
Theory Comput Syst (2017) 60:299–313
DOI 10.1007/s00224-016-9673-5

A Difference in Complexity Between Recursion
and Tail Recursion

Siddharth Bhaskar1,2

Published online: 19 March 2016
© Springer Science+Business Media New York 2016

Abstract There are several ways to understand computability over first-order struc-
tures. We may admit functions given by arbitrary recursive definitions, or we may
restrict ourselves to “iterative,” or tail recursive, functions computable by nothing
more complicated than while loops. It is well known that in the classical case of
recursion theory over the natural numbers, these two notions of computability coin-
cide (though this is not true for all structures). We ask if there are structures over
which recursion and tail recursion coincide in terms of computability, but in which a
general recursive program may compute a certain function more efficiently than any
tail recursion, according to some natural measure of complexity. We give a positive
answer to this question, thus answering an open question in Lynch and Blum (Math.
Syst. Theory. 12(1), 205-211 1979).

Keywords Abstract recursion theory · Tail recursion · Lower bounds · Arithmetic

1 Introduction

Let � be a signature and A be a first-order �-structure. Any such structure A has an
associated recursion theory, that is to say a family of functions and relations that are
recursive over A.

� Siddharth Bhaskar
siddhu@bhaskars.com

1 Department of Mathematics, UCLA, Los Angeles, CA 90095, USA

2 Present address: Department of Mathematics, IU Bloomington, Bloomington, IN 47405, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-016-9673-5&domain=pdf
mailto:siddhu@bhaskars.com

300 Theory Comput Syst (2017) 60:299–313

We say that a function is recursive over A in case it is computed by a system of
recursive equations whose non-logical symbols come from �. We call this system a
(McCarthy) recursive program after John McCarthy, who pioneered the idea in [6].
In the case that A is

Nu := (N, 0, 1, S, Pd, =)

where S is the successor and Pd the predecessor function, we recover classical
recursion theory.

There are several other ways to understand computability over A. For example,
we may consider iterative programs. A program over a given structure is iterative
if, roughly speaking, it can be expressed using recursion no more complicated than
“loops,” such as for loops or while loops. Iterative programs express a broad class of
familiar algorithms, but not the ones that use more complicated “divide-and-conquer”
recursion. There is a restricted class of recursive programs, called tail recursive
programs, which compute exactly the iterative functions.

Over any structure, every tail recursive function is automatically recursive. In other
words,

tail(A) ⊆ rec(A)

for allA, where tail(A) and rec(A) are the set of tail recursive and recursive functions
over A respectively.

In the classical setting, the converse is true:

tail(Nu) = rec(Nu).

However, this is not true in general. Examples of structures for which it fails can be
found in [4, 5, 9, 10].

It is natural to ask whether there is a difference in complexity between recursion
and tail recursion, even when they might agree in terms of computability. In other
words:

Is there a structure A such that rec(A) = tail(A), some partial function f on
A, and some natural measure of efficiency on recursive programs such that
there is a recursive program compuing f more efficiently than any tail recursive
program?

In this paper we give a positive answer to this question, thus answering an open
question from Lynch and Blum [5].

Related Work Several different groups of authors have studied recursion theory
over general first-order structures. Each of them draws the distinction between classes
corresponding to recursion and tail recursion. In particular, there are:

– Finite algorithmic procedures on A (FAP(A)) of Harvey Freidman [1], aug-
mented with a stack (FAPS(A)) by Moldestad, Stoltenberg-Hansen, and Tucker
[3]

– While(A) andWhile�(A) of Tucker and Zucker [11]
– Program schemata and recursive schemata in the field of schematology in

computer science. (See, for example, the book of Greibach [2])

Theory Comput Syst (2017) 60:299–313 301

Each pair of computability classes corresponds to recursion and tail recursion respec-
tively. In the first two cases, instead of realizing tail recursive programs as a
restriction of more general recursive programs, the fundamental object is an abstract
register machine or while-program, which corresponds to tail recursion. The full
power of recursion is recovered by adding an additional stack or array data structure.

In fact, these models not only compute the same functions as recursive and tail
recursive programs, but they do so about as efficiently according to natural measures
of complexity (see Section 2.3). Hence our separation results are robust, and not an
artifact of our model.

Organization of This Paper In Section 2, we review recursive programs, tail recur-
sion, and complexity measures on recursive programs. Section 3.1 contains the bulk
of our technical work and concludes with the abstract theorem about tail recursive
programs over the natural numbers which we will use to prove our lower bound, and
Section 3.2 applies that theorem to an explicit example. We then make concluding
remarks and state some open problems.

2 Recursion over Abstract Structures

In this section we will precisely define our basic objects of study, namely recursive
programs and recursive functions over first-order structures. We follow a simplied
version of the exposition in Moschovakis, [7, 8]. First, we review a few preliminaries.

Pointed Structures We require that our structures be pointed, i.e., that they contain
distinct constants 0 and 1. This simplifies the development of the theory considerably.
By identifying boolean values with {0, 1} we forego predicates in favor of functions
into {0, 1}, and we do not need to keep track of the sorts of terms, which in our setting
generalize both terms and atomic formulas in first-order logic.

Expansions If A is a structure and f is a function on A, then (A, f) denotes the
structure with f as an additional primitive.

In fact, all the structures we will work with will be some expansion of what we
have decided to call (for better or for worse) Predecessor arithmetic, namely

NPd := (N, 0, 1, P d, eq0)

where

eq0(n) =
{
0 ifn = 0
1 otherwise

.

2.1 Syntax and Semantics of Recursive Programs

Recursive Programs are the syntactic objects that define recursive functions. Terms
are the building blocks of recursive programs, and extend terms in first-order logic
by function-valued variables and conditional statements.

302 Theory Comput Syst (2017) 60:299–313

Terms and Their Semantics

Definition 1 A �-term M is generated by the grammar

M := x | φ(M1, . . . , Mn) | p(M1, . . . , Mn) | if M0 then M1 else M2

where x is a variable, p is a function-valued variable or recursive variable, and φ ∈
�. Without loss of generality, assume that variables and function-valued variables
are all of the form xi or pi for i ∈ N.

A �-term without recursive variables is called explicit, and an explicit �-term
without conditionals is called algebraic. An algebraic �-term is simply a term in the
first-order setting; it denotes a function over a �-structure A.

Within an explicit term, a conditional

if M0 then M1 else M2

denotes M1 if the denotation of M0 is 0 and M2 if the denotation of M0 is not
0. Explicit terms also denote functions, and such functions are themselves called
explicit.

A non-explicit term with recursive variables becomes explicit when we substitute
in explicit functions (or partial functions) for those variables. Let the denotation of a
non-explicit term be this functional that takes tuples of partial functions to a partial
function.

If x̄ and p̄ are tuples of variables and recursive variables respectively, and if for
some term M all of its variables and recursive variables occur in x̄ and p̄, then
(following Moschovakis) we write M(x̄, p̄) and call it a full extended term.

The advantage of this notation is that it makes substitution of terms very easy to
write. For example, given some elements x̄ from a �-structure, we may form the
term with parameters M(x̄, p̄). Or, we might substitute additional �-terms for the
variables x̄.

We trust that this method of notating substitution is natural to our readers and does
not require further explanation.

Anatomy of a Deterministic Recursive Program

Definition 2 A �-recursive program is a (K + 1)-tuple of �-terms

E = (E0(x̄0, p̄), E1(x̄1, p̄), . . . , EK(x̄K, p̄))

where p̄ = (p1, . . . ,pK) and the arity of pi is |x̄i | for 1 ≤ i ≤ K .

We shall typically write a program E as

E0(x̄0, p̄) where

{p1(x̄1) = E1(x̄1, p̄)

...

pK(x̄K) = Ek(x̄K, p̄)}.

Theory Comput Syst (2017) 60:299–313 303

The term E0 is called the head of E. The system of equations below the head is
the body of E.

Denotational Semantics Given a�-structureA, a�-recursive programE computes
a partial function over its domain A:

A solution to the body of a recursive equation is a tuple of partial functions p̄ on
A that is fixed by the functionals denoted by Ei , i.e.,

A |= pi(x̄) = Ei(x̄, p̄)

for all x̄ and each 1 ≤ i ≤ K . 1 Such a solution must always exist (among partial
functions!) and moreover there must be a least solution p̄0 which is extended by all
the others.

Finally, the partial function computed byE overA is defined to be the partial func-
tion denoted by E0(·, p̄0); i.e., the partial function obtained when the least solution
p̄0 to the body is fed into the head E0.

For more detail and proofs, see Chapter 2A of Moschovakis [7].

Definition 3 For a �-structure A, a partial function is recursive if it is computable
by some �-recursive program E over A. Let rec(A) be the set of all recursive partial
functions over A.

Informal Operational Semantics It will be helpful to informally describe how a
human might evaluate a recursive program on a given input. This will also motivate
the definition of the sequential logical complexity in Section 2.3.

We give a procedure to evaluate a term relative to a fixed �-structure A and �-
recursive program

E = (E0(x̄0, p̄), E1(x̄1, p̄), . . . , EK(x̄K, p̄))

Given a term M(x̄, p̄), proceed according to the following rules:

(Base) If M is a single variable, then M(x̄, p̄) is a single element of A. Return
that element.

(Conditional) If M ≡ if M0 then M1 else M2 then evaluate M0(x̄, p̄). If that is
zero, evaluate M1(x̄, p̄), otherwise evaluate M2(x̄, p̄), and return the
result.

(Primitive-call) If M ≡ φ(M1, . . . , Mn), evaluate Mi(x̄, p̄) for 1 ≤ i ≤ n, apply
φ, and return the result.

(Recursive-call) M ≡ pi (M1, . . . , Mn), evaluate Mi(x̄, p̄) to obtain yi for 1 ≤ i ≤
n, evaluate Ei(ȳ, p̄), and return the result.

For a given input x̄, our initial term will be E0(x̄, p̄). When we have evaluated it, the
result will either be an element A, or the procedure will not terminate. This proce-
dure defines a partial function which is identical to the one given by its denotational
semantics.

1In equality of partial functions, if one side diverges, the other must as well.

304 Theory Comput Syst (2017) 60:299–313

2.2 Tail Recursion

Recursive programs which are tail recursive express exactly the iterative algorithms
over a given structure. The partial functions they compute form an extremely robust
class, admitting (as we have seen) several different equivalent definitions.

Tail recursive functions are closed under composition and, more generally, expan-
sions: if f is tail recursive over (A, g) and g is tail recursive over A, then f is tail
recursive over A.

Definition 4 A �-recursive program E is tail recursive in case it is of the form

f (x̄0) = p(G(x̄0)) where{
p(x̄1) = if τ(x̄1) then o(x̄1) else p(F (x̄1))

}
where G is an explicit term of arity n = |x̄0| and co-arity 2 k = |x̄1|, F is an explicit
�-term of arity and co-arity k, and τ and o are explicit terms of arity k.

Definition 5 A partial function f : An ⇀ A is tail recursive in case it is computable
by some tail recursive program over A. The set of all tail recursive partial functions
is denoted tail(A).

2.3 Complexity Measures on Recursive Programs

We measure the complexity of a recursive program on a particular input by the num-
ber of logical steps performed in the execution, namely, the total number of times
we have to apply a primitive, parse a conditional, or make a recursive call. Following
Moschovakis, we call this the sequential logical complexity. 3

For a �-structure A and a �-recursive program E, let M = M(x̄, p̄) be a term-
with-parameters. The sequential logical calls complexity Ls(M) = Ls(A, E, M),
which measures the number of logical steps it takes to evaluate M , is specified by
the following rules. These are easily verified by the informal operational semantics
above.

1. If M is a single parameter x, Ls(M) = 0.
2. If M ≡ φ(M1, . . . , Mn), then Ls(M) = 1 + Ls(M1) + · · · + Ls(Mn).
3. If M ≡ pi(M1, . . . , Mn), then Ls(M) = 1 + Ls(M1) + · · · + Ls(Mn) +

Ls(Ei(M̄1, . . . , M̄n)), where Mi is the denotation of Mi(x̄, p̄).
4. If M ≡ if M0 then M1 else M2, then

Ls(M) =
{
1 + Ls(M0) + Ls(M1) ifM̄0 = 0
1 + Ls(M0) + Ls(M2) otherwise

.

2A term of co-arity k is simply a k-tuple of terms.
3The other natural sequential measure of complexity for recursive programs is the sequential number of
calls complexity, which measures the number of calls to the primitives during execution. This complexity
measure is bounded above and (surprisingly) below by a linear function of the logical complexity (see
Chapter 3 of Moschovakis [7]). This tight relationship ensures that our results will apply to both measures.

Theory Comput Syst (2017) 60:299–313 305

The number of logical steps it takes to evaluate E on input x̄ for a program E is
Ls(A, E, E0(x̄, p̄)), E0(x̄, p̄) being of course the first term in the computation. 4

Therefore, define

ls(A, E, x̄) := Ls(A, E, E0(x̄, p̄)).

This will be our fundamental measure of complexity.

Sequential Logical Complexity of Tail Recursive Programs If we have a tail
recursive program E given by

f (x̄0) = p(G(x̄0)) where

{
p(x̄1) = if τ(x̄1) then o(x̄1) else p(F (x̄1))

}
,

then the sequential logical complexity of this program on input x̄ is linearly related
to the number of times the recursive variable p gets called. We state the following
(easy) lemma without proof:

Lemma 1 For a given x̄, let n be the least k such that τ(F k(G(x̄))) = 0. Then

n ≤ ls(A, E, x̄) ≤ Cn + D

for some constants C and D independent of x̄.

Tail Recursion, Equivalent Models, and Their Complexity We hypothesize that
in any reasonable computing formalism over abstract structures, there will be a
natural way of counting the number of logical steps.

For example, a program schema may be thought of as a flowchart whose edges
are labelled by assignment statements, and whose nodes are labelled by conditionals.
Given some input, the computation is modelled by a path through the flowchart. The
number of steps in the computation can be thought of as the length of that path.

Under this assumption, our thesis becomes:

LetM be a model of computation for abstract structures that computes exactly
the tail recursive functions over any structure. Then the number of logical steps
it takes to evaluate a function f on input x̄ over a structure A using some
instance of M is bounded below by some linear function of ls(A, E, x̄), for
some tail recursive program E computing f .

This thesis becomes a theorem when we substitute in any concrete model of tail
recursive computation, for example finite algorithmic procedures, program schemata,
or while-programs. This shows that the lower bounds we demonstrate for tail
recursive programs apply more broadly.

4Ls diverges exactly when E does.

306 Theory Comput Syst (2017) 60:299–313

3 Gaps in Complexity

On the structure (NPd, γ) the total function

f (n, x) = γ 2n

(x) (1)

can be computed by the recursive program ER:

f (n, x) = p(n, x) where

p(n, x) =
{

γ (x) if n = 0
p(n − 1, p(n − 1, x)) otherwise.

It is easy to show:

Lemma 2 ls((NPd, γ), ER, n, x) = O(2n). In other words, there are constants c

and d such that E takes at most d + c2n logical steps on the input (n, x).

For any function g : N → N, we will define γ such that for infinitely many n,
there is an x such that computing f (n, x) takes at least g(n) logical steps by any tail
recursive program. This will give a positive answer to our main question, i.e., that
even when all recursive functions are tail recursive, there can be arbitrarily large gaps
in complexity between the two.

3.1 Combinatorics of (NPd, γ)-Tail Recursion

For this section fix a natural number k and assume that γ is non-decreasing.

Definition 6 For tuples m̄, n̄ ∈ N
k and a ∈ N, define m̄ ∼a n̄ in case min(mi, a) =

min(ni, a) for each 1 ≤ i ≤ k.

In other words, m̄ ∼a n̄ if the two tuples “agree on parameters less than a.” It is
clearly an equivalence relation.

It is (reasonably) straightforward to show that:

Lemma 3 For some f : N → N, and u, v, w, w′ ∈ N, suppose w′ − w is less than
or equal to f (u) − u and f (v) − v. Then

min(u, w) = min(v, w) =⇒ min(f (u), w′) = min(f (v), w′).

3.1.1 ∼a-Equivalence and (NPd, γ)-Terms

If we imagine for a moment that a were infinity, the relation ∼a would simply
become equality. In this case, the following two statements would be trivially true:

m̄ ∼a n̄ =⇒ F(m̄) ∼a F (n̄)

if F were a term of arity and co-arity k, and

m̄ ∼a n̄ =⇒ F(m̄) = 0 ⇐⇒ F(n̄) = 0

Theory Comput Syst (2017) 60:299–313 307

if F were a term of arity k. In the real world, we can still recover analogues to these
statements, which are stated in Corollary 1.

Lemma 4 Suppose F is an explicit (NPd, γ)-term of arity k. Then there is a constant
b depending only on F such that for all a > b,

m̄ ∼a n̄ =⇒ min(F (m̄), a − b) = min(F (n̄), a − b). (2)

Proof We may suppose that F is a term in the variables x1 through xk , in which case
F(m̄) is the value of the term obtained when mi is substituted for xi . The proof is by
induction on the construction of F .

If F is a constant 0 or 1, then the conclusion of equation (2) is trivially satisifed for
any b and a > b, so we may take b to be 0. If F is the variable xi , then F(m̄) = mi

and F(n̄) = ni , and m̄ ∼a n̄ =⇒ min(mi, a) = min(ni, a) by definition, so we
may also take b to be 0.

Suppose that F is ϕ(F ′), where ϕ is γ or Pd. Then by induction there is some b′
such that for all a > b′, m̄ ∼a n̄ =⇒ min(F ′(m̄), a − b′) = min(F ′(n̄), a − b′).

Now suppose that a > b′ + 1. I claim that

min(F ′(m̄), a − b′) = min(F ′(n̄), a − b′)

=⇒ min(ϕ(F ′(m̄)), a − (b′ + 1)) = min(ϕ(F ′(n̄)), a − (b′ + 1)) (3)

This follows from Lemma 3 with f = ϕ, w′ = a − (b′ + 1), u = F ′(m̄), and
v = F ′(n̄). The hypotheses of Lemma 3 are satisfied as

(a − (b′ + 1)) − (a − b′) = −1 ≤ ϕ(x) − x

for any x, when ϕ is either Pd or γ .

Hence for a > b′ + 1, if m̄ ∼a n̄, then by induction we have min(F ′(m̄), a −
b′) = min(F ′(n̄), a − b′), and by equation (3) we have min(F (m̄), a − (b′ + 1)) =
min(F (n̄), a − (b′ + 1)). Hence we may take b = b′ + 1.

Suppose that F is eq0(F
′). By induction, there is some b′ such that for all a > b′,

m̄ ∼a n̄ =⇒ min(F ′(m̄), a − b′) = min(F ′(n̄), a − b′). Fix a > b′ and assume
m̄ ∼a n̄. Then min(F ′(m̄), a − b′) = min(F ′(n̄), a − b′), and since a − b′ ≥ 1, we
may decrease along the second coordinate (in fact this is a consequence of Lemma 3)
to obtain min(F ′(m̄), 1) = min(F ′(n̄), 1). But this says exactly that eq0(F

′(m̄)) =
eq0(F

′(n̄)), and hence (trivially) that min(F (m̄), a − b) = min(F (n̄), a − b). We
have shown that

∀a > b m̄ ∼a n̄ =⇒ min(F (m̄), a − b′) = min(F (n̄), a − b′),

so we may take b = b′.
Finally, suppose that F is the conditional statement “if F0 then F1 else F2.” By

induction, there are b0, b1, and b2, such that for i ∈ {0, 1, 2}, if a > bi and m̄ ∼a n̄,
we have min(Fi(m̄), a − bi) = min(Fi(n̄), a − bi).

Let b be max{b0, b1, b2} and suppose a > b and m̄ ∼a n̄. We then want to show
that min(F (m̄), a − b) = min(F (n̄), a − b).

308 Theory Comput Syst (2017) 60:299–313

Since a > b0, min(F0(m̄), a − b0) = min(F0(n̄), a − b0). Since a − b0 ≥ 1, we
can decrease the second coordinate to obtain min(F0(m̄), 1) = min(F0(n̄), 1), and
hence F0(m̄) = 0 ⇐⇒ F0(n̄) = 0.

Suppose that F0(m̄) = F0(n̄) = 0. Then F(m̄) = F1(m̄) and F(n̄) = F1(n̄).
Since a > b1, min(F1(m̄), a − b1) = min(F1(n̄), a − b1), so min(F (m̄), a − b1) =
min(F (n̄), a − b1). Finally, since b ≥ b1, a − b ≤ a − b1, and decreasing along the
second coordinate, we get min(F (m̄), a − b) = min(F (n̄), a − b).

The case that F0(m̄), F0(n̄) > 0 follows similar lines.

Corollary 1 Suppose F is an explicit (NPd, γ)-term of arity k. Then there is a
constant b depending only on F such that for all a > b,

m̄ ∼a n̄ =⇒ eq0(F (m̄)) = eq0(F (n̄)).

Suppose G is an explicit (NPd, γ)-term of arity and co-arity k. Then there is a
constant b depending only on F such that for all a > b,

m̄ ∼a n̄ =⇒ G(m̄) ∼a−b G(n̄).

Proof By Lemma 4, there is some b such that if m̄ ∼a n̄ and a > b, min(F (m̄), a −
b) = min(F (n̄), a − b). As noted in the proof of that lemma, this statement when
a = b + 1 is equivalent to eq0(F (m̄)) = eq0(F (n̄)).

To prove the second statement, suppose that G = (G1, . . . , Gk), where each Gi

is a term of arity k. Then by Lemma 4, for each 1 ≤ i ≤ k there is a bi such that if
a > bi and m̄ ∼a n̄, min(Gi(m̄), a − bi) = min(Gi(n̄), a − bi).

Let b = max{bi : 1 ≤ i ≤ k}, and suppose a > b and m̄ ∼a n̄. Then for each i,
min(Gi(m̄), a − bi) = min(Gi(n̄), a − bi), and hence, decreasing along the second
coordinate, min(Gi(m̄), a−b) = min(Gi(n̄), a−b). But this is exactly the statement
that G(m̄) ∼a−b G(n̄).

3.1.2 ∼a-equivalence and (NPd, γ)-tail recursion

For the remainder of Section 3.1, fix a tail recursive program E

f (x1, . . . ,xn) = p(G(x1, . . . ,xn)) where

{p(x̄) = if τ(x̄) then o(x̄) else p(F (x̄))} (4)

where x̄ = (x1, . . . ,xk), G, τ , o, and F are explicit (NPd, γ)-terms, and G and F

have co-arity k.
What we will do is examine the tuples of the form Fj (G(x̄)) such that

τ(F j (G(x̄))) = 0, which are the tuples we evaluate p upon in the course of the com-
putation on input x̄. If some tuple is repeated, i.e., F i(G(x̄)) = Fj (G(x̄)) for some
i < j , then the computation fails to halt.

In this section we obtain an analogue of this result when equality is replaced by
∼a-equivalence.

By Corollary 1 applied to τ and F , there are constants b and c such that for any
a > b, c,

m̄ ∼a n̄ =⇒ eq0(τ (m̄)) = eq0(τ (n̄)) (5)

Theory Comput Syst (2017) 60:299–313 309

and
m̄ ∼a n̄ =⇒ F(m̄) ∼a−b F (n̄). (6)

Corollary 2 Fix m̄ and n̄, and suppose m̄ ∼ab+c n̄ for some a > 0. Then
τ(F j (m̄)) = 0 ⇐⇒ τ(F j (n̄)) = 0 for 0 ≤ j < a.

Proof Fix 0 ≤ j < a. Then Fj (m̄) ∼(a−j)b+c F j (n̄): when j = 0, it is equivalent
to m̄ ∼ab+c n̄, and when j > 0, it follows from equation (6). (We take F 0 to be the
identity function.)

By equation (5), since (a − j)b + c > c, we have that eq0(τ (F j (m̄))) =
eq0(τ (F j (n̄))), or in other words τ(F j (m̄)) = 0 ⇐⇒ τ(F j (n̄)) = 0.

Definition 7 For m̄ ∈ N
k and u < v ∈ N, define

G(m̄, u, v) ⇐⇒ {m1, . . . , mk} ∩ (u, v) = ∅.

(Here (u, v) is an interval, i.e. the set {n ∈ N : u < n < v}.)

Then we have immediately that if G(m̄, u, v), G(n̄, u, v) and m̄ ∼u n̄ then m̄ ∼v

n̄.

Lemma 5 Fix m̄. Suppose that m̄ ∼ab+c F i(m̄) for some a, i > 0. Then the least j

such that τ(F j (m̄)) = 0, if it exists, cannot be in the interval [i, i + a).

Proof By Corollary 2, for 0 ≤ j < a,

τ(F j (m̄)) = 0 ⇐⇒ τ(F i+j (m̄)) = 0.

Therefore if for some i ≤ j < a + i, τ(F j (m̄)) = 0, then τ(F j−i (m̄)) = 0.

Lemma 6 Fix m̄. Suppose that there exists such a j such that τ(F j (m̄)) = 0, and let
j0 be the least such j . Suppose that G(F j (m̄), a, a′b + c) for some a > 0, a′ ≥ a,
and for all j ≤ (a + 1)k . Then j0 cannot be in the interval ((a + 1)k, a′).

Proof We first claim that Fn1(m̄) ∼a F n2(m̄) for some 0 ≤ n1 < n2 ≤ (a + 1)k .
Otherwise each tuple {Fj (m̄) : 0 ≤ j ≤ (a+1)k} is in its own ∼a-equivalence class.
However, there are only (a + 1)k different ∼a-equivalence classes: for each of the k

indices, there are a + 1 choices, one for each {0, 1, . . . , a − 1}, and one for numbers
≥ a.

Hence Fn1(m̄) ∼a F n2(m̄) for some 0 ≤ n1 < n2 ≤ (a + 1)k . By assumption,
G(F n1(m̄), a, a′b + c) and G(F n2(m̄), a, a′b + c), so Fn1(m̄) ∼a′b+c F n2(m̄). By
Lemma 5, the least j such that τ(F n1+j (m̄)) = 0 cannot be in the interval [n2 −
n1, n2−n1+a′). But this least j is j0−n1; therefore, j0−n1 /∈ [n2−n1, n2−n1+a′)
and j0 /∈ [n2, n2 + a′). Since ((a + 1)k, a′) ⊂ [n2, n2 + a′), j0 is not contained in
((a + 1)k, a′).

310 Theory Comput Syst (2017) 60:299–313

This result may seem technical but the philosophy behind it is quite clear:
Suppose the elements of a tuple m̄ contain very big or very small numbers. Then

the computation of p on m̄ halts in either a very short or very long amount of time.

3.2 An Explicit Complexity Gap

We will now apply the results of Section 3.1 to any tail recursive program comput-
ing the function f of equation (1). We shall show that, for any increasing function
g, we can define γ such that any tail recursive program E computing f over
(NPd, γ) makes at least g(n) logical steps on infinitely many inputs (n, x). (Recall
that only O(2n) logical steps were required by a general recursive program, for
any γ .)

We first describe how to obtain γ from g. Namely, let γ : N → N be any strictly
increasing function for which for every function L : x �→ ux + v for u, v ∈ N, the
interval (n, 2n + L(g(n))) is disjoint with the range of γ for arbitrarily large n. The
fact that there exists such a function requires proof.

Lemma 7 For every increasing function g : N → N there is an increasing function
γ : N → N such that for all u, v ∈ N there exist infinitely many n such that (n, 2n +
g(n)u + v) is disjoint with the range of γ .

Proof We define γ by recursion. Let γ (0) be 0, and define

γ (i + 1) := 1 + max{2γ (i)+1 + g(γ (i) + 1)u + v | u, v ≤ i},
so that for n = γ (i) + 1, γ (i) < n < 2n + g(n)u + v < γ (i + 1) for all u, v ≤ i.
Clearly γ is increasing.

Now fix u, v ∈ N. Then for all i ≥ u, v if n = γ (i) + 1, then (n, 2n + g(n)u + v)

is disjoint from the range of γ . This is because γ (i) < n, 2n +g(n)u+v < γ (i +1),
and γ is increasing so there is no j such that γ (i) < γ (j) < γ (i + 1).

Having defined γ from g, we suppose that E is a tail recursive program computing
f over (NPd, γ), and we now describe the infinite family of inputs on which E

runs slowly. Let L(n) be the linear function nb + c, where b and c are obtained
from E as in Section 3.1.2. By definition, (n, 2n + L(g(n))) is disjoint with the
range of γ for arbitrarily large n. Let n1 < n2 < . . . be an infinite increasing
sequence witnessing this, and let xi := 2ni + L(g(ni)). The pairs (ni, xi) for i ∈ N

will be the infinitely many inputs on which E will perform at least g(ni) logical
steps.

For all i, j , let m̄i,j := Fj (G(ni, xi)). The m̄i,j are the tuples that p gets called
upon in the course of the computation on input (ni, xi). Then

Lemma 8 For 0 ≤ j < 2ni , G(m̄i,j , ni, L(g(ni))).

Proof Let m̄i,j = (m
(i,j)

1 , . . . , m
(i,j)
k). Let m range over m

(i,j)

	 for i ∈ N, 0 ≤ j <

2ni and 1 ≤ 	 ≤ k. Then m = b(y) where b is an algebraic {Pd, γ, eq0}-term of

Theory Comput Syst (2017) 60:299–313 311

length less than 2ni and y is 0, 1, ni , or xi . I claim that all such m are contained in
the set

[0, ni] ∪ [xi − 2ni , xi] ∪
⋃

ϑ∈γ [N]
[ϑ − 2ni , ϑ].

In case b is a {Pd}-term, this is obvious. Otherwise b = Pdj ◦ γ ◦ b′ or b = Pdj ◦
eq0 ◦ b′ for some j < 2ni and algebraic {Pd, γ, eq0}-term b′. Define m′ := b′(y). In
the first case, m = γ (m′) − j , so m ∈ [ϑ − 2ni , ϑ] for some ϑ in the range of γ . In
the second case, m is 0 or 1.

Since xi − 2ni = L(g(ni)), each parameter m is contained in the set

[0, ni] ∪ [L(g(ni)), L(g(ni)) + 2ni] ∪
⋃

ϑ∈γ [N]
[ϑ − 2ni , ϑ].

However, if we take the intersection with (ni, L(g(ni))),

[0, ni] ∩ (ni, L(g(ni))) = ∅
[L(g(ni)), L(g(ni)) + 2ni] ∩ (ni, L(g(ni))) = ∅.

If z ∈ (ni, L(g(ni))) ∩ [ϑ − 2ni , ϑ] for some ϑ ∈ γ [N], then
ni < z ≤ ϑ ≤ z + 2ni < L(g(ni)) + 2ni .

This contradicts the assumption that the range of γ and (ni, L(g(ni)) + 2ni) are
disjoint for all ni .

We can now prove our main theorem. The proof uses the notion of value-depth
complexity (see Chapter 4 in Moschovakis [7]). In our case, the value-depth com-
plexity of a natural number y given natural numbers (x1, . . . , xk) is the length of the
shortest term T such that (NPd, γ) |= y = T (xi) for some 1 ≤ i ≤ k. The value-
depth complexity of y given x̄ is a lower bound for the number of logical steps a
program E takes to compute input x̄ if (NPd, γ) |= E(x̄) = y. 5

Theorem 1 For sufficiently large i, the number of sequential logical calls made by
the tail recursive program E on input (ni, xi) is at least g(ni). I.e.,

ls((NPd, γ), E, ni, xi) ≥ g(ni).

Proof By Lemma 8 and the definition of L, for all i,

G(m̄i,j , ni, g(ni)b + c)

for 0 ≤ j < 2ni , and hence for 0 ≤ j ≤ (ni + 1)k if i is sufficiently large. If j0,i is
the least j such that τ(m̄i,j) = 0, we can apply Lemma 6 to conclude that j0,i is not
in the interval ((ni + 1)k, g(ni)) for sufficiently large i.

Moreover, j0,i grows exponentially in ni . This is because the value-depth com-
plexity of γ 2ni

(xi) given ni and xi is 2ni , and so 2ni is a lower bound for the number

5The intuition here is that E needs to “construct” the term defining y from x̄ in the course of its
computation, and it can increase the length of this term by at most one symbol per logical step.

312 Theory Comput Syst (2017) 60:299–313

of calls to γ . But j0,i is bounded below by a linear function of the number of logical
steps by Lemma 1.

Therefore, for sufficiently large i, j0,i > (ni +2)k , so j0,i ≥ g(ni). In other words,
on input (ni, xi), the tail recursion (4) makes at least g(ni) recursive calls before
halting. But by Lemma 1, this shows that the number of logical steps is also at least
g(ni).

4 Conclusion

For each increasing function g, we have exhibited a structure (NPd, γ) and a γ -
recursive function f such that for each tail recursive program E computing f , there
is an infinite family of inputs {(ni, xi) : i ∈ N} such that ni < ni+1 for each i and the
number of logical steps in the computation E(ni, xi) is at least g(ni). On the other
hand, the recursive program E always makes O(2n) logical steps on all inputs (n, x),
which is optimal within a linear factor.

Hence we have found structures with arbitrarily large complexity gaps. On the
other hand, with an increasing function γ we can compute the successor by a tail
recursion, so in terms of computability there is no difference between recursion and
tail recursion over (NPd, γ). Therefore, we have a positive answer to our original
question.

We might imagine some ways to strengthen this specific result. For example, we
believe that there should be a difference in complexity when we count just the num-
ber of times γ is called, instead of the total number of logical steps. This would be
somewhat cleaner. It would also be nice to show that there is an infinite family on
inputs on which all tail recursive programs run slowly, instead of having the family
of inputs depend on the program.

5 Future Work

More generally, there would be several additional types of functions where it would
be desirable to find complexity gaps. Namely, we would like to find gaps among
unary functions and relations, i.e., functions into {0, 1}. The usual reductions (using
pairing functions and the graph relation) fail to preseve complexity measures in the
right way when applied to this example.

What would be most interesting is a difference in complexity over a standard
structure of the natural numbers, like Nu or the related structure of binary string
arithmetic. Since Turing machines and other concrete machine models of computa-
tion are naturally expressed by tail recursive programs over these structures, such a
complexity difference might imply that such machines cannot faithfully express all
algorithms without some loss in overhead. This has foundational importance, since
the standard way to formalize the complexity of algorithms uses Turing machines.

A final open question is whether we can find a complexity difference lurking
among usual computational problems–searching, sorting, and the like. For exam-
ple, among pure “comparison sorts,” the ones which are naturally expressed by

Theory Comput Syst (2017) 60:299–313 313

iterative algorithms like selection sort and insertion sort seem to use O(n2) compar-
isons on lists of length n, whereas a general recursive algorithm like mergesort uses
O(n log n) comparisons.

We might conjecture that in a sufficiently abstract model of sorting, we might
be able to show a gap in the number of comparsions between recursion and tail
recursion. Unfortunately, this is false as stated, but we wonder whether there is
anything in this spirit.

Acknowledgments This article developed out of the author’s Ph.D. thesis, which was completed under
the helpful guidance of Yiannis N. Moschovakis.

References

1. Friedman, Mansfield: Algorithmic procedures. Trans. Am. Math. Soc. 332, 297–312 (1992)
2. Sheila, A.: Greibach. Theory of program structures: Schemes, Semantics, Verification. Springer,

Verlag (1975)
3. Stoltenberg-Hansen, V., Moldestad, J., Tucker, J.V.: Finite algorithmic procedures and computation

theories. Math. Scand. 46, 77–94 (1980)
4. Kfoury, A.J., Stolboushkin, A.P.: An infinite pebble game and applications. Inf Comput 136, 53–66

(1997)
5. Lynch, N.A., Blum, E.K.: A difference in expressive power between flowcharts and recursion

schemes. Math. Syst Theory 12(1), 205–211 (1979)
6. McCarthy, J.: A basis for a mathematical theory of computation. In: proceedings of the Western Joint

Computer Conference, pp. 225–238 (1961)
7. Moschovakis, Y.N.: Recursion and complexity. Lecture notes, UCLA (2015)
8. Moschovakis, Y.N., van den Dries, L.: Arithmetic complexity. ACM Trans. Comput. Log. 10 (2009)
9. Paterson, M.S., Hewitt, C.E.: Comparative schematology. In: Proc. Rec. ACM Conference on

Concurrent Systems and Parallel Computation, pp. 119–127 (1970)
10. Tiuryn, J.: A simplified proof of ddl < dl. Inf. Comput. 81(1), 1–12 (1989)
11. Tucker, J.V., Zucker, J.I.: Computable functions and semicomputable sets on many-sorted algebras,

chapter 5, pages 397–525 Oxford University Press (2000)

	A Difference in Complexity Between Recursion and Tail Recursion
	Abstract
	Introduction
	Related Work
	Organization of This Paper

	Recursion over Abstract Structures
	Pointed Structures
	Expansions

	Syntax and Semantics of Recursive Programs
	Recursive Programs
	Terms and Their Semantics
	Anatomy of a Deterministic Recursive Program
	Denotational Semantics
	Informal Operational Semantics

	Tail Recursion
	Complexity Measures on Recursive Programs
	Sequential Logical Complexity of Tail Recursive Programs
	Tail Recursion, Equivalent Models, and Their Complexity

	Gaps in Complexity
	Combinatorics of (NPd,)-Tail Recursion
	a-Equivalence and (NPd,)-Terms
	a-equivalence and (NPd,)-tail recursion

	An Explicit Complexity Gap

	Conclusion
	Future Work
	Acknowledgments
	References

