
Theory Comput Syst (2017) 61:777–794
DOI 10.1007/s00224-016-9716-y

Parameterized Complexity Dichotomy
for (r, �)-VERTEX DELETION

Julien Baste1 ·Luerbio Faria2 ·Sulamita Klein3 ·
Ignasi Sau1

Published online: 27 October 2016
© Springer Science+Business Media New York 2016

Abstract For two integers r, � ≥ 0, a graph G = (V , E) is an (r, �)-graph if V

can be partitioned into r independent sets and � cliques. In the parameterized (r, �)-
VERTEX DELETION problem, given a graph G and an integer k, one has to decide
whether at most k vertices can be removed from G to obtain an (r, �)-graph. This
problem is NP-hard if r + � ≥ 1 and encompasses several relevant problems such as
VERTEX COVER and ODD CYCLE TRANSVERSAL. The parameterized complexity
of (r, �)-VERTEX DELETION was known for all values of (r, �) except for (2, 1),
(1, 2), and (2, 2). We prove that each of these three cases is FPT and, furthermore,
solvable in single-exponential time, which is asymptotically optimal in terms of k. We
consider as well the version of (r, �)-VERTEX DELETION where the set of vertices
to be removed has to induce an independent set, and provide also a parameterized
complexity dichotomy for this problem.

This work was partially supported by CNPq, CAPES, FAPERJ, and COFECUB.

� Ignasi Sau
ignasi.sau@lirmm.fr

Julien Baste
julien.baste@lirmm.fr

Luerbio Faria
luerbio@cos.ufrj.br

Sulamita Klein
sula@cos.ufrj.br

1 AlGCo Project Team, CNRS, LIRMM, Montpellier, France

2 FFP, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

3 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-016-9716-y&domain=pdf
mailto:ignasi.sau@lirmm.fr
mailto:julien.baste@lirmm.fr
mailto:luerbio@cos.ufrj.br
mailto:sula@cos.ufrj.br

778 Theory Comput Syst (2017) 61:777–794

Keywords Graph modification problem · Parameterized complexity · Iterative
compression · FPT-algorithm · Single-exponential algorithm

1 Introduction

Motivation Let r, � ≥ 0 be two fixed integers. A graph G = (V , E) is an
(r, �)-graph if V can be partitioned into r independent sets and � cliques. In the
parameterized (r, �)-VERTEX DELETION problem, we are given a graph G and an
integer parameter k, and the task is to decide whether at most k vertices can be
removed from G so that the resulting graph is an (r, �)-graph. The optimization ver-
sion of this problem is known to be NP-hard for r + � ≥ 1 by a classical result
of Lewis and Yannakakis [17]. The (r, �)-VERTEX DELETION problem has a big
expressive power as it captures several relevant problems for particular cases of the
pair (r, �). Indeed, for instance, the case (1, 0) corresponds to VERTEX COVER, the
case (2, 0) to ODD CYCLE TRANSVERSAL, the case (1, 1) to SPLIT VERTEX DELE-
TION, and the case (3, 0) to whether at most k vertices can be removed so that the
resulting graph is 3-colorable.

In this article we are interested in the parameterized complexity of (r, �)-VERTEX

DELETION; see [7, 9, 21] for introductory textbooks to the field. We just recall that
a problem defined on an n-vertex graph is fixed-parameter tractable (FPT for short)
with respect to a parameter k if it can be solved in FPT-time, i.e., in time f (k) ·nO(1).
An FPT-algorithm that runs in time 2O(k) · nO(1) is called single-exponential. For
the case of VERTEX COVER (VC for short), a simple branching algorithm yields
an FPT-algorithm in time 2k · nO(1). The currently fastest algorithm [3] runs in
time 1.27k · nO(1). For ODD CYCLE TRANSVERSAL (OCT for short), the problem
was not known to be FPT until Reed et al. [23] introduced the celebrated technique
of iterative compression and solved OCT in time 3k · nO(1). The current fastest
algorithm [18] uses linear programming and runs in time 2.31k · nO(1). The SPLIT

VERTEX DELETION problem can be easily seen to be solvable in single-exponential
time since split graphs can be characterized by a finite set of forbidden induced
subgraphs [2, 10]. The current fastest algorithm is by Cygan and Pilipczuk [5] and
runs in time O(1.2738kkO(log k) + n3) using VERTEX COVER as a subroutine. It
improves the previously fastest algorithm that runs in time 2k ·nO(1) and uses iterative
compression [11], which in turn improves another algorithm using linear program-
ming [18] that runs in time 2.31k · nO(1). (See also [16] for parameterized algorithms
for (r, �)-VERTEX DELETION on perfect graphs.)

Note that solving (r, �)-VERTEX DELETION on a graph G is equivalent to solving
(�, r)-VERTEX DELETION on the complement of G. This observation implies that
the case (0, 2) can also be solved in time 2.31k · nO(1). Note also that if max{r, �} ≥
3, then (r, �)-VERTEX DELETION is para- NP-complete, hence unlikely to be FPT,
as for k = 0 the problem corresponds to the recognition of (r, �)-graphs, which is
NP-complete if and only if max{r, �} ≥ 3 [1, 8].

Therefore, concerning the parameterized complexity of the (r, �)-VERTEX DELE-
TION problem on general graphs, the above discussion implies that the only open

Theory Comput Syst (2017) 61:777–794 779

cases are (2, 1), (1, 2), and (2, 2). Note also that all the cases that are known to be
FPT can be solved in single-exponential time.

Our Results In this article we prove that each of the above three open cases is FPT
and can also be solved in single-exponential time, thus completely settling the param-
eterized complexity of (r, �)-VERTEX DELETION. That is, excluding the trivial case
where r + � = 0, we obtain the following dichotomy: the problem is FPT and solv-
able in single-exponential time if max{r, �} ≤ 2, and para-NP-complete otherwise.
As discussed later, a single-exponential running time is asymptotically best possible
in terms of k unless the Exponential Time Hypothesis (ETH) fails. A summary of the
parameterized complexity of (r, �)-VERTEX DELETION is shown in Table 1, where
for each value of (r, �), the name of the problem (if any), the function f (k), and
the appropriate references are given. We denote by VC and OCT the complemen-
tary problems of VC and OCT, respectively. The results of this article correspond
to the gray boxes, ‘p-NP-c’ stands for ‘para-NP-complete’, and ‘P’ means that the
corresponding problem is polynomial-time solvable.1

We also consider the version of (r, �)-VERTEX DELETION where the set S of at
most k vertices to be removed has to further satisfy that G[S] is an independent set.
We call this problem INDEPENDENT (r, �)-VERTEX DELETION. Note that, in con-
trast to (r, �)-VERTEX DELETION, the cases (r, �) and (�, r) may not be symmetric
anymore. This problem has received little attention in the literature and, excluding the
most simple cases, to the best of our knowledge only the case (2, 0) has been studied
by Marx et al. [20], who proved it to be FPT. Similarly to (r, �)-VERTEX DELETION,
the problem is para-NP-complete if max{r, �} ≥ 3. As an additional motivation for
studying this problem, note that solving INDEPENDENT (r, �)-VERTEX DELETION

on an input (G, k) corresponds exactly to deciding whether G is an (r + 1, �)-graph
where one of the independent sets has size at most k.

We manage to provide a complete characterization of the parameterized complex-
ity of INDEPENDENT (r, �)-VERTEX DELETION. The complexity landscape turns
out to be richer than the one for (r, �)-VERTEX DELETION, and one should rather
speak about a trichotomy: the problem is polynomial-time solvable if r ≤ 1 and
� ≤ 2, NP-hard and FPT if r = 2 and � ≤ 2, and para-NP-complete otherwise.
In particular, as discussed at the end of the previous paragraph, it follows from our
results that for � ∈ {0, 1, 2}, the recognition of the class of (3, �)-graphs such that
one of the independent sets has size at most k is in FPT with parameter k. A summary
of the complexity of INDEPENDENT (r, �)-VERTEX DELETION is shown in Table 2,
where our results correspond to the gray boxes. We would like to note that some of
the polynomial cases, such as the case (1, 0), are not difficult to prove and may be
already known, although we are not aware of it.

1We would like to mention here that after this article appeared in arXiv:1310.6205, we learnt that Kolay
and Panolan (arXiv:1504.08120, further published in [14]) obtained simultaneously and independently the
same results that we present in Table 1 using very similar techniques.

http://arXiv.org/abs/1310.6205
http://arXiv.org/abs/1504.08120

780 Theory Comput Syst (2017) 61:777–794

Table 1 Summary of results for the (r, �)-VERTEX DELETION problem

Our results correspond to gray cells

Our Techniques As most of the previous work mentioned before, our algorithms for
(r, �)-VERTEX DELETION (Section 4) are based on iterative compression. We pro-
vide an algorithm for (2, 2)-VERTEX DELETION, and we show that (1, 2)-VERTEX

DELETION and (2, 1)-VERTEX DELETION can be easily reduced to (2, 2)-VERTEX

DELETION. For completeness, we include in Section 3 some well-known proper-
ties of iterative compression. As a crucial ingredient in our algorithms, we prove
(Lemma 1 in Section 2) that given two (r, �)-partitions of an n-vertex (r, �)-graph,
these two (r, �)-partitions differ by at most 2r� vertices, where an (r, �)-partition of
an (r, �)-graph G is a partition (R, L) of V (G) such that G[R] is an (r, 0)-graph and
G[L] is a (0, �)-graph. Furthermore, if max{r, �} ≤ 2, it is known that we can find an
(r, �)-partition of an (r, �)-graph in polynomial time [1]. This implies, in particular,
that an n-vertex (r, �)-graph has at most (n + 1)2r� distinct (r, �)-partitions that can
be generated in polynomial time if max{r, �} ≤ 2. This result generalizes the fact that
a split graph has at most n + 1 split partitions [12], which was used in the algorithms
of [11].

Our algorithms for INDEPENDENT (r, �)-VERTEX DELETION (Section 5) are
slightly more involved, and do not explicitly use iterative compression. Again, we
provide an algorithm for INDEPENDENT (2, 2)-VERTEX DELETION and then show
that INDEPENDENT (2, 1)-VERTEX DELETION can be reduced to INDEPENDENT

(2, 2)-VERTEX DELETION. We make use our algorithms for (2, 2)-VERTEX DELE-
TION to obtain a set of vertices S that allows us to exploit the structure of G − S.

Theory Comput Syst (2017) 61:777–794 781

Table 2 Results for INDEPENDENT (r, �)-VERTEX DELETION

Our results correspond to gray cells

A crucial ingredient here is the FPT-algorithm of Marx et al. [20] to solve the
RESTRICTED INDEPENDENT OCT problem (see Section 2 for the definition).

Remarks and Further Research Having completely settled the parameterized
complexity of (r, �)-VERTEX DELETION and INDEPENDENT (r, �)-VERTEX DELE-
TION, a natural direction is to improve the running times of our algorithms. We did
not focus in this article on optimizing the degree of the polynomial nO(1) involved in
our running times. Concerning the function f (k), for (r, �)-VERTEX DELETION this
improvement would be possible, under ETH, only in the basis of the function 3.31k

(see Theorem 3). For INDEPENDENT (r, �)-VERTEX DELETION, there may be room

for improvement in the function 22O(k2)
that we obtain mainly by analyzing the run-

ning time of the algorithm of Marx et al. [20] to solve RESTRICTED INDEPENDENT

OCT, which was not explicit in their article.
Concerning the existence of polynomial kernels for (r, �)-VERTEX DELETION,

a challenging research avenue is to apply the techniques used by Kratsch and
Wahlström [15] for obtaining a randomized polynomial kernel for OCT to the cases
(2, 1), (1, 2), and (2, 2), or to prove that these problems do not admit polynomial
kernels. The ideas for the case (1, 1) may also be helpful [11].

Finally, it is worth mentioning that if the input graph is restricted to be planar,
there exists a randomized subexponential algorithm for OCT [19] running in time
O(nO(1) + 2O(

√
k log k)n). As in a planar graph any clique is of size at most 4, by

782 Theory Comput Syst (2017) 61:777–794

guessing one or two cliques and then applying this algorithm, we obtain randomized
algorithms in time 2O(

√
k log k) ·nO(1) for (2, 1)-VERTEX DELETION, (1, 2)-VERTEX

DELETION, and (2, 2)-VERTEX DELETION on planar graphs.

2 Preliminaries

We use standard graph-theoretic notation, and the reader is referred to [6] for any
undefined term. All the graphs we consider are undirected and contain neither loops
nor multiple edges. If S ⊆ V (G), we define G−S = G[V (G)\S]. The complement
of a graph G = (V , E) is denoted by G, that is, G = (V , E′) with E′ = {{x, y} ∈
(V × V) \ E}. Throughout the article n denotes the number of vertices of the input
graph of the problem under consideration.

It is shown in [12] that a (1, 1)-graph has at most n + 1 distinct (1, 1)-partitions.
We generalize this property in the following lemma, whose proof is based on the
proof of [8, Theorem 3.1].

Lemma 1 Let r and � be two fixed integers, and let (R, L) and (R′, L′) be two (r, �)-
partitions of a graph G. Let Lsel = L′ ∩ R and Rsel = R′ ∩ L. Then Lsel and Rsel

are both of size at most r�, R′ = (R \ Lsel) ∪ Rsel , and L′ = (L \ Rsel) ∪ Lsel .

Proof Let G = (V , E) be an (r, �)-graph, and let (R, L) and (R′, L′) be two distinct
(r, �)-partitions of G. We claim that |R ∩ L′| ≤ r�. Indeed, assume that there exists
a set S of r� + 1 vertices in R ∩ L′. As S ⊆ L′, by the pigeonhole principle there
exists a subset S′ ⊆ S of size r + 1 such that G[S ′] is a clique. As S′ ⊆ R, the
(r, 0)-graph G[R] contains a clique G[S ′] of size r + 1, that contradict the definition
of an (r, 0)-graph. Symmetrically, it also holds that |R′ ∩ L| ≤ r�, and the lemma
follows.

For our algorithms we need the following restricted versions of OCT.

Lemma 2 RESTRICTED OCT can be solved in time 2.31k · nO(1).

Theory Comput Syst (2017) 61:777–794 783

Proof The algorithm from Lokshtanov et al. [18] solves OCT in time 2.31k · nO(1).
For our lemma, we use this algorithm on a modified input. Let G = (V , E) be a
graph, D ⊆ V , and k an integer. We want to solve RESTRICTED OCT on (G, D, k).
Let G′ = (V ′, E′), where V ′ = D ∪ {vi : v ∈ V \ D, i ∈ {0, . . . , k}} and E′ =
(E∩(D×D))∪{{vi, w} : v ∈ V \D, i ∈ {0, . . . , k}, w ∈ D, {v,w} ∈ E}∪{{vi, wj } :
v,w ∈ V \ D, i, j ∈ {0, . . . , k}, {v, w} ∈ E}. That is, for each vertex v not in D, we
make k + 1 copies of v with the same neighborhood as v, making its choice for the
solution impossible. Then we solve ODD CYCLE TRANSVERSAL on (G′, k), giving
us a solution of RESTRICTED OCT on (G, D, k).

By looking carefully at the proof of [20, Theorem 4.3], we have the following
theorem. We will analyze the running time of the algorithm in Section 5.3.

Theorem 1 (Marx et al. [20]) RESTRICTED INDEPENDENT OCT is FPT.

We will also need to deal with the INDEPENDENT VERTEX COVER problem,
which given a graph G and an integer k, asks whether G contains a set S ⊆ V (G) of
size at most k that is both a vertex cover of G and an independent set.

Lemma 3 INDEPENDENT VERTEX COVER can be solved in linear time.

Proof Let G be a graph and let k be a positive integer. Note that for INDEPENDENT

VERTEX COVER to admit a solution in G, in particular G needs to be 2-colorable.
Hence, if G is not bipartite, we can directly conclude that INDEPENDENT VERTEX

COVER on G has no solution.
So we may assume that G = (V , E) is a bipartite graph, and we proceed to con-

struct a solution S of minimum size. For each connected component of G, we define
(B1, B2) as the unique bipartition of its vertex set such that |B1| < |B2| and B1 and
B2 are two independent sets. (If |B1| = |B2|, we arbitrarily choose B1 being one of
them and B2 being the other one.) Note that S cannot contain vertices in both B1
and B2, since in that case by connectivity there would exist an alternating path in G

with only the endvertices in S, and then either there is an edge between both endver-
tices (contradicting the fact that S should be an independent set), or some edge in the
path does not contain vertices in S (contradicting the fact that S should be a vertex
cover). Thus, if S is a minimum-size solution, necessarily S ∩ (B1 ∪ B2) = B1. (If
|B1| = |B2|, then S ∩ (B1 ∪ B2) is equal to either B1 or B2, and we assume without
loss of generality that the former case holds.) Therefore, we start with S = ∅, and for
each connected component of G, we add each element of B1 to S. After exploring
the whole graph, if |S| ≤ k then we return S, otherwise we report that no such a set
exists.

We would like to note that Theorem 4 in Section 5 generalizes Lemma 3 above.
The following simple lemma will be exhaustively used in the following sec-

tions. A problem �1 is polynomial-time reducible to a problem �2 if there exists a
polynomial-time algorithm that transforms an instance I1 of �1 into an instance I2
of �2 such that I1 is a YES-instance if and only if I2 is.

784 Theory Comput Syst (2017) 61:777–794

Lemma 4 Let r and � be two positive integers. Then

(i) (r, �)-VERTEX DELETION is polynomial-time reducible to (r, �+1)-VERTEX

DELETION,
(ii) (r, �)-VERTEX DELETION is polynomial-time reducible to (r+1, �)-VERTEX

DELETION,
(iii) INDEPENDENT (r, �)-VERTEX DELETION is polynomial-time reducible to

INDEPENDENT (r, � + 1)-VERTEX DELETION, and
(iv) INDEPENDENT (r, �)-VERTEX DELETION is polynomial-time reducible to

INDEPENDENT (r + 1, �)-VERTEX DELETION.

Furthermore, in each of the above reductions the parameter remains unchanged.

Proof let r , �, and k be three positive integers, and let (G = (V , E), k) be an instance
of (r, �)-VERTEX DELETION (for claims (i) and (ii)) or of INDEPENDENT (r, �)-
VERTEX DELETION (for claims (iii) and (iv)), respectively.

Claim (i): Let G′ = (V ′, E′) such that V ′ = V ∪ Q, with Q a set of r + k + 1
vertices, disjoint from V , and E′ = E ∪ {{x, y} : x, y ∈ Q, x �= y}. That is, G′
is the disjoint union of G and a clique of size (r + k + 1). Let A be an algorithm
solving (r, � + 1)-VERTEX DELETION on (G′, k) in time f (n, k), for some given
function f .

Assume first that S is a solution given by A. Then G′ − S is an (r, � + 1)-graph.
Let R′ be the set of the r independent sets of G′ − S and let L′ be the set of the � + 1
cliques. We claim that at least one clique of L′ is completely contained in Q. Indeed,
as Q is a clique, then each set in R′ constains at most one vertex of Q. As |S| ≤ k

and |Q| = k + r + 1, at least one vertex of Q is contained in one of the cliques in L′.
Let K be such a clique. As there are no edges between the vertices of Q and the other
vertices of G′, it follows that K ⊆ Q, as we wanted to prove. Thus, G − (S ∩ V) is
an (r, �)-graph, and therefore |S ∩ V | is a solution of the required size.

Conversely, if we can find S a solution of (r, �)-VERTEX DELETION on (G, k),
then S is also a solution of (r, � + 1)-VERTEX DELETION on (G′, k).

Summarizing, (r, �)-VERTEX DELETION we can solved in time f (n+r+k+1, k).

Claim (ii): As solving (r, �)-VERTEX DELETION on (G, k) is equivalent to solving
(�, r)-VERTEX DELETION on (G, k), where G is the complement of G, we can
apply claim (i) on G. Thus, if (r +1, �)-VERTEX DELETION can be solved in time
f (n, k), then (r, �)-VERTEX DELETION can be solved in time f (n+�+k+1, k).

Claim (iii): We follow the proof of claim (i), but in this case, as S is an independent
set, it follows that |S ∩ Q| ≤ 1, so we can use a clique Q of size r + 2 instead of
r + k + 1. Hence, if INDEPENDENT (r, � + 1)-VERTEX DELETION can be solved
in time f (n, k), then INDEPENDENT (r, �)-VERTEX DELETION can be solved in
time f (n + r + 2, k).

Claim (iv): We follow again the proof of claim (i), but we redefine Q to be an inde-
pendent set whose vertices are completely adjacent to V . It can be easily checked
that both instances are equivalent. Thus, if INDEPENDENT (r + 1, �)-VERTEX

Theory Comput Syst (2017) 61:777–794 785

DELETION can be solved in time f (n, k), then INDEPENDENT (r, �)-VERTEX

DELETION can be solved in time f (n + � + k + 1, k).

3 Well-Known Properties of Iterative Compression

As mentioned in the introduction, iterative compression has been successfully used
to obtain efficient algorithms for a number of parameterized problems [11, 15, 23].
In a nutshell, the main idea of this technique is to reduce in FPT-time a problem
to solving a so-called disjoint version of it, where we assume that we are given a
solution of size almost as small as the desired one, and that allows us to exploit the
structure of the graph in order to obtain the actual solution, which is required to be
disjoint from the given one. This technique usually applies to hereditary properties.

A graph property Q is hereditary if any subgraph of a graph that satisfies Q also
satisfies Q. Let Q be a hereditary graph property. We define the following two prob-
lems in order to state two general facts about the technique of iterative compression,
which we use in Section 4.

The following two results are well-known (cf. for instance [4]) and commonly
assumed when using iterative compression. We include the proofs here for complete-
ness.

Lemma 5 If DISJOINT Q-VERTEX DELETION can be solved in FPT-time, then
Q-VERTEX DELETION can also be solved in FPT-time.

Proof Let A be an FPT algorithm which solves DISJOINT Q-VERTEX DELETION.
Let G = (V , E) be a graph and k be an integer. We want to solve Q-VERTEX DELE-
TION on (G, k). Let v1, . . . , vn be an arbitrary ordering of V . For each i ∈ {0, . . . , n},
let Vi denote the subset of vertices {v1, . . . , vi} and Gi = G[Vi]. We iterate over i

from 1 to n as follows. At the i-th iteration, suppose we have a solution Si ⊆ Vi

of Q-VERTEX DELETION on (Gi, k). At the next iteration, we can define Si+1 =
Si ∪{vi+1}. Note that Si+1 is a solution of Q-VERTEX DELETION on (Gi+1, k+1). If
Si+1 is of size at most k then it is a solution of Q-VERTEX DELETION on (Gi+1, k).
Assume that Si+1 is of size exactly k+1. We guess a subset S of Si+1 and we look for

786 Theory Comput Syst (2017) 61:777–794

Fig. 1 An (r, �)-partition of
G[S] and G − S to solve
DISJOINT (r, �)-VERTEX

DELETION in the proof of
Theorem 2

a solution W of Q-VERTEX DELETION on (Gi+1, k) that does not contain any ele-
ment of S. For this, we use algorithm A on (H, |S|−1, S) with H = Gi+1−(Si+1\S).
If A returns a solution W then observe that the set W ∪ (Si+1 \ S) is a solution of
Q-VERTEX DELETION on (Gi+1, k). If A on (H, |S| − 1, S) does not return a pos-
itive answer for any of the possible guesses of S, then Q-VERTEX DELETION on
(Gi+1, k) has no solution. Since the property Q is hereditary, Q-VERTEX DELETION

on (G, k) has no solution either, and therefore the algorithm returns that there is no
solution. Thus, we obtain an algorithm solving Q-VERTEX DELETION in FPT-time,
as we wanted.

Corollary 1 If DISJOINT Q-VERTEX DELETION can be solved in time ck ·nO(1) for
some constant c, then Q-VERTEX DELETION can be solved in time (c + 1)k · nO(1).

Proof Let us argue about the running time of the algorithm of Lemma 5, assuming
DISJOINT Q-VERTEX DELETION can be solved in time ck · nO(1) for some con-
stant c. The time required to execute A for every subset S at the i-th iteration is∑k+1

i=0

(
k+1

i

) · ci · nO(1) = (c + 1)k+1 · nO(1). We obtain an algorithm that computes
P(Q) in time (c + 1)k · nO(1), as we wanted.

4 (r, �)-VERTEX DELETION

By Lemma 4, in this section we may focus on the algorithm for (2, 2)-VERTEX

DELETION. As we use the technique of iterative compression, we need to define and
solve the disjoint version of the (2, 2)-VERTEX DELETION problem. Indeed, if we
solve the disjoint version, we just need to apply Corollary 1 in Section 3 to obtain a
single-exponential FPT-algorithm for (2, 2)-VERTEX DELETION.

Theorem 2 DISJOINT (2, 2)-VERTEX DELETION can be solved in time 2.31k ·nO(1),
and therefore (2, 2)-VERTEX DELETION can be solved in time 3.31k · nO(1).

Theory Comput Syst (2017) 61:777–794 787

Proof Let G be a graph, let k be an integer, and let S ⊆ V be a set of size at most
k + 1 such that G − S is a (2, 2)-graph. We want to find a set S′ ⊆ V \ S such
that G − S′ is a (2, 2)-graph with |S′| ≤ k. As the property of being a (2, 2)-graph
is hereditary, we can assume that G[S] is a (2, 2)-graph. If it is not the case, we
clearly have a NO-instance and we stop. We guess a (2, 2)-partition (R0, L0) of the
graph G[S], and we fix a (2, 2)-partition (RS, LS) of the graph G − S. We guess
Lsel ⊆ RS and Rsel ⊆ LS , both of size at most 4. We define R1 = RS ∪ Rsel \ Lsel

and L1 = LS ∪Lsel \Rsel . By Lemma 1, there are at most O(k8 ·n8) choices for R0,
L0, Rsel , and Lsel . For each choice, we look for a solution S′ = R′ ∪ L′ of size at
most k such that R′ ⊆ R1 and L′ ⊆ L1. A representation of this selection is depicted
in Fig. 1. We define L′ as a smallest subset of L1 such that G[L0 ∪ (L1 \ L′)] is a
(0, 2)-graph. In order to find it, we apply k + 1 times the algorithm for RESTRICTED

OCT from Theorem 1 to (G[L0 ∪ L1], L1, i) for i from 0 to k. If the algorithm does
not return a solution with input (G[L0 ∪ L1], L1, k) then the choice of R0, Rsel , L0,
and Lsel is wrong, and we move to the next choice. Otherwise, let i0 be the smallest
value of i for which the algorithm returns a solution, and let L′ be this solution. We
now look for a set R′ of size at most k − i0. We find it by applying the algorithm for
RESTRICTED OCT to (G[R0 ∪ R1], R1, k − i0). If for some guess of R0, Rsel , L0,
and Lsel , the algorithm returns a solution R′, then we output S′ = R′ ∪ L′ as our
solution. Otherwise we return that there is no solution.

Let us now analyze the running time of the algorithm. For each of the O(k8 · n8)

guesses, we find L′ by applying the algorithm for RESTRICTED OCT k + 1 times,
and then we find R′ by applying the algorithm for RESTRICTED OCT. By Lemma 2,
the claimed running time follows.

Now let us argue about the correctness of the algorithm. If it outputs a set S′, then,
by construction of the algorithm, this set is a solution of DISJOINT (2, 2)-VERTEX

DELETION. Indeed, L0 ∪L1 \S is a (0, 2)-graph and R0 ∪R1 \S is a (2, 0)-graph. On
the other hand, assume that the instance of DISJOINT (2, 2)-VERTEX DELETION has
a solution S∗. Let (R∗, L∗) be a (2, 2)-partition of G − S∗. Then the solution S∗ can
be found by the algorithm for the guess R0 = S∩R∗ and L0 = S∩L∗. For this choice
of R0 and L0, let (RS, LS) be the fixed (2, 2)-partition of G−S. Let G∗ = (V ∗, E∗)
be the graph G − (S ∪ S∗). Then (Rs ∩ V ∗, LS ∩ V ∗) and (R∗ ∩ V ∗, L∗ ∩ V ∗) are
two (2, 2)-partitions of G∗. By Lemma 1, we can find Lsel ⊆ RS and Rsel ⊆ LS

both of size at most 4 such that L1 ∩ V ∗ = L∗ ∩ V ∗ and R1 ∩ V ∗ = R∗ ∩ V ∗, with
R1 = RS ∪Rsel \Lsel and L1 = LS ∪Lsel \Rsel . For this choice of R0, L0, Rsel , and
Lsel , the solution S∗ gives a value i∗0 such that the algorithm for RESTRICTED OCT
applied to (G[L0 ∪ L1], L1, i∗0) and the algorithm for RESTRICTED OCT applied
to (G[R0 ∪ R1], R1, k − i∗0) will both return a solution. Thus, if S∗ is a solution of
DISJOINT (2, 2)-VERTEX DELETION, then there is at least one choice of R0, L0,
Rsel , and Lsel such that the algorithm returns a solution.

By combining Lemma 4 and Theorem 2, we obtain the following corollary2

2It is worth mentioning that if one is interested in optimizing the degree of the polynomial function nO(1)

of our algorithms, we could solve directly the cases (1, 2) and (2, 1). In fact, this was the case in the
original version of the paper, and Lemma 4 was added after a remark of one of the referees.

788 Theory Comput Syst (2017) 61:777–794

Corollary 2 (2, 1)-VERTEX DELETION and (1, 2)-VERTEX DELETION can be
solved in time 3.31k · nO(1).

It is known that (2, 0)-VERTEX DELETION, also known as OCT, cannot be solved
in time 2o(k) · nO(1) unless the ETH fails [13, 19]. By combining this result with
Lemma 4, we obtain that the running times of Theorem 2 and Corollary 2 are
asymptotically best possible in terms of k under ETH.

Theorem 3 Unless the ETH fails, there is no algorithm running in time 2o(k) ·
nO(1) for solving (2, 1)-VERTEX DELETION, (1, 2)-VERTEX DELETION, or (2, 2)-
VERTEX DELETION.

5 Independent (r, �)-Vertex Deletion

In this section we consider INDEPENDENT (r, �)-VERTEX DELETION. Recall that
the problem consists in finding a solution of (r, �)-VERTEX DELETION that induces
an independent set. We first provide in Section 5.1 a (classical) complexity dichotomy
for the problem. In Section 5.2 we present FPT-algorithms for the cases (2, 1) and
(2, 2). For the sake of the presentation, we postpone the running time analysis of these
algorithms to Section 5.3. As we will see, these running times strongly depend on the
running time required by the algorithm of Marx et al. [20] to solve the case (2, 0),
that is INDEPENDENT OCT, whose bottleneck is to solve INDEPENDENT MINCUT.

5.1 Easy and Hard Cases

We first deal with the polynomially-solvable cases in Theorem 4 and then we present
an NP-hardness reduction for the other cases in Theorem 5.

Theorem 4 Let r ∈ {0, 1} and � ∈ {0, 1, 2} be two fixed integers. The INDEPEN-
DENT (r, �)-VERTEX DELETION problem can be solved in polynomial time.

Proof Let us first consider the case r = 1 and � = 2. One can check in polynomial
time whether G is a (2, 2)-graph [1]. If it is not, then INDEPENDENT (1, 2)-VERTEX

DELETION on (G, k) has no solution. So assume that G is a (2, 2)-graph. By
Lemma 1, there are O(n8) (2, 2)-partitions of G that can be computed in polynomial
time. We guess a (2, 2)-partition (R, L) of G, and we aim at partitioning R into two
independent sets R1 and R2 such that |R2| ≤ k. If INDEPENDENT VERTEX COVER

on (G[R], k) has a solution S, then R1 = R \ S and R2 = S is the partition we
want, and we return S. Note that by Lemma 4, INDEPENDENT VERTEX COVER can
be solved in linear time on the graph G[R]. If INDEPENDENT VERTEX COVER does
not return a solution for any of the guesses of (R, L), we return that our problem has
no solution.

Finally, applying Lemma 4 we obtain that INDEPENDENT (r, �)-VERTEX DELE-
TION problem can be solved in polynomial time for every r ∈ {0, 1} and � ∈
{0, 1, 2}.

Theory Comput Syst (2017) 61:777–794 789

Theorem 5 Let � ∈ {0, 1, 2} be a fixed integer. The INDEPENDENT (2,�)-VERTEX

DELETION problem is NP-hard.

Proof We first prove that INDEPENDENT (2, 0)-VERTEX DELETION is NP-hard.
We reduce from (2, 0)-VERTEX DELETION, commonly called ODD CYCLE

TRANSVERSAL. The problem is proved to be NP-complete in [17].
Let G = (V , E) be a graph, let k be an integer, and let n = |V |. We want to

solve (2, 0)-VERTEX DELETION on (G, k). We define G′ = (V ′, E′), such that
V ′ = V ∪ {vi

e, w
i
e : e = {v, w} ∈ E, i ∈ {0, . . . , k}} and E′ = {{v, vi

e}, {w, wi
e} :

e = {v,w} ∈ E, i ∈ {0, . . . , k}} ∪ {{vi
e, w

i
e} : v ∈ V,w ∈ V, e = {v,w} ∈ E, i ∈

{0, . . . , k}}. That is, we replace each edge e = {v, w} of E by n+1 paths v, vi
e, w

i
e, w

of length 3, for i ∈ {0, . . . , k}. Assume we have a solution S ⊆ V of (2, 0)-VERTEX

DELETION on (G, k). In G′, there is no edge between two vertices of V . So S is
also a solution of INDEPENDENT (2, 0)-VERTEX DELETION on (G′, k). Now, we
assume that S is a solution of INDEPENDENT (2, 0)-VERTEX DELETION on (G′, k).
We have that S ∩ V is also a solution of INDEPENDENT (2, 0)-VERTEX DELETION

on G′. Indeed, assume vi
e ∈ V ′ is in S for some e = {v,w} ∈ E and i ∈ {0, . . . , k};

the same analysis will apply to wi
e. If v ∈ S then vi

e has only one neighbor in G′−{v},
so if G′ −S is bipartite, then so is G′ −(S \{vi

e}) and thus S \{vi
e} is also a solution. If

w ∈ S, then vi
e has only two neighbors in G′ − {w}, namely v and wi

e, with wi
e being

of degree 1 in G′ − {w}. So if G′ − S is bipartite, then so is G′ − (S \ {vi
e}), and thus

S \ {vi
e} is also a solution. So assume now that v and w are not in S. Then there exists

at least one index i′ ∈ {0, . . . , k} such that vi′
e and wi′

e are not in S. This implies that
in the bipartite graph G′ − S, v and w have to be on opposite sides of the bipartition
of G′ − S. We can safely add vi

e to G − S such that the graph remains bipartite by
adding vi

e to the side of the bipartition containing w. So S \ {vi
e} is also a solution.

By deleting all the vertices of the form vi
e from S, we obtain a set S′ such that

S′ ⊆ V and |S′| ≤ k. As we preserve the property in G′ that if {v,w} ∈ E, with v

and w not in S′, then v and w should be on opposite sides of the bipartition of G′−S′,
we have that S′ is a solution of (2, 0)-VERTEX DELETION on G. This concludes the
proof.

The NP-hardness of INDEPENDENT (2,1)-VERTEX DELETION and INDEPEN-
DENT (2,2)-VERTEX DELETION follow from the NP-hardness of INDEPENDENT

(2,0)-VERTEX DELETION by applying Lemma 4.

5.2 FPT-Algorithms

We deal with the cases (2, 2) and (2, 1) in Theorem 6 and Corollary 3, respectively.

Theorem 6 INDEPENDENT (2, 2)-VERTEX DELETION is FPT.

Proof The proof uses similar ideas than the proof of Theorem 2. Let G = (V , E) be
a graph and let k be an integer. Let S be a solution of the (2, 2)-VERTEX DELETION

problem on (G, k). Theorem 2 gives us in FPT time such a set S, or a report that
such a set does not exist. If there is no solution for (2, 2)-VERTEX DELETION, then
INDEPENDENT (2,2)-VERTEX DELETION has no solution either. So we can assume

790 Theory Comput Syst (2017) 61:777–794

Fig. 2 An (r, �)-partition of
G[S \ I] and G − S to solve
INDEPENDENT (r, �)-VERTEX

DELETION

that such a set S exists. Using S, we proceed to construct a solution S′ of our problem
as follows. We first guess an independent subset I of S. We want to construct a
solution S′ of INDEPENDENT (2, 2)-VERTEX DELETION such that I ⊆ S′ and S′ ∩
S = I . If G[S \ I] is not a (2, 2)-graph, then our choice of I is wrong. So assume
G[S \ I] is a (2, 2)-graph. We guess a (2, 2)-partition (R0, L0) of G[S \ I], and
we fix a (2, 2)-partition (RS, LS) of G − S. We guess Lsel ⊆ RS of size at most
4 and Rsel ⊆ LS of size at most 4. We define R1 = RS ∪ Rsel \ Lsel and L1 =
LS ∪ Lsel \ Rsel . By Lemma 1, there are at most O(k8 · n8) choices for R0, L0,
Rsel , and Lsel . We want to find R′ ⊆ R1 and L′ ⊆ L1 such that S′ = I ∪ L′ ∪ R′.
A representation of this selection is depicted in Fig. 2. As we want the solution to
induce an independent set, at most two elements of L1 are in S′, that is, |L′| ≤ 2. We
guess these at most two vertices that define L′ such that L′ ∪ I is an independent set
and such that G[(L0 ∪ L1) \ L′] is a (0, 2)-graph. If it is not the case then our choice
is wrong. We now have to find R′ of size at most k −|I |− |L′|. For this, we apply the
algorithm for RESTRICTED INDEPENDENT OCT on (G[R0 ∪R1], D, k −|I |− |L′|)
with D = {x ∈ R1 : ∀y ∈ I ∪ L′, {x, y} �∈ E}. If it returns a solution R′ then we
can output the solution S′ = I ∪ L′ ∪ R′. If it does not return a solution for any of
the guesses of I , R0, L0, Rsel , and Lsel , then we return that there is no solution of
INDEPENDENT (2, 2)-VERTEX DELETION.

Now let us argue about the correctness of the algorithm. If it outputs a set S′,
then, by construction of the algorithm this set is a solution of INDEPENDENT (2, 2)-
VERTEX DELETION. Indeed, L0 ∪ L1 \ L′ is a (0, 2)-graph, R0 ∪ R1 \ R′ is a (2, 0)-
graph, and S′ is an independent set. Now, assume that our instance of INDEPENDENT

(2, 2)-VERTEX DELETION has a solution S∗. Let (R∗, L∗) be an (2, 2)-partition of
G−S∗. Then the solution S∗ can be found by the algorithm for the guess I = S ∩S∗,
R0 = S ∩ R∗, and L0 = S ∩ L∗. For this choice of R0 and L0, let (RS, LS) be
the fixed (2, 2)-partition of G − S. Let G∗ = (V ∗, E∗) be the graph G − (S ∪ S∗).
Then (Rs ∩ V ∗, LS ∩ V ∗) and (R∗ ∩ V ∗, L∗ ∩ V ∗) are two (2, 2)-partitions of G∗.
By Lemma 1, we can find Lsel ⊆ RS and Rsel ⊆ LS both of size at most 4 such
that L1 ∩ V ∗ = L∗ ∩ V ∗ and R1 ∩ V ∗ = R∗ ∩ V ∗, with R1 = RS ∪ Rsel \ Lsel

and L1 = LS ∪ Lsel \ Rsel . For this choice of R0, L0, Rsel , and Lsel , the algorithm
will define L′ = S∗ ∩ L1. Then the existence of the solution S∗ certifies that the
algorithm for RESTRICTED INDEPENDENT OCT on (G[R0 ∪R1], D, k−|I |−|L′|),
with D = {x ∈ R1 : ∀y ∈ I ∪ L′, {x, y} �∈ E}, will return a solution. Thus, if S∗
is a solution of INDEPENDENT (2, 2)-VERTEX DELETION, then there is at least one
choice I , R0, L0, Rsel , Lsel , and L′ such that the algorithm returns a solution.

By combining Lemma 4 and Theorem 6, we obtain the following corollary.

Theory Comput Syst (2017) 61:777–794 791

Corollary 3 INDEPENDENT (2, 1)-VERTEX DELETION is FPT, with the same
running time as INDEPENDENT (2, 2)-VERTEX DELETION.

5.3 Analysis of the Running Time

In this subsection we provide an upper bound on the running times of the
FPT-algorithms for INDEPENDENT (2, 2)-VERTEX DELETION and INDEPENDENT

(2, 1)-VERTEX DELETION given by Theorem 6 and Corollary 3, respectively. Note
that in these algorithms, the only non-explicit running time is the one of the algorithm
for RESTRICTED INDEPENDENT OCT given by Theorem 1. To obtain this upper
bound, we will go through the main ideas of the algorithm of Marx et al. [20] for
INDEPENDENT OCT, and then by using the same tools used in the proof of Lemma 2
we will obtain the same upper bound for the restricted version of INDEPENDENT OCT.

We need to define the following problem, where an s − t cut in a graph G is a set
of vertices C such that s is not connected to t in the graph G − C.

We provide here a sketch of proof of the following simple lemma. We first recall
for completeness the definition of treewidth. A tree-decomposition of width w of a
graph G = (V , E) is a pair (T , σ), where T is a tree and σ = {Bt : Bt ⊆ V, t ∈
V (T)} such that:

• ⋃
t∈V (T) Bt = V ,

• For every edge {u, v} ∈ E there is a t ∈ V (T) such that {u, v} ⊆ Bt ,
• Bi ∩ Bk ⊆ Bj for all {i, j, k} ⊆ V (T) such that j lies on the path i, . . . , k in T ,

and
• maxi∈V (T) |Bt | = w + 1.

The sets Bt are called bags. The treewidth of G, denoted by tw(G), is the smallest
integer w such that there is a tree-decomposition of G of width w. An optimal tree-
decomposition is a tree-decomposition of width tw(G).

Lemma 6 INDEPENDENT MINCUT can be solved in time 3tw ·nO(1), where tw stands
for the treewidth of the input graph.

Proof (Sketch) For each bag B of the tree-decomposition, we store all quadruples
(S, T , D, �) such that we have already found a cut C′ of size at most � in the explored
graph such that B ∩ C′ = D, such that there is no edge between S and T , and such
that s ∈ B if and only if s ∈ S and t ∈ B if and only if t ∈ T . There are at most
3tw · k such quadruples, and so the lemma follows.

Note that Lemma 6 is a special case of the problems covered by the result of
Pilipczuk [22], who proves that such problems can be solved in time ctw · nO(1) for

792 Theory Comput Syst (2017) 61:777–794

some constant c > 0. We also need the following result, where the key idea is to
obtain an equivalent graph whose treewidth is bounded by a function of k.

Theorem 7 (Marx et al. [20]) Let G = (V , E) be a graph, let S ⊆ V (G), and let k

be an integer. Let C be the set of all vertices of G participating in a minimal s − t

cut of size at most k for some s, t ∈ S. Then there is an algorithm running in time
2O(k2) · |S|2 · nO(1) that computes a graph G∗ and a tree-decomposition of G∗ of
width at most 2O(k2) · |S|2 having the following properties:

• C ∪ S ⊆ V (G∗),
• For every s, t ∈ S, a set K ⊆ V (G∗) with |K| ≤ k is a minimal s − t cut of G∗

if and only if K ⊆ C ∪ S and K is a minimal s − t cut of G,
• The treewidth of G∗ is at most 2O(k2) · |S|2, and
• For any K ⊆ C, G∗[K] is isomorphic to G[K].

Lemma 7 RESTRICTED INDEPENDENT MINCUT can be solved in time 22O(k2) ·
nO(1).

Proof We first deal with INDEPENDENT MINCUT. Let G = (V , E) be a graph and
k be an integer. Let G∗ be the graph satisfying the requirements of Theorem 7 for
S = {s, t}. Following the proof of [20, Theorem 3.1], it follows that (G, s, t, k) has
a solution of INDEPENDENT MINCUT if and only if (G∗, s, t, k) has one. We can
now apply Lemma 6, and solve INDEPENDENT MINCUT on (G∗, s, t, k) in time
3tw(G∗) · nO(1). By Theorem 7, tw(G∗) = 2O(k2) and the lemma follows.

Finally, note that the restricted version of INDEPENDENT MINCUT can be solved
within the same running time by making enough copies of each “undesired” vertex,
as in the proof of Lemma 2.

Theorem 8 RESTRICTED INDEPENDENT OCT can be solved in time 22O(k2) ·nO(1).

Proof In the following, we give a proof for INDEPENDENT OCT. In order to obtain
the algorithm for RESTRICTED INDEPENDENT OCT, we just take again, as we did
for RESTRICTED OCT in Lemma 2, a larger instance by making enough copies of
each “undesired” vertex, and apply INDEPENDENT OCT.

Let G = (V , E) be a graph and let X be a solution of OCT on (G, k), which
we can assume to exist. Let (S1, S2) be a partition of G − X into two independent
sets. We define an auxiliary graph G′ = (V ′, E′) as defined in [23]. So we have
V ′ = (V \X)∪{x1, x2 : x ∈ X} and E′ = {{v, w} ∈ E : v,w ∈ V \X}∪{{y, x3−i} :
y ∈ Si, x ∈ X, i ∈ {1, 2}, {x, y} ∈ E} ∪ {{x1, y2}, {x2, y1} : x, y ∈ X, {x, y} ∈ E}.
Given Y ⊆ X, we say that a partition of Y ′ = {y1, y2 : y ∈ Y } into two sets (YA, YB)
is valid if for all y ∈ Y , exactly one of y1, y2 is in YA. We let S = S1 ∪ S2.

To continue, we need the next reformulation of [23, Lemma 1] and its proof.

Claim 1 There is an independent odd cycle transversal Z of size at most k in G if
and only if there exists Y ⊆ X and a valid partition (YA, YB) of Y ′ such that there

Theory Comput Syst (2017) 61:777–794 793

is an independent mincut C ⊆ S that separates YA from YB in G′ and such that
Z = C ∪ (X \ Y) is an independent set of size at most k in G.

Proof (⇒) Let Z be an independent odd cycle transversal of size at most k in G. We
assume that Z is of minimum size and that its removal produces two independent sets
SZ

1 and SZ
2 . Let K = Z ∩ X, let J = Z \ K , and let Y = X \ K . We define (YA, YB),

a valid partition of Y ′ such that YA = {y1 : y ∈ Y ∩ SZ
1 } ∪ {y2 : y ∈ Y ∩ SZ

2 } and
YB = {y2 : y ∈ Y ∩ SZ

1 } ∪ {y1 : y ∈ Y ∩ SZ
2 }.

We claim that J is a cutset of G′[YA ∪ YB ∪ S] separating YA from YB . Take a
minimal path P from YA to YB in G′[(YA ∪ YB ∪ S) \ J]. Let u and v be the two
endpoints of P . By minimality of P , P ∩ (YA ∪ YB) = {u, v}. We assume without
loss of generality that either u, v ∈ Y ∩ SZ

1 or u ∈ Y ∩ SZ
1 and v ∈ Y ∩ SZ

2 . In the
former case, we have that u = y1 for some y ∈ Y and v = w2 for some w ∈ Y .
As, by construction, G′[YA ∪ YB ∪ S] is bipartite and y1 and w2 are on opposite
sides of the bipartition of G′[(YA ∪ YB ∪ S) \ J], necessarily P has odd size. But
as u, v ∈ SZ

1 , u and v are on the same side of the bipartition of G − Z, and so of
G′[(YA ∪ YB ∪ S) \ J] as well. Thus P should have even size, a contradiction. We
obtain a similar contradiction in the latter case.

(⇐) Under the condition of Claim 1, Z is an independent set, and we need to
prove that it is an odd cycle transversal as well. Assume that there is an odd cycle O

in G − Z. Then by definition of X, O intersects X at least once. Let O0, . . . , Om−1

be the m times O intersects X and we define Om = O0. We have that Oi �= Oj for
all i < j < m. For each i ∈ {0, . . . , m − 1}, let Pi be the path from Oi to Oi+1. As
O never intersects Z, then in G′ the path Pi never goes from YA to YB . It means that
for each i such that Pi is of even size, Oi

1 and Oi+1
1 are in the same set YA or YB , and

for each i such that Pi is of odd size, Oi
1 and Oi+1

2 are in the same set YA or YB . But
O is an odd cycle, so there is an odd number of paths Pi such that Pi is of odd size.
We deduce that such an odd cycle O cannot exist, implying that Z is an independent
odd cycle transversal.

We now apply the algorithm for INDEPENDENT MINCUT for all Y ⊆ X and all
valid partitions (YA, YB) of Y ′. Note that we need to consider a restricted version of
INDEPENDENT MINCUT because we do not want the neighborhood of X \Y to be in
the solution. By Claim 1, if we obtain a solution, then we have found our independent
odd cycle transversal, and otherwise we can safely return that such a set does not
exist. The claimed running time follows from Lemma 7.

By using the same argument of Lemma 2, we obtain the following corollary.

Corollary 4 RESTRICTED INDEPENDENT OCT can be solved in time 22O(k2) ·nO(1),
and therefore INDEPENDENT (r, �)-VERTEX DELETION can also be solved in time

22O(k2) · nO(1) for r = 2 and � ∈ {0, 1, 2}.

Note that the previous results would be automatically improved if one could find
a faster algorithm for INDEPENDENT MINCUT.

794 Theory Comput Syst (2017) 61:777–794

Acknowledgments We would like to thank the anonymous referees for helpful remarks that improved
and simplified the presentation of the manuscript.

References

1. Brandstȧdt, A.: Partitions of graphs into one or two independent sets and cliques. Discret. Math.
152(1–3), 47–54 (1996)

2. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf.
Process. Lett. 58(4), 171–176 (1996)

3. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–
42), 3736–3756 (2010)

4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M.,
Saurabh, S.: Parameterized algorithms. Springer (2015)

5. Cygan, M., Pilipczuk, M.: Split vertex deletion meets vertex cover: new fixed-parameter and exact
exponential-time algorithms. Inf. Process. Lett. 113(5–6), 179–182 (2013)

6. Diestel, R. Graph Theory, 3rd edn. Springer-Verlag, Berlin (2005)
7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer

Science. Springer (2013)
8. Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discret. Math. 16(3), 449–478

(2003)
9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag (2006)

10. Foldes, S., Hammer, P.: Split graphs. Congressus Numerantium 19, 311–315 (1977)
11. Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan, M.S.: Faster parameter-

ized algorithms for deletion to split graphs. Algorithmica 71(4), 989–1006 (2015)
12. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs, volume 57 of Annals of Discrete

Mathematics. Elsevier (2004)
13. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J.

Comput. Syst. Sci. 63(4), 512–530 (2001)
14. Kolay, S., Panolan, F.: Parameterized algorithms for deletion to (r, ell)-graphs. In: Proc. of the

35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), volume 45 of LIPIcs, pp. 420–433 (2015)

15. Kratsch, S., Wahlstrȯm, M.: Compression via matroids: A randomized polynomial kernel for Odd
Cycle Transversal. ACM Trans. Algorithms 10(4), 20 (2014)

16. Krithika, R., Narayanaswamy, N.S.: Parameterized algorithms for (r, l)-partization. J. Graph Algo-
rithms Appl. 17(2), 129–146 (2013)

17. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J.
Comput. Syst. Sci. 20(2), 219–230 (1980)

18. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameter-
ized algorithms using linear programming. ACM Trans Algorithms 11(2), 15 (2014)

19. Lokshtanov, D., Saurabh, S., Wahlstrȯm, M.: Subexponential parameterized odd cycle transversal
on planar graphs. In: Proc. of the 32nd IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), volume 18 of LIPIcs, pp. 424–434 (2012)

20. Marx, D., O’sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction.
ACM Trans Algorithms 9(4), 30:1–30:35 (2013)

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)
22. Pilipczuk, M.: Problems parameterized by treewidth tractable in single exponential time: A logical

approach. In: Proc. of the 36th International Symposium on Mathematical Foundations of Computer
Science (MFCS), volume 6907 of LNCS, pp. 520–531 (2011)

23. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301
(2004)

	Parameterized Complexity Dichotomy for (r,)-Vertex Deletion
	Abstract
	Introduction
	Motivation
	Our Results
	Our Techniques
	Remarks and Further Research

	Preliminaries
	Well-Known Properties of Iterative Compression
	(r,)-Vertex Deletion
	Independent (r,)-Vertex Deletion
	Easy and Hard Cases
	FPT-Algorithms
	Analysis of the Running Time

	Acknowledgments
	References

