
Theory Comput Syst (2017) 60:759–783
DOI 10.1007/s00224-016-9705-1

Tai Mapping Hierarchy for Rooted Labeled Trees
Through Common Subforest

Takuya Yoshino1 ·Kouichi Hirata1

Published online: 2 September 2016
© Springer Science+Business Media New York 2016

Abstract A Tai mapping between two rooted labeled trees (trees, for short) is a one-
to-one node correspondence preserving ancestors and siblings (if trees are ordered).
The variations of the Tai mapping are known to provide a hierarchy, called a Tai
mapping hierarchy. In this paper, we characterize the Tai mapping hierarchy as a
common subforest by focusing on the connections of nodes and the arrangements of
subtrees in a common subforest. Then, we fill a gap in the Tai mapping hierarchy by
introducing several new variations. Furthermore, we summarize and investigate the
time complexity of computing the variations of the edit distance as the minimum cost
of the variations of the Tai mapping.

Keywords Tai mapping · Tai mapping hierarchy · Common subforest · Tree edit
distance

1 Introduction

Comparing tree-structured data such as HTML and XML data for web mining or
DNA and glycan data for bioinformatics is one of the important tasks for data mining.

This work is partially supported by Grant-in-Aid for Scientific Research 16H02870, 16H01743,
15K12102, 26280085 and 24300060 from the Ministry of Education, Culture, Sports, Science and
Technology, Japan.

� Kouichi Hirata
hirata@ai.kyutech.ac.jp

Takuya Yoshino
yoshino@dumbo.ai.kyutech.ac.jp

1 Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-8502, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-016-9705-1&domain=pdf
mailto:hirata@ai.kyutech.ac.jp
mailto:yoshino@dumbo.ai.kyutech.ac.jp

760 Theory Comput Syst (2017) 60:759–783

The most famous distance measure between trees is the edit distance [2, 9, 14]. The
edit distance is formulated as the minimum cost of edit operations, consisting of a
substitution, a deletion and an insertion, applied to transform from a tree to another
tree.

It is known that the edit distance is closely related to the notion of a Tai map-
ping (mapping, for short) [14], which is a one-to-one node correspondence between
trees preserving ancestor (and sibling) relations. Note that the corresponding nodes
with different labels through a mapping are regarded as nodes applied to substitu-
tion and the non-corresponding nodes to deletion in a tree or insertion in another
tree. Then, the minimum cost of possible Tai mappings coincides with the edit
distance [14].

Whereas the edit distance is the standard measure for comparing trees, it is too
general for several applications. Therefore, more structurally sensitive distances of
the edit distance are required for these applications. Such distances are formulated
as the minimum cost of the variations of the Tai mapping such as a top-down
mapping (TOP) [3, 13], an LCA (least common ancestor) -preserving (or degree-2)
mapping (LCA) [22], an accordant (or Lu’s) mapping (ACC) [9, 11], an isolated-
subtree (or constrained) mapping (ILST) [17, 19, 20], a less-constrained mapping
(LESS) [10], an alignable mapping (ALN) [9], a bottom-up mapping (BOT) [9, 15,
18], a segmental mapping (SG) [7] and a top-down segmental mapping (TOPSG) [7],
respectively.

The above mappings provide a Tai mapping hierarchy illustrated in Fig. 1, which
grows from left to right by adding new variations of the Tai mapping. Here, ISO
denotes an isomorphism and it holds that “ALN=LESS” [9] and “TOP=TOPSG” [7].

The Tai mapping hierarchy in Fig. 1 just represents the inclusion relation of map-
pings but no other properties of mappings and, in particular, the right column in Fig. 1
(left) is sparser than the left column. Then, there arise a question whether or not there
exists a unifying property between the variations of a Tai mapping.

In order to solve the above question, in this paper, we characterize the Tai mapping
hierarchy as a common subforest between two trees consisting of pairs of nodes in
the variations of a Tai mapping. Then, we focus on the connections of nodes and

Fig. 1 Tai mapping hierarchies introduced by Wang and Zhang [17] (left), Kuboyama [9] (center) and
Kan et al. [7] (right)

Theory Comput Syst (2017) 60:759–783 761

the arrangements of subtrees in a common subforest. Note that the largest common
subforest or tree provides another similarity measure between trees [1, 5, 9, 16, 21].1

First, we focus on the following three connections of nodes in a common subfor-
est. A common embedded subforest is a common subforest by connecting nodes in
a mapping according to ancestor-descendant relation. A common induced subforest
is a common subforest induced by a set of nodes. A common complete subforest is
a common induced subforest containing all the descendants of a set of nodes. Then,
we can characterize the mappings in TAI, ALN, ILST, ACC and LCA as common
embedded subforests, the mappings in SG and TOP as common induced subforests
and mappings in BOT as common complete subforests, respectively. The mappings
characterized as common induced subforests require the operational condition that
the deletion and the insertion are allowed to apply just roots or leaves and the map-
pings characterized as common complete subforests require the operational condition
that the deletion and the insertion are allowed to apply just roots.

Next, we focus on the four arrangements of subtrees in a common subforest. A
common subforest is non-twisting if there exists no triple of nodes in a common
subforest such that the LCA of the first and the second nodes is an ancestor of the
LCA of the second and third nodes in a tree iff the LCA of the second and the third
nodes is an ancestor of the LCA of the first and second nodes in another tree. A
common subforest is parallel if, for every triple of nodes in a common subforest,
the LCA of the first and the second nodes is equal to the LCA of the first and the
third nodes in a tree iff the LCA of the first and the second nodes is equal to the
LCA of the first and the third nodes in another tree. A common subforest is a sub-
tree if it is a tree. A common subtree is root-preserving if the root of the common
subtree is equal to the roots of both trees. Then, we can characterize the mappings in
TAI, SG and BOT as an arbitrary subforest, the mappings in ALN as a non-twisting
subforest, the mappings in ILST and ACC as a parallel subforest, the mappings in
LCA as a subtree and the mappings in TOP and ISO as a root-preserving subtree,
respectively.

As a result, the Tai mapping hierarchy in Fig. 1 is not complete for the connections
of nodes and the arrangements of subtrees in a common subforest. In order to fill a
gap in the Tai mapping hierarchy in Fig. 1, in this paper, we introduce new mappings
by intersecting SG and BOT in the right column in Fig. 1 with ALN, ILST, ACC and
LCA in the left column in Fig. 1.

As intersecting SG, we introduce a segmental alignable mapping (SGALN), an
isolated-subtree segmental mapping (ILSTSG), an accordant segmental mapping
(ACCSG) and an LCA-preserving segmental mapping (LCASG). As intersecting
BOT, we introduce a bottom-up alignable mapping (BOTALN), an isolated-subtree
bottom-up mapping (ILSTBOT), an accordant bottom-up mapping (ACCBOT) and an
LCA-preserving bottom-up mapping (LCABOT). Additionally, we introduce an LCA-
and root-preserving mapping (LCART).

1The largest common subtree in the standard definition [1, 5, 9, 16, 21] is corresponding to the minimum
cost of the LCA-preserving segmental mapping (LCASG, defined below) which consists of pairs of nodes
with the same label.

762 Theory Comput Syst (2017) 60:759–783

Hence, we provide a new Tai mapping hierarchy illustrated in Fig. 2, where the
previous mappings in Fig. 1 are illustrated as the nodes enclosed by gray lines and
the new mappings are illustrated as the nodes enclosed by black lines. In particular,
we show that “ACCSG=ILSTSG” and “ACCBOT=ILSTBOT.”

In the vertical direction in Fig. 2, the mappings in the left column (TAI, ALN, ILST,
ACC, LCA and LCART), those in the center column (SG, SGALN, ACCSG, LCASG
and TOP) and those in the right column are characterized as common embedded,
induced and complete subforests, respectively. In the horizontal direction in Fig. 2, on
the other hand, the mappings in the top row (TAI, SG and BOT), those in the second
row (ALN, SGALN and BOTALN), those in the third row (ILST, ACC, ACCSG and
ACCBOT), those in the fourth row (LCA, LCASG, LCABOT) and those in the last
row (LCART, TOP and ISO) are characterized as arbitrary subforests, non-twisting
subforests, parallel subforests, subtrees and root-preserving subtrees, respectively.

Next, we introduce the variations of the edit distance as the minimum cost of all the
possible mappings in SGALN, ACCSG, LCASG, BOTALN, ACCBOT, LCABOT and
LCART, where we call them a segmental alignment distance, an accordant segmental
distance, an LCA-preserving segmental distance, a bottom-up alignment distance, an
accordant bottom-up distance, an LCA-preserving bottom-up distance and an LCA-
and root-preserving distance. Then, we show that no distances characterized as non-
twisting subforests are metrics, whereas the other distances are metrics.

Finally, we summarize and investigate the time complexity of computing the vari-
ations of the edit distance illustrated in Table 1. Here, n is the number of nodes in a
tree, m is the number of nodes in another tree (n ≥ m), D is the maximum degree of
two trees and d is the minimum degree of two trees.

For ordered trees, we can compute the distances characterized as non-twisting
subforests in O(nmD2) time and those as other subforests or subtrees except the
(standard) edit distance and the tree isomorphism in O(nm) time. For unordered

Fig. 2 A new Tai mapping hierarchy consisting of the mappings in Fig. 1 illustrated as the nodes enclosed
by gray lines and the new mappings illustrated as the nodes enclosed by black lines

Theory Comput Syst (2017) 60:759–783 763

Table 1 The metricity of the variations τA(T1, T2) for MA(T1, T2) in Fig. 2 and time complexity of
computing them

Mapping Ordered tree Unordered tree

MA(T1, T2) metric τo
A τu

A (bounded degrees)

TAI yes O(nm2(1 + log n
m

)) [4] MAX SNP [21] MAX SNP [5]

ALN no O(nmD2) [6] MAX SNP [6] polynomial [6]

ILST yes O(nm) [19] O(nmd) [18] O(nm) ←
ACC yes O(nm) [9] O(nmd) [18] O(nm) ←
LCA yes O(nm) [22] O(nmd) [22] O(nm) ←
LCART yes O(nm) Thm 4 O(nmd) Thm 4 O(nm) ←

SG yes O(nm) [7] MAX SNP [18] MAX SNP [18]

SGALN no O(nmD2) Thm 6 MAX SNP Thm 11 polynomial Thm 12

ACCSG yes O(mn) Thm 6 O(nmd) Thm 7 O(nm) ←
LCASG yes O(nm) Thm 5 O(nmd) Thm 5 O(nm) ←
TOP yes O(nm) [3, 13] O(nmd) [18] O(nm) ←

BOT yes O(nm) [18] MAX SNP [18] MAX SNP [18]

BOTALN no O(nmD2) Thm 9 MAX SNP Thm 11 polynomial Thm 12

ACCBOT yes O(nm) Thm 9 O(nmd) Thm 10 O(nm) ←
LCABOT yes O(nm) Thm 8 O(nm) Thm 8 ←
ISO yes O(n + m) cf. [16] O(n + m) cf. [16] ←

Here, n is the number of nodes in a tree, m is the number of nodes in another tree (n ≥ m), D is the
maximum degree of two trees and d is the minimum degree of two trees

trees, it is known that the problem of computing the distances characterized as arbi-
trary subforests is MAX SNP-hard [21] even if trees are binary [5, 18]. On the other
hand, as in the case of alignment distance [6], the problems of computing the dis-
tances characterized as non-twisting subforests are MAX SNP-hard, whereas they
are tractable if the degrees of trees are bounded by some constant. Furthermore, we
can compute the distances characterized as parallel subforests, subtrees and root-
preserving subtrees in O(nmd) time except the LCA-preserving bottom-up distance,
which we can compute in O(nm) time.

2 Edit Distance and Tai Mapping

A tree T is a connected graph (V , E) without cycles, where V is the set of vertices
and E is the set of edges and we denote V and E by V (T) and E(T). The size of T

is |V | and denoted by |T |. We sometime denote v ∈ V (T) by v ∈ T . We denote an
empty tree (∅, ∅) by ∅. A rooted tree is a tree with one node r chosen as its root. We
denote the root of a rooted tree T by r(T).

764 Theory Comput Syst (2017) 60:759–783

For each node v in a rooted tree with the root r , let UPr (v) be the unique path
from v to r . The parent of v(�= r), which we denote by par(v), is its adjacent node on
UPr (v) and the ancestors of v(�= r) are the nodes onUPr (v)−{v}. We denote the set
of all ancestors of v by anc(v). We say that u is a child of v if v is the parent of u and
u is a descendant of v if v is an ancestor of u. A leaf is a node having no children. We
denote the set of all leaves in T by lv(T). A node neither a leaf nor a root is called an
internal node. The degree of a node v, denoted by d(v), is the number of children of
v. The degree of a rooted tree T , denoted by d(T), is the maximum number of d(v)

for every v ∈ T .
We use the ancestor orders < and ≤, that is, u < v if v is an ancestor of u and u ≤

v if u < v or u = v. We denote neither u ≤ v nor v ≤ u by u # v. We say that w is the
least common ancestor (LCA, for abbreviation) of u and v, denoted by u�v, if u ≤ w,
v ≤ w and there exists no w′ such that w′ < w, u ≤ w′ and v ≤ w′. A (complete)
subtree of T = (V , E) rooted by v, denoted by T [v], is a tree T ′ = (V ′, E′) such
that r(T ′) = v, V ′ = {u ∈ V | u ≤ v} and E′ = {(u, w) ∈ E | u, w ∈ V ′}.

For nodes u, v ∈ T , u is to the left of v, denoted by u
 v, if pre(u) ≤ pre(v)

for the preorder number pre and post(u) ≤ post(v) for the postorder number post.
We say that a rooted tree is ordered if a left-to-right order among siblings is given;
unordered otherwise. We say that a rooted tree is labeled if each node is assigned a
symbol from a fixed finite alphabet �. For a node v, we denote the label of v by l(v),
and sometimes identify v with l(v). We call a rooted labeled tree a tree simply.

A forest is a sequence [T1, . . . , Tn] of trees. For a tree T and a node i ∈ T , T (i)

is a forest obtained by deleting the root i in T [i]. We denote the number of trees in a
forest F by ||F ||, that is, ||F || = n for F = [T1, . . . , Tn].

In the following sections, we will use two trees T1 and T2 to obtain the distance
between T1 and T2. Then, for nodes i ∈ T1 and j ∈ T2, suppose that the children
of i and j are i1, . . . , is and j1, . . . , jt , respectively. Also, we sometimes denote the
forests T1(i) = [T1[i1], . . . , T1[is]] and T2(j) = [T2[j1], . . . , T2[jt]] by F1(i1, is)

and F2(j1, jt), respectively.

Definition 1 (Edit operations [14]) The edit operations of a tree T are defined as
follows. See Fig. 3.

1. Substitution: Change the label of the node v in T .
2. Deletion:2 Delete a node v in T with parent v′, making the children of v become

the children of v′. The children are inserted in the place of v as a subsequence
in the left-to-right order (for ordered trees) or a subset (for unordered trees) of
the children of v′. In particular, if v is the root in T , then the result applying the
deletion is a forest consisting of the children of the root.

3. Insertion: The complement of deletion. Insert a node v as a child of v′ in T

making v the parent of a consecutive subsequence (for ordered trees) or a subset
(for unordered trees) of the children of v′.

2In contrast to the standard definition of deletion and insertion [9, 14], this paper allows the deletion of
a root, in order to characterize the bottom-up distance explicitly. Then, this paper also allows that the
resulting tree applying to the deletion becomes a forest.

Theory Comput Syst (2017) 60:759–783 765

Fig. 3 Edit operations for trees

Let ε �∈ � denote a special blank symbol and define �ε = � ∪ {ε}. Then, we
represent each edit operation by (l1 �→ l2), where (l1, l2) ∈ (�ε × �ε − {(ε, ε)}).
The operation is a substitution if l1 �= ε and l2 �= ε, a deletion if l2 = ε, and an
insertion if l1 = ε. For nodes v and w, we also denote (l(v) �→ l(w)) by (v �→ w).
We define a cost function γ : (�ε × �ε − {(ε, ε)}) �→ R+ on pairs of labels. We
often constrain a cost function γ to be a metric, that is, γ (l1, l2) ≥ 0, γ (l1, l2) = 0
iff l1 = l2, γ (l1, l2) = γ (l2, l1) and γ (l1, l3) ≤ γ (l1, l2) + γ (l2, l3). We call the cost
function that γ (l1, l2) = 1 if l1 �= l2 a unit cost function.

Definition 2 (Edit distance [14]) For a cost function γ , the cost of an edit operation
e = l1 �→ l2 is given by γ (e) = γ (l1, l2). The cost of a sequence E = e1, . . . , ek of
edit operations is given by γ (E) = ∑k

i=1 γ (ei). Then, an edit distance τTAI(T1, T2)

between trees T1 and T2 is defined as follows:

τTAI(T1, T2) = min

{

γ (E)

∣
∣
∣
∣
E is a sequence of edit operations
transforming T1 to T2

}

.

Definition 3 (Tai mapping [14]) Let T1 and T2 be trees. We say that a triple
(M, T1, T2) is an ordered Tai mapping between T1 and T2 if M ⊆ V (T1) × V (T2)

and every pair (u1, v1) and (u2, v2) in M satisfies that (1) u1 = u2 iff v1 = v2 (one-
to-one condition), (2) u1 ≤ u2 iff v1 ≤ v2 (ancestor condition) and (3) u1
 u2 iff
v1
 v2 (sibling condition). Also we say that a triple (M, T1, T2) is an unordered
Tai mapping if M ⊆ V (T1) × V (T2) and every pair (u1, v1) and (u2, v2) in M sat-
isfies (1) one-to-one condition and (2) ancestor condition. The set of all possible Tai
mappings between T1 and T2 is denoted by MTAI(T1, T2). We will use M instead of
(M, T1, T2) when there is no confusion, call both an ordered and an unordered Tai
mapping a mapping.

In particular, we say that a mapping M is an inclusion mapping from T1 to T2 if,
for every node v ∈ T1, there exists a node w ∈ T2 such that (v, w) ∈ M . In this case,
we denote w by M(v).

766 Theory Comput Syst (2017) 60:759–783

Let M be a mapping between T1 and T2. Let IM and JM be the sets of nodes in
T1 and T2 but not in M , that is, IM = {u ∈ T1 | (u, v) �∈ M} and JM = {v ∈ T2 |
(u, v) �∈ M}. Then, the cost γ (M) of M is given as follows.

γ (M) =
∑

(u,v)∈M

γ (u, v) +
∑

u∈IM

γ (u, ε) +
∑

v∈JM

γ (ε, v).

Theorem 1 (Tai [14]) τTAI(T1, T2) = min{γ (M) | M ∈ MTAI(T1, T2)}.

Finally, we introduce the notion of a subforest, a common subforest and their
arrangement of subtrees illustrated in Fig. 2. Note that we ignore labels of
nodes.

Definition 4 (Subforest, common subforest) Let T = (V , E) be a tree.

1. We say that F = (V ′, E′) is an embedded subforest in T if V ′ ⊆ V and, for
every u, v ∈ V ′, (u, v) ∈ E′ if u < v and there exists no w ∈ V ′ such that
u < w and w < v.

2. We say that F = (V ′, E′) is an induced subforest in T if V ′ ⊆ V and, for every
u, v ∈ V ′, (u, v) ∈ E′ if (u, v) ∈ E.

3. We say that F = (V ′, E′) is a complete subforest in T if F is an induced
subforest in T and, for every v ∈ V ′, all the descendants of v is in V ′.

Furthermore, for trees T1 and T2, we say that F is a common embedded (resp.,
induced, complete) subforest between T1 and T2 if F is an embedded (resp., induced,
complete) subforest in both T1 and T2. We call the above three common subforests a
common subforest if it is not necessary to distinguish them.

Definition 5 (Arrangement of subtrees in a common subforest) Let F be a common
subforest between T1 and T2. For a node v ∈ F , we denote v ∈ T1∩F and v ∈ T2∩F

by v1 and v2, respectively.

1. We say that F is twisting if there exist u, v, w ∈ F such that u1 � v1 < v1 � w1

in T1 and v2 � w2 < u2 � v2 in T2. Otherwise F is non-twisting.
2. We say that F is parallel if, for every u, v, w ∈ F , u1 � v1 = u1 � w1 in T1 iff

u2 � v2 = u2 � w2 in T2.
3. We say that F is a subtree if F is a tree, that is, ||F || = 1.
4. We say that F is a root-preserving subtree if F is a tree T such that r(T) =

r(T1) = r(T2).

Example 1 Consider trees T1 and T2 in Fig. 4. Then, F1, F2 and F3 illustrated in
the rightmost column in Fig. 4 are the common embedded subforest, the common
induced subforest and the common complete subforest between T1 and T2, respec-
tively. Here, every v1 in T1 (resp., v2 in T2) for a node v ∈ Fi (i = 1, 2, 3) is
illustrated as gray nodes. Also F1 is a root-preserving subtree and F2 and F3 are
parallel subforests.

Theory Comput Syst (2017) 60:759–783 767

T1 T2 F1

T1 T2 F2

T1 T2 F3

Fig. 4 The common embedded subforest F1, the common induced subforest F2 and the common complete
subforest F3 between T1 and T2

3 Tai Mapping Hierarchy

In this section, we introduce the variations of a Tai mapping.

Definition 6 (Variations of mapping) Let T1 and T2 be trees and M ∈ MTAI(T1, T2).
We define M− as M − {(r(T1), r(T2))}.
1. We say that M is a less-constrained mapping [10], denoted by M ∈

MLESS(T1, T2), if M satisfies the following condition.

∀(u1, v1), (u2, v2), (u3, v3) ∈ M (u1 � u2 < u1 � u3 =⇒ v2 � v3 = v1 � v3) .

2. We say that M is an isolated-subtree mapping [17] (or a constrained mapping
[19]), denoted by M ∈ MILST(T1, T2), if M satisfies the following condition.

∀(u1, v1), (u2, v2), (u3, v3) ∈ M (u3 < u1 � u2 ⇐⇒ v3 < v1 � v2) .

768 Theory Comput Syst (2017) 60:759–783

3. We say that M is an accordant mapping [9] (or a Lu’s mapping [11]), denoted
by M ∈ MACC(T1, T2), if M satisfies the following condition.

∀(u1, v1), (u2, v2), (u3, v3) ∈ M (u1 � u2 = u1 � u3 ⇐⇒ v1 � v2 = v1 � v3) .

4. We say that M is an LCA-preserving mapping (or a degree-2 mapping [22]),
denoted by M ∈ MLCA(T1, T2), if M satisfies the following condition.

∀(u1, v1), (u2, v2) ∈ M− ((u1 � u2, v1 � v2) ∈ M) .

5. We say that M is an LCA- and root-preserving mapping, denoted by M ∈
MLCART(T1, T2), if M ∈ MLCA(T1, T2) and (r(T1), r(T2)) ∈ M .

6. We say that M is a top-down mapping [3, 13] (or a degree-1 mapping), denoted
by M ∈ MTOP(T1, T2), if M satisfies the following condition.

∀(u, v) ∈ M− ((par(u), par(v)) ∈ M) .

7. We say that M is a bottom-up mapping [9, 15, 18],3 denoted by M ∈
MBOT(T1, T2), if M satisfies the following condition.

∀(u, v) ∈ M

(∀u′ ∈ T1[u]∃v′ ∈ T2[v] (
(u′, v′) ∈ M

)

∧∀v′ ∈ T2[v]∃u′ ∈ T1[u] ((u′, v′) ∈ M
)
)

.

8. We say that M is a segmental mapping [7], denoted by M ∈ MSG(T1, T2), if
M satisfies the following condition.

∀(u, v) ∈ M−
⎛

⎝ ∃(u′, v′) ∈ M

(
(
u′ ∈ anc(u)

) ∧ (
v′ ∈ anc(v)

)
)

=⇒ ((par(u), par(v)) ∈ M)

⎞

⎠ .

9. We say that M is a top-down segmental mapping [7], denoted by M ∈
MTOPSG(T1, T2), if M is a segmental mapping such that (r(T1), r(T2)) ∈ M .

10. We say that a mapping M is an alignable mapping [9], denoted by M ∈
MALN(T1, T2), if there exist a forest F , an inclusion mapping M1 from T1 to F

and an inclusion mapping M2 from T2 to F satisfying that M1(u) = M2(v) for
every (u, v) ∈ M .4

11. MAB(T1, T2) = MA(T1, T2) ∩ MB(T1, T2) for mappings A and B.
This paper deals with MSGALN(T1, T2), MILSTSG(T1, T2), MACCSG(T1, T2),
MLCASG(T1, T2), MBOTALN(T1, T2), MILSTBOT(T1, T2), MACCBOT(T1, T2)

and MLCABOT(T1, T2).

Example 2 Figure 5 illustrates mappings Mi (1 ≤ i ≤ 8) [7, 9] such that
M1 ∈ MTOP(T1, T2) but M1 �∈ MBOT(T1, T2); M2 ∈ MLCA(T1, T2) but M2 �∈
MTOP(T1, T2); M3 ∈ MACC(T1, T2) but M3 �∈ MLCA(T1, T2); M4 ∈ MILST(T1, T2)

3Whereas Valiente [15] has introduced a bottom-up mapping that requires an isolated-subtree mapping,
his algorithm computes a bottom-up distance that is not an isolated-subtree distance. Hence, we adopt the
revised definition here not to be an isolated-subtree mapping. See [9, 18].
4In the definition of an alignable mapping [9], F is not a forest but a tree, because we can assume that the
alignable mapping always contains the pair of the roots of two trees, corresponding to the alignment tree
[6]. On the other hand, since the intersection of the alignable mapping to other mappings does not always
contain the pair of the roots of two trees, we use a forest F in the definition of an alignable mapping.

Theory Comput Syst (2017) 60:759–783 769

T1 T2 T1 T2 T1 T2

M 1 M 2 M 3

T1 T2 T1 T2 T1 T2

M 4 M 5 M 6

T1 T2 T1 T2

M 7 M 8

Fig. 5 Mappings Mi (1 ≤ i ≤ 8) in Example 2

but M4 �∈ MACC(T1, T2); M5 ∈ MALN(T1, T2) but M5 �∈ MILST(T1, T2);
M6 ∈ MTAI(T1, T2) but M6 �∈ MALN(T1, T2); M7 ∈ MSG(T1, T2) but M7 �∈
MTOP(T1, T2) and M7 �∈ MBOT(T1, T2); M8 ∈ MBOT(T1, T2) but M8 �∈
MALN(T1, T2).

In particular, for a segmental mapping M ∈ MSG(T1, T2), the formula in Defini-
tion 6.8 claims that, for (u, v), (u′, v′) ∈ M such that u′ ∈ anc(u) and v′ ∈ anc(v),
there exist nodes u1, . . . , uk ∈ T1 and v1, . . . , vk ∈ T2 such that u1 = u, uk = u′,
v1 = v, vk = v′, ui+1 = par(ui), vi+1 = par(vi) (1 ≤ i ≤ k − 1) and (ui, vi) ∈ M

(1 ≤ i ≤ k).

The following lemma has been shown in [7, 9, 17] or holds from Definition 6.

Lemma 1 The following statements hold.

1. MISO(T1, T2) ⊂ MTOP(T1, T2) ⊂ MLCA(T1, T2) ⊂ MACC(T1, T2) ⊂
MILST(T1, T2) ⊂ MALN(T1, T2) ⊂ MTAI(T1, T2) [9, 17].

2. MISO(T1, T2) ⊂ MBOT(T1, T2) ⊂ MSG(T1, T2) ⊂ MTAI(T1, T2) [7].
3. MAB(T1, T2) ⊆ MA(T1, T2) for mappings A and B.
4. IfMB(T1, T2) ⊆ MC(T1, T2), thenMAB(T1, T2) ⊆ MAC(T1, T2) for mappings

A, B and C.

Theorem 2 The hierarchy illustrated in Fig. 2 holds, where the mappingMA(T1, T2)

is denoted by its subscript A. In particular, the following statements hold. Here, S # S′
denotes that neither S ⊆ S ′ nor S′ ⊆ S for two sets S and S′.

770 Theory Comput Syst (2017) 60:759–783

1. MACCSG(T1, T2) = MILSTSG(T1, T2) and MACCBOT(T1, T2) =
MILSTBOT(T1, T2)

2. MLCASG(T1, T2) # MLCART(T1, T2), MTOP(T1, T2) ⊂ MLCASG(T1, T2) ⊂
MLCA(T1, T2) andMTOP(T1, T2) ⊂ MLCART(T1, T2) ⊂ MLCA(T1, T2)

3. MLCASG(T1, T2) ⊂ MACCSG(T1, T2), MACCSG(T1, T2) ⊂ MACC(T1, T2) and
MACCSG(T1, T2) ⊂ MSGALN(T1, T2).

4. MLCA(T1, T2) #MACCSG(T1, T2).
5. MSGALN(T1, T2) ⊂ MSG(T1, T2) andMBOTALN(T1, T2) ⊂ MBOT(T1, T2).
6. MBOTALN(T1, T2) ⊂ MSGALN(T1, T2).
7. MLCABOT(T1, T2) ⊂ MACCBOT(T1, T2) ⊂ MBOTALN(T1, T2) ⊂ MBOT(T1, T2).

Proof 1. We just show that MACCSG(T1, T2) = MILSTSG(T1, T2). We can show that
MACCBOT(T1, T2) = MILSTBOT(T1, T2) in the similar way. Since Lemma 1 implies
that MACCSG(T1, T2) ⊆ MILSTSG(T1, T2), we just show the converse direction that
MILSTSG(T1, T2) ⊆ MACCSG(T1, T2).

Suppose that M ∈ MILSTSG(T1, T2) and let (u1, v1), (u2, v2), (u3, v3) ∈ M .
Then, it holds that u3 < u1 � u2 ⇐⇒ v3 < v1 � v2. Also suppose that M �∈
MACCSG(T1, T2). Consider the case that there exist (u1, v1), (u2, v2), (u3, v3) ∈ M

such that u1 � u2 = u1 � u3 but v1 � v2 �= v1 � v3.
Suppose that u1 # u2, u2 # u3 and u3 # u1. Since M is a mapping, it holds that

v1 # v2, v2 # v3 and v3 # v1. Since v1 � v2 �= v1 � v3 and T2 is a tree, it holds that
either (1) v1 � v2 < v1 � v3 or (2) v1 � v3 < v1 � v2 in T2. (See Fig. 6).

For the case (1), it holds that v3 �< v1 � v2, which is a contradiction that u3 <

u1 � u2 ⇐⇒ v3 < v1 � v2. For the case (2), it holds that v2 �< v1 � v3, which is a
contradiction that u2 < u1 � u3 ⇐⇒ v2 < v1 � v3. (Note that this discussion holds
for a non-segmental mapping).

Suppose that u1 # u2, u1 < u3 and u2 < u3. Since u1 � u2 = u1 � u3, it holds
that u1 � u2 = u3 in T1. On the other hand, since v1 � v2 �= v1 � v3, it holds that
v1 � v2 < v1 � v3 = v3 in T2. (See the case (3) in Fig. 6).

Since M is a segmental mapping, there exists a node u′ ∈ T1 such that (u′, v1 �
v2) ∈ M . Since v1 � v2 < v3, it holds that u′ < u3 = u1 � u2. On the other hand,

T2 T2 T1 T2

(1) (2) (3)

Fig. 6 The cases (1), (2) and (3)

Theory Comput Syst (2017) 60:759–783 771

since v1 < v1 � v2 and v2 < v1 � v2, it holds that u1 < u′ and u2 < u′, that is,
u3 = u1 � u2 ≤ u′, which is a contradiction. The above discussion also holds for the
case that there exist (u1, v1), (u2, v2), (u3, v3) ∈ M such that v1 � v2 = v1 � v3 but
u1 � u2 �= u1 � u3.

Hence, for every (u1, v1), (u2, v2), (u3, v3) ∈ M , it holds that u1 � u2 = u1 �
u3 ⇐⇒ v1 � v2 = v1 � v3, which implies that M ∈ MACCSG(T1, T2).

In order to show the other statements, it is necessary to show the inclusion and the
properness.

For the inclusion, by Lemma 1, it is sufficient to show that MTOP(T1, T2) ⊆
MLCART(T1, T2) and MTOP(T1, T2) ⊆ MLCASG(T1, T2). Since (r(T1), r(T2)) ∈ M

for every M ∈ MTOP(T1, T2) andMTOP(T1, T2) ⊂ MLCA(T1, T2), it holds that M ∈
MLCART(T1, T2). SinceMTOP(T1, T2) = MTOPSG(T1, T2) [7] andMTOP(T1, T2) ⊆
MLCA(T1, T2), it holds thatMTOP(T1, T2) ⊆ MLCASG(T1, T2) by Lemma 1.4.

On the other hand, we show the properness by using the mappings Mi (1 ≤ i ≤ 9)
in Fig. 7.

2. It holds that M1 ∈ MLCASG(T1, T2) but M1 �∈ MTOP(T1, T2) and M1
�∈ MLCART(T1, T2); M2 ∈ MLCART(T1, T2) but M2 �∈ MTOP(T1, T2) and M2 �∈
MLCASG(T1, T2); M3 ∈ MLCA(T1, T2) but M3 �∈ MLCASG(T1, T2) and M3 �∈
MLCART(T1, T2).

3. It holds that M4 ∈ MACCSG(T1, T2) but M4 �∈ MLCASG(T1, T2); M5 ∈
MACC(T1, T2) but M5 �∈ MACCSG(T1, T2); M6 ∈ MSGALN(T1, T2) but M6 �∈
MACCSG(T1, T2).

4. It holds that M3 ∈ MLCA(T1, T2) but M3 �∈ MACCSG(T1, T2); M4 ∈
MACCSG(T1, T2) but M4 �∈ MLCA(T1, T2).

5. It holds that M7 ∈ MSG(T1, T2) but M7 �∈ MSGALN(T1, T2). Also it holds that
M7 ∈ MBOT(T1, T2) but M7 �∈ MBOTALN(T1, T2).

6. It holds that M8 ∈ MSGALN(T1, T2) but M8 �∈ MBOTALN(T1, T2).
7. It holds that M9 ∈ MACCBOT(T1, T2) but M9 �∈ MLCABOT(T1, T2); M6 ∈

MBOTALN(T1, T2) but M6 �∈ MACCBOT(T1, T2); M7 ∈ MBOT(T1, T2) but M7 �∈
MBOTALN(T1, T2).

Remark 1 We can characterize a common subforest between T1 and T2 by using a
mapping M . Recall that IM and JM are the sets of nodes in T1 and T2 but not in
M . Then, for T1 = (V1, E1) and T2 = (V2, E2), M induces a common subforest
F = (V ′, E′) between T1 and T2 such that V ′ = V1 − IM = V2 − JM . We call such
a common subforest a common subforest through M .

Since the segmental mapping requires to preserve the parent-children relationship
as possible, a common subforest through the segmental mapping and its sub-
mappings, that is, SG, SGALN, ACCSG, LCASG and TOP, is an induced subforest.
These mappings require the operational condition that the deletion and the insertion
are allowed to apply just leaves or roots. In particular, the mappings in TOP require
the operational condition that the deletion and the insertion are allowed to apply just
leaves.

Since the bottom-up mapping requires to preserve the complete subtrees, a com-
mon subforest through the bottom-up mapping and its sub-mappings, that is, BOT,

772 Theory Comput Syst (2017) 60:759–783

T1 T2 T1 T2 T1 T2 T1 T2

M 1 M 2 M 3 M 4

T1 T2 T1 T2 T1 T2

M 5 M 6 M 7

T1 T2 T1 T2

M 8 M 9

Fig. 7 Mappings Mi (1 ≤ i ≤ 9) in the proof of Theorem 2

BOTALN, ACCBOT, LCABOT and ISO, is a complete subforest. These mappings
require the operational condition that the deletion and the insertion are allowed to
apply just roots.

Remark 2 Since the LCA-preserving mapping provides the root as an LCA of all the
nodes in a common subforest, the common subforest through the LCA-preserving
mapping and its sub-mappings, that is, LCA, LCASG, LCABOT, LCART, TOP and
ISO, is a subtree. In particular, the LCA- and root-preserving mapping contains a pair
of roots in given trees, the common subforest through the LCA- and root-preserving
mapping and its sub-mappings, that is, LCART, TOP and ISO, is a root-preserving
subtree.

Since the definition of the accordant mapping is same as a parallel common forest,
the common subforest through the accordant mapping and its sub-mappings, that is,
ACC, ACCSG and ACCBOT, is parallel.

As similar as a twisting common subforest, we say that a mapping M between
trees T1 and T2 has a twist if there exist pairs (u1, v1), (u2, v2), (u3, v3) ∈ M

satisfying the following condition.

(u1 � u2 < u2 � u3) ∧ (v2 � v3 < v1 � v2).

We call such pairs (u1, v1), (u2, v2) and (u3, v3) a twist of M .
Since (v1 � v2 ≤ v2 � v3) ≡ (v1 � v3 = v2 � v3) and ¬(v2 � v3 <

v1 � v2) ≡ (v1 � v2 ≤ v2 � v3) for every tree T and v1, v2, v3 ∈ T , we can

Theory Comput Syst (2017) 60:759–783 773

T1 T2

M 1 M 2

Fig. 8 Trees T1 and T2 and mappings M1 and M2 in Example 3

transform the formula representing the nonexistence of twists in M logically as
follows.

¬∃(u1, v1)(u2, v2)(u3, v3) ∈ M ((u1 � u2 < u2 � u3) ∧ (v2 � v3 < v1 � v2))

≡ ∀(u1, v1)(u2, v2)(u3, v3) ∈ M¬ ((u1 � u2 < u2 � u3) ∧ (v2 � v3 < v1 � v2))

≡ ∀(u1, v1)(u2, v2)(u3, v3) ∈ M (¬(u1 � u2 < u2 � u3) ∨ ¬(v2 � v3 < v1 � v2))

≡ ∀(u1, v1)(u2, v2)(u3, v3) ∈ M ((u1 � u2 < u2 � u3) =⇒ ¬(v2 � v3 < v1 � v2))

≡ ∀(u1, v1)(u2, v2)(u3, v3) ∈ M ((u1 � u2 < u2 � u3) =⇒ (v1 � v2 ≤ v2 � v3))

≡ ∀(u1, v1)(u2, v2)(u3, v3) ∈ M ((u1 � u2 < u2 � u3) =⇒ (v1 � v3 = v2 � v3)) .

Hence, a mapping M is less-constrained if and only if M has no twists. As a result,
the common subforest through the alignable mapping and its sub-mappings, that is,
ALN, SGALN and BOTALN, is non-twisting.

Definition 7 (Variations of edit distance) For every MA(T1, T2) in a mapping hier-
archy in Fig. 2, the variation τA(T1, T2) of the edit distance τTAI is defined as the
minimum cost of mappings in MA(T1, T2):

τA(T1, T2) = min{γ (M) | M ∈ MA(T1, T2)}.

Remark 3 If the cost function is a metric, then it holds that τLCART(T1, T2) =
τLCA(T1, T2) = τACC(T1, T2) [9]. On the other hand, consider the trees T1 and T2
in Fig. 8. Then, we obtain the minimum cost mapping M1 ∈ MACCSG(T1, T2) and
the minimum cost mapping M2 ∈ MLCASG(T1, T2) under the unit cost function γ in
Fig. 8. Hence, it holds that τACCSG(T1, T2) = γ (M1) = 4 < 6 = τLCASG(T1, T2) =
γ (M2).

It is known that τTAI, τILST, τ LCA(= τACC), τTOP, τSG, and τBOT are met-
rics, whereas τALN is not [7, 9]. In the remainder of this section, we investi-
gate whether or not τA is a metric for the newly introduced mappings A ∈
{SGALN,ACCSG, LCASG,BOTALN,ACCBOT, LCABOT, LCART}.

774 Theory Comput Syst (2017) 60:759–783

Let Mi ∈ MA(Ti, Ti+1) for i = 1, 2. Then, we define the composition M1 ◦ M2
of mappings M1 and M2 as follows.

M1 ◦ M2 =
{

(u, w)

∈ V (T1) × V (T3)

∣
∣
∣
∣
∃v ∈ V (T2)

s.t. (u, v) ∈ M1 and (v, w) ∈ M2

}

.

Lemma 2 ([7, 9]) Let Mi ∈ MA(Ti, Ti+1) for i = 1, 2, where:

A ∈ {TAI, ILST,ACC, LCA, TOP, SG,BOT}.
Then, the following statements hold.

1. M1 ◦ M2 ∈ MA(T1, T3).
2. For a cost function γ that is a metric, it holds that γ (M1◦M2) ≤ γ (M1)+γ (M2).

Lemma 3 If both MA and MB satisfy the statements in Lemma 2, then so does
MAB.

Proof Suppose that Mi ∈ MAB(Ti, Ti+1) for i = 1, 2. By the definition that
MAB(Ti, Ti+1) = MA(Ti, Ti+1) ∩ MB(Ti, Ti+1), it holds that Mi ∈ MA(Ti, Ti+1)

and Mi ∈ MB(Ti, Ti+1). By Lemma 2.1 for MA and MB, it holds that
M1 ◦ M2 ∈ MA(T1, T3) and M1 ◦ M2 ∈ MB(T1, T3). Hence, it is obvi-
ous that M1 ◦ M2 ∈ MAB(T1, T3), so Lemma 2.1 holds for MAB. Since the
proof of Lemma 2.2 just depends on Lemma 2.1, Lemma 2.2 also holds for
MAB.

Theorem 3 (Metricity) If a cost function is a metric, then so are τACCSG, τLCASG,
τACCBOT, τLCABOT and τLCART. On the other hand, neither τSGALN nor τBOTALN is a
metric even if a cost function is a metric.

Proof First, we show that τACCSG is a metric. To do this, it is sufficient to show
that τACCSG(T1, T2) ≥ 0, τACCSG(T1, T2) = 0 iff T1 ≡ T2, τACCSG(T1, T2) =
τACCSG(T2, T1) and τACCSG(T1, T3) ≤ τACCSG(T1, T2) + τACCSG(T2, T3). The first
three statements follow from the definition of MACCSG(T1, T2). Let Mi be the min-
imum cost accordant segmental mapping between Ti and Ti+1 (i = 1, 2). By
Lemma 2 and 3, it holds that τACCSG(T1, T3) ≤ γ (M1 ◦ M2) ≤ γ (M1) + γ (M2) =
τACCSG(T1, T2)+τACCSG(T2, T3). By using the same proof, we can show that τLCASG,
τACCBOT and τLCABOT are metrics. Also it is obvious that τLCART is a metric, because
τLCA is a metric.

On the other hand, in order to show that neither τSGALN nor τBOTALN is a met-
ric, consider the trees T1, T2 and T3 in Fig. 9 and suppose that γ is a unit cost
function. Then, we obtain the minimum cost mapping M12 ∈ MBOTALN(T1, T2),
M13 ∈ MBOTALN(T1, T3) and M23 ∈ MBOTALN(T2, T3) under γ , respectively, in
Fig. 9.

Hence, it holds that 8 = γ (M12) = τBOTALN(T1, T2) > τBOTALN(T1, T3) +
τBOTALN(T2, T3) = γ (M13) + γ (M23) = 3 + 3 = 6. Since this statement holds

Theory Comput Syst (2017) 60:759–783 775

T1 T2 T3 M 12

M 13 M 23

Fig. 9 Trees T1, T2 and T3 and mappings M12, M13 and M23 in the proof of Theorem 3

for τSGALN, neither τSGALN nor τBOTALN satisfies the triangle inequality, neither is a
metric.

4 Time Complexity of Computing Distances

In this section, we investigate the time complexity of computing the variations of the
edit distance for both ordered and unordered trees. Here, we identify a node with
its postorder number. In the remainder of this paper, let n = |T1|, m = |T2|, D =
max{d(T1), d(T2)} and d = min{d(T1), d(T2)}. For a mapping A, we denote the
distance between ordered and unordered trees by τo

A and τu
A , respectively, whereas

the distance between ordered and unordered forests by δo
A and δu

A, respectively.

4.1 Tractable Cases

In this section, we investigate the tractable cases of computing the variations of the
edit distance.

Remark 4 According to [7], for every pair (i, j) ∈ T1 × T2 (1 ≤ i ≤ n, 1 ≤ j ≤ m),
we can compute the top-down distance τo

TOP(T1[i], T2[j]) between T1[i] and T2[j] in
O(nm) time [7].

On the other hand, we can compute τu
TOP(T1[i], T2[j]) by using the recurrences

in Fig. 10 [18]. Here, BM is the maximum weighted bipartite matching with weight
ω in a complete bipartite graph GM = (X, Y, E) such that X and Y are the sets

Fig. 10 The recurrences of computing τu
TOP(T1, T2) for unordered trees

776 Theory Comput Syst (2017) 60:759–783

of children of i in T1 and j in T2 and the weight of an edge (i′, j ′) ∈ E is set to
τu
TOP(T1[i′], ∅)+ τu

TOP(∅, T2[j ′])− τu
TOP(T1[i′], T2[j ′]) [18, 22]. Hence, we can store

τu
TOP(T1[i], T2[j]) for every (i, j) ∈ T1 × T2 in O(nmd) time.

Theorem 4 We can compute τo
LCART(T1, T2) in O(nm) time and τu

LCART(T1, T2) in
O(nmd) time.

Proof We can design the recurrences of computing τLCART by adding

τLCART(T1[r1], T2[r2]) = δLCA(T1(r1), T2(r2)) + γ (r1, r2)

to the recurrences of computing τLCA [18, 22] (for both ordered and unordered trees),
where ri is the root of Ti (i = 1, 2). Hence, we can compute τo

LCART(T1, T2) inO(nm)

time and τu
LCART(T1, T2) in O(nmd) time.

Theorem 5 We can compute τo
LCASG(T1, T2) in O(nm) time and τu

LCASG(T1, T2) in
O(nmd) time.

Proof For every pair (i, j) ∈ T1 × T2, we define the distance d(T1, i, T2, j) between
T1 and T2 based on τo

TOP(T1[i], T2[j]) as follows.
d(T1, i, T2, j) = τo

TOP(T1[i], T2[j]) +
∑

i′∈T1−T1[i]
γ (i′, ε) +

∑

j ′∈T2−T2[j]
γ (ε, j ′).

By Remark 4, it holds that

τo
LCASG(T1, T2) = min{d(T1, i, T2, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

which we can compute in O(nm) time. Also, by Remark 4, we can replace
τo
TOP(T1[i], T2[j]) in d(T1, i, T2, j) with τu

TOP(T1[i], T2[j]) for computing τu
LCASG,

which runs in O(nmd) time.

Theorem 6 We can compute τo
ACCSG(T1, T2) in O(nm) time and τo

SGALN(T1, T2) in
O(nmD2) time.

Proof Consider the recurrences of computing τo
ACCSG and τo

SGALN in Fig. 11. The dif-
ference between the recurrences of computing τo

ACCSG and those of τo
ACC [9] is the

first two formulas in τo
ACCSG, and the difference between the recurrences of com-

puting τo
SGALN and those of τo

ALN [6] is the first formula in τo
SGALN, respectively.

The first formula in τo
ACCSG and τo

SGALN computes the distance for segmentations of
(i, j) ∈ T1 × T2. In the second formula in τo

ACCSG, we replace γ (i, j) in τo
ACC with

γ (i, ε) + γ (ε, j). Since we can compute them in constant time (after computing
τo
TOP(T1[i], T2[j]) in advance according to Remark 4) and by the same discussion of
[9] and [6], the statement holds.

Theorem 7 We can compute τu
ACCSG(T1, T2) in O(nmd) time.

Theory Comput Syst (2017) 60:759–783 777

Fig. 11 The recurrences of computing τo
ACCSG(T1, T2) and τo

SGALN(T1, T2) for ordered trees

Proof We can compute τu
ACCSG(T1, T2) in O(nmd) time by using the recurrences in

Fig. 12 after storing every τu
TOP(T1(i), T2(j)) ((i, j) ∈ T1 × T2) in O(nmd) time

according to the recurrences in Fig. 10 of Remark 4.

Next, we investigate the variations of the bottom-up distance τBOT.

Remark 5 We say that two trees T1 and T2 are ordered (resp., unordered) label-
free isomorphic, denoted by T1≡o

l T2 (resp., T1≡u
l T2), if there exists a mapping M ∈

Mo
TAI(T1, T2) (resp., M ∈ Mu

TAI(T1, T2)), called a label-free isomorphism, such that
IM = JM = ∅. Also we define diffr (T1, T2) (r ∈ {o, u}) as follows, where M is a

Fig. 12 The recurrences of computing τu
ACCSG(T1, T2) for unordered trees

778 Theory Comput Syst (2017) 60:759–783

label-free isomorphism between T1 and T2.

diffr (T1, T2) =

⎧
⎪⎨

⎪⎩

∑

(i,j)∈M

γ (i, j) if T1≡r
l T2,

∑

i∈T1

γ (i, ε) + ∑
j∈T2

γ (ε, j) if T1 �≡r
l T2.

We can check T1≡r
l T2 and compute diffr (T1, T2) in O(n + m) time [15].

Theorem 8 We can compute τo
LCABOT(T1, T2) and τu

LCABOT(T1, T2) in O(nm) time.

Proof For r ∈ {o, u}, by replacing τ r
TOP(T1[i], T2[j]) in d(T1, i, T2, j) in Theorem 5

with diffr (T1[i], T2[j]) and by Remark 5, we can compute τ r
LCABOT(T1, T2) inO(nm)

time.

Theorem 9 We can compute τo
ACCBOT(T1, T2) in O(nm) time and τo

BOTALN(T1, T2)

in O(nmD2) time.

Proof Remark 5 implies that we can compute τo
ACCBOT and τo

BOTALN by replacing
τo
TOP(T1[i], T2[j]) in the recurrences of computing τo

ACCSG and τo
SGALN in Fig. 11 with

diffo(T1[i], T2[j]) in O(nm) time and in O(nmD2) time, respectively.

Theorem 10 We can compute τu
ACCBOT(T1, T2) in O(nmd) time.

Proof We extend the function diffu for unordered trees in Remark 5 to a function
fdiffu for forests. Let F1 = [S1, . . . , Sk] and F2 = [T1, . . . , Tl] be forests. First,
for X = {1, . . . , k} and Y = {1, . . . , l}, we construct a weighted bipartite graph
G = (X, Y, E) such that (i, j) ∈ E if and only if Si≡u

l Tj and the weight ω((i, j)) =
|Si | + |Tj | − diffu(Si, Tj). Also, let BM ⊆ X ×Y be the maximum weighted bipartite
matching of G, BM−

X = {i ∈ X | (i, j) �∈ BM} and BM−
Y = {j ∈ Y | (i, j) �∈ BM}.

Then, we define fdiffu(F1, F2) as follows.

fdiffu(F1, F2) =
∑

(i,j)∈BM
diffu(Si, Tj) +

∑

i∈BM−
X

|Si | +
∑

j∈BM−
X

|Tj |.

It is obvious that fdiffu(F1, F2) computes the smallest value when selecting pairs
of label-free isomorphic trees in F1 and F2, which is δu

ACCBOT(F1, F2). Hence, by
replacing τu

TOP(T1[i], T2[j]) and δu
TOP(T1(i), T2(j)) in Fig. 12 with diffu(T1[i], T2[j])

and fdiffu(T1(i), T2(j)), we can compute τu
ACCBOT(T1, T2) in O(nmd) time.

4.2 Intractable Cases

Suppose that �1 and �2 be two optimization problems. Then, we say that �1 L-
reduces to �2 if there exist polynomial-time algorithms f, g and constants α, β > 0
satisfying the following statements for an instance I of �1:

1. opt(f (I)) ≤ α · opt(I).

Theory Comput Syst (2017) 60:759–783 779

2. For a solution of f (I) with weight s2, the algorithm g produces in polynomial
time a solution of I with weight s1 such that |s1 −opt(I)| ≤ β · |s2 −opt(f (I))|.

If �1 L-reduces �2, and �2 can be approximated in polynomial time within a factor
1+ε, then �1 can be approximated within the factor 1+αβε. If �2 has a polynomial
time approximation scheme (PTAS), then so does �1 [12].

A problem is MAX SNP-hard if every problem in MAX SNP can be L-reduced
to it. Since the composition of two L-reductions is also an L-reduction, a problem is
MAX SNP-hard if a MAX SNP-hard problem can be L-reduced it. It is known that
if any MAX SNP-hard problem has a PTAS, then P = NP. Hence, it is very unlikely
for a MAX SNP-hard problem to have a PTAS [12].

Concerned with this paper, Zhang and Jiang [21] have first shown that the problem
of computing τu

TAI(T1, T2) is MAX SNP-hard. Akutsu et al. [1] and Hirata et al. [5]
have shown that this problem is also MAX SNP-hard even if the height of T1 and T2 is
at most 2 and T1 and T2 are binary trees, respectively. Furthermore, Yamamoto et al.
[18] have shown that the problem of computing τu

BOT(T1, T2) is MAX SNP-hard even
if the degrees of T1 and T2 are binary, which implies the same MAX SNP-hardness
of the problem of computing τu

SG(T1, T2).
Note that we cannot apply this proof to showing that the problems of computing

τu
SGALN(T1, T2) and τu

BOTALN(T1, T2) are MAX SNP-hard, with preserving alignable
mappings. Hence, in this paper, we give the similar proof of [18] to show that the
problems of computing τu

SGALN(T1, T2) and τu
BOTALN(T1, T2) are MAX SNP-hard, by

using L-reduction from MAX 3SC-3:

MAXIMUM BOUNDED COVERING BY 3-SETS (MAX 3SC-3) [8]:
INSTANCE: A finite set S and a collection C of 3-element subsets of S, where
every element of S occurs in at most three of the subsets in C.
SOLUTION: The largest covering of S, where a covering is a collection of
mutually disjoint sets in C.
Let S = {s1, . . . , sm}, C = {C1, . . . , Cn} and Ci = {si1, si2, si3} be an instance of

MAX 3SC-3, where si1, si2, si3 ∈ S. Also, let C∗ be the largest covering of S. We
assume that the cost function γ is a unit cost function.

We construct three trees Ĉi for Ci (1 ≤ i ≤ n), ŝj for sj (1 ≤ j ≤ m) and D̂

illustrated in Fig. 13 (left), where λ is a new label. Then, we construct two trees T1
and T2 illustrated in Fig. 13 (right). We call the transformation from an instance of
MAX 3SC-3 to trees T1 and T2 f . Then, we can show the following lemma as same
as [18].

Lemma 4 For A ∈ {SGALN,BOTALN}, let M be the minimum cost mapping in
MA(T1, T2) Then, for every Ĉi in T1, M maps (a) all of the three subtree ˆsi1, ˆsi2 and
ˆsi3 in Ĉi to the same three subtrees in T2 or (b) Ĉi to some dummy subtree D̂ in T2.

Remark 6 Lemma 4 does not hold for a mapping in MA(T1, T2) such that A ∈
{ILST,ACC,ACCSG,ACCBOT}. For i and i′, suppose that Ĉi satisfies (a) and Ĉi′ sat-
isfies (b) in Lemma 4. Let vij (resp., wij) denotes the leaf in T1 (resp., T2) labeled by
ˆsij and wλ denotes some leaf in T2 labeled by λ.

780 Theory Comput Syst (2017) 60:759–783

Ĉ i ˆ j D̂

T1 T2

Fig. 13 Trees Ĉi (1 ≤ i ≤ n), ŝj (1 ≤ j ≤ m) and D̂ (left) and trees T1 and T2 (right)

Then, M = {(vi1, wi1), (vi2, wi2), (vi′1, wλ)} is corresponding to the part of the
mapping between T1 and T2 in Lemma 4. However, it holds that wλ < wi1 � wi2 but
vi′1 �< vi1 � vi2. Hence, M is not an isolated-subtree mapping.

Lemma 5 For A ∈ {SGALN,BOTALN}, τu
A (T1, T2) = 9n + 3m − |C∗| + 2.

Proof Let M be the minimum cost mapping in MA(T1, T2), and k = |C∗|.
By Lemma 4, for every Ci ∈ C∗, M maps the three subtrees ŝi1, ŝi2 and ŝi3 in Ĉi

to the same three subtrees in T2. Since the cost of a mapping between Ĉi in T1 and
ŝi1, ŝi2 and ŝi3 in T2 is 4 (which is the number of non-mapped nodes in Ĉi in T1)
and |C∗| = k, the cost of M concerned with C∗ is 4k. Also, by Lemma 4, for every
Ci ∈ C − C∗, M maps Ĉi to some dummy tree D̂ in T2. Since the cost of a mapping
between Ĉi in T1 and D̂ in T2 is 9 (which is the number of pairs of nodes labeled by
sij (j = 1, 2, 3) in T1 and λ in T2) and |C − C∗| = n − k, the cost of M concerned
with C − C∗ is 9(n − k). Since M does not touch m − 3k subtrees ŝj of sj in T2,
n − (n − k) = k dummy subtrees D̂ in T2 and 2 roots labeled by r , the concerned
cost of M is 3(m − 3k) + 13k + 2.

Hence, it holds that τu
A (T1, T2) = γ (M) = 4k+9(n−k)+3(m−3k)+13k+2 =

9n + 3m − k + 2.

Theorem 11 For A ∈ {SGALN,BOTALN}, the problem of computing τu
A (T1, T2) is

MAX SNP-hard.

Proof Consider the algorithm g to transform from a mapping M ∈ MA(T1, T2)

between T1 and T2 to a covering C′ of C as follows:

If M maps ŝi1, ŝi2 and ŝi3 of Ĉi in T1 to the same three subtrees in T2, then add
Ci to C′.

Theory Comput Syst (2017) 60:759–783 781

Fig. 14 The recurrences of computing δu
SGALN for unordered trees with bounded degrees

It holds that n/7 ≤ opt(I) from the proof of Theorem 7 in [21]. Then, by Lemma 5
and since m ≤ 3n and opt(I) ≥ 1, the following inequalities hold.

opt(f (I)) = 9n + 3m − opt(I) + 2 ≤ 18n − opt(I) + 2 ≤ 127 · opt(I),

s2 − opt(f (I)) = γ (M) − τu
A (T1, T2)

≥ 9n + 3m − |C′| + 2 − (9n + 3m − opt(I) + 2)
= opt(I) − |C′| = opt(I) − s1.

Hence, (f, g) is an L-reduction from MAX 3SC-3 to this problem.

Whereas the problem of computing τu
ALN(T1, T2) is MAX-SNP hard, it is tractable

if the degrees of trees are bounded by some constant [6]. As same as τu
ALN(T1, T2),

the following theorem also holds.

Fig. 15 The time complexity of computing τo
A (T1, T2) for MA(T1, T2). Here, the nodes enclosed by

black solid lines, black dashed lines, black dotted lines and gray solid lines illustrate that the problem
of computing τo

A (T1, T2) is O(nm2(1 + log n
m

)) time, O(nmD2) time, O(nm) time and O(n + m) time,
respectively

782 Theory Comput Syst (2017) 60:759–783

Fig. 16 The time complexity of computing τu
A (T1, T2) forMA(T1, T2). Here, the nodes enclosed by black

solid lines, black dashed lines, black dotted lines, gray solid lines and gray dashed lines illustrate that
the problem of computing τo

A (T1, T2) is MAX SNP-hard even if T1 and T2 are binary, MAX SNP-hard
but tractable if the degrees of T1 and T2 are bounded, O(nmd) time, O(nm) time and O(n + m) time,
respectively

Theorem 12 The problems of computing τu
SGALN(T1, T2) and τu

BOTALN(T1, T2) are
tractable if the degrees of T1 and T2 are bounded by some constant.

Proof We can design the algorithm to compute τu
SGALN by replacing τo

TOP in τo
SGALN

in Fig. 11 with τu
TOP in Fig. 10, and by improving the recurrences of computing

δo
SGALN in Fig. 11 to the recurrences in Fig. 14, which is same as the improve-
ment of the recurrences from computing δo

ALN to computing δu
ALN with bounded

degrees [6], where A ⊆ T1(i) and B ⊆ T2(j). Since the degrees of T1 and T2 are
bounded by some constant, the number of combinations of A and B are bounded, so
δu
SGALN(A, B) can be computed in polynomial time.
Furthermore, by replacing diffo in the recurrences of computing τo

BOTALN (cf., The-
orem 9) with diffu and by using the same discussion as above, we can design the
recurrences of computing δu

BOTALN in polynomial time.

5 Conclusion

In this paper, we have characterized a Tai mapping hierarchy as several common
subforests, that is, as an embedded subforest, an induced subforest and a complete
subforest by focusing on the connections of nodes in a common subforest and as
a non-twisting subforest, a parallel subforest, a subtree and a root-preserving sub-
tree by focusing on the arrangements of subtrees in a common subforest. Then,
we have introduced new mappings into the Tai mapping hierarchy illustrated in
Fig. 2.

Theory Comput Syst (2017) 60:759–783 783

Next, we have investigated the metricity of the variations of the edit distance as the
minimum cost of the above mappings and the time complexity of computing them.
We summarize the results as Table 1 in Section 1. Also Figs. 15 and 16 illustrate the
relationship between the Tai mapping hierarchy and time complexity of computing
τA(T1, T2) forMA(T1, T2) as diagram forms.

Acknowledgments The authors would like to thank Prof. Tetsuji Kuboyama at Gakushuin University,
Prof. Kilho Shin at University of Hyogo and Prof. Tetsuhiro Miyahara at Hiroshima City University for
fruitful discussion about tree edit distance and its variations. Also they would like to thank anonymous
referees of Theory of Computing Systems for valuable comments to revise the submitted version of this
paper.

References

1. Akutsu, T., Fukagawa, D., Halldórsson, M.M., Takasu, A., Tanaka, K.: Approximation and parame-
terized algorithms for common subtrees and edit distance between unordered trees. Theor. Comput.
Sci. 470, 10–22 (2013)

2. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337, 217–239
(2005)

3. Chawathe, S.S.: Comparing hierarchical data in external memory. Proc. VLDB’99, 90–101 (1999)
4. Demaine, E.D., Mozes, S., Rossman, B., Weiman, O.: An optimal decomposition algorithm for tree

edit distance. ACM Trans. Algorithms, 6 (2009)
5. Hirata, K., Yamamoto, Y., Kuboyama, T.: Improved MAX SNP-hard results for finding an edit

distance between unordered trees. Proc. CPM 2011. LNCS 6661, 402–415 (2011)
6. Jiang, T., Wang, L., Zhang, K.: Alignment of trees – an alternative to tree edit. Theor. Comput. Sci.

143, 137–148 (1995)
7. Kan, T., Higuchi, S., Hirata, K.: Segmental mapping and distance for rooted ordered labeled trees.

Fundamenta Informaticae 132, 1–23 (2014)
8. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf. Process. Lett. 37,

27–35 (1991)
9. Kuboyama, T.: Matching and Learning in Trees. Ph.D thesis, University of Tokyo (2007)

10. Lu, C.L., Su, Z.-Y., Yang, C.Y.: A new measure of edit distance between labeled trees, Proc.
COCOON’01. LNCS 2108, 338–348 (2001)

11. Lu, S.-Y.: A tree-to-tree distance and its application to cluster analysis. IEEE Trans. Pattern Anal.
Mach. Intell. 1, 219–224 (1979)

12. Papadimitoriou, C.H., Yannakakis, M.: Optimization, approximation and complexity. J. Comput.
System Sci. 43, 425–440 (1991)

13. Selkow, S.M.: The tree-to-tree editing problem. Inform. Process. Lett. 6, 184–186 (1977)
14. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)
15. Valiente, G.: An efficient bottom-up distance between trees. Proc. SPIRE’01, 212–219 (2001)
16. Valiente, G.: Algorithms on Trees and Graphs. Springer (2002)
17. Wang, J.T.L., Zhang, K.: Finding similar consensus between trees: an algorithm and a distance

hierarchy. Pattern Recogn. 34, 127–137 (2001)
18. Yamamoto, Y., Hirara, K., Kuboyama, T.: Tractable and intractable variations of unordered tree edit

distance. Int. J. Found. Comput. Sci. 25, 307–330 (2014)
19. Zhang, K.: Algorithms for the constrained editing distance between ordered labeled trees and related

problems. Pattern Recog. 28, 463–474 (1995)
20. Zhang, K.: A constrained edit distance between unordered labeled trees. Algorithmica 15, 205–222

(1996)
21. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled trees. Inf. Process.

Lett. 49, 249–254 (1994)
22. Zhang, K., Wang, J., Shasha, D.: On the editing distance between undirected acyclic graphs. Int. J.

Found. Comput. Sci. 7, 43–58 (1996)

	Tai Mapping Hierarchy Through Common Subforest
	Abstract
	Introduction
	Edit Distance and Tai Mapping
	Tai Mapping Hierarchy
	Time Complexity of Computing Distances
	Tractable Cases
	Intractable Cases

	Conclusion
	Acknowledgments
	References

