ∈ D is a (�c,X)-preferred cause for Q iff Diff �r
c ,X(D, κ(Q), t) �= ∅.

Notice that every (�c,X)-preferred cause is also an actual cause. This follows
from Proposition 1 and the fact that prioritized repairs are also S-repairs.

224 Theory Comput Syst (2017) 61:191–232

Similarly to Proposition 2, for each� ∈ Diff �r
c ,X(D, κ(Q), t), it holds that t ∈ �,

t is a (�c,X)-preferred cause, and also an actual cause for Q with S-minimal con-
tingency set � � {t}. In particular, t’s responsibility can be defined and computed
as before, but now restricting its contingency sets to those of the form � � {t},
with � ∈ Diff �r

c ,X(D, κ(Q), t). In this way, a causal priority relation may affect the
responsibility of a cause (with respect to the non-prioritized case).

Example 18 (example 17 cont.) The following BCQ query Q is true in D:

∃JournalN ∃Paper#(Author(John, JournalN) ∧
Journal(JournalN, Paper#,XML));

and its associated DC κ(Q) is κ in (21).
We want to obtain the preferred causes forQ being, possibly unexpectedly, true in

D, with the following preferences: (a) We prefer those among the Author tuples. (b)
It is likely that John does have a paper in TODS. So, we prefer Author(John, TODS)
not to be the cause.

These causal priorities are in inverse correspondence with those in the second case
of Example 17(b) about priorities for repairs. That is, for our causal priority relation
�c here, its inverse �r

c is �′ in Example 17(b). There we had Rep�′,go(D, κ(Q)) =
{D1, D2}, which we can use to apply Definition 13.

We obtain as the globally-optimal causes, i.e. as (�c, go)-causes: Author(John,
TKDE), Author(TODS, 32, XML) and Author(John, TODS), all with the same
responsibility, 1

2 . �

Notice that Definition 13 can be easily extended to UBCQs. This is done, as earlier
in this work, by considering the set � of denial constraints associated to a UBCQ. In
the other direction, we recall that if we start with a set of DCs �, the corresponding
UBCQ is denoted with V� .

As we did in the previous sections of this work, we could take advantage of algo-
rithmic and complexity results about prioritized repairs [25, 59], to obtain complexity
results for preferred causes problems. As an example, we establish the complexity of
the minimal contingency set decision problem for (�c, go)-preferred causes. More
precisely, for an instance D and a UBCQ Q, the minimal preference-contingency set
(decision) problem is about deciding if a set of tuples � is an S-minimal contingency
set associated to a (�c, go)-preferred cause t .

Notation Cont�c,X(D,Q, t) := {� � {t} | � ∈ Diff �r
c ,X(D, κ(Q), t)} is the class

of all S-minimal contingency sets for a (�c,X)-preferred cause t .

Definition 14 For a UBCQ Q, the minimal preference-contingency set decision
problem is about membership of:

MPCDP(Q) := {(D, �c, t, �) | t ∈ D, � ⊆ D, and � ∈ Cont�c,go(D,Q, t)}.

From Definition 13, there is a close connection between MPCDP and the
global-optimal repair checking problem, i.e. about deciding if an instance D′ is a

Theory Comput Syst (2017) 61:191–232 225

(�, go)-repair of D with respect to a set of denial constraints. If we accept func-
tional dependencies (FDs) among our denial constraints (and then, UBCQs that
involve inequalities), the following result can be obtained from the NP-completeness
of globally-optimal repair checking [59] for FDs.

Proposition 14 For a UBCQ Q with inequalities,MPCDP(Q) is NP-hard.

Proof It is good enough to reduce globally-optimal repair checking to our contin-
gency checking problem. So, consider an inconsistent instance D with respect to a
set of denial constraint �, a priority relation for repairs �, and D′ ⊆ D. To check
if D′ ∈ Rep�,go(D, �) we can check, for an arbitrary element t ∈ D � D′, if
(D, �r , t, D � (D′ ∪ {t})) ∈ MPCDP(V�).

It is worth contrasting this result with the tractability result in Proposition 11 for
the minimal contingency set decision problem (MCSDP) for actual causes. Notice
that Proposition 11 still holds for UBCQs with inequality.

Notice that we could generalize the notion of preferred cause by appealing to any
notion of repair. More precisely, if we have a repair semantics rSem (based on tuple
deletions for DCs), we could replace Rep�,X (D, κ(Q)) in (22) by RepS(D, κ(Q)).
However, to obtain the intended results for causes, we have to be careful, as above,
about a possible inverse relationship between preference on repairs and preference
on causes.

7.3 Endogenous Repairs

The partition of a database into endogenous and exogenous tuples that is used in the
causality setting may also be of interest in the context of repairs. Considering that we
should have more control on endogenous tuples than on exogenous ones, which may
come from external sources, it makes sense to consider endogenous repairs, which
would be obtained by updates (of any kind) on endogenous tuples only. (Of course,
a symmetric treatment of “exogenous” repairs is also possible; what is relevant here
is the partition.)

For example, in the case of DCs, endogenous repairs would be obtained by
deleting endogenous tuples only. More formally, givenD = Dn∪Dx , possibly incon-
sistent with a set of DCs �, an endogenous repair D′ of D is a maximally consistent
sub-instance of D with D�D′ ⊆ Dn, i.e. D′ keeps all the exogenous tuples of D. If
endogenous repairs form the class Srepn(D, �), it holds Srepn(D, �) ⊆ Srep(D, �).

Example 19 Consider D = Dn ∪ Dx , with Dn = {R(a2, a1), R(a4, a3), S(a3),

S(a4)} and Dx = {R(a3, a3), S(a2)}, and the DC κ : ¬∃xy(S(x) ∧ R(x, y) ∧ S(y)).
Here, Srep(D, κ) = {D1, D2, D3}, with D1 = {R(a2, a1), R(a4, a3), R(a3, a3),

S(a4), S(a2)}, D2 = {R(a2, a1), S(a3), S(a4), S(a2)}, and D3 = {R(a2, a1),

R(a4, a3), S(a3), S(a2)}. The only endogenous S-repair is D1.

226 Theory Comput Syst (2017) 61:191–232

In this section, without trying to be exhaustive or detailed, we consider the pos-
sibility of defining endogenous repairs on the basis of a suitable priority relation �
on tuples,21 while at the same time taking advantage of the op optimality condition
considered in Section 7.1.22

First, if we assume that relation �′, the extension of �, is such, that t �′ t ′ when
t ∈ Dx and t ′ ∈ Dn (�′ is � if the latter already has this property), then it is
easy to verify that every endogenous S-repair globally improves any non-endogenous
S-repair. As a consequence, if there is an endogenous S-repair, then all the (�′, go)-
repairs are endogenous. Notice that the extension �′ may destroy the acyclicity
assumption on the priority relation, because we are starting from a given (acyclic)
relation �, which we are now extending.

It might be the case that there is no endogenous S-repair, in which case non-
endogenous S-repairs would not the improved by an endogenous one. So, if we
want to prevent the existence of non-endogenous repairs, we can add an extra,
dummy predicate D(·) to the schema, and the endogenous tuple D(d) to D. We
modify every DC in �, say κ : ← C(x̄), by adding an extra, dummy condition:
κd : ← D(d), C(x̄), obtaining a set �d of DCs. In this case, the S-repairs will be:
Dd := D � {D(d)}, which is endogenous, and also all those S-repairs of D with
respect to � (now each including D(d)). The latter are all non-endogenous. If we
assume that t �′ D(d), for every t ∈ Dx , then every non-endogenous S-repair will
be improved by Dd , and will not be considered.

7.4 Null-based Causes

Consider an instanceD = {R(c1, . . . , cn), . . .} thatmay be inconsistentwith respect to a
set of DCs. The allowed repair updates are changes of attribute values by the constant
null. We assume that null does not join with any other value, including null itself.

In order to keep trackof changes,wemay introducenumbers as first arguments in tuples,
as global tuple identifiers (ids). So, D becomes D = {R(1; c1, . . . , cn), . . .}. Assume
that id(t) returns the id of the tuple t ∈ D. For example, id(R(1; c1, . . . , cn)) = 1.

If, by updatingD intoD′ in thisway, the value of the ith attribute in R is changed to
null, then the change is captured as the stringR[1; i]. These strings are collected form-
ing the set Diff null(D, D′). For example, if D = {R(1; a, b), S(2; c, d), S(3; e, f)}
is changed into D′ = {R(1; a, null), S(2; null, d), S(3; null, null)}, we have
Diff null(D, D′) = {R[1; 2], S[2; 1], S[3; 1], S[3; 2]}.

A null-repair of D with respect to a set of DCs � is a consistent instance D′,
such thatDiff null(D, D′) is minimal under set inclusion.23 Repnull(D, �) denotes the
class of null-based repairs of D with respect to �.

21Pairs of conflicting tuples would inherit the priority relationships from the general priority relation.
22Of course, we could use other optimality criteria at this points, but considering all possibilities is beyond
the scope of this work.
23An alternative, but equivalent formulation can be found in [8].

Theory Comput Syst (2017) 61:191–232 227

Example 20 (example 19 cont.) Consider the following inconsistent instance with
respect to DC κ : ¬∃xy(S(x) ∧ R(x, y) ∧ S(y)):

D = {R(1; a2, a1), R(2; a3, a3), R(3; a4, a3), S(4; a2), S(5; a3), S(6; a4)}.
For simplicity, we do not make any difference between endogenous and exogenous

tuples. Here, the class of null-based repairs, Repnull(D, κ), is formed by:
D1 = {R(1; a2, a1), R(2; a3, a3), R(3; a4, a3), S(4; a2), S(5; null), S(6; a4)},
D2 = {R(1; a2, a1), R(2; null, a3), R(3; a4, null), S(4; a2), S(5; a3), S(6; a4)},
D3 = {R(1; a2, a1), R(2; null, a3), R(3; a4, a3), S(4; a2), S(5; a3), S(6; null)},
D4 = {R(1; a2, a1), R(2; a3, null), R(3; a4, null), S(4; a2), S(5; a3), S(6; a4)},
D5 = {R(1; a2, a1), R(2; a3, null), R(3; null, a3), S(4; a2), S(5; a3), S(6; a4)},
D6 = {R(1; a2, a1), R(2; a3, null), R(3; a4, a3), S(4; a2), S(5; a3), S(6; null)}.

Here,Diff null(D,D2) = {R[2;1],R[3;2]}, andDiff null(D,D3) = {R[2;1], S[6;1]}.

According to the motivation provided at the beginning of this section, we can
now define causes appealing to the class of null-based repairs of D. Since repair
actions in this case, are attribute-value changes, causes can be defined at both the
tuple and attribute levels. The same applies to the definition of responsibility (in this
case generalizing Proposition 2).

Definition 15 For D an instance and Q a BCQ, and t ∈ D be a tuple of the form
R(i; c1, . . . , cn).

(a) R[i; cj] is a null-based attribute-value cause forQ if there is D′ ∈ Repnull(D,

κ(Q)) with R[i; j] ∈ Diff null(D, D′).
(That is, the value cj for attribute Aj in the tuple is a cause if it is changed

into a null in some repair.)
(b) t is a null-based tuple cause for Q if some R[i; cj] is a null-based attribute-

value cause for Q.
(That is, the whole tuple is a cause if at least one of its attribute values is

changed into a null in some repair.)
(c) The responsibility, ρt−null(t), of t , a null-based tuple cause forQ, is the inverse

of min{|Diff null(D, D′)| : R[i; j] ∈ Diff null(D, D′), for some j, and D′ ∈
Repnull(D, κ(Q))}.

(d) The responsibility, ρa−null(R[i; cj]), of R[i; cj], a null-based attribute-value
cause for Q, is the inverse of min{|Diff null(D, D′)| : R[i; j] ∈ Diff null(D,

D′), and D′ ∈ Repnull(D, κ(Q))}.

In cases (c) and (d) we minimize over the number of changes in a repair that
are made together with that of the candidate tuple/attribute-value to be a cause. In
the case of a tuple cause, any change made in one of its attributes is considered in
the minimization. For this reason, the minimum may be smaller than the one for
a fixed attribute value change; and so the responsibility at the tuple level may be
greater than that at the attribute level. More precisely, if t = R(i; c1, . . . , cn) ∈
D, and R[i; cj]) is a null-based attribute-value cause, then it holds
ρa−null(R[i; cj]) ≤ ρt−null(t).

228 Theory Comput Syst (2017) 61:191–232

Example 21 (ex. 20 cont.) ConsiderR(2; a3, a3) ∈ D. Its projection on its first (non-
id) attribute, R[2; a3], is an attribute-level cause since R[2; 1] ∈ Diff null(D, D2).
Also R[2; 1] ∈ Diff null(D, D3).

Since |Diff null(D, D2)| = |Diff null(D, D3)| = 2, it holds ρa−null(R[2; 1]) = 1
2 .

Clearly R(2; a3, a3) is a null-based tuple cause for Q, with ρt−null(t) = 1
2 .

Notice that the definition of tuple-level responsibility, i.e. case (c) in Definition
15, does not take into account that a same id, i, may appear several times in a
Diff null(D, D′). In order to do so, we could redefine the size of the latter by taking
into account those multiplicities. For example, if we decrease the size of the Diff by
one with every repetition of the id, the responsibility for a cause may (only) increase,
which makes sense.

8 Discussion and Conclusions

Our work opens interesting research directions, some of which are briefly discussed
below. They are matter of ongoing and future research.

8.1 Endogenous Repairs

As discussed in Section 7, the partition of a database into endogenous and exogenous
tuples may also be of interest in the context of repairs. We may prefer endoge-
nous repairs that change (delete in this case) only endogenous tuples. However,
if there are no endogenous tuples, a preference condition could be imposed on
repairs, keeping those that change exogenous tuples the least. This is something to
explore.

As a further extension, it could be possible to assume that combinations of (only)
exogenous tuples never violate the integrity constraints, which could be checked at
upload time. In this sense, there would be a part of the database that is considered
to be consistent, while the other is subject to possible repairs. For somehow related
research, see [31].

Going a bit further, we could even consider the relations in the database with
an extra, binary attribute, N , that is used to annotate if a tuple is endogenous or
exogenous (it could be both), e.g. a tuple like R(a, b, yes). integrity constraints
could be annotated too, e.g. the “exogenous” version of DC κ , could be κE : ←
P(x, y, yes), R(y, z, yes), and could be assumed to be satisfied.

8.2 Objections to Causality

Causality as introduced by Halpern and Pearl in [32, 33], aka. HP-causality, is the
basis for the notion of causality in [47]. HP-causality has been the object of some
criticism [35], which is justified in some (more complex, non-relational) settings,
specially due to the presence of different kinds of logical variables (or lack thereof).
In our context the objections do not apply: variables just say that a certain tuple

Theory Comput Syst (2017) 61:191–232 229

belongs to the instance (or not); and for relational databases the closed-world assump-
tion applies. In [35, 36], the definition of HP-causality is slightly modified. In our
setting, this modified definition does not change actual causes or their properties.

8.3 Open Queries

We have limited our discussion to Boolean queries. It is possible to extend our
work to consider conjunctive queries with free variables, e.g. Q(x) : ∃yz(R(x, y) ∧
S(y, z)). In this case, a query answer would be of the form 〈a〉, for a a constant, and
causes would be found for such an answer. In this case, the associated DC would be
of the form κ〈a〉 : ← R(a, y), S(y, z), and the rest would be basically as above.

8.4 ASP Specification of Causes

S-repairs can be specified by means of answer set programs (ASPs) [3, 6], and C-
repairs too, with the use of weak program constraints [3]. This should allow for the
introduction of ASPs in the context of causality, for specification and reasoning.
There are also ASP-based specifications of diagnosis [24] that could be brought into
a more complete picture.

8.5 Causes and Functional Dependencies, and Beyond

Functional dependencies are DCs with conjunctive violation views with inequal-
ity, and are still monotonic. There is much research on repairs and consistent query
answering for functional dependencies, and more complex integrity constraints [9].
In causality, mostly CQs without built-ins have been considered. The repair con-
nection could be exploited to obtain more refined results for causality and CQs
with inequality, and also other classes of queries, even non-monotonic ones, that
correspond violation views for other kinds of integrity constraints. In a different,
but related direction, causality for monotonic queries in the presence of integrity
constraints has been investigated in [56].

8.6 View Updates and Abduction

Abduction [20, 23] is another form of model-based diagnosis, and is related to
the subjects investigated in this work. The view update problem, about updating a
database through views, is a classical problem in databases that has been treated
through abduction [21, 37]. User knowledge imposed through view updates creates
or reflects uncertainty about the base data, because alternative base instances may
give an account of the intended view updates. The view update problem, specially in
its particular form of deletion propagation, has been recently related in [41, 42] to
causality as introduced in [47]. (Notice only tuple deletions are used with violation
views and repairs associated to DCs.)

Database repairs are also related to the view update problem. Actually, answer set
programs (ASP) for database repairs [6] implicity repair the database by updating

230 Theory Comput Syst (2017) 61:191–232

intentional, annotated predicates (cf. Section 8.4). Even more, in [8], in order to pro-
tect sensitive information, databases are explicitly and virtually “repaired” through
secrecy views that specify the information that has to be kept secret. These are pri-
oritized repairs that have been specified via ASPs. Abduction has been explicitly
applied to database repairs [5].

The deep interrelations between causality, abductive reasoning, view updates and
repairs are the objects of our ongoing research efforts [10, 57].

To conclude, let us emphasize that in this research we have unveiled and for-
malized some first interesting relationships between causality in databases, database
repairs, and consistency-based diagnosis. These connections allow us to apply results
and techniques developed for each of them to the others. This is particularly benefi-
cial for causality in databases, where still a limited number of results and techniques
have been obtained or developed.

The connections we established here inspired complexity results for causality, e.g.
Theorems 2 and 3, and were used to prove them. We appealed to several non-trivial
results found in [43] (and the proofs thereof found in [44]) about repairs and CQA. It
is also the case that the well-established hitting-set approach to diagnosis inspired a
similar approach to causal responsibility, which in its turn allowed us to obtain results
about its fixed-parameter tractability. It is also the case that diagnostic reasoning, as
a form of non-monotonic reasoning, can provide a solid foundation for causality in
databases and query answer explanation, in general [16, 17].

In ongoing research we have established connections between query answer
causality, abductive diagnosis and database updates through views [57]. It is inter-
esting that several of these areas of data management and knowledge representation,
including those considered in this work, fall under what has been called “reverse data
management” tasks [45]. Our work establishes formal connections between them and
sets the ground for further investigation into their interrelationships.

Acknowledgments Research funded by NSERC Discovery, and the NSERC Strategic Network on
Business Intelligence (BIN). Conversations with Alexandra Meliou during Leo Bertossi’s visit to U. of
Washington in 2011 are much appreciated. He is also grateful to Dan Suciu and Wolfgang Gatterbauer
for their hospitality. L. Bertossi is grateful to Benny Kimelfeld for stimulating conversations. Part of the
research was developed by L. Bertossi during partial sabbatical stays at LogicBlox and The Center for
Semantic Web Research (Chile). Their support is much appreciated. We appreciate the comments from the
anonymous reviewers.

References

1. Afrati, F., Kolaitis, P.: Repair checking in inconsistent databases: Algorithms and complexity. Proc.
ICDT, 31–41 (2009)

2. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases. Proc. ACM
PODS, 68–79 (1999)

3. Arenas, M., Bertossi, L., Chomicki, J.: Answer sets for consistent query answers. Theory Pract. Logic
Programm. 3(4–5), 393–424 (2003)

4. Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar aggregation in
inconsistent databases. Theor. Comput. Sci. 296, 405–434 (2003)

Theory Comput Syst (2017) 61:191–232 231

5. Arieli, O., Denecker, M., Van Nuffelen, B., Bruynooghe, M.: Coherent integration of databases by
abductive logic programming. J. Artif Intell. Res. 21, 245–286 (2004)

6. Barcelo, P., Bertossi, L., Bravo, L.: Characterizing and computing semantically correct answers from
databases with annotated logic and answer sets. in semantics of databases. In: Semantics of Databases,
Springer LNCS 2582, pp. 1–27 (2003)

7. Bertossi, L.: Consistent query answering in databases. ACM SIGMOD Rec. 35(2), 68–76 (2006)
8. Bertossi, L., Li, L.: Achieving data privacy through secrecy views and null-based virtual updates.

IEEE Trans Knowl. Data Eng. 25(5), 987–1000 (2013)
9. Bertossi, L.: Database repairing and consistent query answering, Morgan & Claypool, Synthesis

Lectures on Data Management (2011)
10. Bertossi, L., Salimi, B.: Unifying causality, diagnosis, repairs and view-updates in databases.

Presented at the First International Workshop on Big Uncertain Data (BUDA 2014). Posted at:
arXiv:1405.4228 [cs.DB]

11. Brankovic, L., Fernau, H.H.: Parameterized approximation algorithms for hitting set. In: Approxima-
tion and Online Algorithms, pp. 63–76. Springer LNCS 7164 (2012)

12. Bravo, L., Bertossi, L.: Semantically correct query answers in the presence of null values. In:
Chomicki, J., Wijsen, J. (eds.) Proceedings EDBT WS on Inconsistency and Incompleteness in
Databases (IIDB 06), pp. 336–357. Springer LNCS 4254 (2006)

13. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data provenance. Proc.
ICDT, 316–330 (2001)

14. Buneman, P., Tan, W.C.: Provenance in databases. Proc. ACM SIGMOD, 1171–1173 (2007)
15. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases why, how, and where. Found. Trends

Databases 1(4), 379–474 (2009)
16. Cheney, J., Chong, S., Foster, N., Seltzer, M.I., Vansummeren, S.: Provenance a future history.

OOPSLA Companion (Onward!), 957–964 (2009)
17. Cheney, J.: Is Provenance Logical? Proc. LID, 2–6 (2011)
18. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple deletions. Inf.

Comput. 197(1-2), 90–121 (2005)
19. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model approach. J. Artif. Intell.

Res. 22, 93–115 (2004)
20. Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagnosis. Comput. Intell.

7, 133–141 (1991)
21. Console, L., Sapino, M.L., Theseider-Dupre, D.: The role of abduction in database view updating. J.

Intell. Inf. Syst. 4(3), 261–280 (1995)
22. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment.

ACM Trans. Database Syst. 25(2), 179–227 (2000)
23. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs semantics and complexity. Theor.

Comput. Sci. 189(1-2), 129–177 (1997)
24. Eiter, T.h., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the DLV system. AI Commun.

12(1-2), 99–111 (1999)
25. Fagin, R., Kimelfeld, B., Kolaitis, Ph.: Dichotomies in the complexity of preferred repairs. Proc. ACM

PODS, 3–15 (2015)
26. Fernau, H.: Parameterized algorithmics for d-hitting set. Int. J. Comput. Math. 87(14), 3157–3174

(2010)
27. Feldman, A., Provan, G., Gemund, A.V.: Approximate model-based diagnosis using greedy stochastic

search. J. Artif. Intell. Res. (JAIR) 87(14), 3157–3174 (2010)
28. Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Computer Science,

Springer Verlag (2006)
29. Garey, M., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completenes. W.

H. Freeman (1979)
30. Gertz, M.: Diagnosis and repair of constraint violations in database systems. PhD Thesis, Universität

Hannover (1996)
31. Greco, S., Pijcke, F., Wijsen, J.: Certain query answering in partially consistent databases. PVLDB

7(5), 353–364 (2014)
32. Halpern, J., Pearl, J.: Causes and explanations: a structural-model approach: part 1. Proc. UAI, 194–

202 (2001)

http://arXiv.org/abs/1405.4228

232 Theory Comput Syst (2017) 61:191–232

33. Halpern, J., Pearl, J.: Causes and explanations: a structural-model approach: part 1. British J. Philos.
Sci. 56, 843–887 (2005)

34. Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hyper-
graphs. Proceedings ACM-SIAM Symposium on Discrete Algorithms, 329–337 (2000)

35. Halpern, J.: Appropriate causal models and stability of causation. Proc. KR’14 (2014)
36. Halpern, J.: A modification of Halpern-Pearl definition of causality. Proc. IJCAI (2015)
37. Kakas A. C., Mancarella, P.: Database updates through abduction. Proc. VLDB, 650–661 (1990)
38. Karvounarakis, G., Green, T.J.: Semiring-annotated data queries and provenance? SIGMOD Rec.

41(3), 5–14 (2012)
39. Krentel, M.: The complexity of optimization problems. J. Comput. Syst. 36, 490–509 (1988)
40. Karvounarakis, G., Ives Z. G., Tannen, V.: Querying provenance. Proc. ACM SIGMOD, 951–962

(2010)
41. Kimelfeld, B.: A dichotomy in the complexity of deletion propagation with functional dependencies.

Proc. ACM PODS (2012)
42. Kimelfeld, B., Vondrak, J., Williams, R.: Maximizing conjunctive views in deletion propagation. ACM

Trans. Database Syst. 37(4), 24 (2012)
43. Lopatenko, A., Bertossi, L.: Complexity of consistent query answering in databases under cardinality-

based and incremental repair semantics. Proc. ICDT, 2007, Springer LNCS 4353, pp. 179–193. Proofs
of results are found in [44]

44. Lopatenko, A., Bertossi, L.: Complexity of consistent query answering in databases under cardinality-
based and incremental repair semantics. Extended version of [43], including proofs. Posted at:
arXiv:cs/1605.07159 [cs.DB]

45. Meliou, A., Gatterbauer, W., Suciu, D.: Reverse data management. PVLDB 4(12), 1490–1493 (2011)
46. Meliou, A., Gatterbauer, W., Suciu, D.: Bringing provenance to its full potential using causal

reasoning. Proc. TaPP (2011)
47. Meliou, A., Gatterbauer, W., Moore K. F., Suciu, D.: The complexity of causality and responsibility

for query answers and non-answers. Proc. VLDB, 34–41 (2010)
48. Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore K. F., Suciu, D.: Causality in databases.

IEEE Data Eng. Bull. 33(3), 59–67 (2010)
49. Mozetic, I., Holzbaur, C.: Controlling the complexity in model-based diagnosis. Ann. Math. Artif.

Intell. 11(1-4), 297–314 (1994)
50. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-hitting set. J Discret.

Algorithm. 1(1), 89–102 (2003)
51. Okun, M.: On approximation of the vertex cover problem in hypergraphs. Discret. Optim. 2(1), 101–

111 (2005)
52. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
53. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
54. Reiter, R.: Towards a logical reconstruction of relational database theory. In: On Conceptual

Modelling, pp. 191–233. Springer (1984)
55. Salimi, B., Bertossi, L.: Causality in databases: the diagnosis and repair connections. Presented

at The 15th International Workshop on Non-Monotonic Reasoning (NMR 2014). Posted at:
arXiv:1404.6857[cs.DB]

56. Salimi, B., Bertossi, L.: Causes for query answers from databases, datalog abduction and view-
updates: the presence of integrity constraints. Proc. FLAIRS, 2016. Posted as Corr arXiv:1602.06458

57. Salimi, B., Bertossi, L.: Query-answer causality in databases: abductive diagnosis and view-updates.
In: Proceedings UAI Causal Inference Workshop, 2015. CEUR-WS Proceedings Vol-1504 (2015)

58. Salimi, B., Bertossi, L.: From causes for database queries to repairs and model-based diagnosis and
back. In: Proceedings 18th International Conference on Database Theory (ICDT 2015)

59. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent query answering in
relational databases. Ann. Math. Artif. Intell. 64(2-3), 209–246 (2012)

60. Struss, P.: Model-based problem solving. In: Handbook of Knowledge Representation, chap. 10.
Elsevier (2008)

61. Tannen, V.: Provenance propagation in complex queries. In: Buneman Festschrift, 2013, Springer
LNCS 8000, pp. 483–493

http://arXiv.org/abs/cs/1605.07159
http://arXiv.org/abs/1404.6857
http://arXiv.org/abs/cs.DB/1602.06458

	From Causes for Database Queries
	Abstract
	Introduction
	Preliminaries
	Causality and responsibility
	Database repairs
	Consistency-based diagnosis
	Complexity classes

	Actual Causes From Database Repairs
	Database Repairs from Actual Causes
	Causes for Unions of Conjunctive Queries
	Contingency Sets for Unions of Conjunctive Queries
	Causality, Repairs, and Consistent Answers

	Causes and Repairs from Consistency-Based Diagnosis
	Complexity Results
	FPT of Responsibility
	Complexity of Diagnosis with Positive Disjunctive Rules

	Preferred Causes for Query Answers
	Prioritized Repairs
	Preferred causes from prioritized repairs
	Notation

	Endogenous Repairs
	Null-based Causes

	Discussion and Conclusions
	Endogenous Repairs
	Objections to Causality
	Open Queries
	ASP Specification of Causes
	Causes and Functional Dependencies, and Beyond
	View Updates and Abduction

	Acknowledgments
	References

