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Abstract Braess’s paradox exposes a counterintuitive phenomenon that when trav-
elers selfishly choose their routes in a network, removing links can improve the
overall network performance. Under the model of nonatomic selfish routing, we char-
acterize the topologies of k-commodity undirected and directed networks in which
Braess’s paradox never occurs. Our results strengthen Milchtaich’s series-parallel
characterization (Milchtaich, Games Econom. Behav. 57(2), 321–346 (2006)) for the
single-commodity undirected case.

Keywords Nonatomic selfish routing · Braess’s paradox · Single-commodity
network · Multcommodity network · Series-parallel graph

1 Introduction

A basic task of network management is routing traffic to achieve the best possible
network performance, e.g., to minimize the maximum latency. However, it is usually
difficult or even impossible to implement centralized optimal routing in large net-
work systems where a number of network users (players) are playing selfish routing
games [8, 16, 23]. In these games, players choose routes in the networks for trav-
eling from their origins to their destinations. These route choices are selfish in the
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sense that the players only aim to minimize their own latencies. It is well known
that Nash equilibria of selfish routing games might not be socially optimal [17]. A
dazzling example is Braess’s paradox [4], which exposes the seemingly counterin-
tuitive phenomenon that less route options for the players lead to shorter travel time
at the equilibrium – subnetworks have better performance under the selfish behav-
iors. The natural question arises as to which topologies of networks are immune to
the inefficiency due to the occurrence of Braess’s paradox. The characterization of
network topologies, which model fixed infrastructures, is independent of the change-
able latency functions and traffic demands. Once such a paradox-free network is
established, no matter how the latency functions and traffic demands change, the
entire network remains a good venue for selfish players. The goal of this paper is to
characterize paradox-free network topologies for nonatomic players each routing a
negligible portion of the overall traffic, where the nonatomic routing can be viewed
as a mathematical idealization of a very large population of individuals.

1.1 Noatomic Selfish Routing

We are concerned with both undirected and directed networks, and model them by
multigraph or multidigraph G = (V , E) with vertex set V and link set E. Loops are
not allowed, while more than one links can join the same pair of vertices. Each link
e ∈ E is associated with a nonnegative, continuous, nondecreasing latency function
�e(·), which specifies the time needed to traverse e as a function of the link congestion
on e. We call G a graph with edge set E if it is undirected and a digraph with arc
set E if it is directed.1 Throughout the paper, by a path we mean a simple one, i.e., it
contains no repeated vertices; by a path (or a cycle) in a digraph we mean a directed
one. For any u, v ∈ V , a path in G from u to v is called a u-v path. For convenience,
graphs and digraphs are collectively referred to as (di)graphs.

Let k ≥ 1 be a positive integer. We write [k] for the set {1, . . . , k} of positive inte-
gers smaller than or equal to k. Given k distinct origin-destination pairs of vertices
(si , ti) in G, we call G a k-commodity network if for each i ∈ [k], si �= ti and G con-
tains at least an si-ti path. Given a traffic demand (vector) r = (ri)

k
i=1, the traffic inG

comprises k flows, each for one commodity. For every i ∈ [k], the flow of commod-
ity i has an amount of ri ; it is formed by an infinite number of players traveling from
si to ti . Each player selects a single path from his origin to his destination that has a
minimum latency, given the congestion imposed by the rest of the players. Assuming
a continuum of players, the choice of each individual player has a negligible impact
on the experiences of others.

Formally, let the triple (G, r, �) denote a k-commodity selfish routing instance,
where latency functions �e(·), e ∈ E, are collectively represented by �. The routing
instance is sometimes written as (G, (si, ti)

k
i=1, r, �) in order to explicitly specify the

origin-destination pairs. For each i ∈ [k], letPi be the set of si-ti paths in G; a flow of

1Edges and arcs are collectively called links. An undirected link is an edge, and a directed link is an arc.
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commodity i is a nonnegative vector fi = (fi(P ))P∈Pi
satisfying

∑
P∈Pi

fi(P ) = ri .

The combination of f1, . . . , fk gives rise to a k-commodity flow f = (fi )ki=1 for routing
instance (G, r, �). Under f, each link e that is contained by some path in P = ∪k

i=1Pi

experiences a congestion f (e) = ∑k
i=1

∑
P∈Pi :e∈P fi(P ), and thus a link latency

�e(f (e)). Accordingly, each path P contained by ∪Q∈PQ and any player traveling
through P suffer from a path latency �P (f) = ∑

e∈P �e(f (e)). In this nonatomic
routing game, a Nash equilibrium is characterized by Wardrop’s principle [28] in a
way that all players travel only on the minimum latency paths from their own origins
to their own destinations.

Definition 1.1 A k-commodity flow f in (G, r, �) is called a Nash equilibrium (NE)
of (G, r, �) if for each i ∈ [k] and each P ∈ Pi with fi(P ) > 0, it holds that
�P (f) = minQ∈Pi

�Q(f).

By the classical result of Beckmann et al. [2] (see also [17, 23]), the NE of (G, r, �)
exist, and are essentially unique in the sense that each link experiences the same
latency under all NE of (G, r, �). Thus, for each i ∈ [k], the common latency experi-
enced by all players traveling from si to ti in any NE of (G, r, �) has the same value,
which we denote by �i(G, r), and refer to as the equilibrium latency of commodity i

for (G, r, �).

1.2 Braess’s Paradox

The formal definition of Braess’s paradox involves the specific meaning of subnet-
works. Let (G, (si, ti)

k
i=1, r, �) be a k-commodity selfish routing instance. For any

index set K ⊆ [k], a subgraph or subdigraph H of G is referred to as a subnetwork
of (G, K) if H is a |K|-commodity network with origin-destination pairs (si , ti)i∈K,
Following [17], a subnetwork of (G, [k]) is simply called a subnetwork of G.

Given routing instance (G, r, �), it is natural to ignore the commodities of zero
demands, and focus on K(r) = {i ∈ [k] : ri > 0}. Let H be a subnetwork of
(G, K(r)), and �′ be the restriction of � to the link set of H . In a mild abuse of
notation, we use (H, r, �) to denote the selfish routing instance (H, (ri)i∈K(r), �

′),
and, for each i ∈ [k], use �i(H, r) to denote the equilibrium latency of commodity i

for (H, r, �). For simplicity, in case of single-commodity, i.e., k = 1, we often write r
as r (the traffic demand from the single origin to the single destination), and drop the
subscript 1 in notions s1, t1,P1, and �1(·, r) in our discussions. When r is an all-one
vector we often write it as 1.

Definition 1.2 We say that Braess’s paradox occurs in (G, r, �) if there exists
subnetwork H of (G, K(r)) and h ∈ K(r) such that �h(H, r) < �h(G, r) and
�i(H, r) ≤ �i(G, r) for all i ∈ K(r) − {h}. A k-commodity network G is said to
be Braess’s paradox free, or paradox-free for short, if for any nonnegative traffic
demand vector r and any nonnegative, continuous, nondecreasing latency functions
�, Braess’s paradox does not occur in (G, r, �). A k-commodity network that is not
Braess’s paradox free is called Braess’s paradox ridden, or paradox-ridden for short.
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We remark that the definition of paradox-ridden network here is a substantial
relaxation of the ones given by Roughgarden [22] and Fotakis et al. [12], which
admit instances suffering from the most severe performance loss in terms of Braess’s
paradox.

For example, Braess’s paradox occurs in the routing instances (a) and (b) depicted
in Fig. 1a and b, respectively, where one unit flow is to be routed from each origin
to its corresponding destination. The latency function �e(x) on arc e of network Ga

(a.k.a. directed Wheatstone network) or network Gb is either x or a constant 0, 1 or
2 as represented by the symbol beside the arc in the figure. In instance (a) (resp. (b)),
the subnetwork Ha (resp. Hb) is obtained from Ga (resp. Gb) by deleting the dotted
arc. It is easy to see that, in the single-commodity case (a), at the NE of (Ga, 1, �)
all players go through the path suvt , while at the NE of (Ha, 1, �) half of players go
through path sut and the other half go through path svt ; this gives �(Ha, 1) = 1.5 <

2 = �(Ga, 1). Similarly, in the 2-commodity case (b), at the NE of (Gb, 1, �) no
player uses arc (s1, t1) (which has a constant latency 2 regardless of any congestion),
while at the NE of (Hb, 1, �) the flows of commodities 1 and 2 use disjoint paths s1t1
and s2t2, respectively; it follows that �1(Hb, 1) = 2 = �1(Gb, 1) and �2(Hb, 1) =
1 < 2 = �2(Gb, 1). Hence, both network Ga and Gb are paradox-ridden. In contrast,
the 3-commodity network Gc depicted in Fig. 1c is paradox-free, as our main result
(Theorem 1.6) below guarantees.

A nice hereditary property implied by Definition 1.2 is that every paradox-free k-
commodity network with origin-destination pairs (si , ti)i∈[k] must be a paradox-free
|I |-commodity network with origin-destination pairs (si , ti)i∈I for any nonempty
I ⊆ [k] (see Lemma 2.4). This property would have been lost if one modified the def-
inition by requiring the existence of a subnetwork H of (G, r) instead of (G, K(r)).
Take the digraph G in Fig. 2 as an example. When G being considered as a 3-
commodity network in (a), for any demand r, every subnetwork of (G, r) contains
the path s1s2t2, which would imply that G is paradox-free if one adopted the modi-
fied definition. However, G as a 2-commodity network in (b) is still paradox-ridden
under the modified definition.

(a) (b) (c)

Fig. 1 Braess’s paradox in nonatomic selfish routing



Theory Comput Syst (2016) 59:747–780 751

(a) (b)

Fig. 2 The hereditary property of paradox-freeness

1.3 Our Contributions on Paradox-Free Networks

Considering a k-commodity network G with origin-destination pairs (si , ti)
k
i=1, it

would be convenient to think of G being irredundant in the sense that each link and
each vertex of G are contained in at least an si-ti path for some i ∈ [k].

Milchtaich [20] established a series-parallel characterization for excluding
Braess’s paradox in irredundant single-commodity undirected networks. The nice
characterization confirms an unproven assertion of Murchland [21], and partially
solved the open question of characterizing paradox-free networks, proposed by
Roughgarden [22]. In this paper, we complete the solution by characterizing all irre-
dundant k-commodity undirected and directed networks with the series-parallel and
coincident conditions (see Theorem 1.6). In particular, our results on multicommod-
ity networks answer the open question raised by Milchtaich [20]. The theoretical
results imply polynomial time algorithms for recognizing paradox-free k-commodity
undirected networks and paradox-free k-commodity planar directed networks.

Single-Commodity Networks The paradox-freeness of irredundant single-
commodity networks is characterized in [20] for the undirected case and in this paper
for the directed case (see Theorem 1.4 below), using the notion of two-terminal
series-parallel networks.

Definition 1.3 An irredundant single-commodity network G with origin-destination
pair (s, t) is said to be two-terminal series-parallel, or s-t series-parallel to be more
specific, if one of the following conditions holds.

(i) G is undirected, and there do not exist two s-t paths in G that pass a common
edge in opposite directions.

(ii) G is directed, and its underlying graph is s-t series-parallel.

Theorem 1.4 An irredundant single-commodity network is paradox-free if and only
if it is two-terminal series-parallel.
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Given the result by Milchtaich [20] for undirected networks, intuitively, one
might expect a graphical characterization less restrictive than the two-terminal series-
parallel one for directed networks, where players lose the flexibility to traverse a
link in either direction, and Braess’s paradox might have fewer chances to occur.
However, the intuition is disproved by our result on directed networks.

Despite the similarity of the necessary and sufficient condition for graphs and that
for digraphs in Theorem 1.4, the necessity proof for digraphs constitutes our first
technical contribution. Milchtaich’s model for single-commodity undirected network
[20] allows a class of latency functions wider than ours (which is useful for prov-
ing the sufficiency). However the model does preclude predetermined directionality
(which is a common feature of many real networks and modeled by digraphs [3]).
Milchtaich’s wider class of latency functions does not contribute the necessity proof
of the characterization for directed networks. Neither the results nor their proofs in
[20] can imply the necessity in the directed case. In the half-page necessity proof
for graphs [20], given any undirected network that is not s-t series-parallel, Milch-
taich derived a Braess’s paradox by finding a special pair of vertices in the network
whose existence relies on the property that the graph has two s-t paths which go
through an edge in opposite directions. Such a property is lost when considering
digraphs. This is the main hurdle to extending Milchtaich’s proof to digraphs. New
ideas and approaches are required to overcome the difficulty due to more complicated
structures of digraphs.

• We use the existence of cycles in digraphs to obtain these special pairs of vertices
(see Lemma 3.1), which in turn lead us to Braess’s paradoxes (see Lemmas 3.4
and 3.3).

• We translate edge traverses in opposite directions in graphs into the existences
of s-t paths through reversed arcs in digraphs. Instead of relying on special pairs
of vertices as Milchtaich did, we derive Braess’s paradox directly in acyclic
digraphs that are not s-t series-parallel using an inductive argument that carefully
exploits the properties of digraphs (see Theorem 3.5).

Multicommodity Networks To characterize paradox-free multicommodity net-
work, we need the concept of block (see e.g., [26]). Let H be a (di)graph. We say
that H is 2-connected if it is connected and has no cut-vertices. A block of H is a
maximal 2-connected sub(di)graph of H . If H is two-terminal series-parallel, then
each block B of H is also two-terminal series-parallel, where the terminals of B are
uniquely determined by the structure of H (see Lemma 2.8), and are referred to as
the terminals of B in H .

For each i ∈ [k], let Gi = (Vi, Ei) be the maximum (in terms of the number of
links) irredundant subnetwork of (G, {i}). Then Gi , consisting of all si-ti paths in G,
is an irredundant single-commodity network with origin-destination pair (si, ti). We
call si and ti the terminals of Gi .

Definition 1.5 If Gi and Gj (possibly i = j ) are two-terminal series-parallel, B is
a block of both Gi and Gj , and the set of terminals of B in Gi and that in Gj are the
same, then B is called a coincident block of Gi and Gj .



Theory Comput Syst (2016) 59:747–780 753

In Definition 1.5, the orders of terminals (which is the origin and which is the
destination) of B in Gi and Gj do not have to be the same. A common block B of
Gi and Gj is coincident if G is directed, but it is not necessarily coincident if G is
undirected, as in the undirected case the terminal sets of B in Gi and Gj might be
different. In addition, the order of a coincident block’s terminals makes a difference
between directed and undirected networks. Given a coincident block B of Gi and
Gj , in the directed case, the order of B’s terminals is unique; while in the undirected
case, it is possible that the origin (resp. destination) of B in Gi is the destination
(resp. origin) of B in Gj . An example of such different orders can be seen from G1
and G2 for G = Gc in Fig. 1c.

The next theorem summarizes the main results of this paper, which concern both
the directed and undirected case.

Theorem 1.6 (Main result) An irredundant k-commodity network G is paradox-free
if and only if G satisfies the following conditions:

(i) Series-parallel Condition: for each i ∈ [k], Gi = (Vi, Ei) is an si-ti series-
parallel network; and

(ii) Coincident Condition: for any i, j ∈ [k], either Ei ∩ Ej = ∅ or the (di)graph
induced by Ei ∩ Ej consists of all coincident blocks of Gi and Gj .

The theorem clearly generalizes Theorems 1.4. This generalization is by no means
straightforward. Indeed, the coincident condition specifies the interactions of players
with different origins and destinations, capturing in the context of paradox-freeness
a key property of asymmetric nonatomic selfish routing, which, to the best of our
knowledge, was not studied previously.

The configurations depicted in Figs. 1b and 3 give visualizations of how Braess’s
paradox occurs in multicommodity directed networks and undirected networks,
respectively, where u(Gb) in Fig. 3a is the underlying graph of Gb in Fig. 1b.

Moreover, we show in Section 4 that the three configurations are typically all the
forbidden structures for paradox-free multicommodity networks. This complements

(a) (b)

Fig. 3 Braess’s paradoxes in 2-commodity instance (G, r, �), where for G ∈ {u(Gb),Gd } and H = G\e

it holds that �1(H, 1) = 2 = �1(G, 1) and �2(H, 1) = 1 < 2 = �2(G, 1)
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the result that Wheatstone network (Ga in Fig. 1a and its underlying graph) is the
only forbidden configuration for paradox-free single-commodity networks.

The proofs for the necessity of the coincident condition constitute our second
technical contribution. In undirected networks, coping with the nonidentical sets of
terminals for a common block of Gi and Gj turns out to be the key for obtaining the
paradox configurations in Fig. 3.

• In connecting the different pairs of terminals, careful path selections to avoid
unnecessary intersections, which involve techniques from graph connectivity
theory, reveal the essence of the problem.

In directed networks, the difficulty lies on the fact that pure graph theory cannot
enforce two intersecting blocks to be identical as it does for undirected networks.

• A more elaborate inductive method is applied to reduce the proof to smaller net-
works obtained by arc deletion and contraction. As arc contractions might create
Braess’s paradox which is not possessed by the original network, the challeng-
ing task is to guarantee that the selected arc contraction does not destroy the
paradox-freeness (see the proof outline in Section 4.2 for more details).

Our results imply polynomial time algorithms for recognizing paradox-free k-
commodity undirected networks and planar directed networks (see Corollary 5.2). In
our proofs, the constructions of Braess’s paradoxes only use linear latency functions
of form �e(x) = aex + be for constants ae, be ≥ 0. An immediate corollary is that
our results all hold even if the paradox-freeness is defined with respect to this kind
of linear latency functions.

Our characterizations for paradox-free (paradox-ridden) networks show that the
multicommodity cases are natural and nontrivial extensions from their single-
commodity counterparts, which stands in contrast to the dichotomy between single-
and 2-commodity networks in terms of severity of Braess’s paradox [17, 22]. It is
known that Braess’s paradox can be dramatically more severe for multicommondity
networks than single-commodity ones. More importantly, the characterization for
paradox-free networks in the multicommodity case differs significantly from the sin-
gle commodity case. Braess’s paradox can occur in the multicommodity case even
in simple series-parallel networks. An example is the 2-commodity network Gb in
Fig. 1b that is paradox-ridden and series parallel.

1.4 Related Work

Most literature on characterizing network topologies for various properties of NE in
selfish routing is restricted to the single-commodity case. Themost related work is the
aforementioned two-terminal series-parallel characterization by Milchtaich [20] for
paradox-free undirected networks in nonatomic selfish routing. Recently, Cenciarelli
et al. [5] obtained an equivalent characterization using the conception of “homeo-
morphic” from [20]. The authors proved that a single-commodity directed network is
paradox-ridden if and only if it contains a subgraph homeomorphic to Ga in Fig. 1a.
This work is independent from ours. The characterization with forbidden structure
is valuable, and it is also verified by our results in Section 3. In [20], Milchtaich
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proved that the networks which guarantee all NE to be weakly Pareto efficient are
exactly those with linearly independent routes, meaning that every s-t path has at
least an edge that does not belong to any other s-t path. The linear route indepen-
dence was also shown to be a characterization for paradox-free single-commodity
undirected networks with heterogeneous players, meaning that the latency functions
are player-specific: the same link under the same congestion might give different
latencies to different players using it. (Note that the linear independence result can
not be extended to digraphs as shown by the paradox-ridden network Ga in Fig. 1a,
where each of the three s-t paths has a unique arc that is not used by any other s-t
path.) For the nonatomic routing with heterogeneous players, Milchtaich [18] charac-
terized undirected networks such that, given any strictly increasing latency functions,
each player’s latency is the same at all NE. These networks are either nearly parallel
or consist of two or more nearly parallel networks connected in series. In contrast to
nonatomic routing, an atomic routing game has only a finite number of players, each
controlling a noneligible portion of traffic, The most studied scenarios are unsplit-
table routing where each player routes his flow through a single path from his origin
to his destination, and routing with unit demands where each player controls a unit
of flow. Milchtaich [19] identified some sufficient conditions for directed network
topologies that guarantee the existence of at least one pure NE in unsplittable atomic
routing with unit demands for either player-specific latency functions or weighted
players. The series connection of some small digraphs was shown to be sufficient for
the existence of a pure NE.

As far as multicommodity networks are concerned, Holzman and Monderer [14]
studied the unsplittable atomic routing game with unit demands that is played on a
directed network with two distinguished vertices u and v, where every arc belongs
to at least one u-v path. Note that such a constraint of networks is much stronger
than ours of irredundant networks (defined at the beginning of Section 1.3); we only
discard links never used by any player. Under this topological constraint, Holzman
and Monderer [14] proved that the class of extension-parallel networks is exactly the
one guaranteeing the existence of a strong equilibrium. This is a generalization of
the previous result on the single-commodity case [15]. Epstein et al. [10] character-
ized the so-called efficient undirected networks in which all NE of each unsplittable
routing instance with unit demands are socially optimal, i.e., they are among routings
that minimize the maximum path latency between any origin-destination pair. It was
shown that the efficient multicommodity networks are either trees or two vertices
joined by parallel edges, while the efficient single-commodity networks are exactly
those with linearly independent routes. The authors [10] also obtained characteriza-
tions of efficient undirected networks for the routing game where both individual
players and the network (society) wish to minimize their own maximum edge laten-
cies. Recently, Fujishige et al. [13] considered general nonatomic congestion games
and gave a characterization of the maximal combinatorial property of strategy spaces
for which Braess paradox does not occur. In a nutshell, bases of matroids are exactly
this maximal structure.

Since its discovery [4] in 1968, Braess paradox has been a subject of consid-
erable research on transportation networks [25], communication and computation
systems [23], electrical circuits [6], and more general scientific context; see [22]
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for an overview. In analyzing the worst-case severity of Braess’s paradox in selfish
routing games, Lin et al. [17] defined the Brasses ratio of a k-commodity instance
(G, r, �) as the maximum of mink

i=1 �i(G, r)/�i(H, r) over all subnetworks H of G.
For nonatomic routing in single-commodity directed networks with n ≥ 2 vertices,
Roughgarden [22] established a tight upper bound �n/2� on the Braess ratio. The
upper bound was generalized by Lin et al. [17] who showed that removing a set S of
arcs from a single-commodity directed network G with origin-destination pair (s, t)

can only decrease the equilibrium latency at most by a factor of 1+ c, where c is the
maximum number of arcs in S that form a matching of G \ {s, t}. In contrast to the
linear upper bound for the single-commodity case, Lin et al. [17] proved an exponen-
tial lower bound on the Braess ratio for nonatomic routing in 2-commodity directed
networks, and this bound is surprisingly attained by a one-arc removal.

Braess’s paradox indicates the inefficiency of NE, which is usually measured
by the price of anarchy (PoA), i.e., the worst-case ratio between the system objec-
tive value (of the maximum path latency between any origin-destination pair) at
a NE and that of an optimal flow (which minimizes the maximum path latency).
Strengthening the observation that the PoA is bounded below by the Braess ratio, Lin
et al. [17] proved that the PoA of nonatomic routing is n − 1 for single-commodity
directed network with n vertices, and 2O(min{kn,m log n}) for k-commodity directed
network with n vertices and m arcs. A natural network design problem motivated
by Braess’s paradox is, given an nonatomic k-commodity routing instance (G, r, �)
on directed network G with n vertices, to find a subnetwork H of (G, K(r)) such
that maxi∈K(r) �i(H, r) is minimized. Assuming P �= NP , the problem was shown
to have very strong inaproximability. When k = 1 the best-possible approxima-
tion ratio for the problem is �n/2�, implying the impossibility of detecting Braess’s
paradox (even in its worst manifestations) efficiently in directed single-commodity
networks [22]. When k ≥ 2 no polynomial time algorithm for the problem can
achieve an approximation ratio 2o(n), showing exponential inapproximability for
detecting Braess’s paradox in directed multicommodity networks [17]. In case of
single commodity, the trivial algorithm that outputs the entire digraph G turns
out to give the best possible approximation ratio (up to a constant factor) for the
single-commodity case [22]; if, in addition, all latencies are linear, then the trivial
algorithm guarantees a (4/3)-approximation [22, 23]. Similar network design prob-
lems were later investigated for unsplittable atomic routing by Azar and Epstein
[1] and for nonatomic single-commodity routing by Fotakis [12], where the effi-
ciency was measured by the total latency [1] or the maximum link latency [12] of all
players.

Organization The rest of the paper is organized as follows: In Section 2, we
introduce notations and present preliminaries. In Sections 3 and 4, we charac-
terize paradox-free single-commodity networks and paradox-free multicommodity
networks, respectively. In Section 5, we give a wrap-up of the proof for our main
result (Theorem 1.6), and then discuss its corollaries on recognition of paradox-
free networks and the relations between the paradox-freeness of a network and that
of its underlying graph or orientations. In Section 6, we conclude with remarks on
directions of future research.
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2 Preliminaries

We begin by introducing graph-theoretic notations used in the paper. Let G = (V , E)

be a (di)graph without loops that may possibly contain parallel links. As usual, G is
said to be acyclic if G contains no cycle. If G is directed, we use u(G) to denote the
underlying (undirected) graph of G.

We often write H ⊆ G to mean that H is a sub(di)graph of G. We use V (H) and
E(H) to denote the vertex set and link set of H , respectively. For u ∈ V (H)∪E(H),
we often write u ∈ H if it is clear from the context that u is a vertex or it is a link.

Let G1, G2 ⊆ G. By G1 ∪ G2, we mean the sub(di)graph of G with vertex set
V (G1)∪V (G2) and link set E(G1)∪E(G2). If G1 and G2 have at least one vertex in
common, byG1∩G2, we mean the sub(di)graph ofGwith vertex set V (G1)∩V (G2)

and link set E(G1) ∩ E(G2). If V (G1) ∩ V (G2) = ∅, we often use short natation
G1 ∩ G2 = ∅. If G1 ⊆ G2 and G2 ⊆ G1, we write G1 = G2.

Let U ⊆ V ∪ E. The sub(di)graph of G obtained from G by removing elements
in U is denoted by G \ U . In case of U consisting of a singleton u, we write G \ u

instead of G \ {u}. If G is undirected, we write an edge of G with end-vertices u, v

as uv. If G is directed, we write an arc of G with tail u and head v as (u, v).
Let P = v1v2 . . . vh be a v1-vh path in G.2 For any 1 ≤ i < j ≤ h, we say that

vi precedes vj in P , or equivalently vj follows vi in P ; such a relation is written
as vi ≺P vj . If 1 ≤ i ≤ j ≤ h, we write vi �P vj , and use P [vi, vj ] to denote
the subpath of P from vi to vj . For convenience, we set P(vi, vj ] = P [vi, vj ] \ vi ,
P [vi, vj ) = P [vi, vj ] \ vj and P(vi, vj ) = P [vi, vj ] \ {vi, vj }. Let u, v ∈ V ,
and Q be a u-v path in G. We say that P and Q are internally vertex-disjoint if
V (P ) ∩ V (Q) ⊆ {v1, vh} ∩ {u, v}.

Lemma 2.1 Let G = (V , E) be an acyclic digraph. If u, v, w ∈ V , and P and Q

are u-v path and v-w path in G, respectively, then P ∪ Q is a u-w path in G.

Consider graph G. For any X, Y,Z ⊆ V , we call a path in G between a vertex in
X and a vertex in Y an X-Y path. We say that vertices in Z separate X from Y if
G \ Z does not contains any X-Y path.

Theorem 2.2 (Menger’s theorem) If G = (V , E) is a graph and X, Y ⊆ V , then the
minimum number of vertices that separate X from Y in G is equal to the maximum
number of vertex-disjoint X-Y paths in G.

Corollary 2.3 Let G = (V , E) be a 2-connected graph with u, v, w, x, y ∈ V . If
u �= v, w �= x and wx ∈ E, then (i) G contains a u-v path going through wx, and
(ii) G contains a u-v path going through y.

Proof Since G is 2-connected, no single vertex in V can separate {u, v} from {w, x}.
It follows from Theorem 2.2 that there are two vertex-disjoint {u, v}-{w, x} paths P

2We emphasize again that all paths in this paper are simple. They are all acyclic.



758 Theory Comput Syst (2016) 59:747–780

and Q in G. Note that P ∪ wx ∪ Q is a u-v path containing wx. Thus (i) holds. It is
clear that (ii) follows from (i).

Lemma 2.4 Let G be a k-commodity network (directed or undirected) with origin-
destination pairs (si , ti)

k
i=1. If G is paradox-free, then for any nonempty I ⊆ [k],

each |I |-commodity network G′ (⊆ G) with origin-destination pairs (si , ti)i∈I is
paradox-free.

Proof Suppose on the contrary that there exist I ⊆ [k] and |I |-commodity net-
work G′ with origin-destination pairs (si , ti)i∈I such that Braess’s paradox occurs
in (G′, r′, �′) for some r′ = (ri)i∈I and �′. We construct an instance (G, r, �) by
defining r and � as follows:

• ri = r ′
i for all i ∈ I , and ri = 0 for all i ∈ [k] − I ;

• �e(x) = �′
e(x) for each e ∈ E(G′), and �e(·) = ∞ for each e ∈ E(G) − E(G′).

It is easy to see that K(r) = K(r′), (G, r, �) and (G′, r′, �′) have the same NE
flow (in a way of ignoring the commodities with zero demands), and �i(G, r) =
�′
i (G

′, r′) for all i ∈ K(r). As Braess’s paradox occurs in (G′, r′, �), there exist H ⊆
G′ ⊆ G and h ∈ K(r′) = K(r) such that �h(H, r) = �′

h(H, r′) < �′
h(G

′, r′) =
�h(G, r) and �i(H, r) = �′

i (H, r′) ≤ �′
i (G

′, r′) = �i(G, r) for all i ∈ K(r′) − {h} =
K(r) − {h}, showing that Braess’s paradox occurs in (G, r, �). The contradiction to
paradox-freeness of G proves the lemma.

The remainder of this section is devoted to the discussion on two-terminal series-
parallel (di)graphs. The way of defining the series-parallel property [20] in terms of
link traverse directions (see Definition 1.3(i)) is valid only for (undirected) graphs. It
can not be extended to digraphs. On the other hand, the series-parallel property can
be uniformly defined for both graphs and digraphs in the following recursive way.

Definition 2.5 A single-commodity network G with origin-destination pair (s, t) is
two-terminal series-parallel or s-t series-parallel if

(i) G has a single link with ends s and t ; or
(ii) G is obtained by connecting two smaller oi-di series-parallel networks Hi ,

i = 1, 2, in series – identifying d1 and o2, and naming o1 as s, and d2 as t ; or
(iii) G is obtained by connecting two smaller oi-di series-parallel networks Hi ,

i = 1, 2, in parallel – identifying o1 and o2 to form s and identifying d1 and
d2 to form t .

In the above definition, the vertices s and t are called the terminals of the series-
parallel (di)graph G. The equivalence of Definitions 2.5 and Definition 1.3 was
proved by Milchtaich [20].3 The above recursive definition implies polynomial time

3Milchtaich’s proof [20] concerned only undirected graphs. The directed case is simply an immediate
corollary.
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recognition algorithms for recognizing two-terminal series-parallel (di)graphs [27].
It is well-known that each series-parallel graph of at least two edges has either a
degree 2 vertex or a pair of parallel edges. The following observation on two-terminal
series-parallel digraphs will be useful in our proofs.

Lemma 2.6 Let G be a two-terminal series-parallel digraph with at least two arcs.
Then G contains either a pair of parallel arcs or a vertex whose indegree and
outdegree are both one.

Proof We prove the lemma by induction on the number m of arcs in G. The base case
where G has exactly two arcs is trivial. We assume that m ≥ 3 and the lemma holds
for all two-terminal series-parallel networks with at least 2 and at most m − 1 arcs.
Since m ≥ 2, there exist two smaller two-terminal series-parallel digraphsH1 and H2
whose connection in series or in parallel gives G. Suppose without loss of generality
that H1 has at least two arcs. It follows that H1 satisfies our lemma, because H1 has
fewer edge than G. Clearly, any pair of parallel arcs of H1 is the one in G. Moreover,
if a vertex v has exactly one in-neighbor and exactly one out-neighbor in H1, then v

cannot be a terminal of H1, and therefore cannot have any neighbors in H2. Thus G

satisfies the lemma.

Corollary 2.7 Let G = (V , E) be an irredundant single-commodity undirected
network with origin-destination pair (s, t). For any distinct vertexes u, v ∈ V , G

contains two vertex-disjoint {s, t}-{u, v} paths.

Proof Since u �= v, and each of u and v is contained in an s-t path of G, it is easy to
see that no single vertex of G can sperate {s, t} from {u, v}. The conclusion is instant
from Theorem 2.2.

For any s-t series-parallel (di)graph G, let U(G) denote the set of its cut-vertices,
and B(G) the set of its blocks. Let s-t block graph of G be defnined as a graph with
vertex set {s.t} ∪ U(G) ∪ B(G) and edge set {vB : v ∈ B, v ∈ {s, t} ∪ U(G), B ∈
B(G)}. Note that the definition of s-t block graphs here is slightly different from that
of standard block graphs in textbook (see, e.g., page 56 of [9]). The next observation
concerns with the block-chain structure of two-terminal series-parallel (di)graphs.
See Fig. 4 for an illustration of the directed case. (The undirected case is visualized
by ignoring the arc directions.)

Fig. 4 The block structures of two-terminal series-parallel networks
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Lemma 2.8 Let G is an s-t series-parallel (di)graph. If p = |B(G)|, then the s-t
block graph of G is a path of form v1B1v2 . . . viBivi+1 . . . vpBpvp+1 such that the
following hold:

(i) v1 = s, vp+1 = t , and U(G) = {v2, . . . , vp} if and only if U(G) �= ∅ if and
only if p ≥ 2;

(ii) each s-t path in G goes through v1, v2, . . . , vp in this order;
(iii) B(G) = {B1, . . . , Bp};
(iv) for each i ∈ [p], Bi is a vi-vi+1 series-parallel (di)graph; and
(v) for each i ∈ [p] and each vi-vi+1 path P , either Bi is a link or Bi contains a

vi-vi+1 path Q such that P and Q are internally disjoint.

Proof ByDefinition 2.5, it suffices to considerG obtained by connecting two smaller
oi-di series-parallel networks Hi (i = 1, 2) in series or in parallel. In the former
case, the result follows from applying inductions on H1 and H2. In the latter case, G
is 2-connected, B(G) is G itself, and the statements (i)–(iv) are trivially true. To see
(v), suppose without loss of generality that P ⊆ H1. Then we may take Q to be any
o2-d2 path, i.e., s-t path, in H2.

3 Single-Commodity Networks

In view of Milchtaich’s characterization for undirected networks [20], in this section
we mainly focus on single-commodity directed networks, while leaving a brief
discussion on the undirected case to the end of this section.

We study single-commodity directed network G = (V , E) with origin-destination
pair (s, t). Without loss of generality, we may assume that G is irredundant, which
particularly implies that G is connected. We will characterize paradox-freeness of
G with s-t series-parallel property. Our efforts are mainly devoted to proving the
necessity of the property.

In Milchtaich’s proof for undirected networks (Proposition 1 of [20]), the embed-
ding of u(Ga) (see Fig. 1a for Ga) in a single-commodity undirected network implies
the network is paradox-ridden, while such an embedding is implied by a special pair
of distinct vertices u, v such that u precedes v in an s-t path and follows v in another
s-t path of the network. To derive such u, v, Milchtaich used the property that the
graph has two s-t paths which go through an edge in opposite directions. Such a
property is lost when considering digraphs. This is the main hurdle to extending
Milchtaich’s proof to digraphs.

To get around the difficulty, our first step is to use the existence of a cycle to derive
that of a special pair of vertices in G (Lemma 3.1), which in turn gives the occurrence
of Braess’s paradox (Lemmas 3.3 and 3.4). Our second step is to derive Braess’s
paradox in acyclic G that is not s-t series-parallel. We translate edge traverses in
opposite directions in graphs into the existences of s-t paths through reversed arcs in
digraphs; instead of relying on the special pair of vertices, we derive Braess’s paradox
directly using an inductive argument that carefully exploits the properties of digraphs
(Theorem 3.5).
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Lemma 3.1 If there is a cycle in G, then there exist s-t paths P,Q ∈ P and distinct
vertices u, v ∈ V (P ) ∩ V (Q) such that u precedes v in P and u follows v in Q, i.e.,
u ≺P v and v ≺Q u.

Proof Assume on the contrary that no such P,Q and u, v stated in the lemma exist.
Let C = v1v2 . . . vmv1 be a cycle in G. For each 2 ≤ i ≤ m, let C[v1, vi] stand
for the unique v1-vi path in the directed cycle C. Since G is an irredundant network,
every arc (vi, vi+1) of C is contained in some s-t path Qi ∈ P , i = 1, 2, . . . , m,
where (vm, vm+1) = (vm, v1).

If Q1[s, v2) and Q2(v2, t] have some vertex in common, say u, then our con-
tradiction assumption is violated by u ≺Q1 v2 and v2 ≺Q2 u. Hence Q1[s, v2]
and Q2[v2, t] intersect only at vertex v2, and their concatenation forms an s-t path
Q1[s, v2]∪Q2[v2, t] containingC[v1, v3], which we write asQ1,2. Then we consider
Q1,2[s, v3] and Q3[v3, t]. They, by our contradiction assumption, intersect only at v3
(otherwise u ≺Q1,2 v3 and v3 ≺Q3 u for some vertex u ∈ Q1,2[s, v3) ∩ Q3(v3, t]),
and their concatenation forms an s-t pathQ1,2,3 := Q1,2[s, v3]∪Q3[v3, t] containing
C[v1, v4]. Continuing this way, we concatenate Q1,2,...,i[s, vi+1] and Qi+1[vi+1, t]
to obtain an s-t path Q1,2,...,i+1 containing C[v1, vi+2] for i = 1, 2, . . . , m − 2
inductively. In particular Q1,2,...,m−1 contains C[v1, vm], implying that v1 precedes
vm in Q1,2,...,m−1 ∈ P . However v1 follows vm in Qm ∈ P . The contradiction to our
assumption establishes the lemma.

Definition 3.2 We call G an s-t paradox if G = P1 ∪ P2 ∪ P3 is the union of three
paths P1, P2 and P3 with the following properties:

(i) P1 is an s-t path going through distinct vertices a, u, v, b in this order, i.e.,
s �P1 a ≺P1 u ≺P1 v ≺P1 b �P1 t ;

(ii) P2 is an a-v path with V (P2) ∩ V (P1) = {a, v};
(iii) P3 is a u-b path with V (P3) ∩ V (P1) = {u, b} and V (P3) ∩ V (P2) = ∅.

The s-t paradox defined above is often denoted as (P1, P2, P3). As illustrated in
Fig. 5, P2 and P3 are vertex-disjoint, and they intersect with P1 only at their ends.
Observe that Ga in Fig. 1a is an s-t paradox (suvt, sv, ut) with s = a and t = b.

Lemma 3.3 If G contains an s-t paradox, then G is paradox-ridden.

Fig. 5 An s-t paradox (P1, P2, P3)
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Proof Let G′ = (V ′, E′) = P1∪P2∪P3 be an s-t paradox (P1, P2, P3) contained in
G = (V , E). In the subdigraph G′, let e1 and e2 be the two outgoing arcs from a with
e1 ∈ P1 and e2 ∈ P2, and let e3 and e4 be the two incoming arcs to b with e3 ∈ P1 and
e4 ∈ P3. We define routing instance (G, 1, �) by �e(x) = x if e ∈ {e1, e3}, �e(x) = 1
if e ∈ {e2, e4}, �e(x) = 0 if e ∈ E′ − {e1, e2, e3, e4}, and �e(x) = ∞ if e ∈ E − E′.
See Fig. 5 for an illustration. The unique NE in (G, 1, �) sends the one-unit flow
all through path P1 and suffers from a latency �(G, 1) = �e1(1) + �e3(1) = 2. Let
subnetwork H of G be obtained from G by removing an arc e on P1[u, v]. Then the
unique NE in (H, 1, �) splits the one-unit flow equally at vertex a, sending a half via
path P2[a, v]∪P1[v, t] and the other half via path P1[a, u]∪P3[u, b]∪P1[b, t]. This
incurs a latency �(H, 1) = 1 + 0.5 = 1.5, showing a Braess’s paradox.

Lemma 3.4 If there is a cycle in G, then G contains an s-t paradox.

Proof By Lemma 3.1, there exist s-t paths P,Q ∈ P and distinct vertices u, v ∈
V (P ) ∩ V (Q) such that u precedes v in P and u follows v in Q. Let such P , Q, u,
v be taken such that Q[v, u] is as long as possible. It follows from the maximality of
Q[v, u] that
(i) Q[s, v) and P [u, t] are vertex-disjoint.

Suppose otherwise Q[s, v) and P [u, t] have a common vertex w. Note from u ∈
Q(v, t] that w �= u. It follows that we should have chosen P,Q, u,w instead of
P,Q, u, v because Q[w, u] properly contains Q[v, u]. So (i) holds. A symmetric
argument shows the following,

(ii) Q(u, t] and P [s, v] are vertex-disjoint.
Consider a traverse ofQ from s to t . Let a be the last vertex onQ[s, v)with a ∈ P ,

meaning Q(a, v) ∩ P = ∅; let b be the first vertex on Q(u, t] with b ∈ P , meaning
Q(u, b) ∩ P = ∅. It follows from (i) that a ∈ P [s, u), and from (ii) that b ∈ P(v, t]
(See Fig. 5 for an illustration with P1 = P , P2 = Q[a, v] and P3 = Q[u, b]). It
can be seen from the choices and positions of a and b that P , Q(a, v) and Q(u, b)

are pairwise vertex-disjoint, implying that P ∪ Q[a, v] ∪ Q[u, b] is an s-t paradox
(P, Q[a, v], Q[u, b]) contained in G.

For any arc subset K ⊆ E, let G〈K〉 be the digraph obtained from G by reversing
the directions of all arcs in K . The set of reversed arcs is written as K̄ .

Theorem 3.5 If G does not contain any s-t paradox, then G is s-t series-parallel.

Proof As G contains no s-t paradox, it follows from Lemma 3.4 that G is acyclic.
Therefore by Lemma 2.1, we have

(i) for any u, v, w ∈ V and any u-v path Puv and v-w path Pvw in G, Puv ∪ Pvw is
a u-w path in G.

By Definition 1.3, digraph G is s-t series-parallel if and only if its underly-
ing graph u(G) has no pair of s-t paths which go through some edge in opposite
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directions. Recall that each arc of G is contained in some s-t path in G. To justify the
theorem, it suffices to prove the equivalent statement that for any nonempty subset
K of E, there is no s-t path in G〈K〉 going through some arc in K̄ .

By contradiction, we assume on the contrary that there is ∅ �= K ⊆ E with
minimum |K| such that G〈K〉 contains an s-t path P going through some arc in
K̄ . The minimality of K implies that K̄ ⊆ P , and K̄ induces a number of, say m,
subpaths of P from vi to wi , i = 1, 2, . . . , m, where vi ≺P wi ≺P vi+1 ≺P wi+1
for all i = 1, 2, . . . , m − 1. Notice that

(ii) the reverse of P [vi, wi] is a path P̄ [wi, vi] = (Vi, Ei) in G for each i ∈ [m];
(iii) K is the disjoint union of E1, E2, . . . , Em;
(iv) P [wi, vi+1], i = 0, 1, . . . , m are paths in G, where w0 = s and vm+1 = t ;
(v) for any i ∈ [m], there exists a vi-v1 path Qi in G.

Statements (ii)–(iv) are straightforward observations. See Fig. 6 for an illustration.
We prove (v) by induction on i. The base case i = 1 is trivial. Suppose that 2 ≤ i ≤ m

and there is a vh-v1 path Qh in G for each h ∈ [i − 1].
Since G is an irredundant network, it contains a vi-t path Q. If Q and P [s, vi) are

vertex-disjoint, then P [s, vi]∪Q is an s-t path inG〈∪i−1
h=1Ei〉 going through ∪i−1

h=1Ēh.
However ∅ �= ∪i−1

h=1Eh � ∪m
h=1Eh and (iii) imply a contradiction to the minimality

of K . Hence

• P(s, vi) and Q(vi, t) have some vertex in common, say c.

Observe from (iv) and (i) that P [wi−1, vi] ∪ Q is a path in G, implying that
P [wi−1, vi) and Q are vertex-disjoint, and

• c ∈ P(s,wi−1) ∩ Q(vi, t).

Note that c ∈ P [wh−1, wh) for some h ≤ i − 1. By (iv) and (ii), the subdi-
graph P [wh−1, vh] ∪ P̄ [wh, vh] of G contains a c-vh path, written as R. Consider
the concatenation of R and the vh-v1 path Qh (whose existence is guaranteed by the
inductive hypothesis). We see from (i) that R ∪ Qh is a c-v1 path in G. In turn we
concatenate the vi-c path Q[vi, c] and the c-v1 path R ∪ Qh into a vi-v1 path in G,
which establishes (v).

Applying (ii) and (v) with i = m, we deduce from (i) that Swmv1 = P̄ [wm, vm] ∪
Qm is a wm-v1 path in G. Since G is an irredundant network, it contains an s-wm

path Sswm and a v1-t path Sv1t . By (i), S = Sswm ∪ Swmv1 ∪ Sv1t is an s-t path in G

satisfying s ≺S wm ≺S v1 ≺S t . Observe that wm, v1 ∈ P ∩ S. This enables us to
take distinct vertices u, v ∈ P ∩ S such that

• u ≺S v and v ≺P u,
• P [v1, wm] ⊆ P [v, u], and
• P [v, u] is as long as possible.

Fig. 6 The path P in G〈K〉, where arcs in G and K are drawn as solid and dotted ones, respectively
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Notice from s �S u ≺S v �S t that v �= s and u �= t . Recall from (iv) that
P [s, v1] ∪ P [wm, t] = P [w0, v1] ∪ P [wm, vm+1] ⊆ G. From P [v1, wm] ⊆ P [v, u],
we derive

(vi) P [s, v] ∪ P [u, t] ⊆ G.

The maximality of P [v, u] enforces that
(vii) P [s, v) ∩ S[u, t] = ∅ and P(u, t] ∩ S[s, v] = ∅.
Otherwise we should have taken v to be some vertex v′ ∈ P [s, v)∩S(u, t), or u to be
some vertex u′ ∈ P(u, t] ∩ S(s, v). See Fig. 6 for the positions of the contradictory
v′ and u′ on P .

Consider a traverse of P from s to t . Let a be the last vertex of P [s, v) with a ∈ S,
meaning that P(a, v) ∩ S = ∅ (such a vertex a exists because s ∈ P [s, v) ∩ S as
v �= s). Let b be the first vertex of P(u, t] with b ∈ S, meaning P(u, b) ∩ S = ∅
(such a vertex b exists because t ∈ P(u, t] ∩ S as u �= t). It follows from (vii) that
a ∈ S[s, u) and b ∈ S(v, t], giving a ≺S u ≺S v ≺S b. Thus, by (vi), we see that
(S, P [a, v], P [u, b]) is an s-t paradox in G. The contradiction completes the proof
of the theorem.

We are now ready to prove the directed case of Theorem 1.4, restated as follows.

Theorem 3.6 An irredundant single-commodity directed network G is paradox-free
if and only if it is two-terminal series-parallel.

Proof If G is paradox-free, then, by Lemma 3.3, G contains no s-t paradox, which
along with Theorem 3.5 implies that G is s-t series-parallel.

Conversely, if G is s-t series-parallel, then u(G) is s-t series-parallel by Defini-
tion 1.3. It can be seen from the definition that {u(P ) : P ∈ P} is exactly the set
of s-t paths in u(G). Suppose for a contradiction that there exist H ⊆ G, traffic
demand r and nonnegative, continuous, nondecreasing latency functions �e, e ∈ E

such that �(H, r) < �(G, r). For each edge e of u(G), set �e(·) = �e′(·) where e

is the underlying edge of the arc e′ ∈ E. Then �(u(H), r) = �(H, r) < �(G, r) =
�(u(G), r), exhibiting a Braess’s paradox in u(G). We deduce from the undirected
case of Theorem 1.4 that u(G) is not s-t series-parallel. The contradiction proves the
theorem.

The sufficiency stated in the above theorem has an alternative proof based on
Milchtaich’s work [20]. Milchtaich’s model for single-commodity undirected net-
work allows a class of latency functions wider than ours; in particular, two (different)
functions are defined for each edge e, one specifying the latency of passing e from its
end u to its end v and the other specifying the latency of passing e from v to u. This
class of latency functions brings a kind of directionality into Milchtaich’s model –
Regardless of how the edges in a two-terminal series-parallel undirected network are
directed and their latencies are defined, Braess’s paradox does not occur. To be more
specific, given any routing instance in a single-commodity directed network G, let us
consider its corresponding instance in the underlying graph u(G) under Milchtaich’s
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model. For each edge of u(G), the latency function of its corresponding arc is associ-
ated with passing the edge in the direction the same as the arc, and an infinite latency
function is given to passing the edge in the opposite direction. Then Braess’s paradox
occurs in the routing instance in u(G) if and only if so does in the routing instance
in G. If G is two-terminal series-parallel, then so is u(G). Milchtaich’s result [20]
implies that the undirected instance does not admit any Braess’s paradox, and we
derive the same for the directed instance.

A Remark on Single-Commodity Undirected Networks As mentioned above, the
class of latency functions investigated in Milchtaich’s paper [20] is wider than the
one in this paper. Milchtaich defined Braess’s paradox free undirected networks
with respect to this wider class of functions, and characterized these networks with
the two-terminal series-parallel property. While the sufficiency of Theorem 1.4 (the
undirected case) is immediate from Milchtaich’s original theorem (Theorem 1 of
[20]), the necessity can only follow from Milchtaich’s proof, where only our class of
latency functions (i.e., nonnegative, continuous, and nondecreasing ones) was used
for constructing Braess’s paradox.

4 Multicommodity Networks

In this section we study k-commodity network G = (V , E) with origin-destination
pairs (si , ti)

k
i=1, where k ≥ 2. For convenience, we assume that G is an irredundant

network. We are to prove that the series-parallel condition and coincident condition
(see Theorem 1.6) are necessary and sufficient for G to be paradox-free.

By virtue of the block chain structure of series-parallel (di)graphs, the sufficiency
proof, which builds on the result for single-commodity (Theorem 1.4), turns out to
be easier than the necessity part.

Theorem 4.1 Let G be an irredundant multicommodity network. If G satisfies the
series-parallel condition and the coincident condition, then G is paradox-free.

Proof Given any nonnegative traffic demand vector r = (ri)
k
i=1 and nonnegative,

continuous and nondecreasing latency functions �, suppose that H is a subnetwork
of (G, K(r)). Let g = (gi )

k
i=1 and h = (hi )

k
i=1 be the NE of (G, r, �) and (H, r, �),

respectively.
Consider an arbitrary commodity i ∈ K(r). Since Gi is si-ti series-parallel, by

Lemma 2.8, we suppose that the si-ti block graph of Gi is v1B1v2 . . . vpBpvp+1,
where si = v1 and ti = vp+1.

For each q ∈ [p], recall from Lemma 2.8(iv) that Bq is a vq -vq+1 series-parallel
(di)graph. We consider it as a single-commodity network with origin-destination
pair (vq, vq+1). Set traffic demand r(q) = ∑

j :Bq⊆Gj
rj . Let �(q) denote the restric-

tion of � to the links in Bq . Since H is a subnetwork of (G, K(r)), it contains
at least an si-ti path. Every such si-ti path intersects Bq with a vq -vq+1 path,
implying that Hq = Bq ∩ H is nonempty. Furthermore, it follows from the coin-
cidence condition that Hq contains all vq -vq+1 paths in H . Since g is the NE for
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(G, r, �), its restriction to Bq , denoted as g(q), is the NE for (Bq, r(q), �(q)), where
g(q)(P ) = ∑

j :P⊆Gj

∑
Q:P⊆Q∈Pj

gj (Q) for each vq -vq+1 path in Bq . Similarly,

the restriction of h to Hq , denoted as h(q), is the NE for (Hq, r(q), �(q)), where
h(q)(P ) = ∑

j :P⊆Gj

∑
Q:P⊆Q∈Pj ,Q⊆H hj (Q) for each vq -vq+1 path inHq . As Bq is

vq -vq+1 series-parallel, it follows from Theorem 1.4 that Bq is paradox-free, giving

�
(q)
P (g(q)) = �i(Bq, r(q)) ≤ �i(Hq, r(q)) = �

(q)
Q (h(q)) for any vq -vq+1 paths P,Q

with g(q)(P ) > 0 and h(q)(Q) > 0.
Now we have �i(G, r) = ∑

q∈[p] �(q)(Bq, r(q)) ≤ ∑
q∈[p] �(q)(Hq, r(q)) =

�i(H, r). By the arbitrary choice of i ∈ K(r), we deduce that G is paradox-free.

For the necessity proof, we have the following observation, which provides us
with series-parallel structure of each individual Gi , i ∈ [k] for further study on the
coincident condition.

Corollary 4.2 If G is paradox-free, then G satisfies the series-parallel condition.

Proof It is straightforward from Lemma 2.4 that all Gi (i ∈ [k]) are paradox-free,
and then by Theorem 1.4, they all are two-terminal series-parallel.

The rest of this section is devoted to the proof of paradox-freeness implying the
coincident condition. In view of Lemma 2.4, we may focus on 2-commodity net-
works: the undirected ones are investigated in Section 4.1, while the directed ones are
discussed in Section 4.2. In both undirected and directed cases, we derive Braess’s
paradox assuming the coincident condition fails.

4.1 The Undirected Case

In this subsection, we investigate irredundant 2-commodity undirected network G.
The following Lemma 4.3 plays an important role in our proof. It helps to verify the
fact that the intersecting blocks of G1 and G2 are their common blocks. Then we
cope with the different terminal sets of G1 and G2 by connecting them via carefully
selected paths, and use these paths to construct Braess’s paradox as desired.

Lemma 4.3 For any i ∈ [2] and any distinct vertices u, v ∈ Vi , all u-v paths of G

are contained in Gi .

Proof By contradiction, let u-v path P be a counterexample to the lemma with a
minimum number of edges. Then all vertices of P(u, v) are outside Gi . Recall from
Corollary 2.7 that Gi contains vertex-disjoint {si, ti}-{u, v} paths Q1 and Q2 with
u ∈ Q1 and v ∈ Q2. It follows that Q1 ∪ P ∪ Q2 is an si-ti path in G. Thus
Q1 ∪P ∪Q2 ⊆ Gi by the definition of Gi . This gives a contradiction to the fact that
P and Gi are arc-disjoint.

Theorem 4.4 Let G be an irredundant 2-commodity undirected network. If G is
paradox-free, then it satisfies the coincident condition.
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Proof Notice from Corollary 4.2 that Gi is an si-ti series-parallel network for i =
1, 2. Suppose that E1 ∩ E2 �= ∅. Then we have an edge uv ∈ E1 ∩ E2, a block
B1 of G1 with terminals a, b and a block B2 of G2 with terminals c, d such that
uv ∈ B1 ∩ B2. Since B1 is 2-connected, by Corollary 2.3(i), each edge of B1 is on
some u-v path of B1. Thus Lemma 4.3 enforces that B1 ⊆ G2. As B1 is 2-connected
and have common edge uv with block B2 of G2, we have B1 ⊆ B2. A symmetric
argument gives B2 ⊆ B1, implying B1 = B2. It remains to prove that {a, b} = {c, d}.
Assume the contrary that {a, b} �= {c, d}, which particularly implies that B1 = B2
is not an edge. We distinguish between two cases depending on whether there exist
an a-b path and a c-d path with one containing the other. We derive contradictions in
both cases by constructing Braess’s paradoxes.

Case 1 There are an a-b path and a c-d path in B1 such that one contains the other.
Suppose without loss of generality that B1 contains an a-b path P with c, d ∈ P . As
B1 is not an edge ab, it follows from Lemma 2.8(v) that there is an a-b path Q in B1
which is internally disjoint from P , i.e., P ∪ Q is a cycle.

Take an arbitrary edge e1 ∈ P [c, d] and an arbitrary edge e2 ∈ Q. Let latency
functions � be defined as follows: �e1(x) = x, �e2(x) = 2, �e(x) = 3 for all edges e

inside B1 but outside P ∪ Q, and �e(x) = 0 for edges e outside B1 and all edges e

inside (P ∪ Q) \ {e1, e2}. See Fig. 7a for an illustration. Define r by r1 = r2 = 1.
On one hand, in the NE for (G, r, �), when restricted to B1 = B2, commodity 1

only uses path P and commodity 2 only uses path P [c, d]. It follows that �1(G, r) =
�2(G, r) = 2. On the other hand, consider the subgraph H obtained from G by
removing an edge e3 inside P but outside P [c, d] (such an edge does exist because
{a, b} �= {c, d}). Since e3 belongs to the cycle P ∪ Q ⊆ G, it can be seen that
H = G \ e3 is a subnetwork of G. Observe that in any NE for (H, r, �), when
restricted to B1 ∩ H = B2 ∩ H , commodity 1 only uses path Q and commodity 2
only uses path P [c, d]. It follows that �1(G, r) = 2 and �2(G, r) = 1, showing the
occurrence of Braess’s paradox in (G, r, �).

Case 2 No a-b path in B1 contains any c-d path and no c-d path in B1 contains
any a-b path. It follows that no a-b path in B1 contains {c, d} and no c-d path in
B1 contains {a, b}. If a = d, then by Corollary 2.3(ii), there is an a-b path in B1
that passes through c, and this a-b path clearly contains a c-d path, a contradiction
to the hypothesis of Case 2. Therefore a �= d, and symmetric arguments provide
{a, b} ∩ {c, d} = ∅. Moreover, by Corollary 2.3(ii), we may take P to be an a-b path
in B1 containing c and Q to be an a-b path in B1 containing d.

(a) (b)

Fig. 7 Braess’s paradoxes in 2-commodity undirected networks
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Consider a traverse of P from a to b. Let u denote the last common vertex of
P [a, c) and Q, and v denote the first common vertex of P(c, b] and Q. Obviously
u �= v, c ∈ P [u, v], and P [u, v] ∩ Q contains only two vertices u and v. Swapping
u and v if necessary, we obtain

(i) There exist distinct vertices u, v ∈ P ∩ Q such that a �Q u �Q v �Q b,
c ∈ P (u, v) and P [u, v] ∩ Q contains only u and v

See Fig. 7b for an illustration. Since no a-b path in B1 contains {c, d}, statement (i)
enforces

(ii) d ∈ Q(u, v).

By (i) and (ii), we may take edge e1 ∈ Q[u, d] and edge e2 ∈ P [c, v]. Let latency
functions � be defined as follows: �e1(x) = x, �e2(x) = 2, �e(x) = 3 for all edges e

inside B1 but outside P [u, v]∪Q, and �e(x) = 0 for edges e outside B1 and all edges
e inside (P [u, v]∪Q)\{e1, e2}. Define r by r1 = r2 = 1. Then in the NE for (G, r, �),
when restricted to B1 = B2, commodity 1 only uses the a-b path Q, and commodity
2 only uses the c-d path P [c, u] ∪ Q[u, d]. It follows that �1(G, r) = �2(G, r) = 2.
On the other hand, consider the subgraph H obtained from G by removing an edge
e3 ∈ Q[d, v] (such an edge does exist because of (ii)). It can be seen that H is a
subnetwork of G, and in the NE for (H, r, �), when restricted to B1 ∩ H = B2 ∩ H ,
commodity 1 only uses path Q[a, u)∪P [u, v]∪Q(v, b] and commodity 2 only uses
path P [c, u] ∪ Q[u, d]. It follows that �1(G, r) = 2 and �2(G, r) = 1, showing the
occurrence of Braess’s paradox in (G, r, �).

Remark 4.5 Suppose that G1 and G2 are both two-terminal series-parallel networks,
and E1∩E2 induces all coincident blocks of G1 and G2. It is easy to prove that these
coincident blocks must be consecutive in the sequence of blocks of G1 (resp. G2)
ordered according to the s1-t1 block graph of G1 (resp. the s2-t2 block graph of G2).

4.2 The Directed Case

In this subsection, we prove that paradox-freeness implies the coincident condition
for irredundant 2-commodity directed network G. If G1 and G2 are two-terminal
series-parallel, then, due to the directionality of G, coincident blocks of G1 and G2
are exactly their common blocks, because each block of Gi (i = 1, 2) has a unique
source, which must be its origin, and a unique sink, which must be its destination. In
the proof of Theorem 4.4, Lemma 4.3 helps to obtain a quick proof for B1 = B2. As
the lemma does not extend to digraphs, more elaborative operations of arc deletion
and contraction will be employed in directed networks for reaching the conclusion of
B1 = B2 (i.e., its failure implies occurrence of Baress’s paradox).

Given a 2-commodity network D (not necessarily irredundant), we use Di (i =
1, 2) to denote the maximum irredundant subnetwork of (D, {i}). Themaximum irre-
dundant subnetwork of D is D1 ∪ D2. Instead of focusing on irredundant directed
networks with origin-destination pairs (si , ti)i=1,2, our proof considers the set C of



Theory Comput Syst (2016) 59:747–780 769

2-commodity directed networks D (not necessarily irredundant) whose maximum
irredundant subnetworks D1 ∪ D2 satisfy the coincident condition: if a block B1 of
D1 and a block B2 of D2 have some arc in common, then B1 and B2 are identical,
i.e., B1 = B2. Our goal is to prove G ∈ C provided G is paradox-free.

Our argument employs arc deletion and contraction frequently. Let D be a digraph
and e an arc ofD. We writeD\e andD/e for the graphs obtained fromD by deleting
e and contracting e, respectively. If D′ is a subdigraph of D \ e, then both notations
D′ \ e and D′/e mean D′ itself.

Proof Outline To prove G ∈ C, we use the minimum counterexample approach.
Assuming G �∈ C is a minimum (in term of the number of arcs) counterexample,
for any e ∈ E, we have G \ e and G/e belong to C whenever they are paradox-free
subnetworks of G.

• The basic idea is to derive from G \ e ∈ C or G/e ∈ C either G ∈ C or a Braess’s
paradox in G, contradicting the assumption that G �∈ C and G is paradox-free.

However, not all e ∈ E can help us to fulfill this task, because G/e might have
many si-ti paths P (i = 1, 2) such that neither P nor P ∪ {e} is an si-ti path in
G, meaning that G/e might be paradox-ridden and we could not have G/e ∈ C.
This is where the inductive series-parallel property helps; it gives us a pair of arcs
e1, e2 which are in parallel or in series in G1 (recalling Lemma 2.6). The case of
parallel e1, e2 is easy. Most of our efforts are devoted to investigating series e1, e2.
The argument is divided into the following main steps to prove:

• G2 contains e1 or e2, say e1.
• e1 is the only incoming or outgoing arc at the common end v of e1 and e2.
• G1 and G2 have a common arc other than e1 (otherwise a Braess’s paradox is

obtained).
• for i = 1, 2, the set of si-ti path in Gi/e1 naturally correspond the set of si-ti

paths in Gi , implying G/e1 is paradox-free and thus G/e1 ∈ C.

Then the final contradiction G ∈ C is reached due to G/e1 ∈ C and e1 ∈ G1 ∩ G2.

Theorem 4.6 Let G be a 2-commodity directed network. If G is paradox-free, then
G ∈ C.

Proof By contradiction, let G = (V , E) �∈ C be a counterexample to the theorem
with minimum |E|. (The minimality of G instantly implies that G is irredundant.)
Hence there exist a block Bi of Gi = (Vi, Ei), i = 1, 2 such that B1 and B2 have
some arc e∗ in common, but B1 �= B2. It can be assumed without loss of generality that

B1 � B2,

which implies |E(B1)| ≥ 2 because e∗ ∈ B1∩B2. Since G is paradox-free, it follows
from Corollary 4.2 that both G1 and G2 are two-terminal series-parallel. In turn,
Lemma 2.8(iv) says that both B1 and B2 are two-terminal series-parallel. We break
our proof into a sequence of claims.
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Claim 1 B1 � G2.

Otherwise, B1 is contained by some block of G2. This block must be B2 because
e∗ ∈ B1 and B2 is the (unique) block of G2 that contains e∗. However B1 ⊆ B2 gives
a contradiction to B1 � B2,

Claim 2 G \ e is paradox-free for any e ∈ E.

If there exists e ∈ E such that Braess’s paradox occurs in (G \ e, r, �) for
some r and �. Extending � by �e(x) = ∞, Braess’s paradox occurs in (G, r, �), a
contradiction to the assumption that G is paradox-free.

Claim 3 There exist distinct vertices u, v, w, and arcs e1 = (u, v), e2 = (v, w) in B1
such that e1 is the only incoming arc at v in G1, and e2 is the only outgoing arc from
v in G1.

If it were not the case, then Lemma 2.6 applies to the two-terminal series-parallel
network B1 with at least two arcs, and enforces that B1 contains a pair of parallel
arcs e1 and e2. Switching e1 and e2 if necessary, we may assume e1 �= e∗. Clearly,
D = G \ e1 is a 2-commodity network with origin-destination pairs (si , ti)i=1,2.
Since D is paradox-free by Claim 2, we deduce from the minimality of G �∈ C that
D ∈ C. Therefore B1 \ e1 and B2 \ e1 are identical because they are blocks of D1
and D2, respectively, and both contain e∗. Notice from e2 ∈ B1 \ e1 = B2 \ e1 that
e1 ∈ B2. Now e1 ∈ B1 ∩ B2 combined with B1 \ e1 = B2 \ e1 implies B1 = B2. The
contradiction to B1 � B2 justifies Claim 3.

Claim 4 B1/ei is 2-connected for i = 1, 2.

The claim is an immediate corollary of Claim 3 and the 2-connectivity of B1.

Claim 5 G2 contains either e1 or e2.

Assuming the contrary, let D be obtained from G \ {e1, e2} by adding a new arc
e0 = (u, w). It is clear that D is still a 2-commodity network with origin-destination
pairs (si , ti)i=1,2, D1 = G1 \ {e1, e2} ∪ {e0}, B1 \ {e1, e2} ∪ {e0} is the block of D1
that contains e∗ (note that e∗ �∈ {e1, e2}) and B2 ⊆ D2.

If Braess’s paradox occurs in some routing instance (D, r, �′), then Braess’s para-
dox occurs in (G, r, �), where �ei

(x) = �′
e0

(x)/2 for i = 1, 2 and �e(x) = �′
e(x)

for all e ∈ E − {e1, e2}. The paradox-freeness of G implies that D is paradox-free,
and the minimality of G �∈ C implies D ∈ C. It follows from e∗ ∈ B2 ⊆ D2 that
B1 \ {e1, e2} ∪ {e0} ⊆ D2.

As e0 ∈ D2, there is an s2-t2 path P in D2 with e0 ∈ P . If v ∈ P [s2, u] or
v ∈ P [w, t2], then, correspondingly, P [s2, v] ∪ (vw)∪P [w, t2] or P [s2, u] ∪ (uv)∪
P [v, t2] is an s2-t2 path in G containing e2 or e1, showing a contradiction to our
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assumption that e1, e2 �∈ G2. So v �∈ P and P \ e0 ∪ {e1, e2} = P [s2, u] ∪ (uvw) ∪
P [w, t2] is an s2-t2 path in G, again a contradiction to e1, e2 �∈ G2. Thus Claim 5
holds.

Reversing the directions of all arcs if necessary, we may assume without loss of
generality that e1 ∈ G2. Since v is incident with both an incoming arc e1 ∈ E1 ∩ E2
and an outgoing arc e2 ∈ E1, we see that

v �∈ {s1, t1, s2}. (1)

Claim 6 e1 is the only incoming arc at v in G.

Assume on the contrary that there exists an arc e0 ∈ E − {e1} which is incoming
at v. Since G = G1 ∪ G2, it follows from Claim 3 that e0 ∈ G2. Note that e0 �∈ G1.
As e1 ∈ G2, we consider an s2-t2 path in G2 that passes through e1. This path clearly
avoids e0; it is thus an s2-t2 path in D = G \ e0. It follows that D is a 2-commodity
network with origin-destination pairs (si , ti)i=1,2, and e1 ∈ D2. Since D is paradox-
free by Claim 2, and it has fewer arcs than G, we have D ∈ C. Note that D1 = G1,
D2 ⊆ G2 \ e0, and B1 is the block of D1 containing e1. We deduce from D ∈ C and
e1 ∈ D2 that B1 is the block of D2 which contains e1. It follows that B1 ⊆ D2 ⊆
G2 \ e0 ⊆ G2, a contradiction to Claim 1. Hence Claim 6 holds.

Claim 7 E(B1) ∩ E(G2) �= {e1}.

Suppose on the contrary thatE(B1)∩E(G2) = {e1}. We construct routing instance
(G, r, �) in which Braess’s paradox occurs. Recall that B1 is a two-terminal series-
parallel network with at least two arcs. Let a and b be the origin and destination
of B1, respectively. It follows from Lemma 2.8(v) that B1 contains two internally-
disjoint a-b paths P and Q such that e1 ∈ P . By Claim 3, we have e2 ∈ P . Take e3
to be an arbitrary arc in Q. Let R be an s2-t2 path in G2 that goes through e1. Let
latency functions � be defined as follows (see Fig. 8):

• �e1(x) = x,
• �e3(x) = 2,
• �e(x) = 0 for all arcs e ∈ P ∪ Q ∪ R \ {e1, e3},
• �e(x) = ∞ for all arcs e ∈ B1 \ E(P ∪ Q), and
• �e(x) = 2 for all arcs e ∈ G \ E(R ∪ B1).

Fig. 8 A Braess’s paradox in 2-commodity directed network
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Note that the latencies of arcs outside B1 are constants, either 0 or 2. Thinking of
them as arc lengths, let α and β denote the length of a shortest s1-a path inG1\E(B1)

and that of a shortest b-t1 path in G1 \ E(B1), respectively.
Let the demand vector be defined as r = (1, 1). In the NE of (G, r, �), com-

modity 1 chooses path P in B1 and chooses an s1-a path of latency α and a b-t1
path of latency β outside B1; commodity 2 chooses path R. We have �1(G, r) =
α + 2 + β and �2(G, r) = 2. Now consider the subdigraph H = G \ e2. In the
NE of (H, r, �), commodity 1 chooses Q in B1, giving �1(H, r) = α + 2 + β;
commodity 2 chooses R, giving �2(H, r) = 1. This shows that Braess’s paradox
occurs in (G, r, �). The contradiction to the condition that G is paradox-free verifies
Claim 7.

Instantly, e1 ∈ G2 and Claims 6 and 7 imply that either u �= s2 or v �= t2. It follows
that D = G/e1 is a 2-commodity network with origin-destination pairs (si , ti)i=1,2.
For i = 1, 2, let Qi denote the set of si-ti paths in D. By abuse of notation, we shall
identify a digraph with its arc set. Claim 6 enables us to construct for i = 1, 2 a 1-1
correspondence ϕi between Qi and Pi as follows: For any Q ∈ Qi .

ϕi(Q) =
{

Q if Q ∈ Pi;
Q ∪ {e1} otherwise.

(2)

Claim 8 For i = 1, 2, ϕi is a 1-1 correspondence between Qi and Pi .

To see ϕi is a mapping fromQi and Pi , it suffices to consider the case where Q �∈
Pi for some Q ∈ Qi . From D = G/e1, we deduce that Q (as a subset of E) consists
of two vertex disjoint paths Q[si, u′] and Q[v′, ti] in G, where {u′, v′} = {u, v}. If
u′ = v, then v �∈ {s1, s2} in (1) implies that v = u′ has an incoming arc on Q[si, u′]
which is different from e1, a contradiction to Claim 6. So it must be the case that
u′ = u and v′ = v, giving Q ∪ {e1} ∈ Pi .

It is clear that ϕi is injective. To see it is also surjective, we consider an arbitrary
P ∈ Pi . In case of e1 �∈ P , Claim 6 and (1) imply v �∈ P . Therefore P ∈ Qi , and
ϕi(P ) = P . In case of e1 ∈ P , we have P/e1 ∈ Qi , and ϕi(P/e1) = P . This proves
Claim 8.

For i = 1, 2, the above proof also gives the inverse of ϕi as follows: For any
P ∈ Pi .

ϕ−1
i (P ) =

{
P if e1 �∈ P ;
P/e1 otherwise.

(3)

Claim 9 D = G/e1 is paradox-free.

Suppose on the contrary that Braess’s paradox occurs in (D, r, �′) for some r and
�′, i.e., there exists a subnetwork F of (D, K(r)) and {g, h} = {1, 2} such that

�′
g(F, r) < �′

g(D, r) and �′
h(F, r) ≤ �′

h(D, r). (4)
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Define �e1(x) = 0 and �e(x) = �′
e(x) for every e ∈ E − {e1}. It is clear that r is

not a zero vector. We show that Braess’s paradox occurs in (G, r, �).
For each subnetwork X of (D, K(r)), we write ϕ(X) for the subdigraph

∪i=1,2(∪Q⊆X,Q∈Qi
ϕi(Q)) of G (recalling Claim 8). Since G is an irredundant net-

work, we have ϕ(X) = G if and only if X = D. Given any flow x = (x1, x2) for
(X, r, �′), let ϕ(x) be the flow y = (y1, y2) for (ϕ(X), r, �) defined by: yi(ϕ(Q)) =
xi(Q), i = 1, 2, for each Q ∈ Qi with Q ⊆ X. It follows from the definition of � that
�ϕ(Q)(y) = �′

Q(x) for all Q ∈ Qi (i = 1, 2) with Q ⊆ X. Hence, it can be seen from
Definition 1.1 that ϕ(x) is a NE for (ϕ(X), r, �) whenever x is a NE for (X, r, �′).

Considering the NE flows d and f for (D, r, �′) and (F, r, �′), respectively, we
see that ϕ(d) is the NE for (ϕ(D), r, �) = (G, r, �) with �i(G, r) = �′

i (D, r) for
i = 1, 2, and ϕ(f) is the NE for (ϕ(F ), r, �) with �i(ϕ(F ), r) = �′

i (F, r) for i =
1, 2. It follows from (4) that Braess’s paradox occurs in (G, r, �). The contradiction
establishes Claim 9.

Claim 10 Di = Gi/e1 for i = 1, 2.

On one hand, for each arc e of Di , there exists Q ∈ Qi such that e ∈ Q. It is clear
from (2) that e ∈ ϕi(Q) ∈ Pi and e ∈ ϕi(Q)/e1 ⊆ Gi/e1. On the other hand, for
each arc e ofGi/e1, there exists P ∈ Pi such that e ∈ P . Therefore e ∈ ϕ−1(P ) ∈ Qi

by (3), saying e ∈ Di . So Claim 10 holds.
The combination of Claim 9 and the minimality of G �∈ C gives D = G/e1 ∈ C.

Recall from Claim 7 that B1/e1 and G2/e1 have some arc in common. By Claim 10
it is equivalent to saying that B1/e1 and D2 have some arc in common.

Observe that B1/e1 is a subdigraph of G1/e1 = D1 (by Claim 10). Recall from
Claim 4 that B1/e1 is 2-connected. So B1/e1 is contained in a block B of D1,
which have some common arc with D2. It follows from D ∈ C that B is a block
of D2 = G2/e1. Now B1/e1 ⊆ G2/e1 along with e1 ∈ G2 implies B1 ⊆ G2. The
contradiction to Claim 1 completes the proof of Theorem 4.6.

Remark 4.7 Suppose that G1 and G2 are both two-terminal series-parallel directed
networks and E1∩E2 induces all common blocks of G1 and G2. Then the connected
components of G1 ∩G2 can be ordered as C1, . . . , Ch for some h ≥ 1 such that each
s1-t1 path in G1 passes these components in order of C1, . . . , Ch, and each s2-t2 path
inG2 passes these components in order ofCh, . . . , C1. (See Fig. 9 for an illustration).

Fig. 9 An instance for Remark 4.7
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5 The Unified Characterization and Corollaries

The paradox-freeness of all irredundant networks (directed, undirected, single-
commodity, multicommodity) has a unified characterization, as specified in Theorem 1.6.
We first complete the proof of the characterization, then discuss its corollaries.

5.1 The Wrap-Up Proof for Irredundant Networks

We now summarize the proofs for the sufficiency and necessities of series-parallel
condition (i) and coincidence condition (ii) in Theorem 1.6.

Proof of Theorem 1.6 In view of Theorem 1.4, we assume k ≥ 2. The sufficiency
of conditions (i) and (ii) and the necessity of condition (i) have been established in
Theorem 4.1 and Corollary 4.2, respectively. To see the necessity of condition (ii),
suppose thatG is paradox-free. By Lemma 2.4, for any distinct i, j ∈ [k],Gi∪Gj is a
paradox-free irredundant 2-commodity network. In turn Theorem 4.4 or Theorem 4.6
applies to Gi ∪ Gj , validating condition (ii).

5.2 Polynomial Time Recognition for Paradox-Freeness

We start this subsection with the discussion on single-commodity network G =
(V , E) with origin-destination pair (s, t). Without loss of generality, we may assume
that G is connected. Note that Milchtaich characterized only irredundant networks
[20], and the result (the undirected case of Theorem 1.4) is easily extended to all
undirected single-commodity networks as follows.

Theorem 5.1 A single-commodity undirected network G is paradox-free if and only
if G can be decomposed into a number of graphs G′

i = (V ′
i , E

′
i ), i = 0, . . . , p for

some p ≥ 0 such that

(i) E is the disjoint union of E′
0, . . . , E

′
p;

(ii) |V ′
0 ∩ V ′

i | = 1 for any 1 ≤ i ≤ p, and V ′
i ∩ V ′

j = ∅ for any 1 ≤ i < j ≤ p;
(iii) G′

0 is an irredundant single-commodity network with origin-destination pair
(s, t); and

(iv) G′
0 is s-t series-parallel.

Proof Suppose that G admits a decomposition into G′
0, . . . , G

′
p such that (i)–(iv)

hold. It is easy to see that no s-t path in G goes through any edge in ∪p

i=1E
′
i . So G

is paradox-free if and only if G′
0 is. Indeed, by Theorem 1.4, it follows from (iii) and

(iv) that G′
0 is paradox-free, proving the sufficiency.

Suppose that G is paradox-free. Let G′
0 = (V ′

0, E
′
0) ⊆ G be the maximum (in

terms of the number of edges) irredundant subnetwork of G. If E′
0 = E then let

p = 0, else let G′
i = (V ′

i , E
′
i ), i = 1, . . . , p be the connected components in G \ E′

0
each of which contains at least one edge. It is obvious that (i) and (iii) hold, and the
validity of (iv) is guaranteed by Theorem 1.4 because G is paradox-free. It remains
to verify (ii). Notice from the definitions of G′

1, . . . , G
′
p that V ′

i ∩ V ′
j = ∅ for any
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1 ≤ i < j ≤ p. If |V ′
0∩V ′

i | ≥ 2 for some 1 ≤ i ≤ p, then there exist distinct vertices
u, v ∈ V ′

0 ∩ V ′
i and u-v path P in G′

i such that P and G′
0 have only u, v in common.

In view of (iii) and (iv), the application of Corollary 2.7 to G′
0 provides two vertex-

disjoint {s, t}-{u, v} paths Q and R in G′
0. From V (P ) ∩ V ′

0 = {u, v} we deduce
that P ∪ Q ∪ R is an s-t path in G going through P . The maximality of G′

0 implies
P ⊆ G′

0. However, u �= v says that P contains a least an edge, which belongs to E′
i ;

now E′
i ∩ E′

0 = ∅ gives a contradiction. So (ii) also holds, proving the necessity.

Recall that two-terminal series-parallel networks can be recognized in polynomial
time [27]. Theorem 5.1 provides a polynomial time algorithm for the problem of
determining whether a given undirected single-commodity network is paradox-free.
Note that the single vertex, denoted as vi , of V ′

0 ∩V ′
i for any 2 ≤ i ≤ p in Theorem 5.1

is a cut-vertex of G, and G′
i \ vi consists of a number of components of G \ vi

containing neither s nor t .

Now, let G be a k-commodity network with origin-destination pairs (si, ti)
k
i=1,

and Gi the maximum irredundant subnetwork of (G, {i}), i ∈ [k]. The first corollary
of Theorem 1.6 is a polynomial time recognition algorithm for determining whether
G is paradox-free or not, given that G is undirected. For each i ∈ [k], implementing
Algorithm 1 with si in place of s and ti in place of t , we reduce G to Gi , and obtain
an answer to whether Gi is si-ti series-parallel or not. If some Gi is not si-ti series-
parallel, thenG is not paradox-free by Theorem 1.6. IfGi is si-ti series-parallel for all
i ∈ [k], then the si-ti block graph (see Lemma 2.8) and blocks of Gi can be identified
in polynomial time for all i ∈ [k], which implies a polynomial time examination to
see if G1, . . . , Gk satisfy the coincident condition. If the condition is satisfied, then
G is paradox-free, otherwise G is paradox-ridden.

In case of G being directed, we have no efficient algorithm for determining
whether an arc (u, v) is contained by an si-ti path, or equivalently for determining
whether the digraph has vertex-disjoint si-u path and v-ti path. The latter prob-
lem is the well-known NP-complete problem of 2-vertex-disjoint directed paths
(2DDP) [11], while its special case, the 2DDP problem in planar digraphs (planar
2DDP), is polynomial time solvable [7, 24]. Suppose that G is a planar digraph.
Using the algorithm for planar 2DDP [7] and that for recognizing two-terminal
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series-parallel digraphs [27], in polynomial time, we may identify Gi (i ∈ [k]), check
whether the series-parallel and coincident conditions are satisfied by G1, . . . , Gk ,
and then give the answer to whether G is paradox-free or paradox-ridden.

Corollary 5.2 For any integer k ≥ 1, paradox-free k-commodity undirected net-
works and paradox-free k-commodity planar directed networks can be recognized in
polynomial time.

5.3 Underlying Graphs v.s. Orientations

Theorem 1.6 also provides two corollaries on the relations between the paradox-
freeness of a network and that of its underlying graph or orientations. Notice that if
G is a directed network with origin-destination pairs (si , ti)

k
i=1, then its underlying

graph u(G) is also a k-commodity network with the same origin-destination pairs.

Corollary 5.3 Let G be a k-commodity directed network. If u(G) is paradox-free,
then so is G.

Proof Let D be the maximum irredundant subnetwork of G with origin-destination
pairs (si , ti)

k
i=1. It suffices to prove that D is paradox-free. As u(D) ⊆ u(G), it fol-

lows from Lemma 2.4 that u(D) is paradox-free. Theorem 1.6(i) says that each u(D)i
(i ∈ [k]) is si-ti series-parallel. Note that u(Di) ⊆ u(D)i . It is straightforward from
Definition 1.3(i) that u(Di) is si-ti series-parallel for i ∈ [k]. So by Definition 1.3(ii)
and Lemma 2.8, we have

(i) for each i ∈ [k], Di is si-ti series-parallel, and its si-ti block graph is a path
vi
1B

i
1v

i
2 · · · vi

pi
Bi

pi
vi
pi+1 with vi

1 = si and vi
pi+1 = ti .

Next, we show that D satisfies the coincidence condition. Take arbitrary distinct
i, j ∈ [k]. Suppose that Bi∗ is a block of Di and B

j∗ is a block of Dj such that Bi∗ and
B

j∗ have an arc e = (u, v) in common. We need to prove Bi∗ = B
j∗ . Notice that for

each h ∈ {i, j}, uv is an edge, written as u(e), contained in u(Bh∗ ) ⊆ u(Dh) ⊆ u(D)h.
It follows from Theorem 1.6(ii) that u(e) is contained in a common block u(B) of
u(D)i and u(D)j , where B is a 2-connected subdigraph of D. Note that u(B) is a
two-terminal series-parallel graph that has an identical set of terminals in u(D)i and
u(D)j .

For each h ∈ {i, j}, note that u, v ∈ Bh∗ ∩B. We may take mh (resp. Mh) to be the
minimum (resp. maximum) index g ∈ [ph] such that Bh

g \ vh
g+1 (resp. B

h
g \ vh

g ) has
some common vertex, say αh (resp. βh), with B. By (i), the choices of mh and Mh

particularly imply Dh ∩ B ⊆ ∪Mh
g=mh

Bh
g .

For each h ∈ {i, j}, considering an αh-βh path P in ∪Mh
g=mh

Bh
g , we see that v

h
g ∈ P

for all g = mh +1, . . . , Mh. Since P ∪B is 2-connected, none of vh
g ∈ P , g = mh +

1, . . . , Mh can be a cut-vertex of (∪Mh
g=mh

Bh
g ) ∪ B. It follows from the 2-connectivity

of Bh
mh

, Bh
mh+1, . . . , B

h
Mh

and B that (∪Mh
g=mh

Bh
g ) ∪ B is 2-connected. Notice that

(∪Mh
g=mh

u(Bh
g )) ∪ u(B) ⊆ u(D)h and u(B) is the maximum 2-connected subgraph of
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u(D)h containing u(B). We deduce that ∪Mh
g=mh

Bh
g ⊆ B, saying ∪Mh

g=mh
Bh

g ⊆ Dh∩B.
Thus we have

(ii) for each h ∈ {i, j}, Dh ∩ B = ∪Mh
g=mh

Bh
g consists of a string of consecutive

blocks of Dh, and in particular Bh∗ is a block of Dh ∩ B.

For each h ∈ {i, j}, denote ah = vh
mh

and bh = vh
Mh

. Let Ph be an sh-th path

in Dh with e ∈ Ph. By (i) and Lemma 2.8(ii), we see that Ph goes through vh
1 (=

sh), v
h
2 , . . . , vh

mh
(= ah), . . . , v

h
Mh

(= bh), . . . , v
h
ph+1(= th) in this order. By (ii), we

deduce that Ph ∩ B = Ph[ah, bh] is an ah-bh path. On the other hand, considering
u(Ph) as an sh-th path in u(D)h, we derive from Lemma 2.8 that u(Ph) ∩ u(B) is a
path from the origin of u(B) to the destination of u(B) in u(D)h. So it must be the
case that

(iii) for each h ∈ {i, j}, the origin and destination of u(B) in u(D)h are ah and bh,
respectively.

As u(B) is a coincident block of u(D)i and u(D)j , it follows from (iii) that
{ai, bi} = {aj , bj } is the identical terminal set of u(B) in u(D)i and u(D)j . Observe
that e ∈ Ph ∩ B = Ph[ah, bh] for each h ∈ {i, j}. Considering u(B) as an ai-bi

series-parallel graph in u(D)i , we see that u(Pi[ai, bi]) is an ai-bi path in B which
goes through u(e) in the direction from u to v.

If aj �= ai , then bj = ai , aj = bi , and we find that u(Pj [aj , bj ]) = u(Pj [bi, ai])
is an ai-bi path in B which goes through u(e) in the opposite direction from v

to u. This shows a contradiction to the fact that u(B) is si-ti series-parallel (recall
Definition 1.3). Hence we have ai = aj and bi = bj .

Combining ai = aj and bi = bj with (i) and (ii), we deduce thatDi ∩B = Dj ∩B,

and it consists of all ai-bi paths (i.e., aj -bj paths) inB. Moreover, bothBi∗ andB
j∗ are

blocks of Di ∩ B = Dj ∩ B. It follows from e ∈ Bi∗ ∩ B
j∗ that Bi∗ = B

j∗ , which says
that D satisfies the coincident condition in Theorem 1.6. Recalling (i), we deduce
that D is paradox-free, as desired.

The reverse of Corollary 5.3 is not always true. The single-commodity directed
networkD in Fig. 10a is paradox-free (because its maximum irredundant subnetwork

(a) (b)

Fig. 10 Paradox-freeness concerning underlying graphs and orientations
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D \ (v, s) is s-t series-parallel), but u(D) is paradox-ridden (because it is not s-t
series-parallel).

On the other hand, observe that u(D) can be oriented to become the digraph Ga in
Fig. 1, which is paradox-ridden. Actually, this is an example for the general property
of single-commodity networks stated in the following corollary. Recall Definition 3.2
of a directed s-t paradox. An undirected s-t paradox is defined in the same way via
ignoring the arc directions.

Corollary 5.4 Let G be a single-commodity undirected network with origin-
destination pair (s, t). If G is paradox-ridden, then there is an orientation G̃

of G such that G̃ is a paradox-ridden single-commodity directed network with
origin-destination pair (s, t).

Proof It suffices to consider G being an irredundant network. As G is paradox-
ridden, by Theorem 1.4, it is not s-t series-parallel, and thus by Proposition 1 of
[20], G contains an s-t paradox (P1, P2, P3), where P1, P2, P3 satisfy (i)– (iii) of
Definition 3.2 in the context of graphs. Orient P1, P2 and P3 into directed s-t path
P̃1, a-v path P̃2 and u-b path P̃3. respectively. Then digraph D = P̃1 ∪ P̃2 ∪ P̃3 is
an s-t paradox. Clearly D is an irredundant single-commodity network with origin-
destination pairs (s, t). It follows from Lemma 3.3 that D is paradox-redden. Let G̃

be a superdigraph of D. It follows from Lemma 2.4 that G̃ is paradox-ridden.

Corollary 5.4 does not admit multicommodity extensions, as shown by the 2-
commodity undirected network G in Fig. 10b. The irredundant network G does not
satisfy the coincident condition, and thus by Theorem 1.6, is paradox-ridden. Con-
sider any orientation G̃ of G. The maximum irredundant subnetwork of G̃ consists
of an s1-t1 path and an s2-t2 path, and by Theorem 1.6 is paradox-free. It follows that
G̃ is paradox-free.

6 Conclusion

The main result of this paper is a graphical characterization for all irredundant net-
works to be paradox-free; the series-parallel and coincident conditions are shown
to be sufficient and necessary for the paradox-freeness. Our work suggests several
directions of future research.

As far as nonnegative traffic demands r = (ri)
k
i=1, nonnegative, continuous, and

nondecreasing latencies � are concerned, our definition of paradox-free k-commodity
networks does generalize the one for single-commodity networks [17, 20, 23]. For
routing instance (G, r, �), we allow some traffic demands ri , i ∈ [k] to be zero.
Clearly there is no need to consider any commodities with zero traffic demands. This
is the reason why we consider the set K(r) of commodities with positive demands
and subnetwork H w.r.t. the network-demand pair (G, K(r)) instead of a subnetwork
defined only w.r.t. k-commodity network G itself – K(r) may be a proper subset
of [k], and H is a |K(r)|-commodity network in G. By manipulating r, routing for
(G, r, �) can behave as an h-commodity routing inside G for any h ∈ [k]. These
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routings with h < k (referred to as degenerate routings) are crucial for obtaining the
result that any union of Gi’s (i ∈ [k]) is paradox-free provided G is paradox-free
(see Lemma 2.4).

The assumption that r ∈ Rk
≥0 instead of r ∈ Rk

>0 is seemingly nature because the
ratio between the largest traffic demand and the smallest one can be arbitrarily large,
and the arbitrarily small traffic has arbitrarily small affect on latencies. However, one
might restrict r to be positive; this requires each k-commodity routing for (G, r, �)
to be nondegenerate, and each subnetwork to be a k-commodity network. With this
restriction of positive demands, we would lose Lemma 2.4; it is possible that the
union of some Gi’s, i ∈ [k], is paradox-ridden even if G = ∪k

i=1Gi is paradox-free
(see the example in Fig. 2 where G1∪G2∪G3 in (a) is paradox-free, and G1∪G2 in
(b) is paradox-ridden). It would be an interesting and challenging task to characterize
paradox-free networks for positive traffic demands.

Different from Definition 1.2, the occurrence of Braess’s paradox in a routing
instance (G, r, �) could have another generalization from single-commodity to mul-
ticommodities as follows: We say that strong Braess paradox occurs in (G, r, �)
if there exists subnetwork H of (G, K(r)) such that �i(H, r) < �i(G, r) for all
i ∈ K(r). Correspondingly, we may define strong paradox-free networks. The class
of strong paradox-free networks turns out to be much wider than that of paradox-
free ones. Even under the undirected network model, the characterization of strong
paradox-freeness might involve much more complicated interaction between network
topologies and the positions of origin-destination pairs in the network.

A corollary of our main result is polynomial time recognition of k-commodity
undirected networks and planar directed networks that are paradox-free (see Corol-
lary 5.2). Unfortunately, this does not extend to general directed networks even
restricted to the single-commodity case. The difficulty lies on the fact that we have no
efficient algorithm for finding the maximum irredundant subnetwork for each single
commodity, which is equivalent to solving the NP-complete problem of 2-vertex-
disjoint paths. In view of this NP-completeness, the recognition of paradox-free
directed networks is very likely to be intractable. It would be nice to identify the
complexity status of the recognition problem.
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