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Abstract We explore and demonstrate the feasibility of implementing distributed
solutions for advance reservation of network resources. We introduce a new dis-
tributed, distance-vector algorithm, called Distributed Advance Reservation (DAR),
that provably returns the earliest time possible for setting up a connection between
any two nodes. Our main findings are the following: (i) we prove that widest path
routing and path switching (i.e, allowing a connection to switch between different
paths) are necessary to guarantee earliest scheduling; (ii) we propose and analyze a
novel approach for loop-free distributed widest path routing, leveraging the recently
proposed DIV framework. Our routing results directly extend to on-demand and
inter-domain QoS routing problems.

Keywords Grid and cloud computing · Scheduling · Routing · Quality of service

1 Introduction

1.1 Background

Modern grid and cloud computing applications require unprecedented network
capabilities to support transfer of extremely large amounts of delay-sensitive and
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throughput-sensitive data among various data centers, national labs, universities, and
other research centers. As a simple illustration, experiments run on the Large Hadron
Collider (LHC) at CERN in Switzerland generate huge datasets, reaching the order of
dozens of petabytes [25]. This information is then transferred from CERN to various
sites around the world for the purpose of storage, processing, and analysis.

To address the above challenges, research and commercial providers have initiated
the deployment of novel networking architectures, which principles represent a major
shift from those underlying traditional TCP/IP networks. One of the most important
and distinctive features of these new architectures is to support advanced reserva-
tion. As such, distributed hosts are provided with the ability to reserve in advance
dedicated channels (circuits) to connect their resources. The goal of this design is
two-fold: (i) provide deterministic quality of service guarantees to applications with
strict bandwidth, delay, and/or jitter requirements, such as remote instrumentation
and collaborative visualization applications used in grid computing [16]; (ii) provide
traffic isolation to large bulk data transfer applications, such as GridFTP [3]. For
both types of applications, current TCP/IP network architectures have been found
to be inadequate, due to unacceptable throughput degradation and delay fluctuations
caused by interfering traffic [12].

The advance reservation paradigm has been successfully proven and tested
by a number of experimental projects, such as OSCARS [20, 28] and Ultra-
ScienceNet [30], and is now part of the operation of production networks, such as
ESnet [13] and Internet2 [21]. Moreover, ESnet has recently established a second
core network, called Science Data Network (SDN), that uses advance reservation
services to set-up circuits and allocate dedicated bandwidth to flows. The main
purpose of SDN is to provide support to the relatively small number (hundreds
to thousands) of extremely large volume data flows (Gigabytes to Terabytes) that
dominate ESnet traffic [22].

1.2 Problem

SDN as well as other similar advance reservation architectures are managed centrally,
i.e., a central scheduler performs advance reservations based on knowledge of the
entire topology of its domain. Such solutions do not scale to large network domains
or administratively heterogeneous networks, where network administrators do not
wish to disclose internal topology information [37].

Motivated by current limitations of centralized approaches, our goal in this paper
is to identify fundamental constraints and requirements for implementing distributed
advance reservation with guaranteed delay performance. By distributed, we mean
that the calculation of routes and scheduling of connections are performed by routing
nodes rather than on a central computer. By delay guarantees, we mean that the time
elapsed from the moment the request is placed until the start of the corresponding
connection is minimized (based on the current network state). We refer to such
a property as achieving minimal delay or earliest scheduling. Our objective is to
constructively show the feasibility of implementing distance vector routing, whereby
each node only maintains a successor (best next hop based on some metric) and a
corresponding metric value for each destination and each time slot (a time slot
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roughly corresponds to a period of time delineated by connection set-up or release
events; a more precise definition will be given in Section 3).

We divide the task of devising a distributed advance reservation algorithm into two
sub-problems:

1. Scheduling: assuming that every node knows its successor and the metric value
to all destinations at all time slots, find and reserve resources at the earliest time
interval that can accommodate a connection satisfying the desired user criteria.

2. Routing: calculate a successor for each destination and time slot at every node.
This way, every node knows its successor upon the arrival of a request.

Given the constraints imposed by the data structure available at nodes, our
contributions are the following:

1. We show that both widest path routing, i.e., routing on the path with largest
end-to-end bandwidth, and path switching, i.e., allowing connection to switch
between different paths, are necessary to ensure earliest scheduling (minimal
delay) of connections.

2. We prove that a simple implementation of distributed asynchronous Bellman-
Ford for widest path routing [6] may suffer from permanent routing loops in a
time-varying network supporting connection set-ups and releases.

3. We propose a distributed loop-free routing module called the Successor Selection
Module (SSM) that provably computes the widest path for each pair of nodes and
each time slot, leveraging a recently proposed loop-prevention paradigm called
Distributed Path Computation with Intermediate Variables (DIV) [31].

4. Based on the principles of widest path routing and path switching and using the
routing information provided by SSM, we devise an algorithmic solution, called
Distributed Advance Reservation (DAR), that provably guarantees minimal delay
for each arriving request.

The rest of this paper is organized as follows. We first review related work in
Section 2. Next, in Section 3, we explain our notation and assumptions and define
the data structure maintained at nodes. Section 4 explains the DAR algorithm and is
divided into two parts: (i) scheduling; and (ii) routing. In the first part, after analyzing
the requirements imposed by earliest scheduling, we present the DAR algorithm and
prove its properties. In the second part, we first bring negative results showing the
existence of permanent routing loops in naive implementation of distributed Bellman-
Ford for widest path routing.We then review the DIV loop prevention mechanism and
judiciously adapt it to our specific problem. We develop the SSM routing algorithm
and prove its theoretical properties. We conclude the paper in Section 5

2 Related Work

Our work relates to several areas, namely joint routing and scheduling, QoS routing,
and loop prevention. We briefly review each of them next.

There exists a rich literature on advance reservation services [4, 8, 9, 18, 19,
23, 29, 32, 33, 38, 41]. Most algorithmic work focuses on centralized solutions. A



Theory Comput Syst (2017) 60:194–221 197

notable exception is [15], but this work provides no theoretical performance guar-
antees. Additionally, a recent work [42] proposes a distributed advance reservation
mechanism based on link-state routing. The problem with link-state routing schemes
is that they require each node to have some global topology knowledge, which means
that they share several of the same problems as centralized solutions. An earlier and
abbreviated version of our paper appears in [14].

Some references focus on the signaling aspects of a distributed solution. For
example, [34] discusses possible modifications to the RSVP protocol. More recently,
several backbone networks (Internet2 and ESnet in the US, GEANT2 in Europe, and
Canarie in Canada) have been working on the specifications of a new protocol, called
Inter-Domain Controller Protocol (IDCP), allowing centralized schedulers in differ-
ent domains to communicate [1]. Our paper complements this effort by offering a
distance vector-like routing protocol that reports available bandwidth information as
a function of time without revealing internal domain topologies.

Most work on QoS routing employs link-state routing, especially when it comes
to widest path routing (see [7] for an excellent survey). Curado and Monterio [11]
surveys various multi-criteria QoS distributed routing algorithms that try to reduce
the complexity of this problem. Wang and Crowsoft [40] studies multi-criteria QoS
routing and presents several combinations of criteria for which the problem is proved
to be NP-complete. Sobrinho [35] investigates the properties that QoS criteria must
possess to allow for computation of optimal paths using a generalized version of the
Dijkstra algorithm.

We show in this paper that in order to guarantee the earliest connection starting
time, selection of the widest path is required. Costa et al. [10] and Wang and Crow-
soft [40] study widest path routing based on distance vector structure. The algorithms
are assumed to run synchronously (an assumption which we do not make) since all
nodes must always be at the same stage of the execution. More critically, their solu-
tions do not consider how to handle updates resulting from link bandwidth changes.
We show in this work that such updates can trigger permanent routing loops, unless
they are properly addressed.

Distributed distance-vector routing is notoriously known to suffer from routing
loops in dynamic networks. In the case of shortest-path routing, such loops may result
into the infamous count-to-infinity problem leading to slow convergence. For the case
of widest-path routing, we will show in that the problem is more severe, namely no
convergence at all.

Next, we review some existing methods to prevent routing loops. Garcia-Luna-
Aceves [17] and Vutukury and Garcia-Luna-Aceves [39] introduce loop-free shortest
path algorithms extended from the Bellman-Ford algorithm [6]. Specifically, Ref.
[17] proposes an algorithm called DUAL which restricts selection of the successor to
a set of neighbors called the feasible successor set and triggers a synchronous update
procedure called diffusing computation to synchronize a group of nodes in case of
any change. Vutukury and Garcia-Luna-Aceves [39] proposes an alternative method
to prevent routing loops. Specifically, it maintains a pair of invariant conditions called
Loop Free Invariant (LFI) at each node that depend on the node’s cost to destination
and that of its neighbors. The LFI conditions prevent formation of transient loops.
The update mechanism is similar to that of DUAL.
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The previous references considered prevention of routing loops for shortest path
routing. Ray et al. [31] offers a framework called DIV for loop prevention that can
be used in conjunction with other metrics, which is critical for our paper. DIV is
roughly a hybrid of the DUAL and LFI algorithms. We explain DIV in detail in
Section 4.2. Here, we outline some of its advantages, other than its generic nature,
compared to the previous references: (i) it supports multi-path routing; (ii) its feasibil-
ity conditions are more relaxed compared to the DUAL algorithm and hence triggers
synchronous updates less frequently; and (iii) it can handle multiple overlapping
updates simultaneously.

3 Model

3.1 Notation

Consider a network modeled with a weighted graph G, either directed or undirected,
consisting of a set of nodes V and a set of linksE. The graph is dynamic meaning that
weights change over time. Nodes represent hosts and routers and links are reliable
channels connecting the nodes. We denote eij the link connecting node i ∈ V to node
j ∈ V . We denote N(i) the set of neighbors of node i.

Connection requests arrive randomly over time across the network. Any pair of
nodes may request a connection at any time. Each request specifies the transmission
source s, the transmission sink d, a desired bandwidthB and a connection duration T .
Users can restrict the connection start time to an interval [ta, tb]. Otherwise, ta = tnow

and tb = ∞ where tnow is the present time.
Because of advance reservation of connections, a common time frame must be

maintained at each node of the network. Hence, we assume coarse-grained synchro-
nization (e.g., on the order of seconds) between clocks at different nodes to agree on
the set-up time and release of connections. We emphasize however that our routing
algorithms, and SSM in particular, can be run in a fully asynchronous manner.

We associate a weight w[eij ] with each link eij based on the desired routing opti-
mization criterion. Examples of link weight are length (denoted l[eij ]) which in our
settings is equivalent to link hop count (equal to 1) and bandwidth which is the
bandwidth available on the link (denoted b[eij ]).

A path from node i to node j consists of an ordered list of one or more consecutive
links that connect i to j and is denoted Pij . The path weight is a combination of
weights of links forming the path. If the path weight is based on bandwidth then the
path weight is given by mineij ∈Psd

{b[eij ]} for any given path Psd . If the path weight
is based on length then the path weight is

∑
eij ∈Psd

l[eij ] for any given path Psd . A
path with the optimal weight among all paths from s to d is called the optimal path.

We denote wij the estimated path weight from i to j by our routing algorithm.
Likewise, we denote bij and lij the estimated path bandwidth and the estimated path
length respectively. The optimal values of the above variables are denoted w∗

ij , b∗
ij

and l∗ij .
The successor of node i to destination d on some path Pid is defined as the imme-

diate next hop of i on the path and denoted πid . If j = πid then node i is the



Theory Comput Syst (2017) 60:194–221 199

predecessor of j . An ancestor of a given node i with respect to destination d is
defined as a node that connects to i through a chain of consecutive successors. If
node k is an ancestor of i, then i is called a descendant of k.

3.2 Assumptions

The statements proposed in this paper are correct under the following assumptions
which are made to simplify the analysis:

1. Communication links do not drop packets.
2. Links never fail.
3. There is no Byzantine behavior at nodes, i.e., nodes do not drop, modify, or

mis-route packets in an attempt to disrupt or degrade the routing service.
4. We assume that requests do not arrive simultaneously.
5. Clocks at different nodes are coarsely synchronized (e.g., on the order of

seconds). This is in order that nodes agree on the set-up time and release of
connections. We do not really need this assumption for the successor calculations
of the routing sub-problem.

6. Later in this paper, we show that, following any change in the network, all the
variables maintained at nodes eventually converge. We assume that the conver-
gence always happens earlier than the arrival of a new connection request to the
system.

This does not imply that there is no way we can resolve or alleviate these issues but
rather that they are commonplace to distributed network routing algorithms. Much
work in literature has addressed them and solutions are extensible to our particular
case [2, 26, 36].

3.3 Node Data Structures

In this section, we describe the data structures maintained by nodes and illustrate
them with an example. Here, we detail only part of the data structure at nodes which
is relevant to the performance of the DAR algorithm. This part is consistent with the
usual definition of distance vector routing. In Section 4.2, we add additional variables
used uniquely to prevent formation of loops.

To accommodate advance reservation, every node should maintain relevant infor-
mation regarding network state for all future times. Since the available link band-
widths change over time because of scheduled set-up or release of connections, the
variables maintained by nodes are time dependent (we introduce the node variables in
the next paragraph). To simplify the analysis, we divide the continuous time axis into
discrete slots delineated by changes in the values of the node variables. Therefore,
node variables remain fixed during each time slot. We refer to t

(id)
1 , t

(id)
2 , . . . , t

(id)
n

as the slot transition instances for node i with respect to destination d, where t
(id)
1 is

the present time (tnow) and t
(id)
n = ∞. Note that the time slots are not necessarily the

same for different source destination pairs. They are not fixed and pre-determined
but formed dynamically with scheduled set-up and release of connections.



200 Theory Comput Syst (2017) 60:194–221

Every node i maintains the following state variables for each future time slot for
each destination d: (i) a successor for destination d, denoted πid(t) (ii) an estimate
of the optimal path weight from i to d denoted w∗

id (t) (iii) an estimate of the optimal
path weight denoted w∗

jd(t) from j to d for all neighbors j ∈ N(i) (iv) the link
weight w[eij ](t) from i to each neighbor j ∈ N(i). The last item does not depend
on the destination. This is consistent with the standard data structure used in distance
vector routing with the difference that our structure must include future states to
support advance reservation. Note that although all of the above variables depend on
time t , they are fixed during each time slot.

We show in the next section that given the presented data structure at each node,
the successors must be selected based on widest path optimization to guarantee the
earliest connection start time.

Example 1 Figure 1a shows a network consisting of four nodes and four undirected
links. Link bandwidths change over time as depicted in Fig. 1b

Table 1 depicts the node data structures related to the network of Fig. 1a. This
table shows only the data used directly by algorithm DAR. Each node maintains for
each destination and time slot its successor, and the estimated path bandwidth.

We present a case study regarding node B. There are two time slots for destination
D: πBD(t) = C and b∗

BD(t) = 10 Gbit/s for time t from tBD
1 =12:00AM to tBD

2 =
2:00AM and πBD(t) = D and b∗

BD(t) = 20 Gbit/s for time t from tBD
2 = 2:00AM to

tBD
3 = ∞. However at the same node B there is only one time slot for destination C:
πBC(t) = C and b∗

BC(t) = 10 Gbit/s for time t from tBC
1 = 12:00AM to tBC

2 = ∞.

4 DAR Algorithm

Our objective is to devise a distributed algorithm guaranteeing that each request
is provided with minimal delay. By minimal delay, we mean that the time until

(a) (b)

Fig. 1 The figure shows a network with changing link state: (a) an undirected graph of four nodes repre-
senting a network (b) available bandwidth on links eAB , eBC , eCD , and eBD over time. Since the graph
is undirected every link can be presented with two formats. For example, eAB and eBA represent the same
link
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Table 1 Node data structures for widest path successor selection

a request is scheduled is minimized, based on the network state at the time of
arrival of the request (i.e., we consider an on-line algorithm). We also assume that
previously scheduled requests cannot be reshuffled. We emphasize that our opti-
mization metric does not guarantee the smallest possible (i.e., minimum) delay for
each request. However, this problem is very difficult and even proven to be NP-
hard for centralized, off-line variants [24]. Therefore, several advance reservation
algorithms proposed in the literature for centralized settings are based on the earliest-
scheduling criterion [8, 19]. We employ here the same metric for a distributed
setting.

We divide the problem of devising a distributed algorithm into two sub-problems,
one for scheduling and one for routing. As shown next, these two sub-problems are
not fully dissociated. In the first part, after stating the routing requirements imposed
by delay optimization, we introduce an algorithm called DAR that provably returns the
earliest connection start time. In the second part, after highlighting the fundamental
problems involved in distributed widest path routing, we briefly describe a recently
proposed approach called DIV that provides a generic framework to solve loop issues
in distributed routing. One of our main contributions is to introduce an algorithm
called SSM that judiciously selects adequate optimization metrics for DIV to ensure
loop-free calculation of routes. We conduct a performance analysis of SSM and prove
its correctness. Note that the DAR algorithm relies on the routing tables computed by
SSM.
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4.1 Scheduling

We start this sub-section by mentioning the constraints imposed on routing because
of the earliest scheduling optimization. For added clarity, we occasionally refer to the
example network of Fig. 1 and Table 1 with concrete examples.

4.1.1 Widest Routing Requirement

Figure 2a and b depict the successor graphs based on widest path optimization and
shortest path optimization respectively for destination D of the network illustrated in
Fig. 1a.

Let us consider a particular example. Assume a request arrives at 12:00AM for a
10 Gbit/s connection lasting 3 hours from node A to D. According to Fig. 2b, the
shortest path successors of A and B toward D are πAD(t) = B and πBD(t) = D at
all times t ≥ 12:00AM leading to path (eAB, eBD). We observe that it is not possible
for a connection requesting 10 Gbit/s to start at 12:00AM because bandwidth of the
mentioned path is 5 Gbit/s from 12:00AM to 2:00AM. The earliest time to start the
connection is 2:00AM for that path, though we could have started the connection at
12:00AM using path (eAB, eBC, eCD). This simple example reflects a restriction that
exists with distributed hop-by-hop routing algorithms in general. With shortest path
successor selection, longer paths with larger bandwidth are ignored. We prove:

Theorem 1 With the given node data structure and hop-by-hop routing paradigm,
widest path routing is required to achieve earliest scheduling (i.e., one must set
w[eij ] = b[eij ] for each link eij ).

Proof The proof is by contradiction. Assume that at every node the successors and
path weights for each time slot and destination are selected based on some given
criteria other than widest path optimization. Also assume that we are able to achieve
the earliest connection start time based on the mentioned structure for every request.
Since the primary successor selection criterion is not the largest path bandwidth, there
could exist some time slot [t ′, t ′ +�] during which the achieved path bandwidth bs′d ′

(a) (b)

Fig. 2 Illustration of various successor selection criteria regarding the graph of Fig. 1: (a) successor tree
for destination D based on widest path optimization (b) successor tree for destination D based on shortest
path optimization. Note that successor trees for destinations A, B and C should be formed separately in a
similar way
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from a given source s′ to a given destination d ′ is less than the widest path bandwidth
between the same pair during this interval, i.e., bs′d ′ < b∗

s′d ′ . In that case, we can
generate a request (s′, d ′, B ′, �, t ′, ∞) where B ′ is larger than bs′d ′ and smaller than
b∗
s′d ′ . Given such a request, the earliest connection starting time possible based on the

mentioned structure is t ′+� or later. However, the network resources are sufficient to
start this connection at t ′. This contradicts the assumption that we are able to achieve
the earliest connection start time for every request using the mentioned structure and
the theorem follows.

4.1.2 Path Switching

We reconsider the network of Fig. 1a and the example request from A to D described
in previous sub-section. According to the table of node A, based on the widest path
optimization, we have for t ≥ 12:00AM, πAD(t) = B and w∗

AD(t) = b∗
AD(t) =

10 Gbit/s. Hence it seems natural to assign the requested connection to the time inter-
val 12:00AM to 3:00AM. However, according to the same table, for t ∈ [12:00AM,
2:00AM] we have πBD(t) = C, and for t ≥ 2:00AM we have πBD(t) = D. Thus the
successors in Table 1 do not provide a fixed path for connection during 12:00AM to
3:00AM. This restriction is concealed at node A. Therefore, A cannot decide to start
the connection at 2:00AM to avoid the inconsistent paths throughout one connection.

We overcome the mentioned restriction with the aid of path switching. With path
switching, a connection is not restricted to use the same path over all its duration,
i.e., it can switch paths. Hence, we reserve in advance the paths as well as relevant
switching information. The concept of path switching was first introduced in [8] in
the context of centralized routing with advance reservation.

Back to our example, we see that one can reserve a connection from 12:00AM
to 3:00AM from A to D with bandwidth of 10 Gbit/s provided that during inter-
val [12:00AM, 2:00AM] the reserved path is (eAB, eBC, eCD) and during interval
[2:00AM, 3:00AM] the reserved path is (eAB, eBD).

4.1.3 Presentation of DAR Algorithm

Referring to the node data structure presented earlier, assume that the estimated
widest path bandwidth b∗

id (t) from every node i to d is optimal (widest). Based on
this assumption, we want to automate the process illustrated above for finding the
earliest connection start time for each arriving request.

We present next the scheduling component of DAR which provably returns the
earliest connection start time and a path (or sequence of paths in case of path
switching).

Upon arrival of a request R = (s, d, B, T , ta, tb), DAR searches for a point in
time tR within the time frame [ta, tb] such that the bandwidth constraint is satisfied,
i.e., b∗

sd(tR) ≥ B for all t ∈ [tR, tR + T ].
Every node, such as s, must regularly update its time slot structure t

(sd)
1 , . . . , t

(sd)
n

since the first element of the list must always correspond to the present time tnow.
The update process at node s consists of removing every time slot k whose start time
t
(sd)
k < tnow, updating the indices of all remaining time slots so that the first slot is

indexed 1 and t
(sd)
1 = tnow.
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Algorithm 1 DAR run at node

1. Upon arrival of a request

(a) Initialize connection start time to
(b) If does not hold at all times then,

i. If

– Reject the request

ii. Otherwise,

– Find a slot with minimum value of such that

and set to
– Go back to step 1b

(c) If request is admissible, reserve connection

2. Go to step 1

After a request is found feasible, a distributed signalling protocol runs the reservation
process. The source s sends a reservation request message to its successor(s). The
message indicates the destination, the amount of reserved bandwidth and the reserva-
tion time interval. Note that, due to path switching, s may have different successors
at different times during [tR, tR + T ], and thus may need several messages. Every
node that receives a reservation request message, updates its routing table and sends
reservation messages to its own successor(s) and so forth till the destination node d

is reached.
Note that due to the propagation and processing delay of reservation messages

flowing from sources to destinations, resource reservation conflicts between various
incoming requests may arise. We do not get into the details of this problem here,
as there already exist standard solutions in the literature for resolving reservation
conflicts and re-routing of connections [36].

4.1.4 Performance Analysis

We next prove the most important property of DAR:

Theorem 2 DAR provides the earliest connection start time for each arriving
request.

Proof Assume the path Psd(t) constructed by consecutive successors from node s

to destination d is the widest path from s to d at every time t (we will prove this in
Theorem 4).

We consider two cases: (i) If we only consider Psd(t), then DAR chooses the ear-
liest time tR to set up the connection because according to step 1(b)ii, DAR always
investigates the earliest slot j after ta that is followed by a continuous duration T
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with sufficient resources between s and d. (ii) On the other hand, assume there exists
a path P ′

sd (t) from s to d other than Psd(t), with available bandwidth B or more
during t ∈ [t ′R, t ′R + T ] where ta ≤ t ′R < tR . Since Psd(t) has the largest avail-
able bandwidth at any time, bandwidth of Psd(t) is at least equal to the bandwidth
of P ′

sd (t) which exceeds B for t ∈ [t ′R, t ′R + T ]. But in this case DAR would have
selected time t ′R1 at step 1(b)ii.

We may improve the performance of DAR by choosing the successor that returns
the shortest path length among all widest path successors. Although this may improve
performance by encouraging shorter paths compared to randomwidest path selection,
we prove:

Lemma 1 Given the presented node structures, shortest-earliest path optimization
is not feasible.

Proof We prove this lemma with a negative example. Consider again the example
network of Fig. 1a with the same bandwidth-time plots for links eBC , eCD and eBD

but assume eAB has constant bandwidth of 5 Gbit/s after 12:00AM. If we select the
successor returning the shortest among all widest paths, then πBD(t) = C for t ∈
[12:00AM, 2:00AM]. We also have πAD(t) = B at all times t ≥ 12:00AM since
this is the only option. Given this, we get P ∗

AD = (eAB, eBC, eCD) with bandwidth
5 Gbit/s from 12:00 to 2:00AM, while the shorter path (eAB, eBD) with the same
bandwidth of 5 Gbit/s during the same time interval is ignored. This proves that,
using this data structure, selection of the shortest-earliest path is not guaranteed.

Comparison with Performance of a Centralized Algorithm The above results
show that DAR must employ widest-earliest scheduling. A centralized approach, on
the other hand, could implement shortest-earliest scheduling (i.e., returns the shortest
paths among all the earliest available) [8]. Simulation results, reported in [8, Section
V.C.2], compare the performance of two similar schemes (called widest-shortest and
shortest-widest). It is assumed that requests arrive according to a Poisson process
with the same rate at each node, the destination for each request is selected uniformly
at random among all nodes (excluding the source), the connection duration is expo-
nentially distributed, and the bandwidth requested is distributed uniformly on a given
range. Simulations run for different topologies suggest that the maximum sustainable
load of widest-earliest scheduling is about 10-15% lower than that of shortest-earliest
scheduling, where the maximum sustainable load is defined as the maximum rate
of request arrivals before the average delay of requests becomes unbounded. This
result illustrates the trade-off between deploying a fully distributed solution, such as
DAR, and achieving higher performance with a centralized solution. In this case, the
performance gap between the two solutions seems reasonable.

4.2 Pre-Computation of Routes

In the previous section we have assumed that nodes know the appropriate succes-
sor to every destination for all future times. We proved that given our particular
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node data structure only the widest path to destination guarantees earliest schedu-
ling.

In this section we present a distributed algorithm for selection of successors which
we refer to as the Successor Selection Module (SSM). SSM runs at every node inde-
pendent of other nodes and DAR. First we explain the challenges of achieving widest
paths given such a data structure. Then we prove that the paths tentatively constructed
by SSM converge to the widest for every destination. Note that DAR relies on the
steady state results produced by SSM.

Notation to simplify the presentation, we discard the time dimension throughout
this section and present all algorithms as if they were on-demand. Every algorithm
presented here can be considered as an advance path calculation for a given time slot
and can be directly extended to all future time slots. Therefore, we eliminate the time
argument from our notation in what follows since node variables remain unchanged
during every slot.

The problem of successor selection for distributed hop-by-hop routing in networks
has been visited frequently in the literature. The common approach is using a dis-
tributed asynchronous version of the standard Bellman-Ford algorithm [2, 6, 27].
However, much of the focus of prior work has been on shortest path routing rather
than any other metric for the reason explained next.

4.2.1 Routing Loops

Assume we modify the distributed asynchronous shortest path Bellman-Ford algo-
rithm for widest path optimization by replacing link lengths and path lengths by link
bandwidth and path bandwidths respectively and by adjusting the relaxation equation
accordingly.

In our presentation below, the variable b
(i)
jd for j ∈ N(i) is the estimate of bjd

stored at node i according to the last message communicated from j to i. In brief,

every node i tries to maintain the largest value of min
{
b[eij ], b(i)

jd

}
among all of

its neighbors j and it elects as successor the neighbor j ′ which maximizes this
term. Whenever a neighbor j changes bjd it notifies all its neighbors including i.

Then i modifies its own estimate of bjd by setting b
(i)
jd = bjd . Then i recalcu-

lates bid = maxj∈N(i)

{
min

{
b[eij ], b(i)

jd

}}
and switches successor if necessary. If

link bandwidth b[eij ] changes, a similar update should take place at i. Once node
i changes bid (either because of a change in a neighbor’s estimated bandwidth or
change in an adjacent link bandwidth) it notifies all its neighbors.

We model nodes as state machines. Next we present formally the states, transitions
and procedures run at any node i for calculation of the widest path to any destination
d.

Widest path Bellman-Ford at node i ∈ V :
State variables:

– bid ; initialized 0 if i �= d and otherwise ∞.
– πid ∈ N(i) ∪ null; initialized to null.
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– b[eij ] for all j ∈ N(i); initialized to full capacity of link eij .

– b
(i)
jd for all j ∈ N(i); initialized 0 if j �= d and otherwise ∞.

Transitions:

– if i receives a message regarding change in bjd from neighbor j :

– i updates its own estimate of node j bandwidth: set b(i)
jd = bjd

– if bid �= maxj∈N(i){min{b[eij ], b(i)
jd }},

– i recalculates its bandwidth estimate: set bid = maxj∈N(i)

{min{b[eij ], b(i)
jd } }

– i updates its successor: set πid = argmaxj∈N(i){min{b[eij ], b(i)
jd }}

– if bid changed, i notifies all neighbors about new bid

In what follows we explain an important performance failure of the presented
algorithm. It is well known in the context of shortest path routing that asynchronous
Bellman-Ford may create transient routing loops in case of link failures which slows
down its convergence [6]. Besides, if some node is completely disconnected from the
destination, convergence may take forever (this phenomenon is known as the count
to infinity problem) [6].

In our case, link states change dynamically because of scheduled set-up and
release of connections according to step 1c of DAR algorithm. Along with the changes
in future available link bandwidths, the estimated successors and path bandwidths for
future time slots must be updated to remain consistent.

Lemma 2 Distance vector routing based on the distributed asynchronous widest
path Bellman-Ford presented above suffers from permanent routing loops in dynamic
networks.

Proof We prove this via an example showing the formation of a permanent routing
loop following a change in the network state. In Fig. 3 we show a linear network
consisting of 4 nodes and 3 links. Assume a 2 Gbit/s connection from C to D is
scheduled in advance starting from 2:00AM. The figure reflects this event with a
change in link bandwidth b[eCD] at 2:00AM. Since node C knows about this event
in advance, it performs a successor transition from πCD = D to πCD = B. Then

Fig. 3 Illustration of permanent loops with widest path routing in a linear 4-node network: the widest
path successors toward destination D are demonstrated with arrows and the numbers above links show
available link bandwidth in Gbit/s at the given time
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the estimated bandwidth at C remains bCD = 3 Gbit/s. B keeps C as its successor
πBD = C with bBD =3 Gbit/s instead of 1 Gbit/s. Assuming no further change in
link states, the loop πBD = C and πCD = B runs forever.

We proved in Section 4.1 that given our node data structure it is not possible to
guarantee shortest-earliest path optimization. Here, we show that selecting at each
node the shortest length among all widest path successors does not help to prevent
formation of loops either.

We show this by an example based on the same Fig. 3. We assume every
node selects the successor with smaller estimate of path length in case of a tie
regarding path bandwidth. Then, after 2:00AM we have at C, πCD = B and
again at B, πBD = C since C falsely offers B a wider path than A does.
The estimated path lengths at B and C keep increasing in a loop without a
bound because C sets lCD = lBD + 1 (lCD denotes estimated length of a path
from C to D) and vice verse for B. Soon we will have lBD > lAD . How-
ever this loop never breaks because invariably C offers a wider path than A, i.e.
bBD > bAD .

The two previous examples show whenever routing optimization criterion is path
width, formation of permanent loops is inevitable using the straight-forward exten-
sion of the shortest path Bellman-Ford. This explains why distance vector routing
with widest path QoS is not explored in the literature, while shortest path QoS or link-
state strategies are very well studied. Loops are less likely with link-state strategies
since every node maintains a copy of the network topology.

The looping problem can, in principle, be solved by re-initializing the state vari-
ables at all nodes in the network after every change. However, this is not scalable
because of excessive message overhead. Hence, the literature offers practical meth-
ods for preventing formation of loops in distributed algorithms without having to
re-initialize the whole network [17, 39]. However, most of the offered solutions are
based on shortest path (or minimum delay) routing optimization and either do not
apply to or need a lot of modifications to fit our scenario.

4.2.2 Loop Prevention

We exploit a recently proposed algorithm called Distributed Path Computation
with Intermediate Variable (DIV) to prevent formation of loops [31]. DIV has the
advantage of decoupling routing optimization from loop prevention process. This
makes DIV applicable to various routing algorithms or successor selection crite-
ria. The authors in [31] present it as a generic framework that can be adjusted
to any distributed distance-vector routing algorithm, not limited to shortest-path
routing.

The DIV prevents loop formation using the concept feasible successor set defined
for each destination at all nodes. The feasible successor set of i for each destination is
a subset of N(i). Successor to each destination is selected from the feasible successor
set based on the routing optimization criteria.



Theory Comput Syst (2017) 60:194–221 209

In order to use DIV in our routing computations we must modify the data structure
at nodes presented in Section 3.3. Other than the path bandwidth and successor which
are essential information for route calculation, every node must store intermediate
variables called values which are solely added to determine the feasible successor
set at every node for loop prevention purpose. Using the intermediate variables every
node can track its own value and that of its neighbors.

Each value has the format val(i; j |k) which represents the value of node i known
(believed) by node j and stored at node k (authors in [31] use the notation V (i; j |k)).
Hence, in addition to the data structure described in Section 3.3, every node i stores
for each destination d:

1. The value of i as known to itself, val(i; i|i);
2. The value of neighbor j as known to itself, val(j ; i|i), for each j ∈ N(i);
3. The value of itself as known to neighbor j , val(i; j |i), for each j ∈ N(i).

The first and third variables are not equal in general for a given neighbor j but
in steady state, DIV ensures that val(i; i|i) = val(i; j |i) = val(i; j |j) for every
j ∈ N(i). Throughout the paper, if we mention value of node i without specifying
stored or known by whom, we refer to val(i; i|i). Note that in order to simplify
notation, and stay consistent with the notation used in [31], we do not explicitly
include the dependency of the above variables in the destination d.

4.2.3 Adapting DIV to our Problem

Defining Values The quantity val(i; j |k) is a generic variable that the DIV frame-
work does not define specifically. For our particular purpose, we define it as a two
dimensional vector val(i; j |k) = 〈val1(i; j |k), val2(i; j |k)〉. For any given node i,
the first component val1(i; j |k) inversely relates to the estimated path bandwidth
from i to d, bid and the second component val2(i; j |k) relates to the estimated path
length from i to d. We will prove that val1(i; i|i) converges to −b∗

id , i.e., the opti-
mal (widest) bandwidth between i and d, and val2(i; i|i) converges to the length of
the optimal path in steady state. The intuition behind this choice of values is that
the first component accounts for widest routing optimization. Thus, we give it the
higher priority. The second component is required to satisfy the DIV constraints. Its
role is to break the uniformity between neighboring node values with the same path
bandwidth estimate; according to an invariance that we present later, every node must
have a strictly larger value than its successor. With path bandwidth alone, it is not
always possible to satisfy this invariance. In that case, some nodes could have no
successor.

We set the following relation between the path bandwidth estimate bid at any given
node i and the value of its successor as known by i: bid = min{b[eij ], −val1(j ; i|i)}
where j = πid and the following relation between the estimated path length lid and
value of i: lid = 1 + val2(j ; i|i) where j = πid .

Invariances Although the value of every node i, has to eventually be consistent
with bid and lid , the values are restricted to satisfy certain invariant conditions. The
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invariances are responsible for preventing formation of loops. Our invariant condi-
tions are very similar to those presented in [31] with the difference that we replace
the standard comparators with the lexicographic comparators defined next. Thus,
val(i1; j1|k1) �L val(i2; j2|k2) implies:

⎧
⎪⎪⎨

⎪⎪⎩

1. val1(i1; j1|k1) > val1(i2; j2|k2)
or
2. val1(i1; j1|k1) = val1(i2; j2|k2),
and val2(i1; j1|k1) > val2(i2; j2|k2)

Similarly, val(i1; j1|k1) L val(i2; j2|k2) implies:

⎧
⎪⎪⎨

⎪⎪⎩

1. val1(i1; j1|k1) > val1(i2; j2|k2)
or
2. val1(i1; j1|k1) = val1(i2; j2|k2),
and val2(i1; j1|k1) ≥ val2(i2; j2|k2)

The invariances are:

1. val(i; j |i) L val(i; i|i), where j ∈ N(i).
2. Node j is in the feasible successor set of node i if and only if val(i; i|i) �L

val(j ; i|i).
The first condition sets a bound on the choice of value. Every node has to keep its
value below or equal to the estimate of its value communicated by its neighbors.
This implies that if a node wants to increase its value, it should first notify its neigh-
bors. The second condition defines the feasible successor set which restricts selection
of successors only to neighbors that offer a better (lexicographically lower) value.
This condition is set to prevent creation of routing loops.

Updating Values The first invariance requires use of a special technique to update
values. Communication between nodes is through three types of DIV messages:
Update::Inc, Update::Dec and ACK. Update::Inc is a message that a node sends to its
neighbors before it increases its value. Update::Dec is a message that a node sends
to its neighbors after it decreases its value. ACK is sent in response to Update::Inc
(only to the sender) after the appropriate actions are performed at the receiver of
Update::Inc. For more details on the structure of these messages we refer the reader
to [31].

When a given node i wants to increase its value it will first notify its neigh-
bors before the actual increase. In turn, the neighbors that precede i will notify their
own neighbors, etc. The recursive updates will finally extend to all ancestors of i.
Every node that receives an Update::Inc and does not have to change its own value

responds with an ACK immediately. Node i will eventually increase its value once
it receives ACK from its neighbors. When a node needs to decrease its value it per-



Theory Comput Syst (2017) 60:194–221 211

forms the decrease and then issues an Update::Dec to its neighbors (pretty much like
the standard Bellman-Ford).

4.2.4 Presentation of SSM

In the following, we describe our algorithm SSM for selection of successors. Next, we
prove that the tentative paths constructed by SSM (by concatenation of successors)
converge to the optimal (widest) paths.

As mentioned earlier, we present only the subroutines and states at node i for one
destination d and for one particular time slot. SSM must be repeated independently
for each destination and for all future time slots at every node i. In our presentation
∞ denotes a sufficiently large number.

On the high level, SSM is a combination of the asynchronous widest path Bellman-
Ford and the DIV. Again, nodes are modeled as state machines. After listing the state
variables and their initial settings at any given node i, we detail four events and the
state transitions and actions they trigger. We illustrate each of these events using the
example of Fig. 3.

State variables:

– bid ; initialized 0 if i �= d and otherwise ∞.
– πid ∈ N(i) ∪ null; initialized to null.
– b[eij ] for all j ∈ N(i); initialized to full capacity of link eij .
– 〈val1(i; i|i), val2(i; i|i)〉; initially set to 〈0, ∞〉 if i �= d. Otherwise if i = d we

set 〈−∞, 0〉.
– 〈val1(j ; i|i), val2(j ; i|i)〉 where j ∈ N(i); initially set to 〈0, ∞〉 if j �= d.

Otherwise if j = d we set 〈−∞, 0〉.
– 〈val1(i; j |i), val2(i; j |i)〉 where j ∈ N(i); initially set to 〈0, ∞〉 if i �= d.

Otherwise if i = d we set 〈−∞, 0〉.
Events:

1) Inconsistency between bid andmaxj∈N(i){min{b[eij ], −val1(j ; i|i)}}. Such an
inconsistency may happen if the bandwidth of a link adjacent to i changes, or
right after initialization. In either case, node i immediately updates its succes-
sor, if needed. Whether or not the successor changes, bid must be re-calculated.
If bid changes, node i needs to update its value according to the DIV update
rules mentioned earlier. Therefore, the steps to be taken are the following (the
DecreaseV module is described in the sequel):

1. set πid = j ′ for any j ′ ∈ J and J = argmaxj∈N(i){min{b[eij ],
−val1(j ; i|i)}} where j is in the feasible successor set of i

2. set bid = {min{b[eij ′ ], −val1(j
′; i|i)}}

3. if val(i; i|i) ≺L 〈−bid, val2(j
′; i|i) + 1〉,

(i) send an Update::Inc with the desired value for i,
〈−bid, val2(j

′; i|i) + 1〉, to all neighbors j ∈ N(i)

4. else if val(i; i|i) �L 〈−bid , val2(j
′; i|i) + 1〉,

(i) decrease value of i by calling DecreaseV(i, j ′, d)
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Example 2 Consider Fig. 3. Before the change at 2:00AM, node C holds
the following values for itself and its neighbors B and D: val(C; C|C) =
val(C; B|C) = val(C; D|C) = 〈−3 Gbit/s, 1〉; val(B; C|C) = 〈−3 Gbit/s, 2〉;
and val(D; C|C) = 〈−∞, 0〉. Based on the second invariance, only node D

belongs to the feasible successor set of node C. After 2:00AM, the available
bandwidth of link eCD goes down to 1 Gbits/s. In that case, D remains the suc-
cessor of C (step 1) and the new estimate for the bandwidth from C to D is
bCD = 1 Gbit/s (step 2). Next, node C sends an Update::Inc message with its
new desired value 〈−1 Gbit/s, 1〉 to both nodes B and D (step 3).

2) Receipt of an Update::Inc message. When node i receives an Update::Inc
message with content 〈V1, V2〉 from a neighbor j ′′, this is a notification
that j ′′ wants to increase val(j ′′; j ′′|j ′′) according to 〈V1, V2〉. If j ′′ is the
successor of i, this triggers an increase in value of i. To increase its value,
i will send an Update::Inc message containing the value that i wants to have
(〈−min{b[eij ′′ ], −V1}, V2 + 1〉) to all of its neighbors including j ′′ and then
waits for an ACK response from neighbors (node transition after reception of
ACK will be explained separately). If j ′′ is not the successor of i, then i will just
respond with an ACK since it does not need to increase its value. In summary,
the steps to be taken are the following:

1. set val(j ′′; i|i) equal to 〈V1, V2〉
2. if j ′′ is successor of i then,

(i) send an Update::Inc with 〈−min{b[eij ′′ ], −V1}, V2 + 1〉 to all
neighbors j ∈ N(i)

3. else if j ′′ is not successor of i then,

(i) send to j ′′ an ACK holding val(j ′′; i|i) which equals 〈V1, V2〉

Example 3 We continue with the previous example. First, consider the action
of node B upon the receipt of of an Update::Inc message from neighbor C with
desired value 〈−1 Gbit/s, 1〉. Node B first sets val(C; B|B) = 〈−1 Gbit/s, 1〉
(step 1). Since node C is the successor of node B, node B sends an Update::Inc
message with value 〈−1 Gbit/s, 2〉 to both nodesA andC (step 2). Next, consider
the action of node D upon the receipt of the Update::Inc message from node
C. Node D first sets val(C; D|D) = 〈−1 Gbit/s, 1〉 (step 1). Since C is not
the successor of D, D sends an ACK to C with val(C; D|D) = 〈−1 Gbit/s, 1〉
(step 3).

3) Receipt of an ACK that contains val(i; j ′′|j ′′) from neighbor j ′′. When i

receives an ACKmessage from j ′′, it first updates its estimate of the value of j ′′
and then its own value can increase according to invariance 1. Note that ACK
message must contain the value of its generator j ′′ and because it is triggered
in response to an Update::Inc issued earlier by i, it must contain the value that
i has requested to increase to. After i receives an ACK from each of its neigh-
bors, it can search for a better successor. In the case of a successor switch, i will
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decrease its value by calling the function DecreaseV, defined below. Finally,
i must send an ACK if it has received an Update::Inc (i must have stored the
content 〈V1, V2〉 of Update::Inc in its memory). The steps in that case are the
following:

1. set val(i; j ′′|i) = val(i; j ′′|j ′′)
2. increase val(i; i|i) as much as possible such that val(i; i|i) �L val(i; j |i)

holds for all j ∈ N(i)

3. if i has not received an ACK message from each of its neighbors, exit.
4. if i has received an ACK message from each of its neighbors it can now

search for a better successor:

(a) set J = argmaxj∈N(i){min{b[eij ], −val1(j ; i|i)}} where j is in
the feasible successor set of i

(b) set bid = min{b[eij ′ ], −val1(j
′; i|i)}, for any j ′ ∈ J

5. if πid /∈ J , i switches successor:

(a) set πid = j ′ for any j ′ ∈ J

(b) decrease value of i by calling DecreaseV(i, j ′, d)

6. if i has received an Update::Inc with 〈V1, V2〉 from a neighbor j∗ which has
not been acknowledged yet, send an ACK to j∗ holding val(j∗; i|i)

Example 4 We pursue the previous example. Consider node A. Upon receiv-
ing the Update::Inc message with value 〈−1 Gbit/s, 2〉 from neighbor B, it
sends an Update::Inc message with value 〈−1 Gbit/s, 3〉 to neighbor B. Neigh-
bor B then sends to A an ACK with value val(A; B|B) = 〈−1 Gbit/s, 3〉. As
a result of the receipt of this ACK, node A performs the following actions: set
val(A; B|A) = 〈−1 Gbit/s, 3〉 (step 1) and set val(A; A|A) = 〈−1 Gbit/s, 3〉
(step 2). After receiving the ACK of node B, node A looks for a better suc-
cessor. In this example, the successor remains node B (steps 4 and 5). Finally,
node A sends an ACK to node B containing val(B; A|A) = 〈−1 Gbit/s, 2〉
(step 6). Upon receiving this ACK message, node B performs similar steps as
node A and sends an ACK message to node C, at which point the protocol
converges.

4) Receipt of an Update::Dec message with the desired value, 〈V1, V2〉 from
neighbor j ′′. The decrease of values is conceptually much simpler, as this action
is similar to the standard Bellman-Ford algorithm. If i receives an Update::Dec
message from neighbor j ′′ with content 〈V1, V2〉 this indicates j ′′ wants to
decrease val(j ′′; j ′′|j ′′) according to 〈V1, V2〉. If j ′′ is i’s successor, i decreases
its value by performing DecreaseV. If j ′′ is not the successor of i, then i

decreases its value only if j ′′ becomes the new successor again by performing
DecreaseV. The following pseudo-code summarizes these steps:

1. set val(j ′′; i|i) = 〈V1, V2〉
2. if j ′′ is successor of i then,

(a) decrease value of i by calling DecreaseV(i, j ′′, d)
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3. else if j ′′ is not successor of i then,

(a) set J = argmaxj∈N(i){min{b[eij ], −val1(j ; i|i)}} where j is
in the feasible successor set of i. If πid /∈ J then i switches
successor:

i. set πid = j ′ for any j ′ ∈ J

ii. decrease value of i by calling DecreaseV(i, j ′, d)

Next, we introduce the DecreaseV module. Assume y is the chosen successor
of x and d the destination. Whenever a node x wants to decrease its value it performs
the following task: x decreases its value, the estimated value of x as known by
any neighbor z, and x’s estimated path bandwidth bxd based on the parameters of
successor y. Then x sends an Update::Dec message to notify all its neighbors.

Module DecreaseV(x, y, d):

1. set −val1(x; x|x) and −val1(x; z|x) and bxd equal to {min{b[exy],
−val1(y; x|x)}} and set val2(x; x|x) and val2(x; z|x) equal to val2(y; x|x) + 1
for all z ∈ N(x)

2. send Update::Dec to all neighbors z of x with the content val(x; x|x)

Example 5 Figure 4 demonstrates the state transitions of SSM at each node for the
network of Fig. 3. After the bandwidth change on link eCD , SSM eventually converges
to correct estimates of the path bandwidth at every node.

4.2.5 Performance Analysis

In this section, we first analyze the worst-case memory complexity of SSM. Then, we
prove the time elapsed from issuing an Update::Inc message until receipt of the corre-
sponding ACK is finite. Based on this, we prove that bid and −val1(i; i|i) converge
to the bandwidth of the optimal path for every i and d. Using this and the loop-
freedom property from [31], we prove that the paths constructed by SSM between
every pair of nodes converge to the widest. Our analysis is based on the assumptions
from Section 3.2. Hence, request inter-arrival time is long enough to allow for con-
vergence of SSM path computations, there is no Byzantine behavior at nodes, and
links are reliable.

Theorem 3 The memory complexity of SSM at each node is O(Dmax.|V |.R) where
Dmax is the maximum node degree and R is the number of pending requests in the
system.

Proof Every node stores:

1. A path bandwidth estimate, successor and value of itself for each destination
and future time slot (memory complexity: number of destinations multiplied by
number of time slots)

2. Bandwidth of all its adjacent links for each future time slot (memory complexity:
node degree multiplied by number of time slots)
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Fig. 4 State transitions and events for the network depicted in Fig. 3, after a bandwidth change on link
eCD at 2:00AM from 3 Gbits/s to 1 Gbits/s. Among all the state variables of SSM, only bij and val(i; i|i)
are shown, where i can represent any node A, B, C or D and j represents node D. The format for the
state variables is as follows: bij , 〈val1(i; i|i), val2(i; i|i)〉. A dashed arrow depicts one of the four events
of SSM

3. Estimated value of all of its neighbors and its neighbor’s estimate of its own
value for each destination and future time slot (memory complexity: node degree
multiplied by number of destinations multiplied by number of time slots)

The third item has the dominant memory complexity. Hence, we only consider
it. The total number of slots at any node is in the worst case equal to 2R + 1. This
happens if the node changes its successor or the path bandwidth changes for each set
up or tear down of a connection throughout the network (note that path switching can
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only happen when another connection is set up or torn down). Thus, the worst case
memory complexity is O(Dmax.|V |.R) since the maximum number of destinations
is |V |.

Note that the above memory complexity analysis only considers the variables
required by SSM for distributed path computation. For resource reservation, each
node on each connection path must also store the successor for each time slot
throughout the connection duration and the corresponding connection bandwidth.
Hence, the memory required by DAR for resource reservation at every node is at
most the number of reserved (pending) requests in the system multiplied by the total
number of time slots, i.e., O(R2).

Next we show that the first invariance always holds.

Lemma 3 For all nodes i, j ∈ V , val(i; i|i) �L val(i; j |i), where j ∈ N(i).

Proof The only situation in which node i is allowed to increase its value is Step
2 of the procedure Receipt of an ACK. However, this step enforces val(i; i|i) �L

val(i; j |i) for all j ∈ N(i). Similarly, the only situation in which node i decreases its
value is Step 1 of the DecreaseV module. This step sets val(i; j |i) = val(i; i|i)
for all j ∈ N(i), and therefore the lemma holds.

We borrow the following lemmas from [31]. Its proof can be found therein.

Lemma 4 The successor graph is a directed acyclic graph (DAG) or a collection of
DAGs at all times.

The proof is similar to the one in [31]. Because our initialization respects the
invariances of DIV, they will always remain valid. The only difference is the
replacement of regular inequalities with lexicographic ones.

Lemma 5 The worst case time from the moment a node issues an Update::Inc until
it receives the corresponding ACK response is finite.

Proof We focus on a given destination d. Assume val(i; i|i) for some node i has
to increase. Thus, i sends Update::Inc message to all of its neighbors and waits for
ACKs from all of them. If a neighbor is not the predecessor of i, then according to
step 3a of the procedure receipt of Update::Inc, it responds i with an ACK imme-
diately. The lemma obviously holds in this case. If a neighbor is predecessor of i

with respect to d it will recursively send Update::Inc messages to all of its neighbors
before responding to i with an ACK. The recursion continues up to the leaf nodes of
the successor graph, for which all neighbors respond with ACK messages immedi-
ately (the successor graph must have leaf nodes at every branch according to Lemma
4). Every node which receives ACK from all of its neighbors, sends an ACK back to
the node from which it received an Update::Inc.

The above statements hold even if nodes receiving an Update::Inc message switch
successor. If a node that has received an Update::Inc from its successor needs to
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switch successor according to step 5 of the procedure receipt of an ACK, then
it makes sure to issue an ACK toward its original successor afterwards accord-
ing to step 6. Hence, the original successor will not wait forever for an ACK
response.

Next, we prove that a network whose nodes are initialized according to SSM, will
eventually reach a steady state even if a finite number of links change bandwidth. By
steady state, we mean all node variables remain fixed.

Lemma 6 Assuming that the network is in steady state, the time of update messages
after a bandwidth change on any link is finite.

Proof First consider the situation for one particular destination d. If bandwidth of a
link eij increases, this may only trigger Update::Dec messages. The update procedure
in this case is similar to standard widest path or shortest path Bellman-Ford applied
to an unchanging network. In this case node variables are proved to converge after a
finite number of message emissions [6].

Assume bandwidth on a link eij decreases. If j is the successor of i with respect to
d, i.e. πid = j , this change causes a decrease in the estimated bandwidth at i, i.e. bid ,
according to the SSM procedures. This triggers i to issue Update::Inc messages to all
of its neighbors in order to increase val1(i; i|i) accordingly. According to Lemma 5
the time elapsed until every ACK response arrives at i is finite. Afterwards, if i needs
to change successor to achieve a lower value, then the total number of update mes-
sages in the network is finite using a similar reasoning as the one regarding standard
shortest path Bellman-Ford in [6]. Note that, in the worst-case, the number of mes-
sages generated may be exponential in the number of nodes in the network |V | [5,
p. 450].

Now consider, node k that is initially an ancestor of i. The state at such a node
stabilizes, as long as the total number of update messages it receives is finite. Since
the network size is finite, the number of update messages reaching every such node
k through various paths will indeed be finite. The superposition of all messages for
different destinations will lead to a similar result since variables corresponding to
different destinations are updated independently.

Corollary 1 Assuming that the network is in steady state, the total number of
messages triggered by any finite number of link changes is finite.

We infer from Corollary 1 that assuming the network state is initialized according
to SSM and bandwidth on a finite number of links changes afterwards, the network
will eventually stabilize. To understand this, first assume that there will be no link
bandwidth change in the network after initialization. In this case, all nodes will keep
decreasing (improving) their value because except for d, all nodes are initialized with
the largest (worst) possible value and there is no link bandwidth decrease to trigger
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an increase in node values. The process of decreasing value is no different than
the standard Bellman-Ford update procedure and its convergence in an unchanging
network is provable in a way similar to [6, p. 404–410].

Now, assume some link bandwidths change after initialization. In this case, we
have a superposition of update traffic due to initial conditions and update traffic
due to link changes. Again, using the same reasoning used for Corollary 1, the total
number of messages will be finite and the network will reach steady-state in finite
time. Since SSM follows the same steps as the standard distributed Bellman-Ford
algorithm, except for preventing loops between a node and one or more of its
ancestors due to inconsistent information about the node’s value, we obtain the
following:

Theorem 4 The path constructed by consecutive successors from any node i to any
given destination d converges in finite time to the widest among all paths connecting
i to d.

Proof We prove by contradiction. According to Corollary 1 the network will eventu-
ally reach steady state. We assume the network has reached steady state. According
to Lemma 4, the path constructed from every node i by consecutive successors is
loop-free: so either it is a simple path connecting i to d or it is a simple path that does
not connect i to d and terminates at some node j �= d. We denote such path Pij in
either case where in the first case j = d. The proof consists of two parts:

Part 1. First, we prove bid and −val1(i; i|i) for every node i equal the bandwidth
of the path Pij , i.e. minexy∈Pij

{b[exy]}. The proof is by contradiction. Assume
−val1(i; i|i) �= minexy∈Pij

{b[exy]} at steady state. Starting at node j , moving on
predecessors one by one on Pij , we call k the first node on the path with incon-
sistent −val1(k; k|k) and path bandwidth. Assume πkd = h and according to
our assumption −val1(h; h|h) = minexy∈Phj

{b[exy]}. At steady state, we have
val(h; k|k) = val(h; h|h) because after every decrease in value of h, h should
have updated k and before every increase val(h; k|k) is set to the new value even
before val(h; h|h) was updated.
Therefore, we have min{b[ekh], −val1(h; k|k)} = minexy∈Pkj

{b[exy]}. If we
assume bkd is not equal to min{b[ekh], −val1(h; k|k)}, according to the inconsis-
tency procedure, k has to update bkd and this contradicts the node steady state
assumption. So, we conclude that bkd equals bandwidth of path Pkj .

But at steady state we also know that −val1(k; k|k) = bkd because other-
wise k has to update its value by issuing update messages. So, we conclude that
both −val1(k; k|k) and bkd equal bandwidth of path Pkj . Therefore, by recursive
reasoning we conclude the same is true for i.

Part 2. Next, we prove by contradiction that if all nodes are at steady state,
path Pij must be an optimal path connecting i to d. At all times, we have
for j ′ = πid , bid = min{b[eij ′ ], −val1(j

′; i|i)} which equals the bandwidth
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of path Pij formed by consecutive successors at steady state. If Pij is not
the widest possible path from i to d, because of the inconsistency between
maxj ′∈N(i) min{b[eij ′ ], −val1(j

′; i|i)} and bid , i has to update its successor
according to the inconsistency procedure. This contradicts the steady state
assumption. Finally, we note that according to the first part of the proof, if Pij

does not connect i to d, then bid = 0. Therefore, as long as there exists some path
with positive bandwidth from i to d, we must have j = d.

5 Summary

In this paper, we investigated the feasibility and requirements to implement end-to-
end advance reservation with delay guarantees based on a distance-vector approach.
This problem is practically relevant to the design of distributed network architec-
tures supporting grid computing applications, and possibly also cloud computing
applications in the future. Our analysis revealed the importance of proper choice
of the path optimization criterion. We first proved that earliest scheduling requires
widest path routing and that shortest-earliest routing is infeasible given our node data
structure.

Next, we highlighted the possible emergence of routing loops with widest path
distance-vector routing. We addressed this problem using the recent DIV loop-
prevention algorithm that lends itself to various routing optimization metric. Specif-
ically, we defined the intermediate variables of DIV structure (called values) to be
two-element tuples. The first element reflects path bandwidth and the second ele-
ment, which has a lower priority than the first, reflects path length. The rationale
behind our choice is that we first consider path bandwidth because of widest path
routing and then path length to break uniformity of values (loop-prevention of DIV
requires that the value of every node is larger than that of its successor).

We proved that our loop-free routing module SSM, based on DIV, converges to
widest routing within finite time. Our proofs exploit the property of loop-freedom
resulting from DIV. The DAR algorithm uses the route tables computed by SSM to
find the earliest schedule for connections.

While the focus of our paper is on distributed advance reservation, our results have
broader scope. Thus, SSM can be used for the design of on-demand distance-vector
QoS algorithms. Such algorithms can serve as the basis for inter-domain routing pro-
tocols, since they avoid the need of sharing global topology information. Another
broader contribution is in the formal description of SSM using states, transitions
(events) and procedures, since [31] did not provide such.

The paper opens interesting avenues for future work, such as the problem of
handling link failures. While SSM addresses the impact of link failures on routing
tables, such failures may also force rescheduling of on-going and future connections.
Thus, how to implement such rescheduling in a localized and efficient manner is an
important topic left for future work. Besides, earlier work, for centralized advance
network reservation, shows that multi-path routing (i.e., the ability of setting-up a
connection across multiple paths) can lead to significant performance gains [9]. It
would, therefore, be of interest to investigate ways of extending DAR to support
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multi-path routing. Finally, DAR could be extended to handle requests with different
priorities [19].
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