
Theory Comput Syst (2017) 60:346–376
DOI 10.1007/s00224-016-9685-1

The Behavior of Clique-Width under Graph
Operations and Graph Transformations

Frank Gurski1

Published online: 23 May 2016
© Springer Science+Business Media New York 2016

Abstract Clique-width is a well-known graph parameter. Many NP-hard graph
problems admit polynomial-time solutions when restricted to graphs of bounded
clique-width. The same holds for NLC-width. In this paper we study the behavior of
clique-width and NLC-width under various graph operations and graph transforma-
tions. We give upper and lower bounds for the clique-width and NLC-width of the
modified graphs in terms of the clique-width and NLC-width of the involved graphs.

Keywords Clique-width · NLC-width · Graph operations · Graph transformations

1 Introduction

A graph parameter is a function that associates with every graph a positive inte-
ger. One of the most famous graph parameters is tree-width, which was defined by
Robertson and Seymour in [58]. See [3] for an overview on tree-width. Tree-width
bounded graphs are interesting from an algorithmic point of view since several NP-
complete graph problems can be solved in polynomial time on graph classes of
bounded tree-width using dynamic programming [1, 2, 36, 48].

A further well known graph parameter is clique-width which was defined by
Courcelle and Olariu in [23] through a composition mechanism for vertex-labeled
graphs. The NLC-width of a graph was defined by Wanke in [63] by a composition
mechanism similar to that for clique-width. Both parameters are more powerful than

� Frank Gurski
frank.gurski@hhu.de

1 Institute of Computer Science, Algorithmics for Hard Problems Group,
University of Düsseldorf, 40225 Düsseldorf, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-016-9685-1&domain=pdf
mailto:frank.gurski@hhu.de

Theory Comput Syst (2017) 60:346–376 347

tree-width, since the clique-width and NLC-width of a graph can be bounded in its
tree-width, but not vice versa.

Clique-width and NLC-width bounded graphs are also interesting from an algo-
rithmic point of view. Several NP-complete graph problems can be solved in
polynomial time on graph classes of bounded clique-width. For example, all graph
properties which are expressible in monadic second order logic with quantifications
over vertices and vertex sets (MSO1-logic) are decidable in linear time on clique-
width bounded graphs which are given with an appropriate clique-width k-expression
[19, 22]. Also by using fly-automata problems expressible in MSO1-logic can be
solved if the graphs are given with a k-expression [18]. Furthermore, there are also
a lot of NP-complete graph problems which are not expressible in MSO1-logic like
Hamiltonicity, partition problems, and bounded degree subgraph problems but which
can also be solved in polynomial time on clique-width bounded graphs [24, 26, 33,
47, 62, 63]. In order to apply these algorithms non-optimal expressions are sufficient.
Such expressions can be found by the result shown in [56]: For every fixed k for every
given graph G one can compute in polynomial time a clique-width g(k)-expression
or assert that the clique-width of G is greater than k.

Distance-hereditary graphs have clique-width at most 3 [30]. The set of all graphs
of clique-width at most 2 or NLC-width 1 is the set of all co-graphs, i.e. P4-free
graphs. Brandstädt et al. have analyzed the clique-width of graphs defined by for-
bidden induced one-vertex extensions of P4 [8]. The clique-width and NLC-width
of permutation graphs, interval graphs, grids, and planar graphs is not bounded [30].
Every graph of tree-width at most k has clique-width at most 3 · 2k−1 [14]. See [46]
for a survey on the clique-width of graph classes.

The recognition problem for graphs of clique-width or NLC-width at most k is
still open for k ≥ 4 and k ≥ 3, respectively. The problem whether a graph has clique-
width at most 3 is decidable in polynomial time [12] and the problem whether a graph
has NLC-width at most 2 is also decidable in polynomial time [45, 51]. By the char-
acterization in terms of co-graphs, it can be decided in linear time whether a graph has
clique-width at most 2 or NLC-width 1 [13]. Computing NLC-width and computing
clique-width is NP-hard [28, 34]. But the clique-width of tree-width bounded graphs
is computable in linear time [27]. An approach to determine the clique-width using an
encoding to propositional satisfiability (SAT) which is evaluated by a SAT solver was
presented in [40]. This approach was extended by a combinatorial characterization
of clique-width in [21].

A graph transformation f is a transformation that creates a new graph
f (G1, . . . , Gn) from a number of n ≥ 1 input graphs G1, . . . Gn. Examples are tak-
ing an induced subgraph of a graph, adding an edge to a graph, and generating the
join of two graphs. A graph operation is a graph transformation which is determin-
istic and invariant under isomorphism. Examples are the edge complementation of a
graph and generating the join of two graphs.1 The graph theory books by Bondy and
Murty [5] and by Harary [38] include a large number of transformations on graphs.

1Please note that by our definition the two graph transformations taking an induced subgraph of a graph
and adding an edge to a graph are no graph operations.

348 Theory Comput Syst (2017) 60:346–376

The impact of graph operations which can be defined by monadic second order
formulas (so-called MS transductions) on graph parameters can often be shown in a
very short way although the bounds are rough ones [15, 19].

Transformations that reduce graphs can be used to characterize sets of graphs by
forbidden graphs. The property that a graph has tree-width at most k is preserved
under the transformation taking minors, which is used to show that the set of graphs
of tree-width at most k can be characterized by a finite set of forbidden minors [57].

Oum and Seymour introduced in [56] the rank-width of graphs, which is defined
independently of vertex labels, but which is shown to be as powerful as clique-width.
In [55] it is shown that the property that a graph has rank-width at most k is preserved
under the transformation taking local complementation, which leads to a character-
ization of graphs of rank-width at most k by finitely many forbidden vertex-minors
(i.e. taking induced subgraphs and local complementations).

It is still open if there exists a graph transformation that does not increase NLC-
width or clique-width and which can be used to characterize graphs of NLC-width
at most k or clique-width at most k by a set of finitely many forbidden subgraphs.
Such characterizations would lead polynomial time recognition algorithms for the
corresponding graph classes.

The effect of graph transformations on graph parameters is well studied, e.g. for
band-width in [10], for tree-width in [3], for clique-width briefly in [16, 41], and for
rank-width in [41]. The behavior of clique-width and NLC-width under various graph
operations is considered in this paper, which is organized as follows. In Section 2,
we recall the definitions of clique-width and NLC-width. In Section 3, we give an
overview on the effect of the binary transformations join, disjoint union, union, prod-
ucts, corona, substitution, and 1-sum on the clique-width and NLC-width of given
graphs. In Section 4, we consider the latter problem for the unary graph transfor-
mations quotient, subgraph, edge complement, bipartite edge complement, power of
graphs, line graphs, local complementation, switching, Seidel complementation edge
addition, edge subdivision, vertex identification, and vertex addition. For the trans-
formations local complementation and Seidel complementation we even can bound
the clique-width and NLC-width of every graph which is equivalent to a given graph,
i.e. every graph which can be obtained by applying an arbitrary number of one of
these transformations. In Section 5, we summarize our results, give extensions to
directed and linear versions of clique-width and NLC-width, some conclusions, and
an outlook.

2 Preliminaries

Graphs We work with finite undirected graphs G = (VG, EG), where VG is a finite
set of vertices and EG ⊆ {{u, v} | u, v ∈ VG, u �= v} is a finite set of edges.2

For a vertex v ∈ VG we denote by NG(v) the set of all vertices which are adjacent
to v in G, i.e. NG(v) = {w ∈ VG | {v, w} ∈ EG}. Vertex set NG(v) is called the

2Thus we do not consider graphs with loops or multiple edges.

Theory Comput Syst (2017) 60:346–376 349

set of all neighbors of v in G or neighborhood of v in G. Please note that v does
not belong to NG(v). The degree of a vertex v ∈ VG, denoted by degG(x), is the
number of neighbors of vertex v in G, i.e. degG(v) = |NG(v)|. We are discussing
graphs only up to isomorphism. This allows us to define the path on n vertices Pn =
({v1, . . . , vn}, {{v1, v2}, . . . , {vn−1, vn}}), which will be useful in several examples.
For the definition of further special graphs we refer to the book of Brandstädt et al.
[9].

Labeled Graphs In order to define clique-width and NLC-width, we need finite
undirected labeled graphs G = (VG, EG, labG), where VG is a finite set of vertices
labeled by some mapping labG : VG → [k] and EG ⊆ {{u, v} | u, v ∈ VG, u �= v}
is a finite set of edges. The labeled graph consisting of a single vertex labeled by
a ∈ [k] is denoted by •a . Most of the definitions for unlabeled graphs can be applied
to labeled graphs. Thus, we just want to mention subgraphs and isomorphism for
labeled graphs.

A labeled graph J = (VJ , EJ , labJ) is a subgraph of G if VJ ⊆ VG, EJ ⊆ EG

and labJ (u) = labG(u) for all u ∈ VJ . J is an induced subgraph of G if additionally
EJ = {{u, v} ∈ EG | u, v ∈ VJ }. Two labeled graphs G and J are isomorphic if
there is a bijection f : VG → VJ that preserves adjacencies and the labelings, i.e.
{u, v} ∈ EG ⇔ {f (u), f (v)} ∈ EJ and labG(u) = labJ (f (u)) for all u ∈ VG.

Clique-Width The notion of clique-width3 for labeled graphs is defined by Cour-
celle and Olariu in [23] as follows.

Definition 1 (Clique-width, [23]) Let k be some positive integer. The class CWk of
labeled graphs is recursively defined as follows.

1. The single vertex graph •a for some a ∈ [k] is in CWk .
2. Let G = (VG, EG, labG) ∈ CWk and J = (VJ , EJ , labJ) ∈ CWk be two

vertex-disjoint labeled graphs, then

G ⊕ J := (V ′, E′, lab′)
defined by V ′ := VG ∪ VJ , E′ := EG ∪ EJ , and

lab′(u) :=
{
labG(u) if u ∈ VG

labJ (u) if u ∈ VJ

for every u ∈ V ′ is in CWk .
3. Let a, b ∈ [k] be two distinct integers and G = (VG, EG, labG) ∈ CWk be a

labeled graph, then

(a) ρa→b(G) := (VG, EG, lab′) defined by

lab′(u) :=
{
labG(u) if labG(u) �= a

b if labG(u) = a

3The operations in the definition of clique-width were first considered by Courcelle, Engelfriet, and
Rozenberg in [20].

350 Theory Comput Syst (2017) 60:346–376

3

22 2 2

G
1 G

2

2

1

1

Fig. 1 Two labeled graphs G1 and G2 defined by expressions X1 and X3 and by expressions X2 and X4,
respectively

for every u ∈ VG is in CWk and
(b) ηa,b(G) := (VG, E′, labG) defined by

E′ := EG ∪ {{u, v} | u, v ∈ VG, u �= v, lab(u) = a, lab(v) = b}
is in CWk .

The clique-width of a labeled graph G, cw(G) for short, is the least integer k such
that G ∈ CWk .

An expression X built with the operations •a, ⊕, ρa→b, ηa,b for integers a, b ∈
[k] is called a clique-width k-expression. If integer k is known from the context or
irrelevant for the discussion, then we sometimes use the simplified notion expression
for the notion k-expression. The graph defined by expression X is denoted by val(X).
Every unlabeled graph G = (V , E) is considered as the labeled graph (V , E, lab)
where lab : V → [1].

Example 1 (Clique-width expressions) The following two clique-width expressions
X1 and X2 define the labeled graphs G1 and G2 in Fig. 1.

X1 = η1,2((ρ2→1(η1,2(•1 ⊕ •2))) ⊕ •2)
X2 = ρ1→2(η2,3(((η1,2(•1 ⊕ •2)) ⊕ (η1,2(•1 ⊕ •2))) ⊕ •3))

Since the clique-width edge insertion operations can be arranged in several ways,
it is sometimes useful to restrict to special clique-width expressions.

– A clique-width expression X is irredundant, if for every subexpression ηa,b(X
′)

of X, in the graph val(X′) no vertex labeled by a is adjacent to a vertex labeled
by b. In [23] it is shown that every graph which can be defined by a clique-width
k-expression can also be defined by an irredundant clique-width k-expression.

– A clique-width expression X is separated, if for every subexpression X′ ⊕X′′ of
X, the set of labels of the graph defined by X′ is disjoint from the set of labels
of the graph defined by X′′. Every clique-width k-expression can be transformed
into an equivalent separated clique-width 2k-expression, see [23].

NLC-Width The notion of NLC-width4 of labeled graphs is defined by Wanke in
[63] as follows.

4The abbreviation NLC results from the node label controlled embedding mechanism originally defined
for graph grammars.

Theory Comput Syst (2017) 60:346–376 351

Definition 2 (NLC-width, [23]) Let k be some positive integer. The class NLCk of
labeled graphs is recursively defined as follows.

1. The single vertex graph •a for some a ∈ [k] is in NLCk .
2. Let G = (VG, EG, labG) ∈ NLCk and J = (VJ , EJ , labJ) ∈ NLCk be two

vertex-disjoint labeled graphs and S ⊆ [k]2 be a relation, then
G ×S J := (V ′, E′, lab′)

defined by V ′ := VG ∪ VJ ,

E′ := EG ∪ EJ ∪ {{u, v} | u ∈ VG, v ∈ VJ , (labG(u), labJ (v)) ∈ S},
and

lab′(u) :=
{
labG(u) if u ∈ VG

labJ (u) if u ∈ VJ

for every u ∈ V ′ is in NLCk .
3. Let G = (VG, EG, labG) ∈ NLCk and R : [k] → [k] be a function, then

◦R(G) := (VG, EG, lab′)
defined by

lab′(u) := R(labG(u))

for every u ∈ VG is in NLCk .

The NLC-width of a labeled graph G, nlcw(G) for short, is the least integer k such
that G ∈ NLCk .

An expression X built with the operations •a, ×S, ◦R for a ∈ [k], S ⊆ [k]2, and
R : [k] → [k] is called an NLC-width k-expression. If integer k is known from the
context or irrelevant for the discussion, then we sometimes use the simplified notion
expression for the notion k-expression. The graph defined by expression X is denoted
by val(X). Every unlabeled graph G = (V , E) is considered as the labeled graph
(V , E, lab) where lab : V → [1].

Example 2 (NLC-width expressions) The following two NLC-width expressions X3
and X4 define the labeled graphs G1 and G2 in Fig. 1.

X3 = (•1 ×{(1,1)} •1) ×{(1,2)} •2
X4 = ◦{(1,2),(2,2),(3,3)}(((•1 ×{(1,2)} •2) ×∅ (•1 ×{(1,2)} •2)) ×{(2,3)} •3)

In contrast to clique-width expressions, NLC-width expressions are always irre-
dundant.

Expression Trees Every NLC-width k-expression X has by its recursive definition
a tree structure that is called the NLC-width k-expression-tree for X. This tree T is
an ordered rooted tree whose leaves correspond to the vertices of graph val(X) and
the inner nodes5 correspond to the operations of X, see [31]. In the same way we

5To distinguish between the vertices of (non-tree) graphs and trees, we simply call the vertices of trees
nodes.

352 Theory Comput Syst (2017) 60:346–376

define the clique-width k-expression-tree for every clique-width k-expression, see
[27]. If integer k is known from the context or irrelevant for the discussion, then we
sometimes use the simplified notion expression-tree for the notion k-expression-tree.
For some node u of expression-tree T , let T (u) be the subtree of T rooted at u. Note
that tree T (u) is always an expression-tree. The expressionX(u) defined by T (u) can
simply be determined by traversing the tree T (u) starting from the root, where the
left children are visited first. X(u) defines a (possibly) relabeled induced subgraph
G(u) of G. For an inner node v of some expression-tree T and a leaf u of T (v) we
define by lab(u, G(v)) the label of that vertex of graph G(v) that corresponds to u.
A node u of T is called a predecessor of a node u′ of T if u′ is on a path from u to a
leaf. A node u of T is called the least common predecessor of two nodes u1 and u2 if
u is a predecessor of both nodes u1, u2, and no child of u is a predecessor of u1, u2.

Graph Parameters and Relations There is a very close relation between the clique-
width and the NLC-width of a graph. We denote two expressions X1 and X2 as
equivalent, if the unlabeled versions of val(X1) and val(X2) are isomorphic.

Theorem 1 ([44]) Every clique-width k-expression can be transformed into an
equivalent NLC-width k-expression and every NLC-width k-expression can be trans-
formed into an equivalent clique-width 2k-expression. Thus, for every graph G it
holds

nlcw(G) ≤ cw(G) ≤ 2 · nlcw(G). (1)

In this paper we also refer to the notion of tree-width6 of a graph G, tw(G) for
short, which was defined in the 1980s by Robertson and Seymour in [58] by the
existence of a tree-decomposition and to the notion of rank-width of a graph G,
rw(G) for short, which was introduced by Oum and Seymour in [56].

Theorem 2 (Proposition 6.3 of [56]) Every clique-width k-expression can be
transformed into an equivalent rank-width k-expression and every rank-width k-
expression can be transformed into an equivalent clique-width 2k+1 − 1-expression.
Thus, for every graph G it holds

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1. (2)

The proof idea of Proposition 6.3 in [56] immediately leads the following bounds
for NLC-width. The upper bound is lower, since NLC-width allows creating edges
between equally labeled vertices.

Theorem 3 Every NLC-width k-expression can be transformed into an equivalent
rank-width k-expression and every rank-width k-expression can be transformed into
an equivalent NLC-width 2k-expression. Thus, for every graph G it holds

rw(G) ≤ nlcw(G) ≤ 2rw(G). (3)

6The concept of tree-width already appeared in a work of Halin [37].

Theory Comput Syst (2017) 60:346–376 353

3 Binary Graph Operations and Graph Transformations

Let G1 = (VG1 , EG1) and G2 = (VG2 , EG2) be two non-empty graphs and let f

be some binary graph operation which creates a new graph f (G1, G2) from G1 and
G2. In this section we consider the NLC-width and clique-width of graph f (G1, G2)

with respect to the NLC-width or clique-width of G1 and G2.

3.1 Disjoint Union

The disjoint union of two vertex-disjoint graphs G1 and G2, denoted by G1 ⊕ G2, is
the graph with vertex set VG1 ∪ VG2 and edge set EG1 ∪ EG2 . Since NLC-width and
clique-width operations both contain the disjoint union it is easy to see that

nlcw(G1 ⊕ G2) = max(nlcw(G1), nlcw(G2))

and
cw(G1 ⊕ G2) = max(cw(G1), cw(G2)).

These bounds imply that the NLC-width and clique-width of a graph can be
computed by the maximum NLC-width or clique-width of its connected components.

3.2 Join

The join of two vertex-disjoint graphs G1 and G2, denoted by G1 ⊗ G2, is the graph
with vertex set VG1 ∪ VG2 and edge set

EG1 ∪ EG2 ∪ {{v1, v2} | v1 ∈ VG1 , v2 ∈ VG2}.
It is obviously that

nlcw(G1 ⊗ G2) = max(nlcw(G1), nlcw(G2))

and
cw(G1 ⊗ G2) = max(cw(G1), cw(G2), 2).

Since NLC-width does not change when building the edge complement graph
(cf. Section 4.8) we conclude that the NLC-width of a graph also can be computed
by the maximum NLC-width of its co-connected components, i.e. the connected
components of the edge complement graph.

3.3 Union

The union of two graphs G1 and G2 with VG1 = VG2 , denoted by G1 ∪ G2, is the
graph defined by the edge EG1 ∪ EG2 . Thus two vertices are adjacent in G1 ∪ G2 if
and only if they are adjacent in G1 or they are adjacent in G2.

Let G1 be the disjoint union of m paths Pn, each represented by a row in the
adjacency matrix forG1, andG2 be the disjoint union of n paths Pm, each represented
by a column in the adjacency matrix for G2. Then the union G1 ∪ G2 is an n × m

grid. Since paths have clique-width at most 3 and an n × m-grid has clique-width at
least min(n, m) + 1 [30], it is not possible to bound the clique-width of G1 ∪ G2 in
the clique-width of G1 and G2, even if G1 and G2 are of bounded tree-width.

354 Theory Comput Syst (2017) 60:346–376

3.4 Substitution

Let G1 and G2 be two vertex-disjoint graphs and let v ∈ VG1 a vertex. The sub-
stitution of v by G2 in G1, denoted by G1[v/G2], is the graph with vertex set
VG1 ∪ VG2 − {v} and edge set

EG1 ∪ EG2 − {{v, w} | w ∈ NG1(v)} ∪ {{u, w} | u ∈ VG2 , w ∈ NG1(v)}.
Next we consider the NLC-width and clique-width of graph G1[v/G2].

Theorem 4 Let G1 and G2 be two vertex-disjoint graphs and v ∈ VG1 a vertex, then
it holds

nlcw(G1[v/G2]) = max(nlcw(G1), nlcw(G2))

and

cw(G1[v/G2]) = max(cw(G1), cw(G2)).

Proof Let G1 be a graph of NLC-width k1, v ∈ VG1 a vertex, and G2 be a graph of
NLC-width k2. Let T1 be an NLC-width k1-expression-tree forG1 and T2 be an NLC-
width k2-expression-tree forG2. Next we construct from T1 and T2 an expression-tree
T for G1[v/G2]. We start with a copy T of T1. Let x be the leaf of T that corresponds
to vertex v. We relabel x from •� into ◦R , R(a) = � for a ∈ [k2]. Then we insert
a copy of T2 in T and make the root of the copy of T2 adjacent to leaf x of T . The
resulting tree is an expression-tree for G1[v/G2] using max(k1, k2) labels.

The clique-width result can be shown in the same way, see Lemma 3.4 in [23].

Vertex set VG2 is also called a module of the graph G1[v/G2], since all vertices
of VG2 have the same neighbors in the graph G1[v/G2]. The substitution operation
and quotient operation (cf. Section 4.5) are used in [44] and [22] to show that the
NLC-width and clique-width of a graph can be obtained by the maximumNLC-width
or clique-width of its prime subgraphs appearing as quotient graphs in a modular
decomposition.

3.5 Product

A graph product of two vertex-disjoint graphs G1 and G2 is a new graph whose
vertex set is VG1 × VG2 and for two vertices (u1, u2) and (v1, v2) the adjacency in
the product is defined by the adjacency, equality, or non-adjacency of u1 and v1 in
G1 and of u2 and v2 in G2. Several results on graph products can be found in [38,
42, 43]. We consider the well known possibilities to define graph products shown in
Table 1.

The cartesian, categorical, normal, and co-normal graph product applied to two
paths Pn and Pm yields a graph whose clique-width cannot be bounded independently
from n and m. Thus it is not possible to bound the clique-width of the cartesian,
categorical, normal, or co-normal graph product in the clique-width of the involved
graphs.

Theory Comput Syst (2017) 60:346–376 355

Table 1 Graph products

Graph product Edge set = {{(u1, u2), (v1, v2)} |

Cartesian (u1 = v1 ∧ {u2, v2} ∈ EG2) ∨ (u2 = v2 ∧ {u1, v1} ∈ EG1)}
Categorical {u1, v1} ∈ EG1 ∧ {u2, v2} ∈ EG2 }
Normal (u1 = v1 ∧ {u2, v2} ∈ EG2)∨

({u1, v1} ∈ EG1 ∧ u2 = v2)∨
({u1, v1} ∈ EG1 ∧ {u2, v2} ∈ EG2)}

Co-Normal {u1, v1} ∈ EG1 ∨ {u2, v2} ∈ EG2 }
Lexicographic ({u1, v1} ∈ EG1) ∨ (u1 = v1 ∧ {u2, v2} ∈ EG2)}

The lexicographic graph product, which is also known as graph composition, of
two graphs G1 and G2 is denoted by G1[G2]. Let G0 = G1 and VG1 = {v1, . . . , vn}.
Then

Gi = Gi−1[vi/G2], i = 1, . . . , n

is a sequence of n substitutions, such that Gn defines graph G1[G2]. Thus we can
apply Theorem 4 to obtain the following results.

Corollary 1 Let G1 and G2 be two vertex-disjoint graphs, then it holds

nlcw(G1[G2]) = max(nlcw(G1), nlcw(G2))

and

cw(G1[G2]) = max(cw(G1), cw(G2)).

3.6 1-Sum

Let G1 and G2 be two vertex-disjoint graphs and let v ∈ VG1 and w ∈ VG2 . The 1-
sum of G1 and G2, denoted by G1 ⊕v,w G2, consists of the disjoint union of G1 and
G2 in which the two vertices v and w are identified. That is, the graph G1 ⊕v,w G2
has vertex set VG1 ∪ VG2 − {v, w} ∪ {z} and edge set

EG1 ∪ EG2 − {{v, v1} ∈ EG1 | v1 ∈ VG1}− {{w, w1} ∈ EG2 | w1 ∈ VG2}∪ {{z, z1} | z1 ∈ NG1(v) ∪ NG2(w)}.
Next we consider the NLC-width and clique-width of graph G1 ⊕v,w G2.

Theorem 5 Let G1 and G2 be two vertex-disjoint graphs, v ∈ VG1 be a vertex, and
w ∈ VG2 be a vertex. For m1 = max(nlcw(G1), nlcw(G2)) it holds

m1 ≤ nlcw(G1 ⊕v,w G2) ≤ m1 + 1

and for m2 = max(cw(G1), cw(G2)) it holds

m2 ≤ cw(G1 ⊕v,w G2) ≤ m2 + 1.

356 Theory Comput Syst (2017) 60:346–376

Proof Let G1 be a graph of NLC-width k1, v ∈ VG1 a vertex, G2 be a graph of
NLC-width k2, and w ∈ VG2 a vertex. Let T1 be an NLC-width k1-expression-tree
for G1 and T2 be an NLC-width k2-expression-tree for G2. We now construct an
expression-tree T for the graph G1 ⊕v,w G2 from T1 and T2, which uses m1 + 1
labels.

We start with a copy T of T2. Let x be the leaf of T that corresponds to the vertex
w. We relabel x to •m1+1 in order to substitute the vertex w by the vertex z. Now
we consider all union nodes x1 on the path from x to the root of T in T . If x is a
left (right) child of x1 and union node x1 is labeled by ×S and (lab(x, G(x1)), �) ∈
S ((�, lab(x, G(x1))) ∈ S) for some � ∈ [k2] then we relabel x1 by ×S′ , where
S′ = S ∪ {(m1 + 1, �) | (lab(x, G(x1)), �) ∈ S, � ∈ [k2]} (S′ = S ∪ {(�, m1 +
1) | (�, lab(x, G(x1))) ∈ S, � ∈ [k2]}). This is done in order to make in G1 ⊕v,w G2
all vertices adjacent to z which are adjacent to w in G2.

We insert a new root r labeled by ◦R and an edge from r to the old root of T into
T . The relabeling R maps every label from [m1] to m1 + 1 and label m1 + 1 to �,
if the leaf y in T1 which corresponds to vertex v is labeled by •�. Formally we have
R : [m1 + 1] → [m1 + 1] and R(a) = m1 + 1 if 1 ≤ a ≤ m1 and R(a) = � if
a = m1 + 1.

Further we insert a copy of T1 in T and replace the leaf y by the root r . The
labeling � for the vertex z ensures that all vertices which are adjacent to v in G1
become adjacent to z in G1 ⊕v,w G2. The new root of T is the root of T1. Now T

defines the graph G1 ⊕v,w G2.
SinceG1 andG2 are induced subgraphs ofG1⊕v,wG2, the NLC-width ofG1⊕v,w

G2 is at least the maximum of the values NLC-width(G1) and NLC-width(G2).
In the same way we can show the clique-width result. The only difference is that

we have to ensure a non-used label to realize the relabeling operation. We can assume
that m2 > 1 (otherwise cw(G1 ⊕v,w G2) = 1) and thus there is some label �′ ∈
[m2], �′ �= �, if the leaf y in T1 which corresponds to vertex v is labeled by •�.
Then the relabeling of tree T where w is labeled by m2 + 1 can be done as follows.
First we map all labels from [m2] to �′, then we map label m2 + 1 to �, and finally
we map label �′ to m2 + 1. The obtained tree can be glued to tree T1 as described
above.

The shown NLC-width bounds are tight for m1 = 1 and m1 = 2, which can be
verified by the 1-sums P2 ⊕v,w P3 and P5 ⊕v,w P6, where v and w are vertices of
degree 1 within the involved paths.

If v and w in the definition of the 1-sum are not isolated vertices in G1 and G2
the new vertex z is also called an articulation vertex of the graph G1 ⊕v,w G2, since
G1 ⊕v,w G2 without z has more connected components than G1 ⊕v,w G2. The maxi-
mal connected subgraphs of some graph G without any articulation vertex are called
blocks of G. The bounds of Theorem 5 imply that the NLC-width and clique-width
of a graph can be bounded by the maximum NLC-width or clique-width of its blocks
and its number of blocks. By a deeper analysis in [4, 53] it has been shown that the
clique-width of a graph can be bounded by the maximum clique-width of its blocks
plus 2, which implies that every graph of clique-width k contains a block whose
clique-width is at least k − 2.

Theory Comput Syst (2017) 60:346–376 357

3.7 Corona

The corona of graphs was introduced by Frucht and Harary in [29], when constructing
a graph whose automorphism group is the wreath product of the two component
automorphism groups. The corona of two vertex-disjoint graphs G1 and G2, denoted
by G1 ∧ G2, consists of the disjoint union of one copy of G1 and |VG1 | copies of G2
and each vertex of the copy of G1 is connected to all vertices of one copy of G2, i.e.
|VG1 | · |VG2 | edges are inserted in the disjoint union of the |VG1 | + 1 graphs.

The corona of G1 and G2 can also be obtained by applying 1-sum operations as
follows. Let VG1 = {v1, . . . , vn} be the vertex set of G1. For i = 1 . . . , n we take a
copy of G2 and insert a dominating vertex wi (cf. Section 4.1) to that copy and obtain
a graph G2,i . Then by the sequence of 1-sums

(. . . ((G1 ⊕v1,w1 G2,1) ⊕v2,w2 G2,2) . . .) ⊕vn,wn G2,n

we obtain the coronaG1∧G2. By this observation, we can bound the NLC-width and
the clique-width of G1 ∧ G2 in the NLC-width or the clique-width of its combined
graphs by applying the idea of the proof of Theorem 5 on every leaf of an expression-
tree for G1.

Theorem 6 Let G1 and G2 be two vertex-disjoint graphs. Further let m1 =
max(nlcw(G1), nlcw(G2)), then it holds

m1 ≤ nlcw(G1 ∧ G2) ≤ m1 + 1

and for m2 = max(cw(G1), cw(G2)) it holds

m2 ≤ cw(G1 ∧ G2) ≤ m2 + 1.

4 Unary Graph Operations and Graph Transformations

Let G = (VG, EG) be a non-empty graph and f be some unary graph transformation
which creates a new graph f (G) from G. In this section we consider the NLC-width
and clique-width of the graph f (G) with respect to the NLC-width or clique-width
of graph G.

4.1 Vertex Deletion and Vertex Addition

Vertex Deletion Let G be a graph and v ∈ VG. By G−v we denote the graph which
we obtain from G by removing vertex v and all edges incident to v. That is,

G − v = (VG − {v}, EG − {{v, v′} | v′ ∈ N(v)}).
Next we consider the NLC-width and clique-width of graph G − v.

Theorem 7 Let G be a graph and v ∈ VG, then it holds

1/2 · nlcw(G) ≤ nlcw(G − v) ≤ nlcw(G)

358 Theory Comput Syst (2017) 60:346–376

and

1/2 · cw(G) ≤ cw(G − v) ≤ cw(G).

Proof An NLC-width k-expression-tree and also a clique-width k-expression-tree
for the graph G − v can be obtained by a k-expression-tree T for the graph G by
removing the leaf x corresponding to vertex v and some obvious cleaning of the tree
because operations at predecessors of x lost one input.

Since we can obtain G by inserting v into G − v Theorem 8 leads the lower
bounds.

Vertex Addition Let G be a graph, N ⊆ VG, and v �∈ VG. By G+N v we denote the
graph which we obtain from G by inserting vertex v with neighborhood N(v) = N .
That is,

G +N v = (VG ∪ {v}, EG ∪ {{v, v′} | v′ ∈ N}).
In the special case where N(v) = {v′} for some v′ ∈ VG we call v a pendant vertex
and where N(v) = VG we call v a dominating vertex.

Next we consider the NLC-width and clique-width of graph G +N v.

Theorem 8 Let G be a graph, N ⊆ VG, and v �∈ VG, then it holds

nlcw(G) ≤ nlcw(G +N v) ≤ 2 · nlcw(G)

and

cw(G) ≤ cw(G +N v) ≤ 2 · cw(G).

Proof Let G be a graph of NLC-width k, N ⊆ VG, v �∈ VG be a vertex, and T be
an NLC-width k-expression-tree that defines the graph G. We now define an NLC-
width 2k-expression-tree that defines the graph G +N v. We start with a copy T ′ of
T .

First we separate the neighborhood of v from the non-neighborhood by introduc-
ing k further labels k + 1, . . . , 2k. Every leaf of T ′ that corresponds to a vertex from
G which is not from N will be relabeled from label •a , a ∈ [k], into •a+k .

Then we consider all nodes x on the paths from these relabeled leaves to the root of
the so defined tree. If node x is a union node labeled by some ×S , S ⊆ [k]2, then we
relabel x by ×S′ where S′ = {(a, b), (a, b+k), (a+k, b), (a+k, b+k) | (a, b) ∈ S}.
If node x is a relabeling node labeled by some ◦R , R : [k] → [k], then we relabel x

by ◦R′ , where R′ : [2k] → [2k] and R′(a) = R(a), if i ≤ k and R′(a) = R(a) + k,
if k + 1 ≤ a ≤ 2k. The resulting tree is denoted by T ′′.

In a last step we insert two additional nodes tv and tr labeled by •1 and
×{(1,a) | a∈[k]}, respectively and two additional arcs from tr to tv and from tr to the
root of T ′′ in T ′′, such that tv is the left child of tr .

The resulting tree is denoted by T ′′′. The tree T ′′′ is an NLC-width 2k-expression-
tree and T ′′′ defines the graph G +N v.

Since we can obtain G by removing v from G +N v, Theorem 7 leads the lower
bounds.

Theory Comput Syst (2017) 60:346–376 359

To prove the corresponding clique-width bound, we can construct a clique-width
2k-expression-tree T ′′ which defines the same graph as the tree T ′′ defined above
using the same ideas as for NLC-width. Then we have to find a label for vertex v,
which is not used in the graph defined by G(T ′′), since clique-width does not allow
edge insertions between equal labeled vertices. This can be done by relabeling all
vertices G(T ′′) labeled by k + 1, . . . , 2k by e.g. k + 1 and then we can take, for
k ≥ 2, one of the free labels e.g. label 2k to label the inserted vertex v. In the case
k = 1, G consists of isolated vertices and G +N v is the disjoint union of one K1,p,
for some p, and isolated vertices. Thus also in this case G +N v has clique-width
2k = 2.

The shown NLC-width bounds are tight for graphs of width 1 and 2. If we insert a
vertex in a path of length 2 to get a path of length 3, we insert a vertex in a graph of
NLC-width 1 and obtain a graph of NLC-width 2. If we insert vertex v in the graph
H − v of Fig. 2, we insert a vertex in a graph of NLC-width 2 and obtain a graph of
NLC-width 4.

Since the addition of a dominating vertex will be used in several of our construc-
tions (cf. Sections 3.7 and 4.12) we state the following result.

Corollary 2 Let G be a graph and v �∈ VG, then it holds

nlcw(G +VG
v) = nlcw(G)

and

cw(G +VG
v) = max(cw(G), 2).

Further it is possible to bound the NLC-width and clique-width of G +N v in the
NLC-width and clique-width of G and the vertex degree d = |N | of v. The main
idea is to label each vertex of G which should be adjacent to vertex v by a new label
from {k + 1, . . . , k + d}. Then, the new vertex can easily be inserted in a last step. If
we use clique-width operations we first have to relabel at least one of the used labels
from {1, . . . , k} to get a free label in order to insert the new vertex.

Corollary 3 Let G be a graph, N ⊆ VG, d = |N |, and v �∈ VG, then it holds

nlcw(G) ≤ nlcw(G +N v) ≤ nlcw(G) + d

and

cw(G) ≤ cw(G +N v) ≤ cw(G) + d.

The addition of a vertex of high degree d ′ = |VG|−d can be done more efficiently
by adding a vertex of degree d in the edge complement and building the edge com-
plement of the result. By the NLC-width bound of Section 4.8 we get the following
result.

Corollary 4 Let G be a graph, N ⊆ VG, d = |VG| − |N |, and v �∈ VG, then it holds

nlcw(G) ≤ nlcw(G +N v) ≤ nlcw(G) + d.

360 Theory Comput Syst (2017) 60:346–376

For clique-width the latter approach does not lead a better bound than that of
Theorem 8.

4.2 Edge Addition and Edge Deletion

Let G be a graph and v, w ∈ VG two vertices. For {v,w} �∈ EG we define by
G + {v,w} the graph we obtain from G by adding edge {v,w}. That is,

G + {v, w} = (VG, EG ∪ {{v,w}}).
For {v,w} ∈ EG we define by G−{v, w} the graph we obtain from G by deleting

edge {v,w}. That is,
G − {v, w} = (VG, EG − {{v,w}}).

Our next theorem shows that we can insert or delete an edge in a graph using at
most 2 more labels.

Theorem 9 Let G be a graph and v, w ∈ VG be two different vertices, then it holds

nlcw(G) − 2 ≤ nlcw(G ± {v, w}) ≤ nlcw(G) + 2

and

cw(G) − 2 ≤ cw(G ± {v, w}) ≤ cw(G) + 2.

Proof In order to show the upper bound on NLC-width, let G be a graph of NLC-
width k and let v and w be two non-adjacent vertices of G. Further, let T be an
NLC-width k-expression-tree that defines G. We now define an NLC-width (k + 2)-
expression-tree that defines G + {v, w}. We start with a copy T ′ of T . Let x and y

be the leaves of T ′ that correspond to vertices v and w, respectively, of the graph G.
First, we relabel leaf x and y in T ′ by •k+1 and •k+2, respectively.

Next we consider all union nodes x1 on the path from x to the root of T ′ in
T ′. If x is a left (right) child of x1 and union node x1 is labeled by ×S and
(lab(x, G(x1)), �) ∈ S ((�, lab(x, G(x1))) ∈ S) for some � ∈ [k] then we rela-
bel x1 by ×S′ , where S ′ = S ∪ {(k + 1, �) | (lab(x, G(x1)), �) ∈ S, � ∈ [k]}
(S′ = S ∪ {(�, k + 1) | (�, lab(x, G(x1))) ∈ S, � ∈ [k]}). This is done in order to
make all vertices which are adjacent to v in G also adjacent to v in G+{v,w}. In the
same way we modify all union nodes on the path from y to the root of T ′ in order to
preserve the adjacencies of w in G + {v, w}.

Last we relabel the least common predecessor z of x and y in T ′ to create the edge
between v and w. Since z is always a union node in T ′, z is labeled by ×S for some
S ⊆ [k]2. If x is the left (right) child and y is the right (left) child of z in T ′ then we
relabel z by ×S∪{(k+1,k+2)} (×S∪{(k+2,k+1)}).

The resulting tree is denoted by T ′′. The tree T ′′ is an NLC-width (k + 2)-
expression-tree and T ′′ defines the graph G + {v, w}.

The proof for edge deletion runs similar, we just have to leave out the above
described relabeling of the least common predecessor z of x and y in T ′ to create the
edge between v and w.

Theory Comput Syst (2017) 60:346–376 361

e

G H

v w v w

Fig. 2 The graph G has NLC-width 2. The graph H can be obtained from G by adding edge e and H has
NLC-width 4

For the lower bounds assume that H is obtained from G by inserting (deleting)
an edge e and it holds NLC-width(H) < NLC-width(G) − 2. Then by deleting
(inserting) edge e from (in) H we obtain some graph G′ which is isomorphic to G.
By our shown upper bound we conclude that NLC-width(G′) < NLC-width(G),
which leads to a contradiction.

The results for clique-width can be shown by similar arguments.

If we add or delete an edge in a graph of NLC-width 1, i.e. a co-graph, then we
always obtain a graph of NLC-width at most 2, since we can label both end vertices
of the new edge (both end vertices of the deleted edge) by the same label 2.

The graphs in Fig. 2 can be used to show that the NLC-width bounds of Theorem 9
cannot be improved for k = 2. For the edge addition we observe that the graph G has
NLC-width 2 and the graph H , which we obtain after inserting edge e = {v,w} in G,
has NLC-width 4 which was found by a computer program.7 For the edge deletion we
notice that the complement graph G of G has NLC-width 2 and contains edge {v,w}.
If we remove edge {x, y} from G we obtain the graph H which has NLC-width 4.

Our last theorem gives an answer of Question 6.3 of [23], which asks how different
the clique-width of two graphs can be if they differ by exactly one edge. It remains
to verify whether the given clique-width bounds of Theorem 9 are tight.

Problem 1 Is there a graph G and v, w ∈ VG, such that |cw(G)−cw(G+{v,w})| =
2? Is there a graph H and {v, w} ∈ EH , such that |cw(H) − cw(H − {v,w})| = 2?
Or can the results on the clique-width of Theorem 9 be improved?

4.3 Edge Subdivision

Let G be some graph u �∈ VG, and {v, w} ∈ EG. The subdivision of {v,w} in G,
Subdiv(G, v, w) for short, has vertex set VG ∪ {u} and edge set EG − {{v,w}} ∪
{{v, u}, {w, u}}. The subdivision operation is also known as elementary refinement.

Next we analyze the effect of an edge subdivision on the NLC-width and clique-
width of a given graph.

Theorem 10 Let G be a graph and {v, w} ∈ EG an edge, then it holds

nlcw(G) − 2 ≤ nlcw(Subdiv(G, v, w)) ≤ nlcw(G) + 2

7We implemented an algorithm which takes as input a graph G and an integer k and which decides whether
nlcw(G) ≤ k.

362 Theory Comput Syst (2017) 60:346–376

and

cw(G) − 2 ≤ cw(Subdiv(G, v, w)) ≤ cw(G) + 2.

Proof First we want to show the upper bound for NLC-width. Let G be a graph of
NLC-width k and let {v, w} be an edge of G. Let T be an NLC-width k-expression-
tree that definesG. We now define an NLC-width (k+2)-expression-tree that defines
Subdiv(G, v, w).

Let T ′ be defined for T as in the proof of Theorem 9 for edge removing. In T ′ we
insert a new root r labeled by ×{(k+1,k+1),(k+2,k+1)} and a new node z (defining the
vertex u which subdivides edge {v, w}) labeled by •k+1 and two edges, one from r

to z and one from r to the root of T ′ such that z is the right child of r .
The resulting tree is denoted by T ′′. Then T ′′ is an NLC-width (k+2)-expression-

tree and it is easy to show that T ′′ defines the graph Subdiv(G, v, w).
For the lower bounds assume that the graph Subdiv(G, v, w) is obtained

from G by subdividing an edge {v, w} and NLC-width(Subdiv(G, v, w)) <

NLC-width(G) − 2. Then we obtain by removing the inserted vertex u and
inserting {v,w} in Subdiv(G, v, w) a graph G′ isomorphic to graph G with
NLC-width(G′) < NLC-width(G), by our upper bound in Theorem 9, and thus a
contradiction.

Since clique-width operations do not allow edge insertions between equal labeled
vertices, we have to do one additional relabeling ρk+1→k+2 in order to label vertices
v and w in the proof of Theorem 9 by k +2 before inserting the new vertex in T .

The upper bound for NLC-width(Subdiv(G, v, w)) of Theorem 10 cannot be
improved, since first subdividing an edge and deleting the new vertex corresponds to
edge deletion, which needs two additional labels in general, see Fig. 2.

In the appendix of [23] it is shown that in a graph G of clique-width at least 4
every path of length at least 5, consisting of vertices which all have degree 2 in G and
one end vertex of degree 1 in G, can be extended by subdivisions without increasing
the clique-width of G.

There are several examples where a subdivision increases NLC-width and clique-
width, e.g. a P3, and several examples where a subdivision does not change
NLC-width and clique-width, e.g. a P4. It remains open, whether a subdivision can
decrease the NLC-width and clique-width of graphs.

Problem 2 Is there some graph G and an edge {v,w} ∈ EG, such that
nlcw(Subdiv(G, v, w)) < nlcw(G) or cw(Subdiv(G, v, w)) < cw(G)?

At least after subdividing all edges of a graph the resulting graph is bipartite.
If we subdivide every edge of a graph G we obtain the so-called incidence graph
I (G) of the graph G. Incidence graphs have unbounded clique-width in general, but
incidence graphs of graphs of bounded tree-width have bounded clique-width, since
subdivisions do not change the tree-width. The following very close bound has been
shown in [7].

cw(I (G)) ≤ tw(G) + 3 (4)

Theory Comput Syst (2017) 60:346–376 363

Since there exist graphs of tree-width k and clique-width at least 2� k
2 �−1 by [14],

the transformation from I (G) to G can increase clique-width exponentially. Further
applications of bound (4) can be found in [17].

4.4 Vertex Identification and Edge Contraction

For some graph G and two different vertices v, w ∈ VG the identification of v and w

in G, Ident (G, v, w) for short, has vertex set VG − {v,w} ∪ {u} and edge set

EG − {{v′, v′′} | v′ ∈ VG, v′′ ∈ {v, w}}
∪ {{v′, u} | v′ �∈ {v, w} and {v′, v} ∈ EG or {v′, w} ∈ EG}.

Next we analyze the identification of two vertices in a graph with respect to the
NLC-width and clique-width of the involved graphs.

Theorem 11 Let G be a graph and v, w ∈ VG, then it holds

1/4 · nlcw(G) ≤ nlcw(Ident (G, v, w)) ≤ 2 · nlcw(G)

and

1/4 · cw(G) ≤ cw(Ident (G, v, w)) ≤ 2 · cw(G).

Proof For the upper bound we can delete v, w and insert u with neighborhood
N(v) ∪ N(w) (cf. Theorem 8). The lower bound holds since we can obtain G from
Ident (G, v, w) by removing u and inserting the vertices v and w, each with a factor
of 2 (cf. Theorem 8).

If the two vertices v and w of an identification are adjacent, i.e. {v,w} ∈ EG,
we call the corresponding operation edge contraction, which is a well known minor
operation. Courcelle has shown in [16] that there is a graph of clique-width 3, which
yields a graph of clique-width greater than 3 by the contraction of a single edge. This
disproves Conjecture 4.4 in [49] on the closure of graphs of bounded clique-width
under edge contractions.

In the appendix of [23] it is shown that in a graph G of clique-width at least 4
every path of length at least 2, consisting of vertices which all have degree 2 in G

and one end vertex of degree 1 in G, can be decreased by edge contractions without
increasing the clique-width of G.

4.5 Subgraph

Subgraph For an arbitrary subgraph H of a graph G, and thus also for an arbitrary
minor, the clique-width of H and NLC-width of H cannot be bounded in the clique-
width or NLC-width of G. This can easily be shown by the example of complete
graphs, which all have NLC-width 1 and clique-width 2, while their subgraphs may
have arbitrary large NLC-width and clique-width. By taking the number of removed
edges into account, the bounds of Section 4.2 can be used to estimate the NLC-width
and clique-width of subgraphs.

364 Theory Comput Syst (2017) 60:346–376

Induced Subgraph Since every induced subgraph H of a graph G can be realized
by vertex deletions, by Section 4.1 it holds

nlcw(H) ≤ nlcw(G)

and
cw(H) ≤ cw(G).

Although taking induced subgraphs does not increase the NLC-width and clique-
width of a graph, characterizations for the classes NLCk , k ≥ 2, and CWk , k ≥ 3, by
sets of forbidden induced subgraphs are unknown until now.

Quotient If we remove all but one vertices of a module V ′ ⊆ VG from graph G, we
denote the obtained graph as a quotient graph of G. Since every quotient graph of G

is an induced subgraph of G, the quotient operation does not increase NLC-width or
clique-width.

4.6 Power of a Graph

The d-th power Gd of a graph G is a graph with the same set of vertices as G and an
edge between two vertices if and only if there is a path of length at most d between
them. Suchan and Todinca have shown in [62] the following bound.

nlcw(Gd) ≤ 2 · (d + 1)nlcw(G)

4.7 Line Graph

The line graph L(G) of a graph G has a vertex for every edge of G and an edge
between two vertices if the corresponding edges of G are adjacent [64]. For some
line graph L(G), the graph G is called the root graph of L(G). Even for complete
graphs Kn, the line graph operation generates graphs whose NLC-width cannot be
bounded in the NLC-width of their root graphs [34]. But it is possible to bound the
NLC-width and clique-width of line graphs in the tree-width of their root graphs, and
even vice versa by the following bounds, which have been shown in [34].

1/4 · (tw(G) + 1) ≤ nlcw(L(G)) ≤ tw(G) + 2

1/4 · (tw(G) + 1) ≤ cw(L(G)) ≤ 2 · tw(G) + 2

4.8 Edge Complement

The edge complement graph G of a graph G has the same vertex set as G and two
vertices in G are adjacent if and only if they are not adjacent in G, i.e.

G = (VG, {{u, v} | u, v ∈ VG, u �= v, {u, v} �∈ EG}).
The following bounds and proof ideas are known from [63] and [23].

Theorem 12 Let G be a graph, then

nlcw(G) = nlcw(G)

Theory Comput Syst (2017) 60:346–376 365

and

1/2 · cw(G) ≤ cw(G) ≤ 2 · cw(G).

Proof Let T be an NLC-width k-expression-tree that defines the graph G. We now
define a new NLC-width k-expression-tree that defines the graph G. Let T ′ be
a copy of T . Every node labeled by ×S in T ′ is relabeled by ×S′ , where S′ =
{(a, b) | (a, b) �∈ S, a, b ∈ [k]}. Finally tree T ′ is an NLC-width k-expression-tree
and defines graph G. Since the complement of the complement graph is the original
graph, the claimed equality holds true.

Let G be a graph of clique-width k. In order to show the upper bound on the
clique-width of graph G we assume that we have given a separated 2k-expression
for G (cf. Section 2 and [23]), which allows to exchange the existing edges by the
non-existing edges. As above, since the complement of the complement graph is the
original graph, the lower bound follows.

4.9 Bipartite Complement

Let G be a bipartite graph with vertex partition VG = V1 ∪ V2, such that there are
no edges between two vertices of V1 and no edges between two vertices of V2. The

bipartite complement G
bip

of G has the same vertex set as G and its edge set is
obtained by complementing the edges between V1 and V2, i.e.

G
bip = (VG, {{u, v} | {u, v} �∈ EG, u ∈ V1, v ∈ V2}).

The following clique-width bound is known from [52].

Theorem 13 Let G be a bipartite graph, then

1/2 · nlcw(G) ≤ nlcw(G
bip

) ≤ 2 · nlcw(G)

and

1/4 · cw(G) ≤ cw(G
bip

) ≤ 4 · cw(G).

Proof Let G = (V , E) be a bipartite graph of clique-width k and T be a clique-width
k-expression-tree for G. By Theorem 12 there is a clique-width 2k-expression-tree
T ′ for graph G. If we denote the bipartition G by V1 ∪ V2, then we have to choose
from G only those edges where one vertex is from V1 and one vertex is from V2.
Therefore in [52] for every label i ∈ [2k] two labels i1 and i2 for the vertices in V1
and V2 are introduced. We modify the nodes x in T ′ as follows.

1. If x is a leaf labelled by •i corresponding to a vertex from V1 then we relabel x

by •i1 and if x is a leaf labelled by •i corresponding to a vertex from V2 then we
relabel x by •i2 .

2. If x represents a relabeling operation ρi→j and y is the direct predecessor of x,
then we relabel x by ρi1→j1 , insert a further node x′ labelled by ρi2→j2 into T ′,
and two new arcs from y to x′ and from x′ to x.

366 Theory Comput Syst (2017) 60:346–376

3. If x represents an edge insertion operation ηi,j and y is the direct predecessor of
x, then we relabel x by ηi1,j2 and insert a further node x′ labelled by ηi2,j1 into
T ′, and two new arcs from y to x′ and from x′ to x.

This leads a clique-width 4k-expression-tree for graph G
bip

. Since the bipartite com-
plement of the bipartite complement graph is the original graph, the lower bound
follows.

The NLC-width bounds can be obtained even easier, since by Theorem 12 there is
an NLC-width k-expression-tree T ′ for graph G. Thus we can obtain an NLC-width

2k-expression-tree for graph G
bip

.

4.10 Local Complementation

For some graph G and a vertex v ∈ VG the local complementation LC(G, v) is
defined by Bouchet in [6] as follows. The graph LC(G, v) is obtained from the graph
G by replacing the subgraph of G defined by N(v) by its edge complement, i.e.
LC(G, v) has vertex set VG and edge set

EG − {{u, w} | u, w ∈ NG(v), {u, w} ∈ EG}
∪ {{u, w} | u, w ∈ NG(v), u �= w, {u, w} �∈ EG}.

In Corollary 2.7 in [55] it is shown that the rank-width of a graph does not change
by applying local complementations, which leads to a characterization of graphs of
rank-width at most k by finitely many forbidden vertex-minors (i.e. taking induced
subgraphs and local complementations).

Next we consider the NLC-width and clique-width of graph LC(G, v).

Theorem 14 Let G be a graph and v ∈ VG, then

1/2 · nlcw(G) ≤ nlcw(LC(G, v)) ≤ 2 · nlcw(G)

and

1/3 · cw(G) ≤ cw(LC(G, v)) ≤ 3 · cw(G).

Proof Let T be an NLC-width k-expression-tree that defines the graph G. We now
define a new NLC-width 2k-expression-tree that defines the graph LC(G, v). We
start with a copy T ′ of T . The main idea is to separate the labels of the vertices in
N(v) from the labels of the vertices in V − N(v). Let n′ = |N(v)| and x1, . . . , xn′
be the leaves of T ′ that corresponds to vertices in N(v) of G.

For every leaf xi , i = 1, . . . , n′, we modify the nodes x on the paths from xi to the
root of T ′ in T ′ as follows.

1. If x is a leaf xi , i = 1, . . . , n′, labeled by •� in T ′, then we relabel x by •�+k .
2. If x is a relabeling node labeled by ◦R , then we relabel x by ◦R′ , such that

R′(a) = R(a), if 1 ≤ a ≤ k and R′(a) = R(a − k) + k, if k + 1 ≤ a ≤ 2k.
3. If x is a union node labeled by ×S , then we relabel x by ×S′ , such that S′ =

S ∪ S1 ∪ S2, where S1 = {(a + k, b + k) | (a, b) �∈ S} and S2 = {(a, b + k), (a +
k, b) | (a, b) ∈ S}. Set S1 creates an edge between two vertices in N(v), if and

Theory Comput Syst (2017) 60:346–376 367

Fig. 3 The graph G on the left
side and has NLC-width 1
(clique-width 2). The graph H

on the right side has NLC-width
2 (clique-width 3)

G H

vv

only if these vertices are not adjacent in G and set S2 creates an edge between
one vertex of VG −N(v) and one vertex of N(v), if and only if these vertices are
adjacent in G.

These three steps create the complement graph of the subgraph induced by N(v).
The resulting tree is denoted by T ′′. The tree T ′′ is an NLC-width 2k-expression-tree
and defines graph LC(G, v).

The lower bound follows since by L(L(G, v), v) we obtain G.
For the clique-width bounds we need k additionally labels to distinguish the ver-

tices in N(v) from those in V − N(v) and k further labels to create the complement
graph of the subgraph induced by vertex set N(v).

The graph G given in Fig. 3 (which is called paw or 3-pan in [9]) shows that the
local complementation can increase or decrease the NLC-width and clique-width of
a graph by 1. If we apply a local complementation on one of the vertices of degree 2
in G, we obtain a path on four vertices.

The proof of Theorem 14 implies the following bounds for the NLC-width and
clique-width of the graph LC(G, v) using the vertex degree of v in the graph G.

Corollary 5 Let G be a graph and v ∈ VG, then

nlcw(LC(G, v)) ≤ nlcw(G) + min(nlcw(G), degG(v))

and
cw(LC(G, v)) ≤ cw(G) + 2 · min(cw(G), degG(v)).

Two graphs G and G′ on the same vertex set are called locally equivalent if there
is a sequence of vertices (v1, . . . , v�) such that G0 = G, Gi = LC(Gi−1, vi) for
i = 1, . . . , � and G� = G′.

Theorem 15 Let G be a graph and G′ a graph which is locally equivalent to G, then
it holds

nlcw(G′) ≤ 2nlcw(G)

and
cw(G′) ≤ 2cw(G)+1 − 1.

Proof To show the clique-width bound let G be a graph of clique-width k. By The-
orem 2 we know that G has rank-width at most k. Since the rank-width of a graph
does not change by applying local complementations (cf. Corollary 2.7 in [55]), every
graph G′ which is obtained by a sequence of local complementations on G also has

368 Theory Comput Syst (2017) 60:346–376

rank-width at most k. Applying Theorem 2, we know that G′ has clique-width at
most 2k+1 − 1.

The NLC-width bound follows in the same way by Theorem 3.

4.11 Seidel Switching

The switching operation is defined by Seidel in connection with regular structures,
such as systems of equiangular lines, strongly regular graphs, or the so-called two-
graphs, see [59–61]. Several examples of applications of Seidel switching can be
found in algorithms, e.g. in a polynomial-time algorithm for the P3-structure recog-
nition problem [39] and for the construction of bi-join decomposition of graphs [25].
Let G be a graph and v ∈ VG be a vertex. The graph S(G, v) has the same vertex
set as G and its edge set is the edge set of G but changing the neighbors of v to non
neighbors and vice versa. That is, the graph S(G, v) has vertex set VG and edge set

EG − {{v, w} | w ∈ VG, {v, w} ∈ EG}
∪ {{v, w} | w ∈ VG, v �= w, {v,w} �∈ EG}.

Next we will show that one switching operation in a graph increases or decreases
its NLC-width and clique-width by at most one.

Theorem 16 Let G = (VG, EG) be a graph and v ∈ VG, then it holds

nlcw(G) − 1 ≤ nlcw(S(G, v)) ≤ nlcw(G) + 1

and
cw(G) − 1 ≤ cw(S(G, v)) ≤ cw(G) + 1.

Proof Let T be an NLC-width k-expression-tree that defines G and v ∈ VG. We now
define a new NLC-width (k + 1)-expression-tree that defines S(G, v). We start with
a copy T ′ of T . Let x be the leaf of T ′ that corresponds to vertex v of G. We relabel
the leaf x in T ′ by •k+1.

Now we consider the union nodes x1 on the path from x to the root of T ′ in
T ′. If x is a left (right) child of x1 and union node x1 is labeled by ×S then we
relabel x1 by ×S′ , where S′ = S ∪ {(k + 1, �) | (lab(x, G(x1)), �) �∈ S, � ∈ [k]}
(S′ = S ∪ {(�, k + 1) | (�, lab(x, G(x1))) �∈ S, � ∈ [k]}). This is necessary in order
do make all vertices adjacent to v which are not adjacent to v in G, and vice versa.

The resulting tree is denoted by T ′′. The tree T ′′ is an NLC-width (k + 1)-
expression-tree and T ′′ defines the graph S(G, v).

The lower bound follows since by S(S(G, v), v) we obtain G.
In order to show the bound on the clique-width of graph S(G, v) we assume that

we have given an irredundant expression for G (cf. Section 2).

The NLC-width bounds given in Theorem 16 are best possible. For the upper
bound consider the graph G of NLC-width 1 in Fig. 3. A switching operation on the
graph G at one of the vertices of degree 2 creates a graph H which is isomorphic to
a P4, which has NLC-width 2. Further by S(H, v) we obtain the graph G, thus the
lower bound is best possible too.

Theory Comput Syst (2017) 60:346–376 369

Two graphs G and G′ on the same vertex set are called switching equivalent if
there is a sequence of vertices (v1, . . . , v�) such that G0 = G, Gi = S(Gi−1, vi)

for i = 1, . . . , � and G� = G′. It is shown in [11] that deciding if two graphs are
switching equivalent is an isomorphism complete problem.

Theorem 17 Let G be a graph and G′ a graph which is switching equivalent to G

by sequence (v1, . . . , v�), then it holds

nlcw(G′) ≤ 2nlcw(G)+�

and
cw(G′) ≤ 2cw(G)+�+1 − 1.

Proof Let G = (V , E) be a graph of NLC-width k. In order to express a sequence
(v1, . . . , v�) of � switching operations by local complementations we insert 2� ver-
tices u1, . . . , u� andw1, . . . , w� intoG, such thatN(ui) = V −{vi} andN(wi) = V .
The resulting graph G′ has NLC-width at most k + � (cf. Section 4.1) and rank-
width at most k + � (cf. Theorem 3). Further the sequence of local complementations
(u1, w1, . . . , u�, w�) on G′ creates a graph G′′, which is isomorphic to the graph
obtained by the sequence (v1, . . . , v�) of switching operations on graph G. Since
the rank-width of a graph does not change by applying local complementations (cf.
Corollary 2.7 in [55]), graph G′′ also has rank-width at most k + �. By Theorem 3
we know that G′′ has NLC-width at most 2k+�.

The clique-width result can be obtained using the same arguments but using
Theorem 2 instead of Theorem 3.

Problem 3 Can we bound the NLC-width and clique-width of G′ in Theorem 17
independently from the number of applied switching operations �? (For locally
equivalent graphs and Seidel complementation equivalent graphs this is possible by
Theorems 15 and 19.)

4.12 Seidel Complementation

The Seidel complementation operation is defined by Limouzy in [50] in order to give
a characterization for permutation graphs. Let G be a graph and v ∈ VG be a vertex.
The graph SC(G, v) has the same vertex set as G and its edge set is the edge set of G

but complementing the edges between the neighborhood and the non-neighborhood
of v. That is, the graph SC(G, v) has vertex set VG and edge set

EG�{{x, y} | {v, x} ∈ EG, {v, y} �∈ EG},
where A�B = (A − B) ∪ (B − A) denotes the symmetric difference of two sets A

and B.
Next we consider the NLC-width and clique-width of graph SC(G, v).

Theorem 18 Let G = (VG, EG) be a graph and v ∈ VG, then it holds

1/2 · nlcw(G) − 1 ≤ nlcw(SC(G, v)) ≤ 2 · nlcw(G) + 1

370 Theory Comput Syst (2017) 60:346–376

and

1/2 · cw(G) − 1 ≤ cw(SC(G, v)) ≤ 2 · cw(G) + 1.

Proof Let T be an NLC-width k-expression-tree that defines the graph G. We now
define a new NLC-width (2k + 1)-expression-tree that defines the graph SC(G, v).
We start with a copy T ′ of T . The main idea is to separate the labels of the vertices
in sets {v}, N(v), and V − (N(v) ∪ {v}) pairwise from each other.

First we separate the label of vertex v. Let x0 be the leaf of T ′ that corresponds
to vertex v of G. We relabel the leaf x0 in T ′ by •2k+1. Now we consider the
union nodes x on the path from x0 to the root of T ′ in T ′. If x0 is a left (right)
child of x and union node x is labeled by ×S then we relabel x by ×S′ , where
S′ = S ∪ {(2k + 1, �) | (lab(x, G(x)), �) ∈ S, � ∈ [k]} (S′ = S ∪ {(�, 2k +
1) | (�, lab(x, G(x))) ∈ S, � ∈ [k]}). By this process the adjacencies of v do not
change.

Next we separate the labels of the vertices in V − (N(v) ∪ {v}) and complement
the edges between the neighborhood and the non-neighborhood of v. Let n′ = |V −
(N(v) ∪ {v})| and x1, . . . , xn′ be the leaves of T ′ that correspond to vertices in V −
(N(v) ∪ {v}) of G. For every leaf xi , i = 1, . . . , n′, we modify the nodes x on the
paths from xi to the root of T ′ in T ′ as follows.

1. If x is a leaf xi , i = 1, . . . , n′, labeled by •� in T ′, then we relabel x by •�+k .
2. If x is a relabeling node labeled by ◦R , then we relabel x by ◦R′ , such that

R′(a) = R(a), if 1 ≤ a ≤ k and R′(a) = R(a − k) + k, if k + 1 ≤ a ≤ 2k.
3. If x is a union node labeled by ×S , then we relabel x by ×S′ , such that S′ =

S ∪ S1 ∪ S2, where S1 = {(a + k, b + k) | (a, b) ∈ S} and S2 = {(a, b + k), (a +
k, b) | (a, b) �∈ S}. Set S creates an edge between two vertices in N(v), set S1
creates an edge between two vertices in V − (N(v) ∪ {v}), and set S2 creates an
edge between one vertex in N(v) and one vertex in V − (N(v)∪{v}), if and only
if these vertices are not adjacent in G.

These three steps complement the edges between the neighborhood and the non-
neighborhood of v. The resulting tree is denoted by T ′′. The tree T ′′ is an NLC-width
(2k + 1)-expression-tree and defines graph SC(G, v).

The lower bound follows since by SC(SC(G, v), v) we obtain G.
In order to show the bound on the clique-width of graph SC(G, v) we assume that

we have given an irredundant expression for G (cf. Section 2 and [23]).

Two graphs G and G′ on the same vertex set are called Seidel complementation
equivalent if there is a sequence of vertices (v1, . . . , v�) such that G0 = G, Gi =
SC(Gi−1, vi) for i = 1, . . . , � and G� = G′.

Theorem 19 Let G be a graph and G′ a graph which is Seidel complementation
equivalent to G, then it holds

nlcw(G′) ≤ 2nlcw(G)

Theory Comput Syst (2017) 60:346–376 371

Table 2 Let G1 and G2 be two graphs of NLC-width (or clique-width) k1 and k2, respectively, and f be
a binary graph transformation of the first column. The second column of the table shows the upper bound
of the NLC-width of graph f (G1,G2). The third column gives the results for clique-width

Transformation f nlcw(f (G1,G2)) cw(f (G1,G2))

Disjoint union max(k1, k2) max(k1, k2)

Join max(k1, k2) max(k1, k2, 2)

Substitution max(k1, k2) max(k1, k2)

Composition max(k1, k2) max(k1, k2)

1-sum max(k1, k2) + 1 max(k1, k2) + 1

Corona max(k1, k2) + 1 max(k1, k2) + 1

and

cw(G′) ≤ 2cw(G)+1 − 1.

Proof LetG be a graph, v ∈ VG be a vertex, andG′ = SC(G, v). LetG0 be the graph
obtained from G by adding a dominating vertex v0 and G′

0 be the graph obtained
from G′ by adding a dominating vertex v0. It is easy to check that G′

0 can be obtained
from G0 (up to isomorphism) by applying three local complementations8 at v, at v0,
and again at v. This implies that the rank-width of G′

0 and G0 are equal (cf. Corollary
2.7 in [55]).

Now, suppose that G1 and G2 are two Seidel complementation equivalent graphs.
Then G1,0 and G2,0 (both obtained by adding a dominating vertex v0) are locally
equivalent and thereforeG1,0 andG2,0 have the same rank-width. Then the following
estimations holds.

nlcw(G1) = nlcw(G1,0) by Corollary 2
≤ 2rw(G1,0) by Theorem 3
= 2rw(G2,0) by Corollary 2.7 in [55]
≤ 2nlcw(G2,0) by Theorem 3
= 2nlcw(G2) by Corollary 2

Using Theorem 2 instead of Theorem 3 one can prove the clique-width bound.
Since graphs of clique-width 1 are edgeless and for these graphs a Seidel comple-
mentation does not change the graph, we can restrict to graphs of clique-width is at
least 2, such that the addition of dominating vertices does not change the width by
Corollary 2.

8The application of three local complementations at v, at v0, and again at v for some edge {v, v0} is also
known as pivoting the edge {v, v0}, see [55].

372 Theory Comput Syst (2017) 60:346–376

Table 3 Let G be a graph of NLC-width (or clique-width) k and f be a unary graph transformation of the
first column. The second column of the table shows the upper bound of the NLC-width of graph f (G).
The third column gives the results for clique-width

Transformation f nlcw(f (G)) cw(f (G))

Vertex insertion 2k 2k

Edge insertion k + 2 k + 2

Edge deletion k + 2 k + 2

Edge subdivision k + 2 k + 2

Edge contraction 2k 2k

Induced subgraph k k

Edge complement k 2k

Bipartite complement 2k 4k

Local complementation 2k 3k

Switching k + 1 k + 1

Seidel complementation 2k + 1 2k + 1

5 Conclusions and Outlook

We considered a number of binary graph transformations f which create a new graph
f (G1, G2) from two graphs G1 and G2. In all cases in which it is possible to bound
the NLC-width and clique-width of the combined graph f (G1, G2) in the NLC-width
and clique-width of graphs G1 and G2 we show how to compute the corresponding
expression in linear time in the size of the corresponding expressions for G1 and G2.
Thus our results are constructive. In Table 2 we compare these results.

Furthermore we have shown how the NLC-width and clique-width of a given
graph change if we apply certain unary graph transformation f on this graph. In all
cases in which it is possible to bound the NLC-width and clique-width of the result-
ing graph f (G) we also show how to compute the corresponding expression in linear
time in the size of the corresponding expression for G. Although clique-width is the
more famous concept, we obtain in all cases closer bounds for NLC-width(f (G)) for
local transformations f . In Table 3 we compare our results concerning unary graph
transformations.

Since the computation of NLC-width and clique-width is NP-hard [28, 34], it
seems to be difficult to find an optimal k-expression for some given graph. Our
results may help to find an expression for some graph of interest f (G), if we have
an expression for graph G and f is one of the transformations listed in Table 3. For
example, we can construct an NLC-width (k + �)-expression for every graph which
is switching equivalent to some graph with known NLC-width k-expression, where �

is the number of necessary switching transformations. As well, we can construct an
(k + 2)-expression for every graph which differs only by one edge from a graph with
known k-expression.

Our estimations can also be made for the clique-width of directed graphs, which
was defined in [23] and for the NLC-width of directed graphs, which was defined in
[35]. In order to carry over the notations local complementation, switching, Seidel

Theory Comput Syst (2017) 60:346–376 373

complementation, and edge complement, we define for some directed graph G =
(V , E) its complement digraph by

G = (V , {(u, v) | (u, v) �∈ E, u, v ∈ V, u �= v}).
For the neighborhood of a vertex v ∈ V the sets N+

G(v) = {u ∈ V | (v, u) ∈ E},
N−

G(v) = {u ∈ V | (u, v) ∈ E}, and NG(v) = N+
G(v) ∪ N−

G(v) can be chosen. In
this way all bounds of Tables 2 and 3 can be shown in the same way as done for the
parameters on undirected graphs in this paper.

Furthermore linear clique-width and linear NLC-width, which are defined in [32],
can be bounded when considering graph operations. One difference to the general
versions of the parameters is that the linear NLC-width and the linear clique-width
do not allow the disjoint union or join of two graphs on more than one vertex. Thus
for the transformations listed in Table 2 the linear NLC-width and linear clique-width
bounds for disjoint union rises to max(k1, k2)+1 and for join rises to max(k1, k2)+1.
A further difference is that the linear clique-width of G is at most linear clique-width
of G plus 1 [32] while the linear NLC-width does not change as known from the
general version. This implies that for the transformations listed in Table 3 the linear
clique-width bounds for edge complement reduces to k+1, for bipartite complement
reduces to 2k + 2, and for local complementation reduces to 2k + 1. All other men-
tioned bounds of Tables 2 and 3 can also be shown for the linear NLC-width and the
linear clique-width.

There are several open questions. In nearly all cases, it remains to show that our
bounds are best possible, or to improve them. Especially the clique-width bounds on
bipartite complement and local complementation seem to be improvable.

Further it remains open if there are graph transformations (cf. Section 1 for the def-
inition), which do not increase the clique-width or NLC-width of a given graph and
make the given graph smaller, in order to define useful reduction rules or a character-
ization by forbidden graphs for graphs of bounded clique-width or graphs of bounded
NLC-width. Among our considered transformations only the induced subgraph trans-
formation does not increase the clique-width or NLC-width, which implies that there
exist characterizations by sets of forbidden induced graphs for NLCk and CWk for
every integer k. Unfortunately only for NLC1 and CW2, i.e. the set of all co-graphs,
these sets are known. For the sets NLC3 there is no characterization by a set of finitely
many forbidden induced subgraphs, since every n-vertex cycle Cn with n ≥ 11 has
NLC-width 4. The same holds for the set CW3, since every n-vertex cycle Cn with
n ≥ 7 has clique-width 4.

It is also an open problem to find graph operations that increase or decrease the
NLC-width or clique-width of some graph by a fixed constant or a fixed factor,
e.g. an operation such that for every graph G there is a positive integer c such that
nlcw(f (G)) = c + nlcw(G) or nlcw(f (G)) = c · nlcw(G). This would imply a use-
ful means in order to decrease NLC-width or clique-width in a controlled way. For
rank-width the transformation from G = (V , E) into the bipartite graph B(G) =
(V ′, E′), where V ′ = V × {1, 2, 3, 4} and

E′ = {{(v, i), (v, i + 1)} | v ∈ V, i ∈ [3]} ∪ {{(v, 1), (w, 4)} | {v,w} ∈ E}
increases the width by a factor of c = 2, see Lemma 5.3 in [54].

374 Theory Comput Syst (2017) 60:346–376

Acknowledgments We would also like to thank the referees for their valuable comments and sugges-
tions, which improved the presentation of this paper.

References

1. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposabil-
ity – A survey. BIT 25, 2–23 (1985)

2. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial
k-trees. Discret. Appl. Math. 23, 11–24 (1989)

3. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209,
1–45 (1998)

4. Boliac, R., Lozin, V.V.: On a the clique-width of graphs in hereditary classes. In: Proceedings of the
international symposium on algorithms and computation, volume 2518 of LNCS. Springer-Verlag, pp.
44–54 (2002)

5. Bondy, J., Murty, U.: Graph Theory with Applications. North-Holland (1976)
6. Bouchet, A.: Circle graph obstructions. J. Comb. Theory. Series B 60, 107–144 (1994)
7. Bouvier, T.: Graphes et décompositions. Doctoral dissertation, Bordeaux University (2014)
8. Brandstädt, A., Dragan, F.F., Le, H.-O., Mosca, R.: New graph classes of bounded clique width.

Theory Comput. Syst. 38(5), 623–645 (2005)
9. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete

Mathematics and Applications. SIAM, Philadelphia (1999)
10. Chvatalova, J., Opatrny, J.: The bandwidth problem and operations on graphs. Discret. Math. 61(2–3),

141–150 (1986)
11. Colbourn, C.J., Corneil, D.G.: On deciding switching equivalence of graphs. Discret. Appl. Math. 2,

181–184 (1980)
12. Corneil, D.G., Habib, M., Lanlignel, J.M., Reed, B., Rotics, U.: Polynomial time recognition of clique-

width at most three graphs. Discret. Appl. Math. 160, 834–865 (2012)
13. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput.

14(4), 926–934 (1985)
14. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput.

4, 825–847 (2005)
15. Courcelle, B.: The Monadic Second-Order Logic of Graphs XV: A conjecture by D. Seese. J. Appl.

Logic 4, 79–114 (2006)
16. Courcelle, B.: Clique-width and edge contraction. Inf. Process. Lett. 114, 42–44 (2014)
17. Courcelle, B.: Fly-automata for checking monadic second-order properties of graphs of bounded

tree-width. Electron. Notes Discret. Math. 50, 3–8 (2015). Proceedings of the VIII Latin-American
Algorithms, Graphs and Optimization Symposium (LAGOS’15)

18. Courcelle, B., Durand, I.: Automata for the verification of monadic second-order graph properties. J.
Appl. Logic 10(4), 368–409 (2012)

19. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic. A Language-
Theoretic Approach. Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge (2012)

20. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst.
Sci. 46, 218–270 (1993)

21. Courcelle, B., Heggernes, P., Meister, D., Papadopoulos, C., Rotics, U.: A characterisation of clique-
width through nested partitions. Discret. Appl. Math. 187, 70–81 (2015)

22. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of
bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

23. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math. 101, 77–
114 (2000)

24. Courcelle, B., Twigg, A.: Constrained-path labellings on graphs of bounded clique-width. Theory
Comput. Syst. 47(2), 531–567 (2010)

25. de Montgolfier, F., Rao, M.: The bi-join decomposition. Electron. Notes Discret. Math. 22, 173–177
(2005)

Theory Comput Syst (2017) 60:346–376 375

26. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded
graphs in polynomial time. In: Proceedings of Graph-Theoretical Concepts in Computer Science,
volume 2204 of LNCS. Springer-Verlag, pp 117–128 (2001)

27. Espelage, W., Gurski, F., Wanke, E.: Deciding clique-width for graphs of bounded tree-width. J. Graph
Algor. Appl. Special Issue JGAA on WADS 2001 7(2), 141–180 (2003)

28. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM J.
Discret. Math. 23(2), 909–939 (2009)

29. Frucht, R., Haray, F.: On the coronas of two graphs. Aequationes Math. 4, 322–324 (1970)
30. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int. J. Found. Comput.

Sci. 11(3), 423–443 (2000)
31. Gurski, F., Wanke, E.: The tree-width of clique-width bounded graphs without Kn,n. In: Proceedings

of Graph-Theoretical Concepts in Computer Science, volume 1938 of LNCS. Springer-Verlag, pp.
196–205 (2000)

32. Gurski, F., Wanke, E.: On the relationship between NLC-width and linear NLC-width. Theor. Comput.
Sci. 347(1–2), 76–89 (2005)

33. Gurski, F., Wanke, E.: Vertex disjoint paths on clique-width bounded graphs. Theor. Comput. Sci.
359(1–3), 188–199 (2006)

34. Gurski, F., Wanke, E.: Line graphs of bounded clique-width. Discret. Math. 307(22), 2734–2754
(2007)

35. Gurski, F., Wanke, E., Yilmaz, E.: Directed NLC-width. Theor. Comput. Sci. 616, 1–17 (2016)
36. Hagerup, T.: Dynamic algorithms for graphs of bounded treewidth. Algorithmica 27(3), 292–315

(2000)
37. Halin, R.: S-functions for graphs. J. Geom. 8, 171–176 (1976)
38. Harary, F.: Graph Theory. Addison-Wesley Publishing Company, Massachusetts (1969)
39. Hayward, R.B.: Recognizing P3-structure: A switching approach. J. Comb. Theory Series B 66(2),

247–262 (1996)
40. Heule, M.J.H., Szeider, S.: A sat approach to clique-width. ACM Trans. Comput. Logic 16(3), 24,1–

24,27 (2015)
41. Hlinený, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their

applications. Comput. J. 51(3), 326–362 (2008)
42. Imrich, W., Klavzar, S.: Product Graphs: Structure and Recognition. Series in Discrete Mathematics

and Optimization. Wiley-Interscience (2000)
43. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, New York (1994)
44. Johansson, Ö.: Clique-decomposition, NLC-decomposition, and modular decomposition - relation-

ships and results for random graphs. Congressus Numerantium 132, 39–60 (1998)
45. Johansson, Ö.: NLC2-decomposition in polynomial time. Int. J. Found. Comput. Sci. 11(3), 373–395

(2000)
46. Kaminski, M., Lozin, V.V., Milanic, M.: Recent developments on graphs of bounded clique-width.

Discret. Appl. Math. 157, 2747–2761 (2009)
47. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discret

Appl. Math. 126(2–3), 197–221 (2003)
48. Kashem, M.A., Zhou, X., Nishizeki, T.: Algorithms for generalized vertex-rankings of partial k-trees.

Theor. Comput. Sci. 240(2), 407–427 (2000)
49. Lackner, M., Pichler, R., Rümmele, S., Woltran, S.: Multicut on graphs of bounded clique-width. In:

Proceedings of the International Conference on Combinatorial Optimization and Applications, volume
7402 of LNCS. Springer-Verlag, pp. 115–126 (2012)

50. Limouzy, V.: Seidel minor, permutation graphs and combinatorial properties. In: Proceedings of the
International Symposium on Algorithms and Computation, volume 6506 of LNCS. Springer-Verlag,
pp. 194–205 (2010)

51. Limouzy, V., de Montgolfier, F., Rao, M.: NLC-2 graph recognition and isomorphism. In: Proceedings
of Graph-Theoretical Concepts in Computer Science, volume 4769 of LNCS. Springer-Verlag, pp.
86–98 (2007)

52. Lozin, V., Rautenbach, D.: Chordal bipartite graphs of bounded tree- and clique-width. Discret. Math.
283, 151–158 (2004)

53. Lozin, V., Rautenbach, D.: On the band-, tree-, and clique-width of graphs with bounded vertex
dregree. SIAM J. Discret. Math. 18(1), 195–206 (2004)

376 Theory Comput Syst (2017) 60:346–376

54. Oum, S.: Graphs of Bounded Rank-width. PhD thesis. Princeton University, New Jersey (2005)
55. Oum, S.: Rank-width and vertex-minor. J. Comb. Theory Series B 95, 79–100 (2005)
56. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory Series B

96(4), 514–528 (2006)
57. Robertson, N., Seymour P.D: Graph Minors – A Survey. Cambridge University Press, pp. 153–171

(1985)
58. Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of tree width. J. Algorithms 7,

309–322 (1986)
59. Seidel, J.J.: Graphs and two-graphs. In: Proceedings of the 5th Southeastern Conf. on Combinatorics,

Graph Theory, and Computing. Utilitas Mathematica Publishing (1974)
60. Seidel, J.J.: A survey of two-graphs. In: Proceedings of Colloquio Internazionale sulle Teorie

Combinatorie, vol. 17, pp. 481–511. Accademia Nazionale dei Lincei (1976)
61. Seidel, J.J., Taylor, D.E.: Two-graphs, a second survey. In: Algebraic Methods in Graph Theory, vol.

II, pp. 689–711 (1981)
62. Suchan, K., Todinca, I.: On powers of graphs of bounded NLC-width (clique-width). Discret. Appl.

Math. 155(14), 1885–1893 (2007)
63. Wanke, E. Discret. Appl. Math. 54, 251–266 (1994)
64. Whitney, H.: Congruent graphs and the connectivity of graphs. Amer. J. Math. 54, 150–168 (1932)

	The Behavior of Clique-Width under Graph Operations and Graph Transformations
	Abstract
	Introduction
	Preliminaries
	Graphs
	Labeled Graphs
	Clique-Width
	NLC-Width
	Expression Trees
	Graph Parameters and Relations

	Binary Graph Operations and Graph Transformations
	Disjoint Union
	Join
	Union
	Substitution
	Product
	1-Sum
	Corona

	Unary Graph Operations and Graph Transformations
	Vertex Deletion and Vertex Addition
	Vertex Deletion
	Vertex Addition

	Edge Addition and Edge Deletion
	Edge Subdivision
	Vertex Identification and Edge Contraction
	Subgraph
	Subgraph
	Induced Subgraph
	Quotient

	Power of a Graph
	Line Graph
	Edge Complement
	Bipartite Complement
	Local Complementation
	Seidel Switching
	Seidel Complementation

	Conclusions and Outlook
	Acknowledgments
	References

