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Abstract According to the proportional allocation mechanism from the network
optimization literature, users compete for a divisible resource – such as bandwidth –
by submitting bids. The mechanism allocates to each user a fraction of the resource
that is proportional to her bid and collects an amount equal to her bid as payment.
Since users act as utility-maximizers, this naturally defines a proportional allocation
game. Syrgkanis and Tardos (STOC 2013) quantified the inefficiency of equilibria in
this game with respect to the social welfare and presented a lower bound of 26.8 % on
the price of anarchy over coarse-correlated and Bayes-Nash equilibria in the full and
incomplete information settings, respectively. In this paper, we improve this bound
to 50 % over both equilibrium concepts. Our analysis is simpler and, furthermore,
we argue that it cannot be improved by arguments that do not take the equilibrium
structure into account. We also extend it to settings with budget constraints where
we show the first constant bound (between 36 and 50 %) on the price of anarchy of
the corresponding game with respect to an effective welfare benchmark that takes
budgets into account.
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1 Introduction

The proportional allocation mechanism, introduced by Kelly [12], is fundamen-
tal in the network optimization literature. According to this mechanism, a divisible
resource — such as bandwidth of a communication link — is allocated to users as
follows. Each user submits a bid to the mechanism; this corresponds to the user’s
willingness-to-pay for sharing the resource. The mechanism allocates to each user a
fraction of the resource that is equal to the ratio of her bid over the total amount of
bids. It also receives a payment from each user that is equal to her bid. This naturally
defines a proportional allocation game among the users who act as players; each
player has a (typically concave, non-negative, and non-decreasing) valuation function
for the resource share she receives and aims to maximize her utility, i.e., her value for
the resource share minus her payment to the mechanism. As it is typically the case
in games, the social welfare (i.e., the total value of the players for the resource share
they receive) at equilibria is, in general, suboptimal.

We aim to quantify this inefficiency of equilibria by bounding the price of anar-
chy [13] of proportional allocation games. Besides the well-known work of Johari
and Tsitsiklis [10] who considered pure Nash equilibria in the full information set-
ting, there has been surprisingly little focus on price of anarchy bounds over more
general equilibrium concepts. The only exception we are aware of is the recent work
of Syrgkanis and Tardos [23] who studied proportional allocation as part of a broader
class of mechanisms. Motivated by their work, we present new bounds on the price
of anarchy of proportional allocation under general equilibrium concepts, such as
coarse-correlated equilibria in the full information setting and Bayes-Nash equilibria
in the incomplete information setting. In particular, we prove that the social wel-
fare at equilibrium is at least 1/2 of the optimal social welfare. The bound holds
for coarse-correlated and pure Bayes-Nash equilibria in the full information and
Bayesian setting, respectively, and improves the bound of 26.8 % of [23]. The proof
is conceptually simple and is obtained by bounding the utility of every player at equi-
librium by the utility this player would have by deviating to a particular deterministic
bid.

We also consider the scenario where players have budget constraints represent-
ing their ability-to-pay. Here, each player has a budget and is never allowed to bid
above it. We assess the quality of equilibria in this case in terms of an effective wel-
fare benchmark — proposed in previous work but further refined here — that takes
budgets into account. We show that the effective welfare at equilibrium is at least a
constant fraction of the optimal one. To the best of our knowledge, this is the first
constant price of anarchy bound (in particular, between 36 and 50 %) with respect to
this benchmark. Again, our proofs follow by considering a single deterministic devi-
ation for each player, defined in a slightly different way compared to the deviation
we consider in our bound on the social welfare.
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Related Work The proportional allocation mechanism and its variations have
received significant attention in the network optimization literature. Proportional
allocation games have been considered in [8, 14, 15] where the existence and unique-
ness conditions for pure Nash equilibria are proved. Variations of the mechanism with
different definitions for the allocation rule or the payments have been considered in
[16–18, 21] (see also the discussion in [9]).

Johari and Tsitsiklis [10] were the first who assessed the quality of proportional
allocations in terms of the social welfare. They focus on pure Nash equilibria and
proved a lower bound of 3/4 on their price of anarchy. Their analysis is based on the
important observation that a pure Nash equilibrium in a proportional allocation game
is also a pure Nash equilibrium in a game where each player has a linear valuation
function with slope equal to the derivative of the original valuation function at the
share value they get at equilibrium. The optimal social welfare in the new game is
not smaller than the original one and this allows them to consider the significantly
simpler case of linear valuations in their analysis. Then, the price of anarchy bound
is obtained by solving a linear program. An alternative proof to the result of [10]
without using this argument is presented in [19] (see also [9]).

Unfortunately, this transformation does not apply to more general equilibrium con-
cepts since the resource share each player receives is, in general, a random variable.
This is a rather common difficulty that manifests itself in the analysis of games, as
we depart from pure Nash equilibria and full information. In particular, Bayes-Nash
equilibria have such an extremely rich structure that, typically, the price of anarchy
analysis assesses their quality by rather ignoring this structure. Instead, it resorts to
bounding the utility of each player by appropriately selected deviations which reveal
a relation between the social welfare at equilibrium and the optimal social welfare.
This approach has been used in a series of papers that mostly focus on auctions (e.g.,
see [1, 2, 4, 7, 11, 20, 23]) and is actually the approach we follow in the current paper
as well.

Syrgkanis and Tardos [23] present a general analysis framework for the broad
class of smooth mechanisms. Among other results, they show a price of anarchy
lower bound of 26.8 % over coarse-correlated and mixed Bayes-Nash equilibria of
proportional allocation games. In their analysis, they bound the utility of each player
by the utility she would have by deviating to an appropriately defined randomized bid
(an approach that has also been used in different contexts in [2, 11, 22, 24]) with a
probability distribution that depends only on the optimal allocation and the valuation
function of the player. In contrast, the deviating bid we consider depends on the bid
strategies at equilibrium (this is in the same spirit as the recent analysis of Feldman
et al. [7]) and, more interestingly, it is deterministic. In particular, it is defined as the
product of the (expected) resource share a bidder receives in the optimal allocation
and the expectation of bids of the other players at equilibrium.

Budget constraints are well-motivated in auction settings. In a slightly different
context than ours, the effective welfare benchmark is considered by Dobzinski and
Paes Leme, who call it liquid welfare in [6]. In proportional allocation, Syrgkanis
and Tardos [23] prove that the social welfare at equilibrium is a constant fraction
(specifically, equal to 2 − √

3 ≈ 26.8 %) of the optimal effective welfare. Note that
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our guarantee is considerably stronger as we compare directly the effective welfare
at equilibrium with its optimal value.

Roadmap The rest of the paper is structured as follows. We begin with preliminary
definitions in Section 2. Our price of anarchy bounds in terms of the social welfare
are proved in Section 3. There, we also argue that in order to improve our analy-
sis, radically new ideas are required. The budget-constrained setting is studied in
Section 4. We remark that we have not mentioned mixed Bayes-Nash equilibria in
the above presentation of our results. Actually, we have observed that such equilib-
ria coincide with pure Bayes-Nash ones even in the budget-constrained setting. We
discuss related issues as well as additional open problems in Section 5.

2 Preliminaries

Each player (henceforth called bidder) i in a proportional allocation game has a con-
cave1 non-decreasing valuation function vi : [0, 1] → R

+. A strategy for bidder i

is simply a non-negative bid. Given a bid vector b = (b1, b2, ..., bn), with one bid
per bidder, the proportional allocation mechanism allocates to each bidder a fraction
of the resource that is proportional to the bid submitted by her. Denoting by di the
resource share that is allocated to bidder i, it is di = bi∑

j bj
. We often use the notation

B−i to denote the sum of bids of all bidders besides i (hence, di = bi

bi+B−i
). The util-

ity of bidder i from an allocation is simply the difference of her value for the fraction
of the resource she gets minus her bid, i.e., ui(b) = vi(di) − bi .

A bid vector b is a pure Nash equilibrium if the utility of all bidders is maximized,
given the bid strategies of the other bidders. So, in a pure Nash equilibrium, no bidder
has any incentive to deviate to another strategy. Denoting by (b′

i , b−i ) the bid vector
that is obtained from b when bidder i unilaterally deviates to bid strategy b′

i , we can
express this condition as ui(b) ≥ ui(b

′
i , b−i ).

The social welfare of an allocation d is the total value of bidders for the resource
shares they receive, i.e., SW(d) = ∑

i vi(di). We denote by SW∗ the maximum value
of the social welfare over all possible allocations. The price of anarchy over pure
Nash equilibria is defined as the minimum value of the social welfare among all pure
Nash equilibria divided by the optimal social welfare.

The bid strategy of a bidder i can be randomized. In this case, bi is a random
variable and the bidder aims to maximize her expected utility E[ui(b)]. The bid
strategies of different bidders can be independent or correlated. A vector of indepen-
dent randomized bid strategies is called a mixed Nash equilibrium if it simultaneously
maximizes the expected utility of each bidder, given the bid strategies of the other
bidders. More generally, coarse-correlated equilibria are solution concepts that cap-
ture correlated bid strategies. A vector of (possibly correlated) bid strategies is called

1Correa et al. [5] studied proportional allocation games in the less standard scenario of non-concave
valuation functions.
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a coarse-correlated equilibrium if no bidder has any incentive to unilaterally devi-
ate to any deterministic bid strategy in order to improve her expected utility (again,
given the strategies of the other bidders). The notion of the price of anarchy natu-
rally extends to these solution concepts as well. For example, the price of anarchy
over coarse-correlated equilibria is defined as the minimum value of the expected
social welfare among all coarse-correlated equilibria divided by the optimal social
welfare.

The above setting is known as the full (or complete) information setting. We
consider the incomplete information (or Bayesian) setting as well; in this case, the
valuation function vi of each bidder i is drawn randomly (and independently from
the other bidders) from a probability distribution Fi over concave, non-decreasing,
and non-negative functions in [0, 1]. Again, bidder i aims to maximize her expected
utility for each possible valuation function vi drawn from Fi . In the incomplete infor-
mation setting, each bidder i bases her decision on her exact valuation vi and on the
probability distributions according to which other bidders draw their valuations (and
their corresponding bid strategies); these distributions are common knowledge.

So, the bid strategy of bidder i is a (possibly random) bid function bi(vi ). A vector
with one such strategy per bidder (with independence between bid strategies of differ-
ent bidders) is called a mixed Bayes-Nash equilibrium if no bidder has any incentive
to deviate to some other bid for any valuation function drawn from Fi . In pure Bayes-
Nash equilibria, bidders use deterministic bid functions. The price of anarchy over
Bayes-Nash equilibria is defined as the minimum value of the expected social wel-
fare among all Bayes-Nash equilibria divided by the expectation of the optimal social
welfare. With some abuse in notation, we also use SW∗ to denote the expectation of
the optimal social welfare in the Bayesian setting.

We also extend the above model by adding budget constraints to the bidders. In
this setting, each bidder i has a non-negative budget ci and she is never allowed to
bid above her budget. This restriction can result to equilibria that have extremely
low social welfare compared to the optimal one (whose definition does not take
budgets into account). Following [23] and [6], we use the effective welfare bench-
mark in order to assess the quality of equilibria with budget-constrained bidders.
The effective welfare of a (deterministic) allocation d = (d1, d2, ..., dn) is defined
as EW(d) = ∑

i min{vi(di), ci}. Note that the definition is similar to the defini-
tion of the social welfare; the important difference is that the value of each bidder
is capped by her budget. We extend this definition to random allocations d as
EW(d) = ∑

i min{E[vi(di)], ci}. We denote by EW∗ the maximum value of the
effective welfare over all allocations. The price of anarchy with respect to the effec-
tive welfare benchmark (over equilibria in a given class) is the minimum value of the
effective welfare (among all allocations induced by equilibria in the class) divided by
the optimal effective welfare.

In the Bayesian setting, both the budget ci of bidder i and her valuation vi are
drawn randomly according to the probability distribution Fi . We refine the effective
welfare benchmark in this case as

EW(d) =
∑

i

E(vi ,ci )∼Fi

[
min{E(v−i ,c−i )∼F−i

[vi (di)] , ci}
]
,
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where the inner expectation is taken over the valuation-budget value pairs of the other
bidders once the pair for bidder i has been fixed (and over the corresponding bid
strategies).

3 Bounding the Social Welfare of Equilibria

In this section, we prove the price of anarchy bounds with respect to the social wel-
fare. We consider both coarse-correlated equilibria in the full information setting as
well as pure Bayes-Nash equilibria in the Bayesian setting. Our proofs use the fol-
lowing lemma which bounds the utility of a bidder at a deterministic deviation. We
also use this lemma later in Section 4 where we study budget-constrained bidders.

Lemma 3.1 Consider a bidder with a concave and non-decreasing valuation func-
tion v : [0, 1] → R

+ and let � be the random variable denoting the sum of bids
of the other bidders. Then, for every z ∈ [0, 1] and for every μ > 0, the expected
utility the bidder would have by deviating to the deterministic bid μzE [�] is at least
3μ−1
4μ v(z) − μzE�.

Proof It suffices to show that the expected value of the bidder when she deviates
to the deterministic bid y = μzE [�] is at least 3μ−1

4μ v(z). Define the event T :=
{
� ≥ y

(
1
z

− 1
)}

. When T is false, we have y
y+�

> z and, since v is non-decreasing,

we clearly have that

v

(
y

y + �

)

≥ v(z).

Otherwise, when T is true, y
y+�

∈ [0, z]. Since v is concave and non-negative, its
value in [0, z] is lower-bounded by the line connecting points (0, 0) and (z, v(z)).
Hence,

v

(
y

y + �

)

≥ y

y + �
· v(z)

z
.

So, we can bound the expected value of the bidder when she deviates to the
deterministic bid y using the two observations above and linearity of expectation.

E

[

v

(
y

y + �

)]

= E

[

v

(
y

y + �

)

1T

]

+ E

[

v

(
y

y + �

)

1T

]

≥ E
[
v(z)1T

] + E

[
y

y + �
· v(z)

z
1T

]

= v(z)(1 − Pr[T ]) + v(z)

z
E

[
y

y + �
1T

]

. (1)

Here, we have used the notation X1T to denote the random variable that is equal to
X if T is true and is zero otherwise.
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We will now work with the rightmost term of the above right-hand side expression.
Since the function y

y+�
is convex with respect to �, we can apply Jensen’s inequality

to obtain that

E

[
y

y + �
1T

]

= E

[
y

y + �
|T

]

· Pr[T ] ≥ y Pr[T ]
y + E [�|T ]

and, since E [X|T ] ≤ E[X]
Pr[T ] for every random variable X ≥ 0, we have

E

[
y

y + �
1T

]

≥ y Pr[T ]2
y Pr[T ] + E [�]

≥ y Pr[T ]2
y + E [�]

.

The second inequality follows trivially since Pr[T ] ≤ 1. Substituting y and using the
fact that z ≤ 1, we get

E

[
y

y + �
1T

]

≥ μz Pr[T ]2
1 + μz

≥ μz

μ + 1
Pr[T ]2. (2)

Now, using (1), (2), and the fact that 1 − α + μ
μ+1α

2 ≥ 3μ−1
4μ for every α, we obtain

that

E

[

v

(
y

y + �

)]

≥ v(z)

(

1 − Pr[T ] + μ

μ + 1
Pr[T ]2

)

≥ 3μ − 1

4μ
v(z),

as desired.

We are ready to prove our price of anarchy bounds. We begin with the case of
coarse-correlated equilibria in the full information setting which is much simpler.

Theorem 3.2 The price of anarchy of proportional allocation games over coarse-
correlated equilibria is at least 1/2.

Proof Consider a full information proportional allocation game with n bidders in
which bidder i has valuation function vi and denote by xi the resource fraction bid-
der i gets in the optimal allocation. Let b be a coarse-correlated equilibrium that
induces a random allocation d = (d1, ..., dn) and let B = ∑

i bi be the random vari-
able denoting the sum of bids of all bidders, with B−i being the sum of bids of all
bidders besides bidder i. Since b is a coarse-correlated equilibrium, bidder i has no
incentive to deviate to any deterministic bid (including the deviating bid xiE

[
B−i

]
).

By applying Lemma 3.1 for bidder i with z = xi , μ = 1 and � = B−i , we obtain
that

E [ui(b)] ≥ E
[
ui(xiE

[
B−i

]
, b−i )

] ≥ 1

2
vi(xi) − xiE

[
B−i

]
.
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Summing over all bidders and using the facts that
∑

i xi = 1 and B−i ≤ B for every
bidder i, we have

∑

i

E [ui(b)] ≥ 1

2

∑

i

vi(xi) −
∑

i

xiE
[
B−i

]

≥ 1

2

∑

i

vi(xi) −
∑

i

xiE [B]

= 1

2
SW∗ − E [B] . (3)

The theorem follows by this inequality since the social welfare equals the sum of
bidders’ utilities plus their bids, i.e., E [SW(d)] = ∑

i E [ui(b)] + E [B].

The last step of the proof above begins with inequality (3). Essentially, this
inequality has the form

∑

i

E [ui(b)] ≥ λSW∗ − μ
∑

i

xiE
[
B−i

]
.

The price of anarchy bound of [23] follows after first proving an inequality of this
type and then concluding to a price of anarchy bound of λ

max{1,μ} . The smooth-

ness arguments of [23] lead to a version of this inequality with λ = 2 − √
3 and

μ = 1. Here, we have been able to improve the parameters to λ = 1/2 and
μ = 1. The next lemma demonstrates that these parameters cannot be improved
further.

Lemma 3.3 For every ε > 0, there exists a proportional allocation game such that
for every λ,μ satisfying

∑

i

ui(b) ≥ λSW∗ − μ
∑

i

xiB−i (4)

where xi is the resource fraction of bidder i in the optimal allocation and B−i is the
sum of bids of all bidders besides bidder i at a (pure Nash) equilibrium, it holds that

λ
max{1,μ} ≤ 1

2 + ε.

Proof Consider the proportional allocation game with n ≥ 2 bidders in which bidder
1 has valuation v1(x) = x and bidder i has valuation vi(x) = n−1

2n−3x for i ≥ 2.
We can show that the bids in the (unique) pure Nash equilibrium are b1 = 1/4 and
bi = 1

4(n−1) for i ≥ 2. Indeed, assuming that this is true for all bidders besides i, it can

be verified that the strategy y that maximizes the utility ui(y,b−i ) = vi

(
y

y+B−i

)
−y

for bidder i satisfies y = bi . I.e., bidder 1 gets half of the resource and the remaining
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bidders share the remaining resource equally. Hence, u1(b) = v1(1/2) − 1/4 = 1/4

and
∑

i �=1 ui(b) = (n − 1)
(
vi

(
1

2(n−1)

)
− 1

4(n−1)

)
= 1

4(2n−3) .

In the optimal allocation, the whole resource is allocated to bidder 1, i.e., SW∗ =
1, x1 = 1 and xi = 0 for i ≥ 2. Hence, inequality (4) becomes

1

4
+ 1

4(2n − 3)
≥ λ − μ

4

and implies that λ ≤ max{1, μ}
(
1
2 + 1

4(2n−3)

)
. The lemma follows by setting n

sufficiently large.

The proof for Bayes-Nash equilibria follows the same general approach with that
of Theorem 3.2.

Theorem 3.4 The price of anarchy of proportional allocation games over pure
Bayes-Nash equilibria is at least 1/2.

Proof Consider an incomplete information proportional allocation game in which
the valuation function vi of bidder i is drawn from the probability distribution Fi ,
independently for each bidder. Let xi be the random variable denoting the resource
fraction bidder i gets in the optimal allocation. Let b be a pure Bayes-Nash equilib-
rium andB be the random variable denoting the sum of bids of all bidders; again, B−i

denotes the sum of bids of all bidders besides bidder i. Since b is a pure Bayes-Nash
equilibrium, bidder i has no incentive to deviate to any deterministic bid (including
the deviating bid E [xi |vi]E

[
B−i |vi

]
) when the valuation drawn from probability

distribution Fi is vi . So, in all conditional expectations below, we simply write vi to
denote the event that the valuation vi drawn from Fi is vi . By applying Lemma 3.1
for bidder i with z = E [xi |vi], μ = 1 and � = B−i , we obtain that

E [ui(b)|vi] ≥ E
[
ui(E [xi |vi]E

[
B−i |vi

]
, b−i )|vi

]

≥ 1

2
vi(E [xi |vi]) − E [xi |vi]E

[
B−i |vi

]

≥ 1

2
E [vi(xi)|vi] − E [xi |vi]E [B] .

The second inequality follows by Jensen’s inequality since the valuation function vi

is concave and due to the fact that in a pure Bayes-Nash equilibrium, the bid of a
bidder different than i does not depend on the exact valuation of bidder i and, hence,
E

[
B−i |vi

] = E
[
B−i

] ≤ E [B]. Considering all possible valuations for bidder i that
are drawn from probability distribution Fi , we have that her unconditional expected
utility is

E [ui(b)] ≥ 1

2
E [vi (xi)] − E [xi]E [B] .
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Summing over all bidders and using the fact that
∑

i xi = 1, we have

∑

i

E [ui(b)] ≥ 1

2

∑

i

E [vi (xi)] −
∑

i

E [xi]E [B] = 1

2
SW∗ − E [B] .

The theorem follows from this inequality since, again, the social welfare equals the
sum of expected bidders’ utilities plus the total amount of bids.

4 Budget-Constrained Bidders

In this section, we consider budget-constrained bidders and prove a lower bound of
approximately 36 % and an upper bound of 50 % on the price of anarchy in terms of
the effective welfare benchmark (Theorem 4.1 for coarce-correlated equilibria and
Theorem 4.2 for Bayes-Nash equilibria). Furthermore, we present an upper bound
(Theorem 4.3) which applies even to pure Nash equilibria.

Before proceeding to the presentation of our bounds for budget-constrained bid-
ders, we remark that minor modifications of the proofs in the previous section can
show that the social welfare over equilibria with budget-constrained bidders is at least
1/2 of the optimal effective welfare, improving a corresponding bound of 26.8 %
from [23]. The necessary modifications are as follows. First, we need to define the
deviating bids in terms of the resource shares in the allocation that maximizes the
effective welfare. Then, there is a subtle case where Lemma 3.1 cannot be used,
namely when the deviating bid for a bidder exceeds her budget. Fortunately, the
inequality provided by Lemma 3.1 follows trivially in this case (actually, we use this
argument in the proof below). By repeating the analysis in the proofs of Theorems 3.2
and 3.4, we can conclude that the social welfare at equilibrium is at least 1/2 of the
social welfare of the allocation that maximizes the effective welfare. The bound then
follows by observing that the effective welfare of this allocation is upper-bounded by
its social welfare.

We are now ready to prove our main results for budget-constrained bidders. Again,
we begin with the case of coarce-correlated equilibria in the full information setting
which is simpler.

Theorem 4.1 The price of anarchy of proportional allocation games with budget-
constrained bidders over coarse-correlated equilibria is at least 0.3596.

Proof Let μ ∈ (1/3, 1] be a parameter whose exact value will be defined later.
Consider a full information proportional allocation game with n bidders in which
bidder i has valuation function vi and budget ci and denote by xi the resource
fraction bidder i gets in the allocation that maximizes the effective welfare. Let b
be a coarse-correlated equilibrium inducing an allocation d = (d1, ..., dn) and let
B = ∑

i bi be the random variable denoting the sum of bids of all bidders, with
B−i being the sum of bids of all bidders besides bidder i. Let A be the set of bid-
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ders with E [vi(di)] ≤ ci . Clearly, for every bidder not belonging to set A, it holds
that

min{E [vi(di)] , ci} ≥ min{vi(xi), ci}.
Summing over all bidders not belonging to A (and multiplying by 1 − μ), we obtain
that

(1 − μ)
∑

i �∈A

min{E [vi(di)] , ci} ≥ (1 − μ)
∑

i �∈A

min{vi(xi), ci}. (5)

For every bidder i ∈ A, we distinguish between two cases. If μxiE
[
B−i

]
> ci ,

then clearly

E [ui(b)] ≥ 0

> ci − μxiE
[
B−i

]

≥ 3μ − 1

4μ
min{E [vi(xi)] , ci} − μxiE

[
B−i

]
.

In order to prove the same inequality when μxiE
[
B−i

] ≤ ci , we bound the utility
of bidder i by the utility she would have when deviating to bid μxiE

[
B−i

]
(which is

within i’s budget ci). Using Lemma 3.1, we have again

E [ui(b)] ≥ 3μ − 1

4μ
E [vi(xi)] − μxiE

[
B−i

]
.

Summing this last inequality over all bidders of A, we obtain

∑

i∈A

E [ui(b)] ≥ 3μ − 1

4μ

∑

i∈A

min{E [vi(xi)] , ci} −
∑

i∈A

μxiE
[
B−i

]

≥ 3μ − 1

4μ

∑

i∈A

min{E [vi(xi)] , ci} − μE [B]
∑

i∈A

xi

≥ 3μ − 1

4μ

∑

i∈A

min{E [vi(xi)] , ci} − μE [B] .

Using the equality B = ∑
i bi and linearity of expectation, this inequality implies

that
∑

i∈A

(E [ui(b)] + μE [bi]) + μ
∑

i �∈A

E [bi] ≥ 3μ − 1

4μ

∑

i∈A

min{E [vi(xi)] , ci}.

Since E [ui(b)] + μE [bi] ≤ min{E [vi(di)] , ci} for every bidder in A (recall that
μ ≤ 1 and vi(di) = ui(b) + bi) and E [bi] ≤ min{E [vi(di)] , ci} for every bidder
not belonging to A, the above inequality yields

∑

i∈A

min{E [vi(di)] , ci} + μ
∑

i �∈A

min{E [vi(di)] , ci} ≥ 3μ − 1

4μ

∑

i∈A

min{E [vi(xi)] , ci} (6)
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By summing (5) and (6), we obtain

EW(d) =
∑

i∈A

min{E [vi(di)] , ci} +
∑

i �∈A

min{E [vi(di)] , ci}

≥ 3μ − 1

4μ

∑

i∈A

min{E [vi(xi)] , ci} + (1 − μ)
∑

i �∈A

min{E [vi(xi)] , ci}

≥ min

{
3μ − 1

4μ
, 1 − μ

} ∑

i

min{E [vi(xi)] , ci}

= min

{
3μ − 1

4μ
, 1 − μ

}

EW∗.

Hence, the price of anarchy with respect to the effective welfare benchmark is

bounded by the quantity min
{
3μ−1
4μ , 1 − μ

}
which is maximized to 7−√

17
8 ≈ 0.3596

for μ = 1+√
17

8 .

The proof for Bayes-Nash equilibria in the incomplete information setting is a bit
more complicated. Again, as we did in the proof of Theorem 4.1, we will show that

EW(d) ≥ min

{
3μ − 1

4μ
, 1 − μ

}

EW∗.

Recall that in the incomplete information setting, both the valuation vi and the budget
ci of bidder i are drawn randomly according to a probability distribution Fi , and the
effective welfare is defined as

EW(d) =
∑

i

E(vi ,ci )∼Fi

[
min{E(v−i ,c−i )∼F−i

[vi (di)] , ci}
]
.

In order to simplify notation in the proof of Theorem 4.2, we will not explicitly use
the subscripts in the expectations.

Theorem 4.2 The price of anarchy of proportional allocation games with budget-
constrained bidders over Bayes-Nash equilibria is at least 0.3596.

Proof Let μ ∈ (1/3, 1] be a parameter whose exact value will be defined later. Con-
sider an incomplete information proportional allocation game with n bidders in which
the valuation function vi and the budget ci of bidder i are drawn from the probability
distribution Fi , independently for each bidder. Let xi be the random variable denot-
ing the resource fraction bidder i gets in the allocation that maximizes the effective
welfare. Let b be a pure Bayes-Nash equilibrium that induces a random allocation
d = (d1, ..., dn) and B be the random variable denoting the sum of bids of all bid-
ders; again, B−i denotes the sum of bids of all bidders besides bidder i. We denote
by Ai the set that contains all pairs of a valuation function and a corresponding
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budget value (vi, ci) that are drawn from the probability distribution Fi and satisfy
E [vi (di)|vi] ≤ ci . Consider a bidder i with valuation-budget pair (vi, ci) �∈ Ai . By
the definition of Ai , we have

min{E [vi (di)|(vi, ci)] , ci} ≥ min{E [vi (xi)|(vi, ci)] , ci}.
By considering all valuation-budget pairs not belonging to Ai , we obtain

E [min{E [vi (di)] , ci}1(vi , ci ) �∈ Ai] ≥ E [min{E [vi (xi)] , ci}1(vi , ci ) �∈ Ai] ,

and summing over all bidders, we have

∑

i

E [min{E [vi (di)] , ci}1(vi , ci ) �∈ Ai ] ≥
∑

i

E [min{E [vi (xi)] , ci}1(vi , ci ) �∈ Ai ]. (7)

Now consider a valuation-budget pair (vi, ci) ∈ Ai for bidder i that is
drawn from Fi . If μE [xi |(vi, ci)]E

[
B−i |(vi, ci)

] ≤ ci , we can bound the
expected utility E [ui(b)|(vi, ci)] by considering the deviation of bidder i to
bid μE [xi |(vi, ci)]E

[
B−i |(vi, ci)

]
(which is within bidder i’s budget ci). By

Lemma 3.1, we have

E [ui(b)|(vi, ci)] ≥ 3μ − 1

4μ
vi(E [xi |(vi, ci)]) − μE [xi |vi]E

[
B−i |(vi, ci)

]

≥ 3μ − 1

4μ
E [vi(xi)|(vi, ci)] − μE [xi |(vi, ci)]E [B]

≥ 3μ − 1

4μ
min{E [vi(xi)|(vi, ci)] , ci} − μE [xi |(vi, ci)]E [B] .

The second inequality follows by Jensen’s inequality and by the fact
E

[
B−i |(vi, ci)

] = E
[
B−i

]
. Otherwise, if μE [xi |(vi, ci)]E

[
B−i |(vi, ci)

]
> ci , the

same inequality follows easily since

E [ui(b)|(vi, ci)] ≥ 0

> ci − μE [xi |(vi, ci)]E
[
B−i |(vi, ci)

]

≥ 3μ − 1

4μ
min{E [vi(xi)|(vi, ci)] , ci} − μE [xi |(vi, ci)]E [B] .

Hence, when (vi, ci) ∈ Ai , we have

E [ui(b)|(vi, ci)] + μE [xi |(vi, ci)]E [B] ≥ 3μ − 1

4μ
min{E [vi(xi)|(vi, ci)] , ci}.

By considering all valuation-budget values belonging to Ai , we have

E [ui(b)1(vi , ci )∈Ai ]+μE [xi1(vi , ci )∈Ai ]E [B]≥3μ−1
4μ

E [min{E [vi (xi )] , ci}1(vi , ci )∈Ai ] .
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Using the obvious fact that E [xi] ≥ E [xi1(vi , ci ) ∈ Ai] and the above inequality,
we obtain that

E [ui(b)1(vi , ci ) ∈ Ai ] + μE [xi ]E [B]≥E [ui(b)1(vi , ci ) ∈ Ai ]

+μE [xi1(vi , ci ) ∈ Ai ]E [B]

≥ 3μ − 1

4μ
E [min{E [vi (xi)] , ci}1(vi , ci )∈Ai ] . (8)

Now, we have
∑

i

E [min{E [vi (di)] , ci}1(vi , ci ) ∈ Ai ] + μ
∑

i

E [min{E [vi (di)] , ci}1(vi , ci ) �∈ Ai ]

≥
∑

i

E [ui(b) + bi1(vi , ci ) ∈ Ai ] + μ
∑

i

E [bi1(vi , ci ) �∈ Ai ]

≥
∑

i

E [ui(b) + μbi1(vi , ci ) ∈ Ai ] + μ
∑

i

E [bi1(vi , ci ) �∈ Ai ]

=
∑

i

E [ui(b)1(vi , ci ) ∈ Ai ] + μE [B]

=
∑

i

(E [ui(b)1(vi , ci ) ∈ Ai ] + μE [xi ]E [B])

≥ 3μ − 1

4μ

∑

i

E [min{E [vi (xi)] , ci}1(vi , ci ) ∈ Ai ]. (9)

The first inequality follows since the quantity min{E [vi (di)] , ci} equals E [vi (di)]
when (vi , ci ) ∈ Ai and ci otherwise; in the latter case, the budget is clearly not
smaller than the bid of bidder i. The second inequality follows since μ ≤ 1, the two
equalities are obvious, and the last inequality follows by (8). Now, using (7) and (9),
we have

EW(d) =
∑

i

E [min{E [vi (di)] , ci}]

=
∑

i

E [min{E [vi (di)] , ci}1(vi , ci ) ∈ Ai]

+μ
∑

i

E [min{E [vi (di)] , ci}1(vi , ci ) �∈ Ai]

+(1 − μ)
∑

i

E [min{E [vi (di)] , ci}1(vi , ci ) �∈ Ai]

≥ 3μ − 1

4μ

∑

i

E [min{E [vi (xi)] , ci}1(vi , ci ) ∈ Ai]

+(1 − μ)
∑

i

E [min{E [vi (xi)] , ci}1(vi , ci ) �∈ Ai]

≥ min

{
3μ − 1

4μ
, 1 − μ

} ∑

i

E [min{E [vi (xi)] , ci}]

= min

{
3μ − 1

4μ
, 1 − μ

}

EW∗.
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Hence, the price of anarchy with respect to the effective welfare benchmark is

bounded by the quantity min
{
3μ−1
4μ , 1 − μ

}
which is maximized to 7−√

17
8 ≈ 0.3596

for μ = 1+√
17

8 .

We conclude this section by presenting our upper bound on the price of anarchy;
note that it holds even for pure Nash equilibria.

Theorem 4.3 For every ε > 0, there exists a proportional allocation game among
budget-constrained bidders with price of anarchy at most 1/2 + ε over pure Nash
equilibria, with respect to the effective welfare benchmark.

Proof Let α ∈ (0, 1). Consider a proportional allocation game with two bidders.
Bidder 1 has valuation v1(x) = x and budget c1 = α

(1+α)2
. Bidder 2 has valuation

v2(x) = αx and infinite budget. The state in which bidder 1 bids α

(1+α)2
(i.e., her

budget) and bidder 2 bids α2

(1+α)2
is a pure Nash equilibrium, since the derivatives

b2
(b1+b2)

2 −1 and αb1
(b1+b2)

2 −1 of the utilities of the bidders (as functions of their strate-

gies) are equal to zero. Observe that v1

(
1

1+α

)
significantly exceeds her budget for

every value of α. Hence, EW(b) = α

(1+α)2
+ α2

1+α
= α+α2+α3

(1+α)2
. The optimal effective

welfare is bounded by the welfare at the state when bidder 1 bids her budget α

(1+α)2

and bidder 2 bids 1 − α

(1+α)2
so that bidder 1 gets value equal to her budget. Hence,

the optimal effective welfare is EW∗ = 2α+α2+α3

(1+α)2
. Clearly, the ratio EW(b)/EW∗

approaches 1/2 from above as α approaches 0 and the theorem follows by selecting
α to be sufficiently small.

5 Discussion and Open Problems

Our work leaves the obvious open problem of computing the tight bound on the
price of anarchy over coarse-correlated and Bayes-Nash equilibria. In the full infor-
mation model, proving bounds specifically for correlated equilibria (a well-known
equilibrium class that lies between mixed Nash and coarse-correlated equilibria)
is interesting as well. So far, the only upper bound that is known is the counter-
example of 3/4 from [10] for pure Nash equilibria. Is 3/4 the tight bound for all
equilibrium concepts considered in the current paper? Actually, we have not been
able to identify any coarse-correlated equilibrium in the full information model that
is non-pure. Do such equilibria really exist? Interestingly, we show in Lemma 5.1
that mixed Nash equilibria coincide with pure ones. More generally, this state-
ment applies to mixed Bayes-Nash equilibria in the budget-constrained setting. Does
it extend to coarse-correlated ones? We believe that this is an interesting open
problem.
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Lemma 5.1 The set of mixed Bayes-Nash equilibria in any proportional allocation
game (possibly with budget-constrained bidders) coincides with that of pure Bayes-
Nash equilibria.

Proof Assume that there exists an incomplete information proportional allocation
game (possibly with budget-constrained bidders) that has a mixed Bayes-Nash equi-
librium b in which bidder i bids two different values y1 and y2 (with y1 < y2) with
non-zero probability when her valuation function is vi ; both values are within the
budget of bidder i (if any). We will show that this is not possible.

By the mixed Bayes-Nash equilibrium condition, both y1 and y2 should yield the
same maximum expected utility U to bidder i, i.e.,

U = E
[
ui(y1, b−i )|vi

] = E
[
ui(y2, b−i )|vi

]
.

Let B−i be the random variable denoting the sum of bids of all bidders besides bidder

i and let f (y) = E

[
vi

(
y

y+B−i

)]
be the expected value of bidder i when unilaterally

deviating to bid y. Clearly, f is non-decreasing. It is also concave in [y1, y2] since
it is defined as the linear combination of concave functions: for every value of B−i ,

vi

(
y

y+B−i

)
is a concave function with respect to y, and the expectation over B−i is

simply a linear combination over such functions. Clearly, E
[
ui(y,b−i )

] = f (y)−y.
We furthermore claim that f is strictly increasing in [y1, y2]. If this was not the

case, then due to the concavity of f there should exist y′ ∈ [y1, y2) such that f (y′) =
f (y2) and, hence, bidder i could deviate to bid y′ (which is clearly within her budget,
if any) for an improved expected utility of E

[
ui(y

′, b−i )|vi

] = f (y′)−y′ > f (y2)−
y2 = U . This would contradict the mixed Bayes-Nash equilibrium condition.

The fact that f is strictly increasing clearly implies that Pr[B−i > 0] > 0. But

then, for every positive value of B−i , vi

(
y

y+B−i

)
is a strictly concave function of

y and, subsequently, f is also strictly concave as a linear combination of concave
functions including strictly concave ones. Hence, there exists λ ∈ [0, 1] such that
f (λy1 + (1−λ)y2) > λf (y1)+ (1−λ)f (y2) and bidder i has a profitable deviation
to bid y′ = λy1 + (1 − λ)y2 (which is again within her budget, if any) since

E
[
ui(y

′, b−i )
] = f (y′) − y′

> λf (y1) + (1 − λ)f (y2) − λy1 − (1 − λ)y2

= λ(f (y1) − y1) + (1 − λ)(f (y2) − y2)

= U.

We conclude that the support of any mixed Bayes-Nash equilibrium cannot contain
two different bid values for bidder i when her valuation is vi and, subsequently (by
extending the same argument to all possible valuations of bidder i and to all bidders),
it must be a pure Bayes-Nash equilibrium.

We remark that if the valuation functions are differentiable (we do not make any
such assumption in the above proof), a much simpler proof of theorem 5.1 follows by
observing that the utility of bidder i, when seen as a function of bidder i’s strategy,
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has strictly decreasing derivative. Then, the utility is maximized either by a bid equal
to the budget of the bidder (if any) or at the unique bid that nullifies its derivative.

In the Bayesian setting, we have not considered more general equilibrium con-
cepts such as coarse-correlated Bayesian equilibria. A vector of possibly correlated
bid functions is called a coarse-correlated Bayesian equilibrium if no bidder i has any
incentive to unilaterally deviate to any deterministic bid strategy in order to improve
her expected utility (again, given the strategies of the other bidders), for any val-
uation she draws from her probability distribution Fi . Coarse-correlated Bayesian
equilibria are more general than mixed Bayes-Nash equilibria since the bid functions
of different bidders are not restricted to being independent [2]. The main reason for
which we have not considered coarse-correlated Bayesian equilibria is that our anal-
ysis requires that the expectation of the sum of bids of the other bidders is the same
for any possible valuation bidder i can draw from her distribution; this property is
not satisfied by more general equilibrium concepts. What is the price of anarchy
in this case? Interestingly, the answer cannot be 3/4 as our next counter-example
indicates.

Lemma 5.2 There exists a proportional allocation game that has price of anarchy
at most 0.7154 over coarse-correlated Bayesian equilibria.

Sketch of Proof Our counter-example has two bidders. Bidder 1 has valuation func-
tion x with probability p1 and ε1x with probability 1 − p1. Bidder 2 has valuation
function αx with probability p2 and ε2x with probability 1 − p2. We require 1 ≥ α

and, furthermore, α is significantly larger than ε1 which in turn is significantly larger
than ε2 (multiplicatively).

We construct a coarse-correlated Bayesian equilibrium of the following form:
When the valuations of the bidders are x and αx, the bid strategies are γ and δ

respectively. These values are significant and yield constant resource fractions to both
bidders. In all other cases where at least one of the bidders has an almost zero valu-
ation, the bids are extremely close to zero. However, the bidder that has significantly
higher valuation than the other submits a significantly higher bid (but still very close
to zero) and gets almost 100 % of the resource. In the following, we round negligibly
small bids or valuations to 0 and treat an allocation of almost 100 % of the resource
to some bidder as exactly 100 %. This rounding does not affect the final result that
we can obtain but significantly more detailed (and tedious) calculations are needed
for a formal proof. So, we will assume that when the valuations are x or ε1x for bid-
der 1 and ε2x for bidder 2, the bid strategies are (almost) 0 but the bid of bidder 1 is
significantly higher so that she gets (almost) 100 % of the resource. Similarly, when
the valuations are ε1x and αx, the bid strategies are (almost) 0 but the bid of bidder
2 is significantly higher so that she gets almost 100 % of the resource.

Notice that the expected utility of bidder 1 when her valuation is x is (approxi-
mately) p2

γ
γ+δ

+ 1 − p2 − p2γ and becomes (approximately) p2
y

y+δ
+ 1 − p2 − y

when deviating to a deterministic bid y. We require that the first quantity is higher
than the second one so that no such deviation exists, i.e., p2

γ
γ+δ

−p2γ ≥ p2
y

y+δ
−y

for every y ≥ 0. Similarly, we require that p1
αδ

γ+δ
− p1δ ≥ p1

αy
γ+y

− y. Note that
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the right-hand side of the above constraints are maximized to (
√

p2 − √
δ)2 and

(
√

αp1 − √
γ )2, respectively. It remains to compute the exact bid values that satisfy

these constraints and minimize the price of anarchy. This is done in the following
non-linear mathematical program

minimize
p1p2

(
γ

γ+δ
+ α δ

γ+δ

)
+ p1(1 − p2) + α(1 − p1)p2

p1 + α(1 − p1)p2

subject to: p2
γ

γ + δ
− p2γ ≥ (

√
p2 − √

δ)2

αp1
δ

γ + δ
− p1δ ≥ (

√
αp1 − √

γ )2

γ, δ ≥ 0, 0 ≤ α ≤ 1, 0 ≤ p1, p2 ≤ 1

which has been solved using Matlab to give an upper bound of 0.7154 for α =
0.2913, γ = 0.1071, δ = 0.1510, p1 = 0.6682, and p2 = 0.7616.

Also, recall that we have assumed that bidders have independent valuations. This
is a typical assumption in the Bayes-Nash price of anarchy literature [1, 4, 7, 11,
20, 22, 23] with [2] being the only exception we are aware of. Unfortunately, our
proof of the pure Bayes-Nash price of anarchy bound does not carry over to the
case of correlated valuations either (for the same reason mentioned above). Still, we
have not been able to find any counter-example with non-constant price of anarchy
in this setting. Again, what is the price of anarchy in this case? These questions are
interesting in the budget-constrained setting as well.

Another important issue in the budget-constrained setting is related to our refine-
ment of the effective welfare benchmark for random allocations. Even though
our definition naturally extends the one for deterministic allocations, an even
more natural definition of the effective welfare for a random allocation d would
be EW(d) = ∑

i E [min{vi(di), ci}] (as opposed to the definition EW(d) =∑
i min{E [vi(di)] , ci} that we have adopted); this extends to the Bayesian setting

accordingly. Unfortunately, the main obstacle that did not allow us to use this more
natural definition is that our techniques cannot establish a relation between the utility
of a bidder i and the quantity E [min{vi(di), ci}]; this is necessary in order to bound
the price of anarchy and this has been our approach in the proofs of Theorems 4.1
and 4.2 for the substantially different quantity min{E [vi(di)] , ci}. Interestingly, we
have not found any upper bound on the price of anarchy over coarse-correlated or
Bayes-Nash equilibria under these alternative definitions for the effective welfare.
Is the price of anarchy still bounded by a constant? This question deserves further
investigation.
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