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Abstract We introduce the complexity class ∃R based on the existential theory of
the reals. We show that the definition of ∃R is robust in the sense that even the
fragment of the theory expressing solvability of systems of strict polynomial inequal-
ities leads to the same complexity class. Several natural and well-known problems
turn out to be complete for ∃R; here we show that the complexity of decision vari-
ants of fixed-point problems, including Nash equilibria, are complete for this class,
complementing work by Etessami and Yannakakis [13].

Keywords Fixed point problems · Brouwer · Existential theory of the real
numbers · Nash equilibrium · Computational complexity

1 Introduction

Many computational problems in geometry, graph drawing and other areas can be
shown decidable using the (existential) theory of the real numbers, including the rec-
tilinear crossing number, the Steinitz problem, and finding a Nash equilibrium; what

� Marcus Schaefer
mschaefer@cdm.depaul.edu
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is less often realized, though there are some exceptions, is that the existential the-
ory of the reals captures the computational complexity of many of these problems
precisely. In previous papers, the first author investigated some geometric prob-
lems related to graph drawing [30, 31]. In the current paper, we present tools to
deal with semialgebraic and algebraic sets, such as effective lower bounds on the
distance between two semialgebraic sets. These tools are useful in solving computa-
tional complexity problems related to the existential theory of the reals. We illustrate
this by applying them to a variety of fixed point-problems and Nash equilibria,
complementing work of Etessami and Yannakakis [13].

From an algebraic point of view, there are two ways to define the existential the-
ory of the reals depending on whether we allow equality or not; for example, take the
rectilinear crossing number, which is the smallest number of crossings in a straight-
line drawing of a graph. The rectilinear crossing number problem can be expressed
as a system of strict inequalities, and, as a consequence, a drawing realizing the rec-
tilinear crossing number of a graph can be assumed to have vertices with rational
coordinates (even if some of them may require exponential precision, see [4]); simi-
larly, intersection graph problems can typically be captured by strict inequalities (for
example, the problems in [30], including segment intersection graphs). On the other
hand, fixed-point problems need equality to be modeled in the existential theory of
the reals, and so their solution sets do not necessarily contain rational points: the
fixed point of f (x) = 2/x is

√
2. In Section 4 we prove the rather unexpected result

that from a computational point of view, these two variants of the existential theory
of the reals are the same, justifying the introduction of a single complexity class ∃R.
Section 2 reviews the logical and computational side of the existential theory of the
reals, and Section 3 presents some tools based on algebraic geometry which turn out
to be useful in handling problems in the class ∃R. In Section 2 we then show that
several fixed-point problems are complete for this class.

Since the class ∃R was first introduced (in an earlier version of this paper, as well
as [30, 31]), there have been several new ∃R-completeness results, including:

• straight-line realizability of abstract topological graphs (even the complete
graph) [22],

• recognizing unit disk graphs and dot-product graphs [18],
• simultaneous geometric planarity [10],
• a data exchange problem for arithmetic schema mapping [35],
• stretchability of pseudocircles [19].

Together with the results from earlier papers this already gives us a sizable collec-
tion of complete problems for ∃R from many different areas (see [4, 8, 12, 20, 24,
27, 28, 32, 34], for example; a survey on the topic is in preparation [29]; there is a
wikipedia page on ∃R [39]).

We assume that the reader is familiar with basic notions of computational com-
plexity, including polynomial time, polynomial-time many-one reducibilities and
complexity classes such as NP, and PSPACE [25, 33].
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2 The Existential Theory of the Reals

The existential theory of the reals, ETR, is the set of true sentences of the form

(∃x1, . . . , xn) ϕ(x1, . . . , xn),

where ϕ is a quantifier-free (∨,∧, ¬)-Boolean formula over the signature
(0, 1, +, ∗, <, ≤, =) and the sentence is interpreted over the universe of real
numbers.1

In a 1948 paper entitled “A Decision Method for Elementary Algebra and Geom-
etry”, Alfred Tarski proved a quantifier elimination result for the existential theory
of the reals, which implied that the theory of the reals, with arbitrary quantifiers,
is decidable. In his 1988 dissertation, Canny showed that ETR can be decided in
PSPACE, to date the best theoretical upper bound on ETR. For a recent survey, see
[23], for experimental comparisons of running times, see [15].

We will find it useful to distinguish two special cases of ETR. Let INEQ be the
subset of ETR, in which we do not allow ∨, ¬ and =, that is ϕ is a conjunction of
atoms of the form s < t and s ≤ t (s = t can be expressed as s ≤ t ∧ t ≤ s

so not allowing equality is not a real restriction). Furthermore, let STRICT INEQ be
the subset of INEQ, in which we do not allow ≤, that is, ϕ is a conjunction of strict
inequalities s < t .

Following our first impulse as complexity theorists we use STRICT INEQ and
INEQ to define complexity classes ∃R and NPRE as the downward closures of
these problems under polynomial-time many-one reductions; with this definition
∃<R ⊆ ∃=R and there seems to be evidence that these two classes are different:
solutions to an INEQ-type problem can require irrational numbers, e.g. x2 = 2, while
solutions to STRICT INEQ can always be perturbed slightly to make them rational.
These differences are of an algebraic nature and, in a slightly surprising twist of
events, do not affect the computational complexity of these problems. It turns out
that ∃<R = ∃=R as we will see in Section 4. In other words, INEQ polynomial-time
many-one reduces to STRICT INEQ.

Note that NP ⊆ ∃<R (a result first explicitly stated by Shor [32]), since we can
express satisfiability of a Boolean formula in ∃<R. For example, ϕ = (x ∨ y ∨ z) ∧
(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) is equivalent to

(∃x, y, z, ε)[ (−ε < x < 1 + ε) ∧ (−ε < y < 1 + ε) ∧ (−ε < z < 1 + ε)

∧ (x(1 − y)z) + ((1 − x)yz) + ((1 − x)(1 − y)(1 − z)) < ε,

∧ ε > 0 ∧ ε < 1/104].
If the formula is satisfiable, then we assign a variable the value 0 if it is true and

1 otherwise, so that the sum becomes 0 < ε; in the example: x = y = 0 and

1When writing formulas in the existential theory of the reals, we will freely use integers and rationals,
since these can easily be eliminated without affecting the length of the formula substantially.



Theory Comput Syst (2017) 60:172–193 175

z = 1 will do. For the reverse direction, assume x, y, z, and ε satisfy the formula.
Note that 0 < ε < 1/104 = 1/8(1 + 4m), where m = 3 is the number of clauses.
Each term of the sum is at least −ε · (1 + ε)2 ≥ −4ε; so the whole sum is at least
−4mε ≥ −12/104. For the sum to be less than 1/104, every term must be less than
1/104 + 12/104 = 1/8. Each term is the product of three factors, so at least one
factor must be less than (1/8)1/3 = 1/2. Let the corresponding variable be true if the
factor is of the form x and false if it is of the form 1 − x. This yields a satisfying
assignment of the original Boolean formula ϕ.

So, with respect to classical complexity classes, we can summarize our present
knowledge of the existential theory of the reals by

NP ⊆ ∃<R ⊆ ∃=R ⊆ PSPACE,

where the last implication is due to Canny’s result [9].

Remark 2.1 (Models of Real Computation) We are not treating the existential theory
of the real numbers as a model of real computation in two senses: there are no “real”
real numbers in ETR (other than rationals), and we do not present a machine model
for the classes ∃<R and ∃=R. It turns out that it is possible to construct a machine
model for ∃=R; this was essentially done by Blum, Shub, and Smale [6] whose results
imply that the languages in {0, 1}∗ decided by a real non-deterministic polynomial-
time Turing machine that has no registers for real numbers are precisely the languages
in ∃=R.2 This connection between ETR and the BSS-model does not give any insights
on the problems dealt with in the current paper, which is why we do not discuss this
(or other models of real computation) any further. However, the BSS-model could be
a first step toward more structural results such as oracle separations.

3 Semi-Algebraic Sets of Bounded Complexity

Our goal in this section is to collect a couple of tools for dealing with semi-algebraic
sets of bounded complexity. In particular, we want to show that such sets always
contain a point not too far from the origin (Corollary 3.1), that we can find a ball
that contains a bounded semi-algebraic set (Corollary 3.3), and that there is a lower
bound on the distance between two semi-algebraic sets that have positive distance
(Corollary 3.4).

We will use the following notations throughout this paper: [n] as an abbreviation
for the set {1, . . . , n}, ‖x‖2 := ∑

i∈[n] x2
i is the square of the distance of x from the

2The class of Boolean languages decided by real non-deterministic Turing machines without real constants
was introduced under the name BP(NP0

R
) by Bürgisser and Cucker [7, Corollary 8.2] who observed that

the feasibility problem FEAS (which we will define in Section 4) is complete for that class, based on work
by Blum, Shub, and Smale [6]. Since FEAS is also complete for ∃=R, as we will show in Theorem 4.1,
the two classes coincide.
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origin, the distance d(A, B) between two sets A, B ⊆ R
n is defined as d(A, B) =

inf{d(a, b) : a ∈ A, b ∈ B}, where ‖a − b‖ is the Euclidean distance between two
points. The bitlength of an integer n is the smallest number b(n) of bits to write down
the number in binary digits. So b(n) = �(log2(n) + 1 for n ≥ 1 and b(0) = 1. In
particular, n < 2b(n) for all n.

3.1 Definitions and Basic Results

In algebraic geometry semi-algebraic sets are solution sets to systems of polynomial
equalities and inequalities; taking a more logical approach, we say a set S ⊆ R

n

is semi-algebraic if there is a (∨,∧, ¬)-Boolean quantifier-free formula over the
signature (0, 1, +, ∗, <, ≤, =) and with (free) variables x = (x1, . . . , xn) so that
S = {x ∈ R

n : ϕ(x)}. If ϕ does not contain ∨ or ¬, we call the set a basic semi-
algebraic set. If, moreover, ϕ does not contain < and ≤, the set is algebraic. We
use |ϕ| to denote the length of ϕ, that is, the number of bits necessary to write down
ϕ. The (bit)-complexity of a semi-algebraic set is the shortest length of any formula
defining the set.

In algebraic geometry, semi-algebraic sets are defined as finite unions of basic
semi-algebraic sets; since we gave a definition via defining formulas, we have to
prove that result. We also show that the complexity of the basic semi-algebraic sets
need be no larger than the complexity of the original set.

Lemma 3.1 Every semi-algebraic set of complexity at most L is the finite union of
basic semi-algebraic sets each of complexity at mostL. We can assume that the defin-
ing formula of each of the basic semi-algebraic sets does not contain the comparison
operator ≤.

Proof Let ϕ be a formula of bitlength at most L defining the semi-algebraic set
S = {x : Rn : ϕ(x)}. If ϕ contains any negations, we push them to the lowest level
of the formula, and absorb them in the atomic formulas: s < t becomes t ≤ s, s ≤ t

becomes t < s, and s = t turns into s < t ∨ t < s. Replace all inequalities of type
s ≤ t by s < t ∨ s = t and convert the resulting formula ψ into disjunctive normal
form: ψ = ∨

i∈I ψi for some I ⊆ N. Then each ψi defines a basic semi-algebraic
set (not using ≤), and S is the union of these sets. Each ψi uses at most one clause of
each disjunction we introduced when rewriting s ≤ t and s = t , so each of its clauses
stems from a different clause in the original ϕ and so |ψi | ≤ |ϕ|.

The following lemma gives us a way to replace the defining formula of a semi-
algebraic set with a single multivariate polynomial. Multivariate polynomials are
sums (or differences) of monomials, the complexity of a polynomial is the num-
ber of bits needed to write it down in this form; this means, that while we may
write (x + 1)(y + 1) to simplify notation, the polynomial has to be written out as
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xy + x + y + 1 explicitly. Other measures of complexity for polynomials include
bounds on the bitlength of the coefficients (as integers) of monomials, typically writ-
ten as τ , and the (total) degree of the polynomial f which is defined as the maximum
over the sum of the variable exponents in each monomial term occurring in f . E.g.
f (x, y, x) = 5x7y2 − 2x3yz6 has total degree 3 + 1 + 6 = 10.

Lemma 3.2 If S is a semi-algebraic set in R
n given by a formula ϕ of complexity at

most L ≥ 3, then we can efficiently (that is in time polynomial in L and n) construct

(i) a family of quadratic polynomials fj : Rn+m → R, j ∈ [k], so that S = {x ∈
R

n : (∃y ∈ R
m)

∧
j∈[k] fj (x, y) = 0}, for some m, k ≤ 3L,

(ii) a non-negative polynomial g : Rn+m → R of degree at most 4 so that S =
{x ∈ R

n : (∃y ∈ R
m) g(x, y) = 0}, for some m ≤ 3L.

The coefficients of the polynomials fj have bitlength at most L and coefficients in g

have bitlength at most 2L.

This lemma is an efficient version of the well-known fact that every semi-algebraic
set is the projection of an algebraic set (the set of zeros of a polynomial). Similar to
the situation in the Blum-Shub-Smale model of real computation, it is unlikely that
the degree of g can be reduced below 4, since it can be decided in polynomial time
whether a polynomial of degree at most 3 has a zero [36].

Proof of Lemma 3.2 Clearly, (i) implies (ii): with the family f from (i), define
g(x, y) = ∑

1≤j≤k

(fj (x, y))2. Then fj (x, y) = 0 for all j ∈ [k] if and only if

g(x, y) = 0, and the bitlength of coefficients at most doubles. Note that g is non-
negative. Hence, it is sufficient to prove (i). Let S = {x ∈ R

n : ϕ(x)}, where ϕ has
complexity at most L. As in Lemma 3.1, push all negations to the atomic level, and
replace s < t with t ≤ s, s ≤ t with t < s, and s = t with s < t ∨ t < s. This at most
doubles the length of ϕ. We now use a trick based on an idea due to Tseitin [21, 37],
to build quadratic polynomials fj (x, y) with new variables y ∈ R

m, for some m, so
that ϕ(x) ≡ (∃y)

∧
j∈[k] fj (x, y) = 0.

For any subformula γ of ϕ create a new real variable yγ and, as needed, y′
γ and

y′′
γ . For any subterm s of ϕ create a new real variable ys . We will ensure that for any

x, y with the property that fi(x, y) = 0 for every i ∈ [k], we have that ys = s and
that if yγ = 0, then γ (x) is true. The variables y′

γ and y′′
γ are needed for intermediate

calculations only.
To simplify notation, we index the family of polynomials f using subformulas and

subterms of ϕ. Let s be any subterm of ϕ. If s = t ◦u, we define fs(x, y) = s−(t ◦u)

(where ◦ ∈ {+, −, ∗}); if s = xi , we define fs(x, y) = s − xi

Let γ be any subformula of ϕ. If γ = α ∨ β, we define fγ (x, y) = yγ − yαyβ ;
if γ = α ∧ β, we define fγ (x, y) = yγ − (y2

α + y2
β). If γ = (s = t), we define

fγ (x, y) = yγ − (ys − yt ). If γ = (s < t), we need to define two polynomials, let
us call them fγ,0, and fγ,1; we define fγ,0(x, y) = y′

γ − (y′′
γ )2, and fγ,1(x, y) =

(yt − ys)y
′
γ − (1 − yγ ). Note that if fγ,0(x, y) = fγ1(x, y) = 0 and yγ = 0, then

y′
γ ≥ 0 and 1 − yγ = 1, so yt > ys ; the reverse need not be true.
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Now, if ϕ(x) is true, then by construction, we can choose values for ys , yγ ,
y′
γ and y′′

γ so that for all j we have fj (x, y) = 0. If, on the other hand, for all
j we have fj (x, y) = 0, then all the terms fγ and fs are zero. In particular,
yϕ = 0, so, γ is true (since this implication holds for each step of the recursive
construction of yϕ).

The degree of the polynomials in f are at most 2, and the bitlengths of coef-
ficients was not increased by the construction. Since a formula ϕ of length L

can have at most L subformulas and subterms, we conclude that k ≤ 2L (at
most two polynomials per subformula), and m ≤ 3L (at most three variables
per subformula).

3.2 Main Tools

The three main corollaries in this Section 3.4, 3.7 and 3.8 are based on corresponding
results from algebraic geometry on systems of polynomial equalities and inequalities.
For example, Vorobjov [38] and Grigor’ev and Vorobjov [14] were the first to show
that every semi-algebraic set of complexity at most L contains a point of distance at
most 22O(L)

from the origin.3 We use a more recent result due to Basu and Roy [3]
which gives explicit constants (which may be of interest in applications).4

Theorem 3.1 (Basu, Roy [3, Theorem 4]) Let (fi)i∈[s] be a family of polynomials
of type Rn → R all of degree at most d and with coefficients of bitlength at most τ .
Define

R =
(
(2DN(2N − 1) + 1)2(2N−1)(τ ′+b(2N−1)+b(2DN+1))

)1/2
,

with d ′ = max(2(d + 1), 6), D = n(d ′ − 2) + 2, N = d ′(d ′ − 1)n−1, τ ′ = N(τ2 +
b(N) + 2b(2D + 1) + 1), τ2 = τ1 + 2(n − 1)b(N) + (2n − 1)b(n), τ1 = D(τ0 +
4b(2D + 1) + b(N)) − 2b(2D + 1) − b(N), τ0 = 2τ + nb(d + 1) + b(2d ′) + b(s).
Then a ball of radius R around the origin contains a point of every semi-algebraic
set S = {x ∈ R

n : fi(x)�i0} that can be defined by choosing �i ∈ {>,<, =}.

These estimates are much finer than what is needed for our purposes, since we are
only bounding the overall complexity of the formula. Deriving the following bound
is tedious, but straightforward, the details can be found in Appendix A.

Corollary 3.1 Every semi-algebraic set in R
n of complexity at most L ≥ 4 contains

a point of distance at most 2L8n
from the origin.

3The theorem can also be found in [2, Theorem 13.15] though the statement contains a typo in the radius
of the ball.
4As far as complexity theory is concerned, the original result by Grigor’ev and Vorobjov would be
sufficient, however.
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The remaining two corollaries we base on a result by Jeronimo and Perrucci who
showed that a positive polynomial (all values are greater than 0) defined over a sim-
plex can be bounded away from 0.5 Let 	n = {x ∈ R

n
≥0 with

∑
i∈[n] xi ≤ 1} be the

standard simplex in R
n.

Theorem 3.2 (Jeronimo, Perruci [16]) If f : Rn → R is a polynomial of degree d so
that f (x) > 0 for all x ∈ 	n, and all coefficients of f have bitlength at most τ , then

f (x) > 2−(τ+1)dn+1
d−(n+1)dn+1

for all x ∈ 	n.

The obvious generalization from 	n to R
n fails; for example, f (x, y) = x2 +

(1 − xy)2 is positive for all x, y ∈ R but cannot be bounded away from 0. Instead,
we require that we know that f is bounded away from 0.

Corollary 3.2 If f : Rn → R is a polynomial of degree d so that f (x) ≥ δ > 0 for
all x ∈ R

n and some fixed δ, and all coefficients of f have bitlength at most τ , then

f (x) > 2−(τnd+1)dn+1
d−(n+1)dn+1

for all x ∈ R
n.

Proof Let 	′
n = {y ∈ R

n
≥0 : ∑

i∈[n] yi < 1} and define r(y) = y/(1 −
∑

i∈[n] yi) for y ∈ 	′
n. Then r is a homeomorphism between 	′

n and R
n
≥0. Let

f (x) = ∑
j∈J aj x

j , where J ⊆ N
n and xj := x

j1
1 · · · xjn

n . The function f ◦ r

is a rational function and can be written as f (r(y)) = g(y)/h(y), where g(y) =
∑

j∈J aj y
j (1 − ∑

i∈[n] yi)
d−(

∑
i∈[n] ji ) and h(y) = (1 − ∑

i∈[n] yi)
d . We see that

both g and h are polynomials of degree at most d, and the bitlength of their coef-
ficients is bounded by τ ′ = ndτ . Now for y ∈ 	′

n we have h(y) ≤ 1 and, by

Theorem 3.2, g(y) > 2−(τ ′+1)dn+1
d−(n+1)dn+1 = 2−(τnd+1)dn+1

d−(n+1)dn+1
. There-

fore, f (r(y)) = g(y)/h(y) ≥ g(y) ≥ 2−(τnd+1)dn+1
d−(n+1)dn+1

for all y ∈ 	′
n.

Hence f (x) ≥ 2−(τnd+1)dn+1
d−(n+1)dn+1

for all x ∈ R
n
≥0. By modifying the defini-

tion of r we can establish this lower bound on f for each of the hyperoctants of Rn

proving the result.

We derive two further consequences from Corollary 3.2: an upper bound (in terms
of distance) on all points in a bounded semi-algebraic set, and a lower bound on the
distance between two semi-algebraic sets that have a positive distance.

Corollary 3.3 If a bounded semi-algebraic set inRn has complexity at most L ≥ 5n,
then all its points have distance at most 22L+5

from the origin.

5Using the simplex results to get estimates with explicit constants, was suggested to us by Jiřı́ Matoušek.
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There is a finer bound in terms of n, d, and τ due to Basu and Roy [3].

Proof of Corollary 3.3 Let S = {x ∈ R
n : ϕ(x)}, where ϕ has complexity at most

L, be a bounded semi-algebraic set. Then R = supx∈S ‖x‖2 < ∞. By Lemma 3.2,
there is a polynomial g of degree at most 4 with coefficients of bitlength at most 2L,
so that S = {x ∈ R

n : (∃y ∈ R
m) g(x, y) = 0}. Let f : R

n+m+1 → R be the
polynomial defined by f (x, y, u) = u2 + (u‖x‖2 −1)2 +g(x, y). Then f has degree
at most 4 and coefficients of bitlength at most 2L. Moreover, infx,y,u f (x, y, u) ≤
1/R2: Let x(j) be a sequence of points in S such that ‖x(j)‖2 converges to R. Then
for each x(j) there is a y(j) so that g(x(j), y(j)) = 0. Then f (x(j), y(j), 1/R) =
1/R2 + (‖x(j)‖2/R − 1)2 which tends to 1/R2 as j → ∞. By Corollary 3.2, f can
be bounded below by

2−(τnd+1)dn+1
d−(n+1)dn+1 ≥ 2−(τn4+2n+3)4n+1 ≥ 2−2L+6

,

where we used d ≤ 4 in the first inequality, and τ ≤ 2L and n ≤ L/5 in the second.
Since (1) is a lower bound on 1/R2, we get R2 ≤ 22L+6

and hence R ≤ 22L+5
.

The second consequence is a lower bound on the distance between two semi-
algebraic sets.

Corollary 3.4 If two semi-algebraic sets in R
n each of complexity at most L ≥

5n have positive distance (for example, if they are disjoint and compact), then that
distance is at least 2−2L+5

.

Jeronimo, Perrucci, Tsigaridas [17, Theorem 2] give bounds on the minimum dis-
tance between two semi-algebraic sets in terms of n, τ and d, which is more than we
need. Their result makes the stronger assumption that one of the two sets be compact.

Proof of Corollary 3.4 Let S = {x ∈ R
n : ϕ(x)} and T = {x ∈ R

n : ψ(x)} so
that ϕ and ψ have complexity at most L. We can assume that both S and T are
non-empty. By Lemma 3.1 both S and T are the finite union of basic semi-algebraic
sets of complexity at most L, so we can choose basic semi-algebraic subsets of S

and T that realize the minimum distance. So let us assume that S and T are basic.
Lemma 3.2 gives us polynomials g and h each of degree at most 4 and with coef-
ficients of bitlength at most 2L so that S = {x ∈ R

n : (∃y ∈ R
m) g(x, y) = 0

and T = {x : Rn : (∃y ∈ R
m) h(x, y) = 0} (we can pad y if necessary so m is

the same and g and h have the same number of variables). Consider the polynomial
f (x, y, x ′, y′) = g(x, y) + h(x′, y′) + ‖x − x′‖2. Then infx,x′,y,y′ f (x, y, x′, y′) is
a lower bound on the square of the distance between S and T (pick x in the closure
of S and x′ in the closure of T so that d(x, x′) = d(S, T ), then choose sequences of
elements in S and T converging to x and x′, with corresponding choices of y and y′).
Since f has degree d ≤ 4 ≤ 2L and its coefficients have bitlength τ ≤ 2L as well,
Corollary 3.2 implies that f has a lower bound of 2−2L+6

(just as in Eq. 1 above,
using the same estimates). Since this is a lower bound on the square of the distance
which is less than 1, 2−2L+5

is a lower bound on the distance.
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4 The Complexity Class ∃R
We have defined three variants of the existential theory of the reals, ETR, INEQ,
and STRICT INEQ; in this section we will show that they are all computationally
equivalent. In particular, it will follow that NPRS = NPRE, which is a bit of a surprise,
since algebraically these two classes differ. For the proof, we will use an intermediate
problem FEAS which restricts ETR to formulas not containing �=, ∨, ∧, < and ≤; in
other words, FEAS asks whether a multivariate polynomial is feasible, that is, has a
root over the reals.

Theorem 4.1 The following problems are polynomial-time equivalent: ETR, FEAS,
STRICT INEQ.

Proof In slightly different language, we already saw that ETR reduces to FEAS, that
was what we proved in Lemma 3.2. Since STRICT INEQ is a special case of ETR, we
are left with the proof that FEAS reduces to STRICT INEQ.

So suppose we are given a multivariate polynomial g and ask whether there is
an x ∈ R

n so that g(x) = 0. Let L be the complexity of g (recall that this is the
number of bits required to write down g as a sum of monomials). By Corollary 3.1
we know that if S = {x ∈ R

n : g(x) = 0} is not empty, it contains a point of
distance at most R = 2L8n

from the origin. Consider the two semi-algebraic sets
{(z, x) ∈ R

n+1 : g(x) = z, ‖x‖2 ≤ R2} and {(z, x) ∈ R
n+1 : z = 0, ‖x‖2 ≤ R2}.

If these two sets do not intersect, they have positive distance (both being compact),
and, by Corollary 3.4, that distance is at least 2−2L+5

. Hence, g = 0 is equivalent to
the system

−δ < g(x), g(x) < δ, δ < 2−2L+5
, ‖x‖2 ≤ R2

of strict inequalities being solvable. The inequality δ < 2−2L+5
can be replaced by

a sequence of at most L + 5 inequalities using repeated squaring, so we have shown
that FEAS can be reduced to STRICT INEQ. Note that this reduction does not (and
cannot) maintain the realization space of the system (the set of solutions).

As a corollary of Theorem 4.1 we obtain:

Corollary 4.1 ∃<R = ∃=R.

The corollary allows us to simplify our notation and call our new complexity class
simply ∃R. Our computational world now looks as follows:

NP ⊆ ∃R ⊆ PSPACE.

Remark 4.1 Following standard usage, we will say a problem is ∃R-hard, if every
problem in ∃R polynomial-time many-one reduces to it; it is ∃R-complete, if it is ∃R-
hard and belongs to ∃R. The complements of problems in ∃R can be said to belong
to ∀R, or co∃R (used in [35]).
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Let QUAD be the computational problem asking whether a family of quadratic
polynomials fi : R

n → R, i ∈ [k], has a common zero, and let 4-FEAS be the
special case of FEAS in which the polynomial has degree at most 4. The algebraic
versions of these problems are known to be hard for NPR, the analogue of NP in the
Blum-Shub-Smale model [5, Section 5.4].

Corollary 4.2 QUAD and 4-FEAS are ∃R-complete.

In [31, Lemma 3.9] it is shown (assuming Corollary 4.2) that QUAD remains
∃R-complete if we ask for a common zero in the unit ball Bn(0, 1).

Proof Lemma 3.2 shows that ETR reduces to QUAD, which in turn reduces to 4-
FEAS. Obviously, both problem belong to ∃R.

Ten Cate, Kolaitis and Othman [35] recently showed that ∃R is downward closed
under NP-reductions, that is, if a problem NP-reduces to a problem in ∃R, then
it also belongs to ∃R, where an NP-reduction is a many-one reduction computed
by a non-deterministic polynomial time Turing machine. This allows the authors to
show that the data exchange problem they are interested in lies in ∃R. They show
∃R-completeness by reducing the rectilinear crossing number problem to the data
exchange problem.

Let us mention one more tool that may be useful in showing some problem lies in
∃R; the first author used this result in [31] (without proof) to show that non-rigidity
of linkages lies in ∃R.

Lemma 4.1 Let
�(ε, y) = (∃x) ϕ(ε, x, y),

with ε > 0, x ∈ R
k , y ∈ R

�, be such that �(ε, y) implies �(ε′, y) for all ε′ > ε.
Then we can find a quantifier-free formula ψ(ε, x, y, z), with z ∈ R

m, of length at
most |ϕ| + dm, where m = |ϕ| + 5 so that

(∀ε > 0)(∃x) ϕ(ε, x, y)

is equivalent to
(∃ε > 0, x, z) ψ(ε, x, y, z).

Proof We assume y ∈ R
� is fixed and will drop it from the formulas (that is, we

really prove the case � = 0).
Define two sets A := {(ε, x) ∈ R

k+1 : ϕ(ε, x), ε > 0} and B := {0} × R
k .

If d(A, B) = 0, then for every δ > 0 there must be an ε so that δ > ε > 0 and
(ε, x) ∈ A for some x which, by monotonicity, implies that (ε′, x) ∈ A for all ε′ > ε.
Since δ can be chosen arbitrarily small, this means that (∀ε > 0)(∃x) ϕ(ε, x) is true.

Otherwise, d(A, B) > 0 and, by Corollary 3.4, d(A, B) > 2−2L+5
. By construc-

tion, d(A, B) is a lower bound on the infimum over all ε > 0 for which there is
an x so that ϕ(x) is true; hence, ϕ(ε, x) is false for all x and all ε < 2−2|ϕ|+5

, so
(∀ε > 0)(∃x) ϕ(ε, x) is false.
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In other words, the truth of (∀ε > 0)(∃x) ϕ(ε, x) is equivalent to (∃ε >

0)(∃x) [ϕ(ε, x) ∧ ε < 2−2L+5]. Using repeated squaring, ε < 2−2|ϕ|+5
can be

expressed using a formula with at most m = |ϕ| + 6 variables z. Combining this
formula with ϕ(ε, x) we obtain ψ(ε, x, z) so that the conclusion of the lemma
holds.

To see how this lemma can be useful, we give two examples, the first is from
[31]. Let ISO be be the problem of deciding whether a point x ∈ R

n is an isolated
zero of a family (fi)i∈[s] of multivariate polynomials. Then ((fi)i∈[s], x) is not an
instance of ISO, if x is not a zero of (fi)i∈[s] or (∀ε > 0)(∃y) [ ∑

i∈[n]
(xi − yi)

2 <

ε ∧ ∧
i∈[s] fi(y) = 0]. By Lemma 4.1 the monotone all-quantification over ε can be

replaced with an existential quantifier, and we conclude that ISO belongs to ∃R; in
other words ISO belongs to ∀R.

Our second example is new:

Lemma 4.2 Deciding whether two semi-algebraic sets have distance zero is ∃R-
complete.

It is tempting to conjecture that the condition is equivalent to the closure of the two
algebraic sets having a non-empty intersection, but that is not correct, as the earlier
example f (x, y) = x2 + (1 − xy)2 and g(x, y) = 0 shows.

Proof ∃R-hardness is an obvious reduction from FEAS: a multivariate polynomial
f : Rn → R has a zero if and only if {(x, y) ∈ R

n+1 : y = f (x), ‖x‖ ≤ R} and
{(x, 0) ∈ R

n+1 : ‖x‖ ≤ R} have distance 0, where R is an upper bound on a zero of
f (use Corollary 3.1 applied to {x ∈ R

n : f (x) = 0}).
The interesting part is showing that the problem lies in ∃R. Using Lemma 4.1

this is easy now, because we can express that two semi-algebraic sets defined by
polynomials f (x, y) and g(x, y) (use Lemma 3.2) have distance 0 as (∀ε > 0)

(∃x, y, x′, y′)[f (x, y) = 0 ∧ g(x′, y′) = 0 ∧ ‖x − x′‖ ≤ ε].

5 Fixed Points and the Nash Equilibrium

How hard is it to find a fixed point of a function? Consider a simple version of
that problem called FIXED in which we ask whether a family f of polynomials
fi : R

n → R, i ∈ [n], has a fixed point, that is an x ∈ R
n so that f (x) =

(f1(x), . . . , fn(x)) = x. FIXED is ∃R-complete: Obviously, it is a special case of
INEQ, and we can reduce FEAS to it, since g : Rn → R has a zero, if and only if the
family of polynomials defined by fi(x) = g(x) + xi has a fixed point.

In this section we consider continuous functions from a convex, compact set to
itself. Such functions always have a fixed point by the Brouwer Fixed-Point Theo-
rem, trivializing the question we asked for FIXED, but also giving a first hint that
encoding is going to be harder with these functions. There are several computational
questions that can be asked for this problem (see the detailed discussion by Etessami
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and Yannakakis [13]). We start with the decision version of the problem and discuss
variants and the Nash Equilibrium problem in Section 5.2.

5.1 The Brouwer Fixed-Point Problem

Brouwer’s fixed point theorem implies that a continuous function from a convex com-
pact set to itself has a fixed point. We are interested in the computational complexity
of deciding whether there is a fixed point of the function in a given neighborhood.
To slightly simplify the argument, we work over the domain Bn(x, r), the closed
ball around x ∈ R

n of radius r in the �∞-metric; in other words, Bn(x, r) is an
n-dimensional box; for example, Bn(0, 1/2) is the unit cube centered at the origin.

There are several choices for what continuous functions we allow. Typically,
functions defined using straight-line programs (a very compact representation of
polynomials) or even extended straight-line programs (a compact representation of
a class of functions that includes all rational functions) are allowed in this context
(see [13], for example). Since we want to show that the problem is hard, we obtain
a stronger result, the more limited our set of continuous functions, so we settle on
the set of polynomials, represented explicitly, that is, in the form f (x) = ∑

i∈I cix
i ,

where x ∈ R
n, I ⊆ N

n, ci ∈ Q, and xi = (x
i1
1 , . . . , x

in
n ). We even restrict ci to the

set of values {−1, −1/2, 0, 1/2, 1}. We can now define the computational version of
the Brouwer fixed-point problem:

BROUWER
Given: A polynomial family f : Bn(0, 1) → Bn(0, 1), represented explicitly, x ∈

Q
n, r ∈ Q.

Question: Does f have a fixed point in Bn(x, r)?

Our goal is to show that BROUWER is ∃R-hard. The strategy for the proof is sim-
ple: reduce the fixed-point problem FIXED to BROUWER. To encode FIXED, we
need to scale the computations, since f has to take values in Bn(0, 1). This is rather
hard to achieve with explicitly represented polynomials, but becomes much easier
if we use the (extended) straight-line representation. Consequently, the proof is in
two parts: we show that (1) FIXED reduces to a fixed-point problem for extended
straight-line programs (Theorem 5.1), and (2) explicitly represented polynomials
have roughly the same power as extended straight-line programs when it comes to
sets of fixed point (Lemma 5.1).

We start with the second part, for which we need a formal definition of the
two variants of straight-line programs we mentioned. A straight-line program (SLP)
is a sequence of assignments of the form Si := c, c ∈ {−1, −1/2, 0, 1/2, 1},
Si := xj , i ∈ [�], j ∈ [n] or Si := Sj ◦Sk , where 1 ≤ j, k < i ≤ � and ◦ ∈ {+, −, ∗};
� is the length of the program.6 We can think of the straight-line program as a

6We could allow arbitrary assignments Si := c, where c ∈ Q or c ∈ [−1, 1] ∩ Q, the following results
would still be true if we redefine length in this case to include the number of bits needed to write down
any rational constants used. We will see presently that this would not significantly change the model as far
as fixed point computations are concerned: allowing division does not yield any additional computational
power.
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succinct way of describing a multivariate polynomial in variables xj , j ∈ [n], and
we will sometimes write Si(x) if we want to emphasize the dependence of Si on the
input variables x. A straight-line program for a function f = (fi)i∈[m] : U → V ,
where U ⊆ R

n, V ⊆ R
m, is a straight-line program in which the first n assign-

ments are Si := xi , and the last m assignments calculate fi(x1, . . . , xn) so that
S�−m+i (x1, . . . , xn) = fi(x1, . . . , xn), for i ∈ [m]. In an extended straight-line pro-
gram (ESLP) we also allow operations /, max, min, and k

√·. (The definition in this
case implies that for inputs in U no division by zero or even roots of negative numbers
occur.)

The following lemma shows that ESLPs have no edge on explicitly represented
polynomials with respect to capturing sets of fixed points: for each ESLP there is
such a polynomial family that has essentially the same set of fixed points. We write
Ff for the set of fixed points of a function f in its domain, and use 1 and 0 for the
vector consisting of all ones or zeros (of appropriate dimension).

Lemma 5.1 If f : Bn(0, 1) → Bn(0, 1) is a function given by an ESLP, then we can
construct in polynomial time a polynomial family g : Bn′(0, 1) → Bn′(0, 1), n′ ≥ n,
so that Ff ∪ {1} = πn(Fg), where πn : Rn′ → R

n projects a vector on its first n

coordinates. Moreover, we can ensure that Ff ∩Bn(0, 1/2) = πn(Fg ∩Bn′(0, 1/2)).

Remark 5.1 Two comments about the lemma: (i) There is nothing special about
adding 1 as a fixed point when going from f to g, the construction we will use
could be adapted to add any point in [−1, 1]n′

describable by a polynomial. So one
way to eliminate that point is by making this added fixed point a fixed point of f ,
however that would require the ability to find some (any) fixed point of f and that
we will probably not be able to do in polynomial time: Papadimitriou showed that
this problem is PPAD-complete [26]. It seems possible that there is a different con-
struction which obviates the need to add an extra point as fixed point. One way to
approach the problem would be to start with the stronger assumption that there is an
SLP computing f . (ii) As it is, Lemma 5.1 tells us that finding an arbitrary fixed
point of a function f : Bn(0, 1) → Bn(0, 1) specified by an ESLP can be reduced to
finding at least two (arbitrary) fixed points of a polynomial family g : Bn′(0, 1) →
Bn′(0, 1).

Proof of Lemma 5.1 Let (Si)i∈[�] be the ESLP computing f . The first n instructions
have the form Si := xi , i ∈ [n], and the last n variables, S�−n+1, . . . , S� contain the
outputs. We can assume that divisions are of the form Si := 1/Sk; moreover, since
max{x, y} = (x + y + |x − y|)/2, min{x, y} = x + y − max{x, y} and |x| = √

x2,
we can assume that the ESLP does not contain max or min (Etessami and Yannakakis
use the same trick in [13]). Finally, we replace any instruction Si := k

√
Sj for even

k with two instructions: A := 2k
√

Sj , Si := A ∗ A; here A is a new variable of the
ESLP we insert just before Si (and which is only used to calculate Si). This modified
ESLP will calculate Si (and thus the rest of the program) correctly as the positive kth
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root of Sj , independently of whether A = 2k
√

Sj evaluates to the positive or negative
2k-th root of Sj .

We can consider each Si as a function Si(x1, . . . , xn) from R
n to R; we know that

every Si is well-defined (no divisions by zero or even roots of negative arguments),
but while the Si calculating the output are restricted to values in [−1, 1], the inter-
mediate values can be large; however, since the input set is compact, there is an M

so that Si(x1, . . . , xn) ≤ M/2 for all i ∈ [�] and (x1, . . . , xn) ∈ [−1, 1]n. Con-
sider S := {(S1(x), . . . , S�(x)) : x ∈ [−1, 1]n}. Then S is a semi-algebraic set (all
instructions can be rewritten as polynomial (in)equalities, e.g. Si := 2k

√
Sj becomes

Si ≥ 0∧S2k
i −Sj = 0 and Si := 2k+1

√
Sj becomes S2k+1

i −Sj = 0); hence, by Corol-

lary 3.3, we can choose M = 22log(c�)�+5
(for some c > 0 which bounds the number

of symbols needed to express a straight-line instruction).
The polynomial family g will have n′ = 3n+ 2�+ 1 +m scalar variables grouped

as x = (x1, . . . , xn), y = (y0, y1, . . . , y�), y′ = (y′
1, . . . , y

′
�), z = (z1, . . . , zn),

z′ = (z′
1, . . . , z

′
n), and u′ = (u1, . . . , um), where m = �log(c�)� + 5. For a fixed

point g(x, y, y′, z, z′, u) = (x, y, y′, z, z′, u) we will ensure that

• ui = 2−2i
for i ∈ [m],

• y′
i = 0, and yi = Si/M for i ∈ [�],

• z′
i = 0, and zi = S�−n+i for i ∈ [n],

unless y0 = 1, in which case we guarantee that x = 1. This means that (as long as
y0 �= 1), um = 1/M , the yi simulate the calculations of the straight-line program
scaled by the factor 1/M , and the zi contain the actual output f (x). To simplify the
presentation, we label the components of g by their variables, so we write gxi

or guj

rather than using a uniform integer labeling gi .
We start by defining gxi

, gzi
, gz′

i
, and gui

. Let p(x) := 1 − (x − (1/4))2 ∗ (1/4)

and q(x) := x2 ∗ (1/16), where (1/4) is short for 1/2 ∗ 1/2 and similarly for (1/16).

• gxi
= zi for i ∈ [n],

• gzi
= p(y0) ∗ zi + 1 − p(y0) for i ∈ [n],

• gz′
i
= q(y�−n+i − zi ∗ um) for i ∈ [n],

• gu1 = 1/2, and gui+1 = u2
i for i ∈ [m − 1].

Based on the instructions in the ESLP for f we construct the polynomials gy′
i

for
i ∈ [�]:

Si := c → gy′
i
:= q(yi − c ∗ um)

Si := xj → gy′
i
:= q(yi − xj ∗ um)

Si := Sj + Sk → gy′
i
:= q(yi − (yj + yk))

Si := Sj ∗ Sk → gy′
i
:= q(yi ∗ um − (yj ∗ yk))

Si := 1/Sj → gy′
i
:= q(yi ∗ yj − 1 ∗ u2

m)

Si := k
√

Sj → gy′
i
:= q(yk

i − yj ∗ uk−1
m ).



Theory Comput Syst (2017) 60:172–193 187

Finally, let

• gy0 = 1 − (1 − y0) ∗ (
1 − ∑

i∈[�]((y′
i )

2 + (z′
i )

2) ∗ (1/2)�log 2��), and
• gyi

= yi , for i ∈ [�].
This completes the definition of g which clearly is a polynomial family repre-

sented explicitly (the terms in gy0 can be multiplied out easily). We need to show that
g also is a function from [−1, 1]3n+�+1+m to [−1, 1]3n+�+1+m. This is obvious for
gxi

, gyi
, and gui

. Note that gy′
i

and gz′
i

take on values in [0, 1] by choice of q: the
terms to which q is applied all lie in the range [−3, 3], since yi , xj , zk , and um all lie
in [−1, 1], so by applying q we obtain numbers in [0, 1]. Finally, gzi

∈ [−1, 1], since
gzi

= p(y0) ∗ zi + 1 − p(y0) ≤ p(y0) + 1 − p(y0) = 1 and gzi
≥ 1 − 2p(y0) ≥ −1,

and gy0 ∈ [−1, 1], since 0 ≤ ∑
i∈[�](y′

i )
2 + (z′

i )
2 ≤ 2� ≤ 2�log 2��.

We next show that πn(Fg) ⊆ Ff ∪ {1}. To that end, let (x, y, y′, z, z′, u) be an
arbitrary fixed point of g, that is, g(x, y, y′, z, z′, u) = (x, y, y′, z, z′, u). From the
definition of gui

, for i ∈ [m], we conclude that um = 1/M .
If y0 = 1, then p(y0) < 1. Since zi = gzi

= p(y0) ∗ zi + 1 − p(y0), we have
zi(1 − p(y0)) = 1 − p(y0) and thus zi = 1 for i ∈ [n]; but then xi = gxi

= zi = 1
for i ∈ [n], so x = 1.

If, on the other hand, y0 �= 1, then because of y0 = gy0 = 1 − (1 − y0) ∗ (1 −
(
∑

i∈[�](y′
i )

2 + (z′
i )

2)∗ (1/2)�log 2��) we have 1−y0 = (1−y0)∗ (1− (
∑

i∈[�](y′
i )

2 +
(z′

i )
2) ∗ (1/2)�log 2��) and thus

∑
i∈[�](y′

i )
2 + (z′

i )
2 = 0 which implies y′

i = 0 for all
i ∈ [�] and z′

i = 0 for all i ∈ [n]. To argue that yi = Si/M , we distinguish cases
based on the instruction defining Si ; we use that q(x) = 0 implies that x = 0.

• Si := c: since y′
i = 0 we get that q(yi −c∗um) = 0 and thus yi = c∗um = c/M ,

• Si := xj : since y′
i = 0 we get that q(yi − xj ∗ um) = 0 and thus yi = xj ∗ um =

xj /M , or, in other words, M ∗ yi = xj ,
• Si := Sj + Sk; we get yi = yj + yk ,
• Si := Sj ∗ Sk we get yi/M = (yj ∗ yk), so M ∗ yi = (M ∗ yj ) ∗ (M ∗ yk),
• Si := 1/Sj ; we get yi ∗ yj = 1/M2, so M ∗ yi = 1/(M ∗ yj ),
• Si := k

√
Sj ; we get yk

i = yj /M
k−1, so (M ∗ yi)

k = M ∗ yj (recall that if k is
even we have ensured that Sj ≥ 0).

This is enough to show inductively that yi = Si/M in the first five cases and |yi | =
|Si |/M in the last case (which is sufficient as we saw earlier). A similar argument
about the gz′

i
with z′

i = 0 shows that y�−n+i = zi/M , so zi = M ∗ y�−n+i = S�−n+i ;
now, since xi = gxi

= zi , this shows that the fixed point of g, if projected on its
first n coordinates (x1, . . . , xn), is a fixed point of f . This completes the proof that
πn(Fg) ⊆ Ff ∪ {1} which, in turn, implies that πn(Fg ∩ Bn′(0, 1/2)) ⊆ πn(Fg) ∩
Bn(0, 1/2) ⊆ Ff ∩ Bn(0, 1/2), where n′ = 3n + 2� + 1 + m.

To see that Ff ∪ {1} ⊆ πn(Fg), let x be a fixed point of f , that is, f (x) = x.
We set ui = 2−2i

satisfying gui
= ui . Let y0 = 1/4, so that p(y0) = 1, and thus

gzi
= p(y0) ∗ zi + 1 − p(y0) = zi for any choice of zi ∈ [−1, 1]. Then letting

y′
i = 0, and yi = Si(x)/M for i ∈ [�], and z′

i = 0, and zi = S�−n+i (x) for i ∈ [n],
satisfies the remaining clauses of g, showing that (x, y, y′, z, z′, u) is a fixed point
of g and Ff ⊆ πn(Fg). Moreover, for the same values of y, y′, z′, and u, we see that
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(1, y, y′, 1, z′, u) is a fixed point of g as well (recall that there is no restriction on the
zi , since g(zi) = zi for the particular value of y0 we chose, and x = z is all that is
required to satisfy the gxi

), showing that 1 ∈ πn(Fg).
We note that something slightly stronger than Ff ⊆ πn(Fg) is true, since we can

bound by 1/2 all the intermediate variables for the fixed point (x, y, y ′, z, z′, u) of g

corresponding to the fixed point x of f : We have y0 = 1/4, |yi | = |Si(x)/M| ≤ 1/2
(by choice of M), |ui | ≤ 1/2, y′

i = 0, and z′
i = 0. So (x, y, y′, z, z′, u) ∈ Ff ×

B2�+1(0, 1/2) × Ff × Bn+m(0, 1/2). In particular, Ff ∩ Bn(0, 1/2) ⊆ πn(Fg ∩
Bn′(0, 1/2), where n′ = 3n + 2� + 1 + m.

In summary, πn(Fg) = Ff ∪ {1}, and Ff ∩ Bn(0, 1/2) = πn(Fg ∩ Bn′(0, 1/2)),
concluding the proof of the lemma.

With Lemma 5.1 it is now easy to show that BROUWER is ∃R-hard.

Theorem 5.1 Deciding BROUWER is ∃R-complete, even for x = 0 and r = 1/2.

The theorem remains true for any other appropriate choice of x and r . For fixed
dimension, e.g. n = 1 or n = 2, BROUWER can be decided in P using quantifier
elimination for the fixed number of quantifiers.

Proof The problem is easily seen to lie in ∃R (this remains true even if f is specified
by an SLP or an ESLP). We saw earlier that deciding whether a family of multivariate
polynomials f = (fi)i∈[n] : Rn → R

n has a fixed point is hard for ∃R; since these
polynomials are given explicitly, it is easy to construct an SLP S computing f . By
Corollary 3.1 if f has a fixed point, there has to be a fixed point at distance less than
R/2 = 2(c�)8n

from 0, where � is the length of S, and c is a fixed constant. Now f

maps Bn(0, R) to Bn(0, R′), where R′ = �R2�� ≤ �22c′�n� (each coordinate can be
at most squared in each of the at most � steps of the computation; c′ only depends
on c, so it is a fixed constant). Let g be the continuous map that is the identity on
Bn(0, R/2) and bijectively maps Bn(0, R′) − Bn(0, R/2) to Bn(0, R) − Bn(0, R/2)

defined component-wise by:

gi(x) =
{

xi if xi ∈ B1(0, R/2)

sgn(xi)
R
2

( |xi |−(R/2)
R′−R/2 + 1

)
if xi ∈ B1(0, R′) − B1(0, R/2)

for i ∈ [n], where sgn(x) is the sign function. Then g ◦ f maps Bn(0, R) to
Bn(0, R); moreover, any fixed point of f in Bn(0, R/2) is still a fixed point of
g ◦ f in Bn(0, R/2) and vice versa. Finally, let h be a scaling by R, that is h

is a continuous bijection between Bn(0, R) and Bn(0, 1). Thus h ◦ g ◦ f ◦ h−1 :
Bn(0, 1) → Bn(0, 1) has a fixed point in Bn(0, 1/2) if and only if f has a fixed point
(in R

n).
Now, there will not, in general, be an SLP computing h◦g ◦f ◦h−1 since such an

SLP would require division and case distinction; however, it is easy to see that there
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is an ESLP: this is clear for h and most of g; the only interesting question is how to
perform the case distinction, but that can be done using max and min:

gi(x) = max(0, min(xi, R/2) + R

2
max(0,

xi − R/2

R′ − R/2
))

− max(0, min(−xi, R/2) + R

2
max(0,

−xi − R/2

R′ − R/2
)).

Finally, ESLPs are closed under composition of functions, so we can conclude that
there is an ESLP for h◦g ◦f ◦h−1 and thus, by Lemma 5.1 an explicitly represented
polynomial family f ′ : Bn′(0, 1) → Bn′(0, 1) so that Fh◦g◦f ◦h−1 ∪ {1} = πn(Ff ′).
Moreover, the lemma allows us to conclude that

Fh◦g◦f ◦h−1 ∩ Bn(0, 1/2) = πn(Ff ′ ∩ Bn′(0, 1/2)).

Now f has a fixed point if and only if h◦g◦f ◦h−1 has a fixed point in Bn(0, 1/2)

if and only if f ′ has a fixed point in Bn′(0, 1/2), which is the BROUWERs problem
for the explicitly represented polynomial family f ′.

5.2 The Nash Equilibrium

Etessami and Yannakakis [13] studied in depth the search versions of fixed-point
problems and Nash equilibria7: Suppose we are given a function f : Bn(0, 1) →
Bn(0, 1) via an ESLP. How hard is it to find some (any) fixed point of f ? This, of
course, is a problem over real numbers, but one can turn it into a discrete problem as
follows. For any input r ∈ Q

n we are allowed to ask questions of the type x�r , where
� is one of {≤, ≥, <, >}n, a vector of comparison operators. If x�r for all fixed
points x of f the answer has to be “yes”, if x�r is false for all fixed points of f the
answer has to be “no”; otherwise, the answer can be either “yes” or “no”. Etessami
and Yannakakis call this the decision problem (in their terminology, BROUWER is an
existence problem, not a decision problem). The class of all such fixed-point decision
problems they call FIXPd . FIXPd is rather robust, for example it is not affected
by changing the domain of the function (to a cube, or a sphere, say). Etessami and
Yannakakis [13, Theorem 4.7] also show that FIXPd remains the same if ESLPs are
restricted to {+, ∗, max}.8

Moreover, FIXPd has natural complete problems, including, among several oth-
ers, the decision (in Etessami and Yannakakis’s terminology) versions of BROUWER
and the Nash equilibrium problem for 3 players. Clearly, FIXPd ⊆ ∃R, and Etes-
sami and Yannakakis show that PSLP reduces to any FIXPd -complete problem,
where PSLP is the problem of deciding whether a given SLP computes a positive

7We refer the reader to their paper—specifically their Section 2.2—for all terminology and definitions
related to equilibria used in this section.
8The proof uses Nash equilibria, compare Lemma 5.1 which gets rid of max as well, but adds a fixed point.
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number; currently this is the best known lower bound on FIXPd (in turn, the best-
known upper bound on PSLP is the counting hierarchy, due to a result by Allender,
Bürgisser, Kjeldgaard-Pedersen, and Miltersen [1]). Etessami and Yannakakis point
out that it is unlikely that any FIXPd -problem is NP-hard, since in that case it is
also coNP-hard, which would imply coNP ⊆ ∃R, which is not impossible, but seems
counterintuitive. Similarly, FIXPd = ∃R would imply that ∃R is closed under
complement, which again appears unlikely.

Here we consider decision versions of the Nash equilibrium problem in which we
ask whether there is a Nash equilibrium in a given ball Bn(x, r). Etessami and Yan-
nakakis’s core result works in this setting as well; we summarize it in the following
lemma:

Lemma 5.2 (Etessami, Yannakakis [13, Claim 2 in Theorem 4.3]) Given a func-
tion f : Bn(0, 1) → Bn(0, 1) specified by an SLP of length �, one can
construct in polynomial time a 3-player game G and compute an integer
N = O(�) so that

• if x∗ is a fixed point of f then there is a Nash equilibrium z = (z1, z2, z3) of �

so that z1[1 : n] = x∗/N ,
• if z = (z1, z2, z3) is a Nash equilibrium of �, then x∗ = Nz1[1 : n] is a fixed

point of f .

By Theorem 5.1, BROUWER is ∃R-hard, and Lemma 5.2 shows that there is
a reduction from BROUWER to the Nash equilibrium problem, so the following
corollary is immediate now.

Corollary 5.1 Deciding whether a 3-player game � has a Nash equilibrium in
Bn(x, r) for x ∈ Q

n, r ∈ Q is ∃R-complete even for x = 0.

In the corollary, we can take r = 1/(2N), where N is as in Lemma 5.2. More
precisely, given an instance of BROUWER with r = 1/2 we use Lemma 5.2 to
construct a 3-player game G and N and then use G and r = 1/(2N) as an instance
of the “Nash equilibrium in a ball” problem.

Remark 5.2 Datta showed the universality of 3-player totally mixed Nash equilibria
[11]; algebraically this is a stronger result, since it shows that arbitrary semi-algebraic
sets can be encoded as Nash equilibria; however, the reduction is not polyno-
mial time, since some players in her game use �(dn) pure strategies, where d is
the highest power of any variable in the polynomial equations encoding the semi-
algebraic sets, see [11, Theorem 2]. It may be an interesting open problem whether
Datta’s universality theorem can be improved to an efficient, that is, polynomial-time,
reduction.

Etessami and Yannakakis have also given a reduction from BROUWER (with
max) to the exchange equilibrium problem (see [13, Proposition 4.4] for details);
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starting with our more restrictive version of BROUWER, we can conclude that the
problem remains hard if the ESLP is restricted further.

Corollary 5.2 The exchange equilibrium problem with an excess demand function
given by an ESLP is ∃R-complete. Indeed, this remains true if the ESLP is restricted
to division (that is, no roots, max or min operations are allowed).

Appendix A: Proof of Corollary 3.1

Let S = {x ∈ R
n : ϕ(x)} be the semi-algebraic set defined by ϕ of complexity

at most L. If S = ∅, there is nothing to show, so we can assume that S �= ∅. By
Lemma 3.1 there is a conjunction ψ = ∧�

i=1 si�i ti with �i ∈ {<, =} so that S′ =
{x ∈ R

n : ψ(x)} is a non-empty subset of S and |ψ | ≤ |ϕ| ≤ L. In particular, � < L.
Now S′ = {x ∈ R

n : si−ti�i0}. Let fi := si−ti , and s = �. Then s < L, each fi has
degree d at most L−2 (we need two symbols for �i and 0), and the bitlength of each
coefficient of fi is bounded by L − 1, so τ < L (these are wildly generous bounds).
Hence, we can apply Theorem 3.1 to conclude that S′, and therefore S contains a
point at distance at most R from the origin if it is non-empty. We are left with the
estimate of R. Let us first simplify the expression for R:

R ≤ ((4DN2)22N(τ ′+b(2N)+b(2DN+1)))1/2

≤ 2DN2N(τ ′+b(2N)+b(2DN+1))

≤ 2b(N)+b(2D)+N(τ ′+b(2N)+b(2DN+1)).

We know that d ′ < 2L (using L ≥ 4); then D ≤ nd ′ < 2nL, and 2D + 1 ≤ 4nL.
With this b(2D + 1) ≤ b(4nL) ≤ 3 + log(nL) ≤ nL + 3 (we’re using b(x) ≤
log(x) + 1). Now N ≤ (d ′)n ≤ (2L)n, so b(N) = b((2L)n) ≤ 1 + n log(2L) ≤
nL + 1 (for L ≥ 4), and b(2N) ≤ nL + 2. We can now evaluate the τ -values:
τ0 ≤ 2L+(n+1)b(L)+b(4L) ≤ 2L+(n+2) log L+(n+4) ≤ 5nL (for L ≥ 4); with
that, τ1 ≤ D(τ0+4b(2D+1)+b(N)) ≤ 2nL(5nL+4(nL+3)+(nL+1)) ≤ 27n2L2,
and τ2 ≤ τ1 + 2n(b(N) + b(n)) ≤ τ1 + 2n2L2 ≤ 29n2L2, τ ′ ≤ N(τ2 + (nL + 1) +
2(nL+3)+1) ≤ (2L)n(31n2L2 +8) ≤ (2L)n32n2L2 ≤ 32n2L3n. This allows us to
evaluate the expression τ ′ +b(2N)+b(2DN + 1) ≤ τ ′ + 1 + 2b(N)+b(2D + 1) ≤
32n2L3n + 3nL + 5 ≤ 35n2L3n. Finally,

R ≤ 2b(N)+b(2D)+N(τ ′+b(2N)+b(2DN+1))

≤ 2(nL+1)+(nL+3)+N(35n2L3n)

≤ 2(2nL+4)+(2L)n(35n2L3n)

≤ 235n2L5n

≤ 2L8n

,

which is what we had to show.
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