
Theory Comput Syst (2017) 61:263–282
DOI 10.1007/s00224-015-9663-z

The Connectivity of Boolean Satisfiability: Dichotomies
for Formulas and Circuits

Konrad W. Schwerdtfeger1

Published online: 28 October 2015
© Springer Science+Business Media New York 2015

Abstract For Boolean satisfiability problems, the structure of the solution space is
characterized by the solution graph, where the vertices are the solutions, and two
solutions are connected iff they differ in exactly one variable. In 2006, Gopalan et al.
studied connectivity properties of the solution graph and related complexity issues
for CSPs. They proved dichotomies for the diameter of connected components and
for the complexity of the st-connectivity question, and conjectured a trichotomy for
the connectivity question. Recently, we were able to establish the trichotomy. Here,
we consider connectivity issues of satisfiability problems defined by Boolean cir-
cuits and propositional formulas that use gates, resp. connectives, from a fixed set
of Boolean functions. We obtain dichotomies for the diameter and the two connec-
tivity problems: on one side, the diameter is linear in the number of variables, and
both problems are in P, while on the other side, the diameter can be exponential, and
the problems are PSPACE-complete. For partially quantified formulas, we show an
analogous dichotomy. A motivation is the relevance to reconfiguration problems and
satisfiability algorithms.

Keywords Boolean satisfiability · Boolean circuits · Post’s lattice ·
PSPACE-completeness · Dichotomy theorems · Graph connectivity

� Konrad W. Schwerdtfeger
k.w.s@gmx.net

1 Institut für Theoretische Informatik, Leibniz Universität Hannover, Hannover, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-015-9663-z&domain=pdf
mailto:k.w.s@gmx.net

264 Theory Comput Syst (2017) 61:263–282

1 Introduction

The Boolean satisfiability problem (SAT), as well as many related questions like
equivalence, counting, enumeration, and numerous versions of optimization, are of
great importance in both theory and applications of computer science. In this article,
we focus on the solution-space structure: We consider the solution graph, where the
vertices are the solutions, and two solutions are connected iff they differ in exactly
one variable. For this implicitly defined graph, we then study the connectivity and
st-connectivity problems, and the diameter of connected components. Figures 1 and
2 give an impression of how solution graphs may look like.

While the standard satisfiability problem is defined for propositional formulas,
which can be seen as one special form of descriptions for Boolean relations, sat-
isfiability and related problems have also been considered for many alternative
descriptions, e.g. Boolean constraint satisfactions problems (CSPs), Boolean cir-
cuits, binary decision diagrams, and Boolean neural networks. For the usual formulas
with the connectives ∧, ∨ and ¬, there are several common variants. A special
form are formulas in conjunctive normal form (CNF-formulas). A generalization of
CNF-formulas are CNF(S)-formulas, which are conjunctions of constraints on the
variables taken from a finite template set S.

Here we consider another type of generalization: Arbitrarily nested formulas built
with connectives from some finite set of Boolean functions B (where the arity may be
greater than two), known as B − f ormulas. Also we study B-circuits, where analo-
gously the allowed gates implement the functions from B. As a further extension we
consider partially quantified B-formulas.

A direct application of st-connectivity in solution graphs are reconfiguration prob-
lems, that arise when we wish to find a step-by-step transformation between two
feasible solutions of a problem, such that all intermediate results are also feasible.
Recently, the reconfiguration versions of many problems such as INDEPENDENT-
SET, VERTEX-COVER, SET-COVER GRAPH-k-COLORING, SHORTEST-PATH have
been studied, and complexity results obtained (see e.g. [12, 13]). Also of rele-
vance are the connectivity properties to the problem of structure identification,
where one is given a relation explicitly and seeks a short representation of some

Fig. 1 Depictions of the subgraph of the 5-dimensional hypercube graph induced by a typical random
Boolean relation with 12 elements. Left: highlighted on a orthographic hypercube projection. Center: high-
lighted on a “Spectral Embedding” of the hypercube graph by MATHEMATICA. Right: the sole subgraph,
arranged by MATHEMATICA

Theory Comput Syst (2017) 61:263–282 265

Fig. 2 Subgraphs of the 8-dimensional hypercube graph induced by typical random relations with 40, 60
and 80 elements, arranged by MATHEMATICA

kind (see e.g. [6]); this problem is important especially for learning in artificial
intelligence.

A better understanding of the solution space structure also promises advancement
of SAT algorithms: It has been discovered that the solution space connectivity is
strongly correlated to the performance of standard satisfiability algorithms like Walk-
SAT and DPLL on random instances: As one approaches the satisfiability threshold
(the ratio of constraints to variables at which random k-CNF-formulas become unsat-
isfiable for k ≥ 3) from below, the solution space (with the connectivity defined
as above) fractures, and the performance of the algorithms deteriorates [16, 17].
These insights mainly came from statistical physics, and lead to the development of
the survey propagation algorithm, which has much better performance on random
instances [16].

While current SAT solvers normally accept only CNF-formulas as input, one of
the most important applications of satisfiability testing is verification and optimiza-
tion in Electronic Design Automation (EDA), where the instances derive mostly
from digital circuit descriptions [27]. Though many such instances can easily be
encoded in CNF, the original structural information, such as signal ordering, gate
orientation and logic paths, is lost, or at least obscured. Since exactly this informa-
tion can be very helpful for solving these instances, considerable effort has been
made recently to develop satisfiability solvers that work with the circuit descrip-
tion directly [27], which have far superior performance in EDA applications, or
to restore the circuit structure from CNF [9]. This is a major motivation for
our study.

Our perspective is mainly from complexity theory: We classify B-formulas
and B-circuits by the worst-case complexity of the connectivity problems, analo-
gously to Schaefer’s dichotomy theorem for satisfiability of CSPs from 1978 [22],
Lewis’ dichotomy for satisfiability of B-formulas from 1979 [14], and Gopalan
et al.’s classification for the connectivity problems of CSPs from 2006 [10].
Along the way, we will examine structural properties of the solution graph like
its maximal diameter, and devise efficient algorithms for solving the connectivity
problems.

We begin with a formal definition of some central concepts.

266 Theory Comput Syst (2017) 61:263–282

Definition 1 An n-ary Boolean relation is a subset of {0, 1}n (n ≥ 1). If φ is some
description of an n-ary Boolean relation R, e.g. a propositional formula (where the
variables are taken in lexicographic order), the solution graph G(φ) of φ is the sub-
graph of the n-dimensional hypercube graph induced by the vectors in R, i.e., the
vertices of G(φ) are the vectors in R, and there is an edge between two vectors
precisely if they differ in exactly one position.

We use a, b, . . . to denote vectors of Boolean values and x, y, . . . to denote vectors
of variables, a = (a1, a2, . . .) and x = (x1, x2, . . .).

The Hamming weight |a| of a Boolean vector a is the number of 1’s in a. For two
vectors a and b, the Hamming distance |a − b| is is the number of positions in which
they differ.

If a and b are solutions of φ and lie in the same connected component of G(φ),
we write dφ(a, b) to denote the shortest-path distance between a and b.

The diameter of a connected component is the maximal shortest-path distance
between any two vectors in that component. The diameter of G(φ) is the maximal
diameter of any of its connected components.

2 Connectivity of CNF-Formulas

Research has focused on the structure of the solution space only quite recently: One
of the earliest studies on solution-space connectivity was done for CNF(S)-formulas
with constants (see the definition below), begun in 2006 by Gopalan et al. ([10, 11,
15, 24]).

In our proofs for B-formulas and B-circuits, we will use Gopalan et al.’s results
for 3-CNF-formulas, so we have to introduce some related terminology.

Definition 2 A CNF-formula is a Boolean formula of the form C1 ∧ · · · ∧ Cm (1 ≤
m < ∞), where each Ci is a clause, that is, a finite disjunction of literals (variables
or negated variables). A k-CNF-formula (k ≥ 1) is a CNF-formula where each Ci

has at most k literals.
For a finite set of Boolean relations S, a CNF(S)-formula (with constants) over a

set of variables V is a finite conjunction C1 ∧· · ·∧Cm, where each Ci is a constraint
application (constraint for short), i.e., an expression of the form R(ξ1, . . . , ξk), with
a k-ary relation R ∈ S, and each ξj is a variable in V or one of the constants 0, 1.

A k-clause is a disjunction of k variables or negated variables. For 0 ≤ i ≤ k,
let Di be the set of all satisfying truth assignments of the k-clause whose first i

literals are negated, and let Sk = {D0, . . . , Dk}. Thus, CNF(Sk) is the collection of
k-CNF-formulas.

Gopalan et al. studied the following two decision problems for CNF(S)-formulas:

– the connectivity problem CONN(S): given a CNF(S)-formula φ, is G(φ) con-
nected? (if φ is unsatisfiable, then G(φ) is considered connected)

– the st-connectivity problem ST-CONN(S): given a CNF(S)-formula φ and two
solutions s and t , is there a path from s to t in G(φ)?

Theory Comput Syst (2017) 61:263–282 267

Lemma 1 [10, Lemm 3.6] ST-CONN(S3) and CONN(S3) are PSPACE-complete.

Showing that the problems are in PSPACE is straightforward: Given a CNF(S3)-
formula φ and two solutions s and t , we can guess a path of length at most 2n

between them and verify that each vertex along the path is indeed a solution. Hence
ST-CONN(S3) is in NPSPACE, which equals PSPACE by Savitch’ s theorem. For
CONN(S3), by reusing space we can check for all pairs of vectors whether they are
satisfying, and, if they both are, whether they are connected in G(φ).

The hardness-proof is quite intricate: it consists of a direct reduction from the com-
putation of a space-bounded Turing machine M . The input-string w of M is mapped
to a CNF(S3)-formula φ and two satisfying assignments s and t , corresponding to the
initial and accepting configuration of a Turing machine M ′ constructed from M and
w, s.t. s and t are connected in G(φ) iff M accepts w. Further, all satisfying assign-
ments of φ are connected to either s or t , so that G(φ) is connected iff M accepts
w.

Lemma 2 [10, Lemm 3.7] For n ≥ 2 , there is an n-ary Boolean function f with
f (1, . . . , 1) = 1 and a diameter of at least 2	 n

2
.

The proof of this lemma is by direct construction of such a formula.

3 Circuits, Formulas, and Post’s Lattice

An n-ary Boolean function is a function f : {0, 1}n → {0, 1}. Let B be a finite set of
Boolean functions.

A B-circuit C with input variables x1, . . . , xn is a directed acyclic graph, aug-
mented as follows: Each node (here also called gate) with indegree 0 is labeled with
an xi or a 0-ary function from B, each node with indegree k > 0 is labeled with a
k-ary function from B. The edges (here also called wires) pointing into a gate are
ordered. One node is designated the output gate. Given values a1, . . . , an ∈ {0, 1}
to x1, . . . , xn, C computes an n-ary function fC as follows: A gate v labeled with
a variable xi returns ai , a gate v labeled with a function f computes the value
f (b1, . . . , bk), where b1, . . . , bk are the values computed by the predecessor gates of
v, ordered according to the order of the wires. For a more formal definition see [26].

A B-formula is defined inductively: A variable x is a B-formula. If φ1, . . . , φm are
B-formulas, and f is an n-ary function from B, then f (φ1, . . . , φn) is a B-formula.
In turn, any B-formula defines a Boolean function in the obvious way, and we will
identify B-formulas and the function they define.

It is easy to see that the functions computable by a B-circuit, as well as the func-
tions definable by a B-formula, are exactly those that can be obtained from B by
superposition, together with all projections [2]. By superposition, we mean substitu-
tion (that is, composition of functions), permutation and identification of variables,
and introduction of fictive variables (variables on which the value of the function
does not depend). This class of functions is denoted by [B]. B is closed (or said to
be a clone) if [B] = B. A base of a clone F is any set B with [B] = F .

268 Theory Comput Syst (2017) 61:263–282

Already in the early 1920s, Emil Post extensively studied Boolean functions [20].
He identified all clones, found a finite base for each of them, and detected their
inclusion structure: The clones form a lattice, called Post’s lattice, depicted in Fig. 3.

The following clones are defined by properties of the functions they contain, all
other ones are intersections of these. Let f be an n-ary Boolean function.

– BF is the class of all Boolean functions.
– R0 (R1) is the class of all 0-reproducing (1-reproducing) functions,

f is c-reproducing, if f (c, . . . , c) = c, where c ∈ {0, 1}.
– M is is the class of all monotone functions,

f is monotone, if a1 ≤ b1, . . . , an ≤ bn implies f (a1, . . . , an) ≤ f (b1, . . . , bn).
– D is the class of all self-dual functions,

f is self-dual, if f (x1, . . . , xn) = f (x1, . . . , xn).
– L is the class of all affine (on linear) functions,

f is affine, if f (x1, . . . , xn) = xi1 ⊕ · · · ⊕ xim ⊕ c with i1, . . . , im ∈ {1, . . . , n}
and c ∈ {0, 1}.

– S0 (S1) is the class of all 0-separating (1-separating) functions,
f is c-separating, if there exists an i ∈ {1, . . . , n} s.t. ai = c for all a ∈ f −1(c),
where c ∈ {0, 1}.

– Sm
0

(
Sm

1

)
is the class of all functions that are 0-separating (1-separating) of degree

m,
f is c-separating of degree m, if for all U ⊆ f −1(c) of size |U | = m there exists
an i ∈ {1, . . . , n} s.t. ai = c for all a ∈ U (c ∈ {0, 1}, m ≥ 2).

The definitions and bases of all classes are given in Table 1. For an introduction to
Post’s lattice and further references see e.g. [2].

The complexity of numerous problems for B-circuits and B-formulas has been
classified by the types of functions allowed in B with help of Post’s lattice (see
e.g. [21, 23]), starting with satisfiability: Analogously to Schaefer’s dichotomy for
CNF(S)-formulasfrom 1978, Harry R. Lewis shortly thereafter found a dichotomy
for B-formulas [14]: If [B] contains the function x ∧ y, Sat is NP-complete, else it is
in P.

While for B-circuits the complexity of every decision problem solely depends on
[B] (up to AC0 isomorphisms), for B-formulas this need not be the case (though
it usually is, as for satisfiability and our connectivity problems, as we will see):
The transformation of a B-formula into a B ′-formula might require an exponential
increase in the formula size even if [B] = [B ′], as the B ′-representation of some
function from B may need to use some input variable more than once [18]. For exam-
ple, let h(x, y) = x ∧ y; then (x ∧ y) ∈ [{h}] since x ∧ y = h(x, h(x, y)), but it is
easy to see that there is no shorter {h}-representation of x ∧ y.

4 Computational and Structural Dichotomies for Connectivity

Now we consider the connectivity problems for B-formulas and B-circuits:

– BF-Conn(B): Given a B-formula φ, is G(φ) connected?

Theory Comput Syst (2017) 61:263–282 269

Fig. 3 Graphical representation of Post’s lattice. The classes on the hard side of the dichotomy for the
connectivity problems and the diameter are shaded gray; the light gray shaded ones are only on the hard
side for formulas with quantifiers. For comparison, the classes for which SAT (without quantifiers) is
NP-complete are circled bold

270 Theory Comput Syst (2017) 61:263–282

Table 1 List of all closed classes of Boolean functions with definitions and bases

BF All Boolean functions {x ∧ y,¬x}
R0 {f ∈ BF | f is 0-reproducing} {x ∧ y, x ⊕ y}
R1 {f ∈ BF | f is 1-reproducing} {x ∨ y, x ↔ y}
R2 R0 ∩ R1 {x ∨ y, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotone} {x ∧ y, x ∨ y, 0, 1}
M0 M ∩ R0 {x ∧ y, x ∨ y, 0}
M1 M ∩ R1 {x ∧ y, x ∨ y, 1}
M2 M ∩ R2 {x ∧ y, x ∨ y}
S0 {f ∈ BF | f is 0-separating} {x → y}
Sn

0 {f ∈ BF | f is 0-separating of degree n} {
x → y, dual

(
Tn+1

n

)}

S1 {f ∈ BF | f is 1-separating} {x � y}
Sn

1 {f ∈ BF | f is 1-separating of degree n} {
x � y, Tn+1

n

}

Sn
02 Sn

0 ∩ R2
{
x ∨ (y ∧ ¬z), dual

(
Tn+1

n

)}

S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn

01 Sn
0 ∩ M

{
dual

(
Tn+1

n

)
, 1

}

S01 S0 ∩ M {x ∨ (y ∧ z), 1}
Sn

00 S0n ∩ R2 ∩ M
{
x ∨ (y ∧ z), dual

(
Tn+1

n

)}

S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
S12n S1n ∩ R2

{
x ∧ (y ∨ ¬z), Tn+1

n

}

S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
S11n S1n ∩ M {Tn+1

n , 0}
S11 S1 ∩ M {x ∧ (y ∨ z), 0}
S10n S1n ∩ R2 ∩ M

{
x ∧ (y ∨ z), Tn+1

n

}

S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D {f ∈ BF | f is self-dual} {maj(x,¬y, ¬z)}
D1 D ∩ R2 {maj(x, y,¬z)}
D2 D ∩ M {maj(x, y, z)}
L {f ∈ BF | f is linear} {x ⊕ y, 1}
L0 L ∩ R0 {x ⊕ y}
L1 L ∩ R1 {x ↔ y}
L2 L ∩ R2 {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
E {f ∈ BF | f is constant or a conjunction} {x ∧ y, 0, 1}
E0 E ∩ R0 {x ∧ y, 0}
E1 E ∩ R1 {x ∧ y, 1}
E2 E ∩ R2 {x ∧ y}
V {f ∈ BF | f is constant or a disjunction} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
N {f ∈ BF | f is essentially unary} {¬x, 0, 1}
N2 N ∩ D {¬x}

Theory Comput Syst (2017) 61:263–282 271

Table 1 (continued)

I {f ∈ BF | f is constant or a projection} {x, 0, 1}
I0 I ∩ R0 {x, 0}
I1 I ∩ R1 {x, 1}
I2 I ∩ R2 {x}

(T n
k denotes the threshold function, T n

k (x1, . . . , xn) = 1 ⇐⇒ ∑n
i=1 xi ≥ k, and dual(f)(x1, . . . , xn) =

f (x1, . . . , xn))

– st-BF-Conn(B): Given a B-formula φ and two solutions s and t , is there a path
from s to t in G(φ)?

The corresponding problems for circuits are denoted Circ-Conn(B) resp. ST-CIRC-
CONN(B).

Theorem 1 Let B be a finite set of Boolean functions.

1. If B ⊆ M, B ⊆ L, or B ⊆ S0, then

(a) ST-CIRC-CONN(B) and CIRC-CONN(B) are in P,
(b) ST-BF-CONN(B) and BF-CONN(B) are in P,
(c) the diameter of every function f ∈ [B] is linear in the number of variables

of f .

2. Otherwise,

(a) ST-CIRC-CONN(B) and CIRC-CONN(B) are PSPACE-complete,
(b) ST-BF-CONN(B) and BF-CONN(B) are PSPACE-complete,
(c) there are functions f ∈ [B] such that their diameter is exponential in the

number of variables of f .

The proof follows from the Lemmas in the next subsections. By the following
proposition, we can relate the complexity of B-formulas and B-circuits.

Proposition 1 Every B-formula φ can be transformed into an equivalent B-circuit
C in polynomial time.

Proof Any B-formula is equivalent to a special B-circuit where all function-gates
have outdegree at most one: For every variable x of φ and for every occurrence of a
function f in φ there is a gate in C, labeled with x resp. f . It is clear how to connect
the gates.

4.1 The Easy Side of the Dichotomy

Lemma 3 If B ⊆ M, the solution graph of any n-ary function f ∈ [B] is connected,
and df (a, b) = |a − b| ≤ n for any two solutions a and b.

272 Theory Comput Syst (2017) 61:263–282

Proof Table 1 shows that f is monotone in this case. Thus, either f = 0, or
(1, . . . , 1) must be a solution, and every other solution a is connected to (1, . . . , 1) in
G(φ) since (1, . . . , 1) can be reached by flipping the variables assigned 0 in a one at
a time to 1. Further, if a and b are solutions, b can be reached from a in |a − b| steps
by first flipping all variables that are assigned 0 in a and 1 in b, and then flipping all
variables that are assigned 1 in a and 0 in b.

Lemma 4 If B ⊆ S0, the solution graph of any function f ∈ [B] is connected, and
df (a, b) ≤ |a − b| + 2 for any two solutions a and b.

Proof Since f is 0-separating, there is an i such that ai = 0 for every vec-
tor a with f (a) = 0, thus every b with bi = 1 is a solution. It follows that
every solution t can be reached from any solution s in at most |s − t | + 2 steps
by first flipping the i-th variable from 0 to 1 if necessary, then flipping all other
variables in which s and t differ, and finally flipping back the i-th variable if
necessary.

Lemma 5 If B ⊆ L,

1. ST-CIRC-CONN(B) and CIRC-CONN(B) are in P,
2. ST-BF-CONN(B) and BF-CONN(B) are in P,
3. for any function f ∈ [B], df (a, b) = |a − b| for any two solutions a and b that

lie in the same connected component of G(φ).

Proof Since every function f ∈ L is linear, f (x1, . . . , xn) = xi1 ⊕ . . . ⊕ xim ⊕ c,
and any two solutions s and t are connected iff they differ only in fictive variables:
If s and t differ in at least one non-fictive variable (i.e., an xi ∈ {xi1 , . . . , xim}), to
reach t from s, xi must be flipped eventually, but for every solution a, any vector b

that differs from a in exactly one non-fictive variable is no solution. If s and t differ
only in fictive variables, t can be reached from s in |s − t | steps by flipping one by
one the variables in which they differ.

Since {x ⊕ y, 1} is a base of L, every B-circuit C can be transformed in poly-
nomial time into an equivalent {x ⊕ y, 1}-circuit C′ by replacing each gate of C
with an equivalent {x ⊕ y, 1}-circuit. Now one can decide in polynomial time
whether a variable xi is fictive by checking for C′ whether the number of “backward
paths” from the output gate to gates labeled with xi is odd, so ST-CIRC-CONN(B)
is in P.

G(C) is connected iff at most one variable is non-fictive, thus CIRC-CONN(B) is
in P.

By Proposition 1, ST-BF-CONN(B) and BF-CONN(B) are in P also.

This completes the proof of the easy side of the dichotomy.

Theory Comput Syst (2017) 61:263–282 273

4.2 The Hard Side of the Dichotomy

Proposition 2 ST-CIRC-CONN(B) and CIRC-CONN(B), as well as ST-BF-
CONN(B) and BF-CONN(B), are in PSPACE for any finite set B of Boolean
functions.

Proof This follows as in Lemma 3.6 of [10] (see Lemma 1).

An inspection of Post’s lattice shows that if B � M, B � L, and B � S0,
then [B] ⊇ S12, [B] ⊇ D1, or [B] ⊇ Sk

02 ∀k ≥ 2, so we have to prove PSPACE-
completeness and show the existence of B-formulas with an exponential diameter in
these cases.

In the proofs, we will use the following notation: We write x = c or x = c1 · · · cn

for (x1 = c1) ∧ · · · ∧ (xn = cn), where c = (c1, . . . , cn) is a vector of constants;
e.g., x = 0 means x1 ∧ · · · ∧ xn, and x = 101 means x1 ∧ x2 ∧ x3. Further, we use
x ∈ {a, b, . . .} for (x = a) ∨ (x = b) ∨ Also, we write ψ(x) for ψ(x1, . . . , xn).
If we have two vectors of Boolean values a and b of length n and m resp., we write
a · b for their concatenation (a1, . . . , an, b1, . . . bm).

All hardness proofs are by reductions from the problems for 1-reproducing 3-
CNF-formulas, which are PSPACE-complete by the following proposition.

Proposition 3 For 1-reproducing 3-CNF-formulas, the problems ST-CONN and
CONN are PSPACE-complete.

Proof In the PSPACE-hardness proof for CNF(S3)-formulas (Lemma 3.6 of [10],
see Lemma 1), two satisfying assignments s and t to the constructed formula φ are
known, so we can construct a connectivity-equivalent 1-reproducing 3-CNF-formula
ψ , e.g. as ψ(x) = φ(x1 ⊕ s1 ⊕ 1, . . . , xn ⊕ sn ⊕ 1), and then check connectivity for
ψ instead of φ.

Lemma 6 If [B] ⊇ S12,

1. ST-BF-CONN(B) and BF-CONN(B) are PSPACE-complete,
2. ST-CIRC-CONN(B) and CIRC-CONN(B) are PSPACE-complete,

3. for n ≥ 3, there is an n-ary function f ∈ [B] with diameter of at least 2

⌊
n−1

2

⌋

.

Proof 1. We reduce the problems for 1-reproducing 3-CNF-formulas to the ones for
B-formulas: We map a 1-reproducing 3-CNF-formula φ and two solutions s and t of
φ to a B-formula φ′ and two solutions s′ and t ′ of φ′ such that s′ and t ′ are connected
in G(φ′) iff s and t are connected in G(φ), and such that G(φ′) is connected iff G(φ)

is connected.

274 Theory Comput Syst (2017) 61:263–282

While the construction of φ′ is quite easy for this lemma, the construction
for the next two lemmas is analogous but more intricate, so we proceed care-
fully in two steps, which we will adapt in the next two proofs: In the first
step, we give a transformation T that transforms any 1-reproducing formula ψ

into a connectivity-equivalent formula Tψ ∈ S12 built from the standard con-
nectives. Since S12 ⊆ [B], we can express Tψ as a B-formula T ∗

ψ . Now if
we would apply T to φ directly, we would know that Tφ can be expressed as
a B-formula. However, this could lead to an exponential increase in the for-
mula size (see Section 3), so we have to show how to construct the B-formula
in polynomial time. For this, in the second step, we construct a B-formula φ′
directly from φ (by applying T to the clauses and the ∧’s individually), and then
show that φ′ is equivalent to Tφ ; thus we know that φ′ is connectivity-equivalent
to φ.

Step 1. From Table 1, we find that S12 = S1 ∩ R2 = S1 ∩ R0 ∩ R1, so we have to
make sure that Tψ is 1-seperating, 0-reproducing, and 1-reproducing. Let

Tψ = ψ ∧ y,

where y is a new variable.
All solutions a of Tψ(x, y) have an+1 = 1, so Tψ is 1-seperating and 0-

reproducing; also, Tψ is still 1-reproducing. Further, for any two solutions s and t of
ψ(x), s′ = s · 1 and t ′ = t · 1 are solutions of Tψ(x, y), and it is easy to see that
they are connected in G(Tψ) iff s and t are connected in G(ψ), and that G(Tψ) is
connected iff G(ψ) is connected.

Step 2. The idea is to parenthesize the conjunctions of φ such that we get a tree
of ∧’s of depth logarithmic in the size of φ, and then to replace each clause and
each ∧ with an equivalent B-formula. This can increase the formula size by only a
polynomial in the original size even if the B-formula equivalent to ∧ uses some input
variable more than once.

Let φ = C1 ∧ · · · ∧ Cn be a 1-reproducing 3-CNF-formula. Since φ is 1-
reproducing, every clause Ci of φ is itself 1-reproducing, and we can express
TCi

through a B-formula T ∗
Ci

. Also, we can express Tu∧v through a B-formula
T ∗

u∧v since ∧ is 1-reproducing; we write T∧(ψ1, ψ2) for the formula obtained
from Tu∧v by substituting the formula ψ1 for u and ψ2 for v, and simi-
larly write T ∗∧(ψ1, ψ2) for the formula obtained from T ∗

u∧v in this way. We let
φ′ =Tr(φ), where Tr is the following recursive algorithm that takes a CNF-formula
as input:

Algorithm Tr(ψ1 ∧ · · · ∧ ψm)

If m = 1, return T ∗
ψ1

.

Else return T ∗∧
(
Tr(ψ1 ∧ · · · ∧ ψ	m/2
), Tr(ψ	m/2
+1 ∧ · · · ∧ ψm)

)
.

Since the recursion terminates after a number of steps logarithmic in the number of
clauses of φ, and every step increases the total formula size by only a constant factor,
the algorithm runs in polynomial time. We show φ′ ≡ Tφ by induction on m. For

Theory Comput Syst (2017) 61:263–282 275

m = 1 this is clear. For the induction step, we have to show T ∗∧(Tψ1 , Tψ2) ≡ Tψ1∧ψ2 ,
but since T∧(ψ1, ψ2) ≡ T ∗∧(ψ1, ψ2), it suffices to show that T∧(Tψ1 , Tψ2) ≡ Tψ1∧ψ2 :

T∧(Tψ1 , Tψ2) = (ψ1 ∧ y) ∧ (ψ2 ∧ y) ∧ y ≡ ψ1 ∧ ψ2 ∧ y = Tψ1∧ψ2 .

2. This follows from 1. by Proposition 1.
3. By Lemma 2, there is an 1-reproducing (n − 1)-ary function f with diameter

of at least 2

⌊
n−1

2

⌋

. Let f be represented by a formula φ; then, Tφ represents an n-ary
function of the same diameter in S12.

Lemma 7 If [B] ⊇ D1,

1. ST-BF-CONN(B) and BF-CONN(B) are PSPACE-complete,
2. ST-CIRC-CONN(B) and CIRC-CONN(B) are PSPACE-complete,

3. for n ≥ 5, there is an n-ary function f ∈ [B] with diameter of at least 2

⌊
n−3

2

⌋

.

Proof 1. As noted, we adapt the two steps from the previous proof.
Step 1. Since D1 = D ∩ R0 ∩ R1, Tψ must be self-dual, 0-reproducing,

and 1-reproducing. For clarity, we first construct an intermediate formula T ∼
ψ ∈

D1 whose solution graph has an additional component, then we eliminate that
component.

For ψ(x), let

T ∼
ψ = (ψ(x) ∧ (y = 1)) ∨

(
ψ(x) ∧ (y = 0)

)
∨ (y ∈ {100, 010, 001}) ,

where y = (y1, y2, y3) are three new variables.
T ∼

ψ is self-dual: for any solution ending with 111 (satisfying the first disjunct), the
inverse vector is no solution; similarly, for any solution ending with 000 (satisfying
the second disjunct), the inverse vector is no solution; finally, all vectors ending with
100, 010, or 001 are solutions and their inverses are no solutions. Also, T ∼

ψ is still 1-

reproducing, and it is 0-reproducing (for the second disjunct note that ψ(0 · · · 0) ≡
ψ(1 · · · 1) ≡ 0).

Further, every solution a of ψ corresponds to a solution a · 111 of T ∼
ψ , and for any

two solutions s and t of ψ , s′ = s · 111 and t ′ = t · 111 are connected in G
(
T ∼

ψ

)

iff s and t are connected in G(ψ): The “if” is clear, for the “only if” note that since
there are no solutions of T ∼

ψ ending with 110, 101, or 011, every solution of T ∼
ψ not

ending with 111 differs in at least two variables from the solutions that do.

Observe that exactly one connected component is added in G
(
T ∼

ψ

)
to the com-

ponents corresponding to those of G(ψ): It consists of all solutions ending with
000, 100, 010, or 001 (any two vectors ending with 000 are connected e.g. via

those ending with 100). It follows that G
(
T ∼

ψ

)
is always unconnected. To fix

276 Theory Comput Syst (2017) 61:263–282

this, we modify T ∼
ψ to Tψ by adding 1 · · · 1 · 110 as a solution, thereby con-

necting 1 · · · 1 · 111 (which is always a solution since T ∼
ψ is 1-reproducing) with

1 · · · 1 · 100, and thereby with the additional component of Tψ . To keep the function
self-dual, we must in turn remove 0 · · · 0 · 001, which does not alter the connectivity.
Formally,

Tψ =
(
T ∼

ψ ∨ ((x = 1) ∧ (y = 110))
)

∧ ¬ ((x = 0) ∧ (y = 001)) (1)

= (ψ(x) ∧ (y = 1)) ∨
(
ψ(x) ∧ (y = 0)

)

∨ (y ∈ {100, 010, 001} ∧ ¬((x = 0) ∧ (y = 001)))

∨((x = 1) ∧ (y = 110)).

Now G(Tψ) is connected iff G(ψ) is connected.
Step 2. Again, we use the algorithm Tr from the previous proof to transform any

1-reproducing 3-CNF-formula φ into a B-formula φ′ equivalent to Tφ , but with
the definition (1) of T (Fig. 4). Again, we have to show T∧(Tψ1 , Tψ2) ≡ Tψ1∧ψ2 .
Here,

T∧(Tψ1 , Tψ2) = (
Tψ1 ∧ Tψ2 ∧ (y = 1)

) ∨
(
Tψ1 ∧ Tψ2 ∧ (y = 0)

)

∨ (
y ∈ {100, 010, 001} ∧ ¬ (

Tψ1 ∧ Tψ2 ∧ (y = 001)
))

∨ (
Tψ1 ∧ Tψ2 ∧ (y = 110)

)
.

We consider the parts of the formula in turn: For any formula ξ we have
Tξ (xξ) ∧ (y = 1) ≡ ξ(xξ) ∧ (y = 1) and Tξ (xξ) ∧ (y = 0) ≡ ψ(xξ) ∧ (y = 0),

where xξ denotes the variables of ξ . Using Tψ1(xψ1) ∧ Tψ2(xψ2) ∧ (y = 0) =(
Tψ1(xψ1) ∨ Tψ2(xψ2)

) ∧ (y = 0), the first line becomes

(
ψ1(xψ1) ∧ ψ2(xψ2) ∧ (y = 1)

) ∨
((

ψ1(xψ1) ∧ ψ2(xψ2)
)

∧ (y = 0)
)

.

Fig. 4 An example for the transformation. Left: ψ = (x1 ∨ x2) ∧ (x1 ∨ x2), center: T ∼
ψ , right: Tψ . The

“axis vertices” are labeled in the first two graphs

Theory Comput Syst (2017) 61:263–282 277

For the second line, we observe

Tψ(xψ) ≡
(
ψ(xψ) ∨ ¬(y = 1)

)
∧ (

ψ(xψ) ∨ ¬(y = 0)
)

∧ (
y /∈ {100, 010, 001} ∨ (

(xψ = 0) ∧ (y = 001)
))

∧(¬(xψ = 1) ∨ (y = 110)),

thus Tψ(xψ) ∧ (y = 001) ≡ (xψ = 0) ∧ (y = 001), and the second line becomes

∨ (
y ∈ {100, 010, 001} ∧ ¬ (

(xψ1 = 0) ∧ (xψ2 = 0) ∧ (y = 001)
))

.

Since Tψ(xψ) ∧ (y = 110) ≡ (xψ = 1) ∧ (y = 110) for any ψ , the third line
becomes

∨ (
(xψ1 = 1) ∧ (xψ2 = 1) ∧ (y = 110)

)
.

Now T∧
(
Tψ1 , Tψ2

)
equals

Tψ1∧ψ2 = (
ψ1(xψ1) ∧ ψ2(xψ2) ∧ (y = 1)

) ∨
(
ψ1(xψ1) ∧ ψ2(xψ2) ∧ (y = 0)

)

∨ (
y ∈ {100, 010, 001} ∧ ¬ (

(xψ1 = 0) ∧ (xψ2 = 0) ∧ (y = 001)
))

∨ (
(xψ1 = 1) ∧ (xψ2 = 1) ∧ (y = 110)

)
.

2. This follows from 1. by Proposition 1.
3. By Lemma 2 there is an 1-reproducing (n − 3)-ary function f with diameter

of at least 2

⌊
n−3

2

⌋

. Let f be represented by a formula φ; then, Tφ represents an n-ary
function of the same diameter in D1.

Lemma 8 If [B] ⊇ Sk
02 for any k ≥ 2,

1. ST-BF-CONN(B) and BF-CONN(B) are PSPACE-complete,
2. ST-CIRC-CONN(B) and CIRC-CONN(B) are PSPACE-complete,
3. for n ≥ k + 4, there is an n-ary function f ∈ [B] with diameter of at least

2

⌊
n−k−2

2

⌋

.

Proof 1. Step 1. Since Sk
02 = Sk

0 ∩ R0 ∩ R1, Tψ must be 0-separating of degree
k, 0-reproducing, and 1-reproducing. As in the previous proof, we construct an
intermediate formula T ∼

ψ . For ψ(x), let

T ∼
ψ = (ψ ∧ y ∧ (z = 0)) ∨ (|z| > 1),

where y and z = (z1, . . . , zk+1) are new variables.
T ∼

ψ (x, y, z) is 0-separating of degree k, since all vectors that are no solutions

of T ∼
ψ have |z| ≤ 1, i.e. z ∈ {0 · · · 0, 10 · · · 0, 010 · · · 0, . . . , 0 · · · 01} ⊂ {0, 1}k+1,

and thus any k of them have at least one common variable assigned 0. Also, T ∼
ψ is

0-reproducing and still 1-reproducing.
Further, for any two solutions s and t of ψ(x), s′ = s ·1·0 · · · 0 and t ′ = t ·1·0 · · · 0

are solutions of T ∼
ψ (x, y, z) and are connected in G

(
T ∼

ψ

)
iff s and t are connected

in G(ψ).

278 Theory Comput Syst (2017) 61:263–282

But again, we have produced an additional connected component (consisting of
all solutions with |z| > 1). To connect it to a component corresponding to one of ψ ,
we add 1 · · · 1 · 1 · 10 · · · 0 as a solution,

Tψ = (ψ ∧ y ∧ (z = 0)) ∨ (|z| > 1) ∨ ((x = 1) ∧ y ∧ (z = 10 · · · 0)) .

Now G(Tψ) is connected iff G(ψ) is connected.
Step 2. Again we show that the algorithm Tr works in this case. Here,

T∧(Tψ1 , Tψ2) = (
Tψ1(xψ1) ∧ Tψ2(xψ2) ∧ y ∧ (z = 0)

) ∨ (|z| > 1)

∨ (
Tψ1(xψ1) ∧ Tψ2(xψ2) ∧ y ∧ (z = 10 · · · 0)

)
.

Since Tψ(xψ) ∧ y ∧ (z = 0) ≡ ψ(xψ) ∧ y ∧ (z = 0) and Tψ(xψ) ∧ y ∧ (z =
10 · · · 0) ≡ (xψ = 1) ∧ y ∧ (z = 10 · · · 0) for any ψ , this is equivalent to

Tψ1∧ψ2 = (
ψ1(xψ1) ∧ ψ2(xψ2) ∧ y ∧ (z = 0)

) ∨ (|z| > 1)

∨ (
xψ1 ∧ xψ2 ∧ y ∧ (z = 10 · · · 0)

)
.

2. This follows from 1. by Proposition 1.
3. By Lemma 2 there is an 1-reproducing (n−k−2)-ary function f with diameter

of at least 2

⌊
n−k−2

2

⌋

. Let f be represented by a formula φ; then, Tφ represents an n-ary
function of the same diameter in Sk

02.

This completes the proof of Theorem 1.

5 The Connectivity of Quantified Formulas

Definition 3 A quantified B-formula φ (in prenex normal form) is an expression of
the form

Q1y1 · · · Qmymϕ(y1, . . . , ym, x1, . . . , xn),

where ϕ is a B-formula, and Q1, . . . , Qm ∈ {∃, ∀} are quantifiers. The solution graph
G(φ) only involves the free variablesx1, . . . , xn.

For quantified B-formulas, we define the connectivity problems

– QBF-CONN(B): Given a quantified B-formula φ, is G(φ) connected?
– ST-QBF-CONN(B): Given a quantified B-formula φ and two solutions s and t ,

is there a path from s to t in G(φ)?

Theorem 2 Let B be a finite set of Boolean functions.

1. If B ⊆ M or B ⊆ L, then

(a) ST-QBF-CONN(B) and QBF-CONN(B) are in P,
(b) the diameter of every quantified B-formula is linear in the number of free

variables.

Theory Comput Syst (2017) 61:263–282 279

2. Otherwise,

(a) ST-QBF-CONN(B) and QBF-CONN(B) are PSPACE-complete,
(b) there are quantified B-formulas with at most one quantifier such that their

diameter is exponential in the number of free variables.

Proof 1. For B ⊆ M, any quantified B-formula φ represents a monotone func-
tion: Using ∃yψ(y, x) = ψ(0, x) ∨ ψ(1, x) and ∀yψ(y, x) = ψ(0, x) ∧ ψ(1, x)

recursively, we can transform φ into an equivalent M-formula since ∧ and ∨ are
monotone. Thus as in Lemma 3, ST-QBF-CONN(B) and QBF-CONN(B) are trivial,
and df (a, b) = |a − b| for any two solutions a and b.

For a quantified B-formula φ = Q1y1 · · · Qmymϕ with B ⊆ L, we first remove
the quantifications over all fictive variables of ϕ (and eliminate the fictive variables if
necessary). If quantifiers remain, φ is either tautological (if the rightmost quantifier
is ∃) or unsatisfiable (if the rightmost quantifier is ∀), so the problems are trivial, and
df (a, b) = |a−b| for any two solutions a and b. Otherwise, we have a quantifier-free
formula and the statements follow from Lemma 5.

2. Again as in Lemma 1, it follows that ST-QBF-CONN(B) and QBF-CONN(B)
are in PSPACE, since the evaluation problem for quantified B-formulas is in PSPACE
[22].

An inspection of Post’s lattice shows that if B � M and B � L, then [B] ⊇ S12,
[B] ⊇ D1, or [B] ⊇ S02, so we have to prove PSPACE-completeness and show the
existence of B-formulas with an exponential diameter in these cases.

For [B] ⊇ S12 and [B] ⊇ D1, the statements for the PSPACE-hardness and the
diameter obviously carry over from Theorem 1.

For B ⊇ S02, we give a reduction from the problems for (unquantified) 3-
CNF-formulas; we proceeded again similar as in the proof of Lemma 6. We give a
transformation Tψ s.t. Tψ ∈ S02 for all formulas ψ . Since S02 = S0 ∩ R0 ∩ R1, Tψ

must be self-dual, 0-reproducing, and 1-reproducing. For ψ(x) let

Tψ = (ψ ∧ y) ∨ z,

with the two new variables y and z.
Tψ is 0-separating since all vectors that are no solutions have z = 0. Also, Tψ is

0-reproducing and 1-reproducing. Again, we use the algorithm Tr from the proof of
Lemma 6 to transform any 3-CNF-formula φ into a B-formula ϕ′ equivalent to Tφ .
Again, we show

T∧(Tψ1 , Tψ2) = (((ψ1 ∧ y) ∨ z) ∧ ((ψ2 ∧ y) ∨ z) ∧ y) ∨ z

≡ ((ψ1 ∧ y) ∧ (ψ2 ∧ y) ∧ y) ∨ z

≡ (ψ1 ∧ ψ2 ∧ y) ∨ z = Tψ1∧ψ2 .

Now let
φ′ = ∀zϕ′.

280 Theory Comput Syst (2017) 61:263–282

Then, for any two solutions s and t of φ(x), s′ = s · 1 and t ′ = t · 1 are solutions
of φ′(x, y), and they are connected in G(φ′) iff s and t are connected in G(φ), and
G(φ′) is connected iff G(φ) is connected.

The proof of Lemma 2 shows that there is an (n−1)-ary function f with diameter

of at least 2

⌊
n−1

2

⌋

. Let f be represented by a formula φ; then φ′ as defined above
is a quantified B-formula with n free variables and one quantifier with the same
diameter.

Remark 1 An analog to Theorem 2 also holds for quantified circuits as defined in
[21, Section 7].

6 Future Directions

While for st-connectivity and connectivity of B-formulas and B-circuits we now
have a quite complete picture, there is a multitude of interesting variations in different
directions with open problems.

As mentioned in the abstract, for CNF(S)-formulas with constants, we have a
complete classification for both connectivity problems and the diameter also [24].
However, for CNF(S)-formulas without constants, the complexity of the connectivity
problem is still open in some cases [25].

Besides CNF(S)-formulas, B-formulas and B-circuits, there are further variants
of Boolean satisfiability, and investigating connectivity in these settings might be
worthwhile as well. For example, disjunctive normal forms with special connectivity
properties were studied by Ekin et al. already in 1997 for their “important role in
problems appearing in various areas including in particular discrete optimization,
machine learning, automated reasoning, etc.” [7].

Other connectivity-related problems already mentioned by Gopalan et al. are
counting the number of components and approximating the diameter. Recently,
Mouawad et al. investigated the question of finding the shortest path between two
solutions [19], which is of special interest to reconfiguration problems.

Furthermore, our definition of connectivity is not the only sensible one: One could
regard two solutions connected whenever their Hamming distance is at most d, for
any fixed d ≥ 1; this was already considered related to random satisfiability, see [1].
This generalization seems meaningful as well as challenging.

Finally, a most interesting subject are CSPs over larger domains; in 1993, Feder
and Vardi conjectured a dichotomy for the satisfiability problem over arbitrary finite
domains [8], and while the conjecture was proved for domains of size three in 2002
by Bulatov [4], it remains open to date for the general case. Close investigation of the
solution space might lead to valuable insights here.

For k-colorability, which is a special case of the general CSP over a k-element
set, the connectivity problems and the diameter were already studied by Bonsma and
Cereceda [3], and Cereceda, van den Heuvel, and Johnson [5]. They showed that
for k = 3 the diameter is at most quadratic in the number of vertices and the st-
connectivity problem is in P, while for k ≥ 4, the diameter can be exponential and
st-connectivity is PSPACE-complete in general.

Theory Comput Syst (2017) 61:263–282 281

References

1. Achlioptas, D., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction
problems. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 130–139. ACM (2006)

2. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with boolean blocks, part i: Posts lattice with
applications to complexity theory. In: SIGACT News (2003)

3. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: Pspace-completeness and
superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)

4. Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings of The
43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp. 649–658. IEEE
(2002)

5. Cereceda, L., Van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory
67(1), 69–82 (2011)

6. Creignou, N., Kolaitis, P., Zanuttini, B.: Structure identification of boolean relations and plain bases
for co-clones. J. Comput. Syst. Sci. 74(7), 1103–1115 (2008)

7. Ekin, O., Hammer, P.L., Kogan, A.: On connected boolean functions. Discr. Appl. Math. 96, 337–362
(1999)

8. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and con-
straint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28
(1), 57–104 (1998)

9. Fu, Z., Malik, S.: Extracting logic circuit structure from conjunctive normal form descriptions. In:
20th International Conference on VLSI Design, 2007. Held Jointly with 6th International Conference
on Embedded Systems, pp. 37–42. IEEE (2007)

10. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of boolean satis-
fiability: Computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009).
doi:10.1137/07070440X

11. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean
satisfiability: Computational and structural dichotomies. ICALP’06, 346–357 (2006).
doi:10.1007/11786986 31

12. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On
the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011).
doi:10.1016/j.tcs.2010.12.005

13. Kamiński, M., Medvedev, P., Milaniċ, M.: Shortest paths between shortest paths and independent sets.
In: Combinatorial Algorithms, pp. 56–67. Springer (2011)

14. Lewis, H.R.: Satisfiability problems for propositional calculi. Mathematical Systems Theory 13(1),
45–53 (1979)

15. Makino, K., Tamaki, S., Yamamoto, M.: On the boolean connectivity problem for horn relations. In:
Proceedings of the 10th International Conference on Theory and Applications of Satisfiability Testing,
SAT’07, pp. 187–200 (2007)

16. Maneva, E., Mossel, E., Wainwright, M.J.: A new look at survey propagation and its generalizations.
J. ACM (JACM) 54(4), 17 (2007)

17. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. Phys.
Rev. Lett. 94(19), 197,205 (2005)

18. Michael, T.: On the applicability of post’s lattice. Inf. Process. Lett. 112(10), 386–391 (2012)
19. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution

space of Boolean formulas. arXiv:1404.3801 (2014)
20. Post, E.L.: The Two-Valued Iterative Systems of Mathematical Logic.(AM-5), vol. 5. Princeton

University Press (1941)
21. Reith, S., Wagner, K.W.: The complexity of problems defined by Boolean circuits (2000)
22. Schaefer, T.J.: The complexity of satisfiability problems. STOC ’78, 216–226 (1978).

doi:10.1145/800133.804350
23. Schnoor, H.: Algebraic techniques for satisfiability problems. Ph.D. thesis, Universität Hannover

(2007)
24. Schwerdtfeger, K.W.: A computational trichotomy for connectivity of boolean satisfiability. Journal

on Satisfiability, Boolean Modeling and Computation 8, 173–195 (2013)

http://dx.doi.org/10.1137/07070440X
http://dx.doi.org/10.1007/11786986_31
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://arxiv.org/abs/1404.3801
http://dx.doi.org/10.1145/800133.804350

282 Theory Comput Syst (2017) 61:263–282

25. Schwerdtfeger, K.W.: The connectivity of boolean satisfiability: No-constants and quantified variants.
arXiv:1403.6165 (2014)

26. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, New York (1999)
27. Wu, C.A., Lin, T.H., Lee, C.C., Huang, C.Y.R.: Qutesat: A robust circuit-based sat solver for complex

circuit structure. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp.
1313–1318. EDA Consortium (2007)

http://arxiv.org/abs/1403.6165

	The Connectivity of Boolean Satisfiability: Dichotomies for Formulas and Circuits
	Abstract
	Introduction
	Connectivity of CNF-Formulas
	Circuits, Formulas, and Post's Lattice
	Computational and Structural Dichotomies for Connectivity
	The Easy Side of the Dichotomy
	The Hard Side of the Dichotomy

	 The Connectivity of Quantified Formulas
	Future Directions
	References

