
Theory Comput Syst (2017) 60:129–171
DOI 10.1007/s00224-015-9660-2

Composition Closure of Linear Extended Top-down
Tree Transducers

Joost Engelfriet1 ·Zoltán Fülöp2 ·
Andreas Maletti3

Published online: 29 December 2015
© Springer Science+Business Media New York 2015

Abstract Linear extended top-down tree transducers (or synchronous tree-
substitution grammars) are popular formal models of tree transformations that are
extensively used in syntax-based statistical machine translation. The expressive
power of compositions of such transducers with and without regular look-ahead is
investigated. In particular, the restrictions of ε-freeness, strictness, and nondeletion
are considered. The composition hierarchy turns out to be finite for all ε-free (all
rules consume input) variants of these transducers except for the nondeleting ε-free

This is a revised and extended version of [Z. FÜLÖP and A. MALETTI: Composition closure of
ε-free linear extended top-down tree transducers. In Proc. 17th DLT, volume 7907 of LNCS, pages
239–251. Springer-Verlag, 2013].

This work was partially supported by the exchange project 55 657 of the German Academic
Exchange Service (DAAD) and Hungarian Scholarship Board Office (MÖB). Z. Fülöp was partially
supported by the NKFI grant K 108 448, and A. Maletti was partially supported by the German
Research Foundation (DFG) grant MA / 4959 / 1-1.

� Andreas Maletti
andreas.maletti@gmail.com

Joost Engelfriet
j.engelfriet@liacs.leidenuniv.nl

Zoltán Fülöp
fulop@inf.u-szeged.hu

1 Leiden Institute of Advanced Computer Science, Leiden University, P.O. Box 9512, 2300 RA
Leiden, The Netherlands

2 Department of Foundations of Computer Science, University of Szeged, Árpád tér 2, H-6720
Szeged, Hungary

3 Institute of Computer Science, Universität Leipzig, Augustusplatz 10–11, 04109
Leipzig, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-015-9660-2&domain=pdf
http://orcid.org/0000-0003-3202-0498
mailto:andreas.maletti@gmail.com
mailto:j.engelfriet@liacs.leidenuniv.nl
mailto:fulop@inf.u-szeged.hu

130 Theory Comput Syst (2017) 60:129–171

transducers. The least number of transducers needed for the full expressive power
of arbitrary compositions is presented. In all remaining cases (incl. the nondeleting
ε-free transducers) the composition hierarchy does not collapse.

Keywords Extended top-down tree transducer · Composition hierarchy ·
Bimorphism

1 Introduction

Top-down tree transducers are simple formal models that encode tree transforma-
tions (i.e., relations between trees). They were introduced in [23, 24] and intensively
studied thereafter (see [14–16] for an overview). Roughly speaking, a top-down tree
transducer processes the input tree symbol-by-symbol, and specifies in its rules how
to translate an input symbol into an output tree fragment together with instructions
on how to process the subtrees of the input symbol. This asymmetry between input
and output (single symbol vs. tree fragment) was removed in extended top-down tree
transducers (xt), which were introduced and studied in [1, 2]. In such a transducer
the input side of a rule can now also contain a tree fragment, in which each variable
can occur at most once as a placeholder for a subtree. In particular, the tree fragment
can even be just a variable, which matches every input tree, and such rules are called
ε-rules because they do not process any part of the input tree. In this contribution we
only consider linear xt (l-xt), in which the output side of each rule contains each vari-
able at most once as well. Restricted variants of l-xt are used in most approaches to
syntax-based machine translation [18, 19].

We also add regular look-ahead [7] (i.e., the ability to check a regular property for
the subtrees in an input tree fragment) to l-xt, so our most expressive model is the
linear extended top-down tree transducer with regular look-ahead (l-xtR). Contrary
to most of the literature [7, 17] we present our models as synchronous grammars
[4] because we sometimes use the auxiliary link structure in our proofs. Instead of
variables in the input side and a state-variable combination in the output side of a
rule, we immediately only use states with the restriction that all states that occur in
the output side must also occur in the input side. Moreover, each state that occurs in
both sides, must occur exactly once in the input side and exactly once in the output
side, which corresponds to the classical linearity condition. In this way, for each
rule the states establish links (a state links its occurrence in the output side with its
occurrence in the input side), which form an injection from the state occurrences
in the output side to the state occurrences in the input side. Regular look-ahead is
specified only for the state occurrences (in the input side) that do not participate in
the injection (i.e., those states that exclusively occur in the input side). A derivation
of the grammar simultaneously generates an input tree and an output tree, which can
contain states that are (possibly) linked by explicit links. A rule application expands
two linked state occurrences at the same time, thus generating new input and output
fragments with new (linked) state occurrences. Moreover, every unlinked state (in the
input tree) is expanded into a tree from its regular look-ahead. Example 2 shows an
l-xtR, for which we illustrate a few derivation steps in Fig. 2. The tree transformation

Theory Comput Syst (2017) 60:129–171 131

computed by the example l-xtR is described in Example 8. In the following, we use
l-XTR and l-XT to denote the class of all tree transformations computed by l-xt R and
l-xt, respectively.

The expressive power of the various subclasses of l-XTR is already well under-
stood [13, 17]. However, in practice complex systems are often specified with the
help of compositions of tree transformations [22] because it is much easier to develop
(or train) small components that manage a part of the overall transformation. Con-
sequently, [19] and others declare that closure under composition is a very desirable
property for classes of tree transformations (especially in the area of natural language
processing). If a class C of tree transformations is closed under composition, then any
composition chain τ1 ; · · · ; τn of tree transformations τ1, . . . , τn of C can be replaced
by a single tree transformation τ ∈ C. If C represents the class of all tree transfor-
mations computable by a device, then closure under composition means that we can
replace any composition chain specified by several devices by just a single device,
which enables an efficient modular development. Unfortunately, neither l-XTR nor
l-XT is closed under composition [2, 3, 17].

In general, for a class C of tree transformations (that contains the identity transfor-
mations) we obtain a composition hierarchy C ⊆ C2 ⊆ C3 ⊆ · · · , where Cn denotes
the class of n-fold compositions of transformations from C. The class C might be
closed under composition at power n (i.e., Cn = Cn+1) or its composition hierarchy
might be infinite (i.e., Cn � Cn+1 for all n). The former case yields that Cn = Cm for
all m ≥ n, which means that the composition hierarchy of C collapses at power n.
In particular, C is closed under composition if its composition hierarchy collapses at
power 1. We note that in practice (e.g., in statistical machine translation) the classes
that are closed under composition at a small power are also important because for
such classes we can limit the length of composition chains [22]. In this contribu-
tion, we investigate the composition hierarchy of the classes l-XTR and l-XT together
with their subclasses determined by any combination of the properties: ε-freeness,
strictness, and nondeletion, which are abbreviated by ‘ ’, ‘s’, and ‘n’, respectively.
Roughly speaking, ε-freeness requires that there are no ε-rules, strictness guarantees
that the output side of each rule contains at least one output symbol, and nondeletion
requires that for each rule exactly the same states occur in the input and output side.
We use the property abbreviations in front of l-XTR and l-XT to obtain the class of
all tree transformations computable by such restricted l-xtR and l-xt, respectively. For
instance, denotes the class of all tree transformations computed by ε-free
and strict l-xtR.

It is known that none of our considered classes is closed under composi-
tion [3, Section 3.4]. In addition, it is known [3, Theorem 6.2] that the class

is closed at power 2. We complete the picture as follows. For
each of the remaining classes, we either provide the least power at which the class
is closed under composition or show that the composition hierarchy of the class is
infinite (denoted by ∞). Our results (together with the mentioned existing result) are
presented in Table 1.

Our contribution is organized as follows. Section 2 recalls the necessary concepts
and introduces our notation. We continue in Section 3 with the formal introduction
of our main model (l-xt R) including its syntax and semantics and the restrictions

132 Theory Comput Syst (2017) 60:129–171

Table 1 Characterization of the
composition hierarchies Class Least power of Stated in

closedness

2 [3, Theorem 6.2]

2 Theorem 26

3 Theorem 34

4 Theorem 34

otherwise ∞ Theorem 45

that we consider later. In addition, we recall some known equalities between certain
fundamental classes of tree transformations in preparation for our first main results.
In Section 4 we give a power at which the classes , , , and

of tree transformations are closed under composition (see Table 1). This
is completed in Section 5, where we conclude that these powers are minimal. In
Section 6 we prove that the composition hierarchy of each of the remaining classes is
infinite. Finally, we present the HASSE diagram of all the ε-free classes in Section 7.

2 Preliminaries

We denote the set of all nonnegative integers by N. In the following, let S be a set.
The power set of S is the set P(S) = {S′ | S′ ⊆ S} of all subsets of S. For an element
s of S, we identify the singleton set {s} with s, whenever convenient; this should not
lead to confusion. The cardinality of S is denoted by |S|. The set of all words (finite
sequences) over S is S∗ = ⋃

n∈N Sn, where S0 = {ε} contains only the empty word ε.
The length of a word w ∈ S∗ is the unique n ∈ N such that w ∈ Sn. We write |w|
for the length of w. The concatenation of two words v,w ∈ S∗ is denoted by v.w or
simply vw.

For sets S and T , every subset of S × T is a relation from S to T . Given relations
R1 ⊆ S × T and R2 ⊆ T × U , the inverse of R1 is the relation R−1

1 = {(t, s) |
(s, t) ∈ R1}, the domain of R1 is

dom(R1) = {s ∈ S | ∃t ∈ T : (s, t) ∈ R1} ,

and the composition of R1 and R2 is the relation

R1 ; R2 = {(s, u) | ∃t ∈ T : (s, t) ∈ R1, (t, u) ∈ R2} ⊆ S × U .

Given a relation R ⊆ S × S, the powers of R are defined by R0 = {(s, s) |
s ∈ S} and Rn+1 = Rn ; R for n ∈ N. The reflexive and transitive closure of
R is R∗ = ⋃

n∈N Rn. These notions and notations are lifted to classes C1 and C2

of relations in the usual manner. Namely, we let C−1
1 = {R−1

1 | R1 ∈ C1} and
C1 ; C2 = {R1 ; R2 | R1 ∈ C1, R2 ∈ C2}. Moreover, the powers of a class C are
defined by C1 = C and Cn+1 = Cn ; C for n ≥ 1. Note that we do not consider
the 0-th power for classes. The composition hierarchy [resp. composition closure]
of C is the family (Cn | n ≥ 1) [resp. the class

⋃
n≥1 Cn]. The classes C of tree

Theory Comput Syst (2017) 60:129–171 133

transformations that we will discuss always contain the identity relations. For such a
class, Cn ⊆ Cn+1 for all n ≥ 1. If Cn = Cn+1, then C is closed under composition
at power n. For n = 1 we shorten this to just C is closed under composition. If C is
closed under composition at power n, then Cn is the composition closure of C.

An alphabet � is a nonempty and finite set, of which the elements are called
symbols. The alphabet � is ranked if there additionally is a mapping rk: � → N that
assigns a rank to each symbol. We let

�k = {σ ∈ � | rk(σ) = k}

for every k ∈ N. Often the mapping ‘rk’ is obvious from the context, so we typically
denote ranked alphabets by � alone. If it is not obvious, then we use the notation
σ (k) to indicate that the symbol σ has rank k. For the rest of this paper, �, �, and �

will denote arbitrary ranked alphabets if not specified otherwise.
For every set T , let �(T) = {σ(t1, . . . , tk) | k ∈ N, σ ∈ �k, t1, . . . , tk ∈ T }.

Instead of σ() with σ ∈ �0 we will simply write σ . Let S be a set of “states” with
S ∩ � = ∅, to be used as additional leaf labels. The set T�(S) of �-trees with states
in S is the smallest set U such that S ⊆ U and �(U) ⊆ U . We write T� for T�(∅),
and any subset of T�(S) is a tree language. Given a unary symbol γ ∈ �1 and a tree
t ∈ T�(S), we write γ k(t) for the tree γ (· · · γ (t) · · ·), in which γ occurs k times on
top of t .

The set pos(t) ⊆ N∗ of positions of t ∈ T�(S) is inductively defined by pos(s) =
{ε} for every s ∈ S and

pos (σ (t1, . . . , tk)) = {ε} ∪
k⋃

i=1

{iw | w ∈ pos(ti)}

for every k ∈ N, σ ∈ �k , and t1, . . . , tk ∈ T�(S). The positions of t are partially
ordered by the prefix order
 on N∗; i.e., for words w1, w2 ∈ N∗, we have w1
 w2
if and only if there exists w′

1 ∈ N∗ such that w1w
′
1 = w2. As usual we write w1 ≺ w2

if w1 is a proper prefix of w2; i.e., w1
 w2 and w1 �= w2. For words w1, w2 ∈
N∗, we denote the longest common prefix of w1 and w2 by lcp(w1, w2). Note that
lcp(w1, w2) ∈ pos(t) for all w1, w2 ∈ pos(t) because pos(t) is prefix-closed. The
size |t | of a tree t ∈ T�(S) is |pos(t)|; i.e., the number of its positions. Its height ht(t)
is max{|w| | w ∈ pos(t)}; i.e., the maximal length of its positions. Let t, u ∈ T�(S)

and w ∈ pos(t). The label of t at w is t (w), the subtree of t rooted at w is t |w, and
the tree that is obtained from t by replacing the subtree t |w at w by u is denoted by
t[w ← u]. Formally, s(ε) = s|ε = s and s[ε ← u] = u for every s ∈ S, and for all
k ∈ N, σ ∈ �k , and t1, . . . , tk ∈ T�(S) we have

(i) if w = ε, then

(σ (t1, . . . , tk)) (w) = σ

(σ(t1, . . . , tk)) |w = σ(t1, . . . , tk)

(σ (t1, . . . , tk)) [w ← u] = u

134 Theory Comput Syst (2017) 60:129–171

(ii) if w = iv with 1 ≤ i ≤ k and v ∈ pos(ti), then

(σ (t1, . . . , tk)) (w) = ti (v)

(σ (t1, . . . , tk)) |w = ti |v
(σ (t1, . . . , tk)) [w ← u] = σ(t1, . . . , ti−1, ti[v ← u], ti+1, . . . , tk).

For 1 ≤ i ≤ rk(t (w)), the tree t |wi is the i-th direct subtree below w in t . For
every subset � ⊆ � ∪ S, we let pos�(t) = {w ∈ pos(t) | t (w) ∈ �}. A tree
t ∈ T�(S) is linear (resp. nondeleting) in a subset Q ⊆ S of states if

∣
∣posq(t)

∣
∣ ≤ 1

(resp.
∣
∣posq(t)

∣
∣ ≥ 1) for every q ∈ Q. Moreover,

states(t) = {s ∈ S | poss(t) �= ∅}
is the set of states that occur in t . For every selection W ⊆ posS(t) of leaves and
mapping θ : W → P(T�(S)) assigning a tree language to each selected leaf, we
define the tree language

t [w ← θ(w) | w ∈ W]

= {t[w1 ← u1] · · · [wn ← un] | u1 ∈ θ(w1), . . . , un ∈ θ(wn)} ⊆ T�(S) ,

where W = {w1, . . . , wn}. Similarly, given a selection Q ⊆ S of states and a map-
ping θ : Q → P(T�(S)) assigning a tree language to each selected state, we define
the tree language

t [q ← θ(q) | q ∈ Q] = t
[
w ← θ ′(w) | w ∈ posQ(t)

]
,

where θ ′ : posQ(t) → P(T�(S)) is given by θ ′(w) = θ(t (w)) for all w ∈ posQ(t).
The latter operation is also called OI-substitution [10] of θ in t . To simplify the
notation, we fix the set X = {x1, x2, x3, . . . } of variables, which we assume to be
disjoint with all ranked alphabets considered in the paper. For every k ∈ N, we let
Xk = {xi | 1 ≤ i ≤ k}. Given t ∈ T�(X) and θ : Xk → T�(X), we simply write
t[θ(x1), . . . , θ(xk)] for t[x ← θ(x) | x ∈ Xk].

A tree homomorphism from � to � is a mapping ϕ : � → T�(X) such that
ϕ(σ) ∈ T�(Xk) for every k ∈ N and σ ∈ �k . It is

– linear (resp. nondeleting) if for every k ∈ N and σ ∈ �k the tree ϕ(σ) is linear
(resp. nondeleting) in Xk , and

– strict (resp. delabeling) if ϕ(σ) /∈ X (resp. ϕ(σ) ∈ X ∪ �(X)) for every σ ∈ �.

We abbreviate the above restrictions by ‘l’, ‘n’, ‘s’, and ‘d’, respectively. The
tree homomorphism ϕ induces a mapping ϕ∗ : T� → T� defined inductively
by ϕ∗(σ (t1, . . . , tk)) = ϕ(σ)[ϕ∗(t1), . . . , ϕ∗(tk)] for all k ∈ N, σ ∈ �k , and
t1, . . . , tk ∈ T� . As usual, we will from now on denote the induced mapping ϕ∗ by
ϕ, and we will also call it a tree homomorphism. We denote by H the class of all tree
homomorphisms, and for any combination w of ‘l’, ‘n’, ‘s’, and ‘d’ we denote by w-H
the class of all tree homomorphisms of type w. For instance, snl-H is the class of all
strict, nondeleting and linear tree homomorphisms.

Theory Comput Syst (2017) 60:129–171 135

In the following, we need the class of regular tree languages [15, 16] and some
basic properties of that class. The set Reg(�) contains all regular tree languages
T ⊆ T� over the ranked alphabet �. A well-known folklore result states that
t[s←θ(s) |s ∈S]∈ Reg(�) for every finite S, tree t ∈ T�(S), and θ :S → Reg(�).

A bimorphism is a triple B = (ψ, T , ϕ) consisting of a regular tree language
T ∈ Reg(�), an input tree homomorphism ψ : T� → T� , and an output tree homo-
morphism ϕ : T� → T�. The tree transformation τ(B) ⊆ T� × T� computed by
the bimorphism B is the relation τ(B) = {(ψ(t), ϕ(t)) | t ∈ T }, which will also be
called a bimorphism. Given two combinations v and w of restrictions for tree homo-
morphisms, we let B(v, w) denote the class of all tree transformations computed by
bimorphisms B = (ψ, T , ϕ) such that ψ and ϕ are tree homomorphisms of type v

and w, respectively.

3 Linear Extended Top-down Tree Transducers

Our main model is the linear extended top-down tree transducer [1, 2, 18, 19] with
regular look-ahead (l-xtR), which is based on the classical linear top-down tree trans-
ducer without [23, 24] and with regular look-ahead [7]. We will present it as a
synchronous grammar [4] because we will use an auxiliary structure, called the links,
in later proofs. In synchronous grammars, occurrences of equal states in the left- and
right-hand side of a rule (representing the input and output side, respectively) are
(implicitly) linked and these links are made explicit in a derivation. Each derivation
step replaces such a pair of linked state occurrences (at the same time) by the left- and
right-hand side of a rule for that state. In a rule of an l-xtR, the (implicit) links form
an injection from the state occurrences in the right-hand side to the state occurrences
in the left-hand side. Thus, some states might exclusively occur in the left-hand side.
Such states can be used to implement regular look-ahead, which restricts the subtrees
that are acceptable at these occurrences. It should be clear (see [17, Theorem 4.4])
that there is no need to have regular look-ahead for the other states in the left-hand
side, as that can be incorporated into the (nondeterministic) state behavior of the
transducer.

Definition 1 ([17, Section 2.2]) A linear extended top-down tree transducer with
regular look-ahead (l-xtR) is a tuple M = (Q, �, �, Q0, R, c), where

– Q is a finite set of states and Q0 ⊆ Q is a set of initial states,
– � and � are ranked alphabets of input and output symbols that are both disjoint

with Q,
– R ⊆ T�(Q)×Q×T�(Q) is a finite set of rules such that for every (�, q, r) ∈ R

– states(r) ⊆ states(�), i.e., all states that occur in r must occur in �, and
– � and r are linear in states(r),

– c : Qla → Reg(�) is a mapping that assigns regular look-ahead to each (poten-
tially) deleted state, where Qla = ⋃

(�,q,r)∈R (states(�) \ states(r)). Formally, the

136 Theory Comput Syst (2017) 60:129–171

set Qla depends on R (or M), but we prefer the simpler notation and hope that it
does not lead to confusion.

For a rule (�, q, r) ∈ R we say that � and r are its left- and right-hand side. In
contrast to other definitions [13, 17], we do not allow the same state to occur several
times in the right-hand side. However, with the help of a simple renaming, each
traditional linear extended top-down tree transducer can be written in our slightly
more restrictive format. Next, we recall some important syntactic properties of our
model. To this end, let M = (Q, �, �, Q0, R, c) be an l-xtR in the following. It is

– a linear extended top-down tree transducer (without look-ahead) [l-xt], if c(q) =
T� for every q ∈ Qla,

– a linear top-down tree transducer with regular look ahead [l-tR] if � ∈ �(Q) for
every (�, q, r) ∈ R,

– a linear top-down tree transducer (without look ahead) [l-t] if it is both an l-xt
and an l-tR,

– ε-free (resp. strict) if � /∈ Q (resp. r /∈ Q) for every (�, q, r) ∈ R,
– delabeling if � ∈ �(Q) and r ∈ Q ∪ �(Q) for every (�, q, r) ∈ R,
– nondeleting if states(r) = states(�) for every (�, q, r) ∈ R (i.e., Qla = ∅), and
– a finite-state relabeling [qr] if every rule of R is of the form

(σ (q1, . . . , qk), q, δ(q1, . . . , qk))

with k ∈ N, σ ∈ �k , δ ∈ �k , and q, q1, . . . , qk ∈ Q.

Since the look-ahead component c is trivial for all l-xt, we simply omit it from
their representation. We note that every nondeleting l-xtR is an l-xt. Moreover, all l-tR

are automatically ε-free. Note also that every qr [finite-state relabeling] is a strict

nondeleting delabeling l-t. For clearness’ sake, we sometimes write rules as �
q−→ r

instead of (�, q, r) and, to simplify the notation in examples and illustrations, we

write as a shorthand for the k rules �
q1−→ r, . . . , �

qk−→ r . Note that for
every (�

q−→ r) ∈ R the trees � and r are linear in states(r). Hence for every state
p ∈ states(r) the sets posp(�) and posp(r) are singletons that we identify with their
unique element.

Example 2 Let us consider the l-xtR M1 = (Q, �, �, Q0, R, c) given by

– Q = {�, p, q, q la, id, id′} and Q0 = {�},
– � = {σ (2), γ

(1)
1 , γ

(1)
2 } ∪ � and � = {σ (2)

1 , σ
(2)
2 , γ (1), α(0)},

– R consists of the following rules

σ1(p, q)
�,p−→ σ1(p, q) σ2(id, id′) p,q−→ σ2(id, id′) γ1(p)

p−→ p

σ(q, q la)
q−→ q σ(q la, q)

q−→ q γ2(q)
q−→ q

γ (id)
id,id′−→ γ (id) α

id,id′−→ α

– c : Qla → Reg(�) is given by c(q la) = T{γ2,α} because Qla = {q la}.

Theory Comput Syst (2017) 60:129–171 137

Obviously, c(q la) is a regular tree language. Additionally, we note that the state id′
is essentially just a renaming of the state id (and both realize the identity on T{γ,α}).
The l-xtR M1 is an ε-free, delabeling, linear top-down tree transducer with regular
look-ahead. It is not strict and not nondeleting.

Next, we recall the semantics of the l-xtR M = (Q, �, �, Q0, R, c), which
is (mostly) given by synchronous substitution. Formally, a link is just an element
(v, w) ∈ N∗ ×N∗. While the links in a rule are implicit and established due to occur-
rences of equal states, we need an explicit representation of the links in the sentential
forms computed by M . These links together with the trees into which they point will
form a dependency that is used in proofs later on. Our derivation relation is thus
defined over structures consisting of an input tree, an output tree, and a set of links
relating positions of those trees. Let us formalize this notion, which we call form.

Definition 3 ([12, Section 3]) A form (over Q, �, and �) is a triple 〈ξ, L, ζ 〉
consisting of an input tree ξ ∈ T�(Q), an output tree ζ ∈ T�(Q), and a set
L ⊆ pos(ξ) × pos(ζ) of links relating positions in the two trees.

Next, we formalize the links in a rule ρ ∈ R. These links are added to the links
of a form whenever the rule ρ is applied in the derivation process. Since these links
are relative to the positions at which the rule is applied, two parameters v,w ∈ N∗
indicate those two positions.

Definition 4 Let (�
q−→ r) ∈ R and v, w ∈ N∗. The set of links of �

q−→ r for the
positions v and w is

linksv,w(�
q−→ r) = {(

v.posp(�), w.posp(r)
) | p ∈ states(r)

}
.

Example 5 Let us compute two such sets of links. Whenever it is clear that the rel-
evant positions are in {1, . . . , 9}∗, we write positions without separating dots; e.g.,
211 stands for the position 2.1.1 of length 3.

links1,21

(
σ1(p, q)

�−→ σ1(p, q)
)

= {(11, 211), (12, 212)}
links1,21

(
σ(q la, q)

q−→ q
)

= {(12, 21)}
We use grayed splines to indicate links in illustrations. The rules ρ1 and ρ2 above
and their links, which are those of linksε,ε(ρ1) = {(1, 1), (2, 2)} and linksε,ε(ρ2) =
{(2, ε)}, are displayed in Fig. 1.

The derivation process is started with a simple form 〈q0, {(ε, ε)}, q0〉 consisting
of an initial state q0 ∈ Q0 as input and output tree and the trivial link relating both
occurrences of q0 (i.e., the roots of the trees). The current form can evolve in two
ways. Either (i) we apply a rule (�, q, r) ∈ R to a pair (v, w) of linked occurrences of
the state q or (ii) we apply the look-ahead. In the former case, such a rule application
replaces the linked occurrences of q in the input and output tree by the left- and

138 Theory Comput Syst (2017) 60:129–171

Fig. 1 Illustration of two rules with their implicit links

right-hand side of the rule to obtain the new input and output trees, respectively.
The links of the derived form are obtained by adding the links of the rule (�, q, r)

for v and w to the current links. Since we are interested in the links used during
the derivation, we preserve all links [in particular also the link (v, w) just used] and
never remove a link. In the latter case, in which we want to apply the look-ahead, we
require an occurrence of a state q at position v of the input tree that does not take
part in any link with an occurrence of q in the output tree. It turns out that such a
state q must be in Qla, and we can replace that occurrence of q by any tree of the
regular look-ahead tree language c(q). Note that such replacements are independent,
so different occurrences of q can be replaced by different look-ahead trees of c(q).
We can (potentially) continue these replacements until the form is an element of
T� × P(N∗ × N∗) × T�.

Definition 6 ([12, Section 3]) Given two forms 〈ξ, L, ζ 〉 and 〈ξ ′, L′, ζ ′〉 over Q, �,
and �, we write 〈ξ, L, ζ 〉 ⇒M 〈ξ ′, L′, ζ ′〉 if one of the following two conditions
holds:

– there exist a rule (�
q−→ r) ∈ R and a link (v, w) ∈ L ∩ (

posq(ξ) × posq(ζ)
)

such that

ξ ′ = ξ [v ← �] ζ ′ = ζ [w ← r] and L′ = L ∪ linksv,w(�
q−→ r),

– there exist a state q ∈ Qla, a position v ∈ posq(ξ) with w /∈ posq(ζ) for all links
(v, w) ∈ L, and a tree t ∈ c(q) such that

ξ ′ = ξ [v ← t] ζ ′ = ζ and L′ = L .

A form 〈ξ, L, ζ 〉 is a sentential form (of M) if 〈q0, {(ε, ε)}, q0〉 ⇒∗
M 〈ξ, L, ζ 〉 holds

for some q0 ∈ Q0. The set of all sentential forms is denoted by SF(M).

A few derivation steps using the l-xtR M1 of Example 2 are illustrated in Fig. 2.
Next, we define the tree transformation computed by an l-xtR.

Definition 7 The l-xtR M computes the set D(M) of dependencies, which are the
sentential forms with state-free input and output trees. Hence

D(M) = {〈t, L, u〉 ∈ SF(M) | t ∈ T�, u ∈ T�} .

Moreover, it computes the tree transformation τ(M), which is given by

τ(M) = {(t, u) | 〈t, L, u〉 ∈ D(M) for some L ⊆ N∗ × N∗} .

Two l-xtR M1 and M2 are equivalent if τ(M1) = τ(M2).

Theory Comput Syst (2017) 60:129–171 139

Fig. 2 Derivation using the l-xtR M1 of Example 2

Example 8 Let M1 be the l-xtR of Example 2. Then

〈σ1 (γ1(σ2(α, α)), γ2(σ (γ2(α), σ2(α, α)))) , L, σ1 (σ2(α, α), σ2(α, α))〉 ∈ D(M1)

where

L = {(ε, ε), (1, 1), (11, 1), (111, 11), (112, 12)} ∪
{(2, 2), (21, 2), (212, 2), (2121, 21), (2122, 22)} ,

which corresponds to the final sentential form of the derivation displayed in Fig. 2.
To describe the tree transformation computed by M1 in general, we first need some
terminology. A tree t ∈ T� is “special” if there exist a tree c ∈ T{σ,γ2,α}(X1) and two
trees t1, t2 ∈ T{γ,α} such that (i) t = c[σ2(t1, t2)], (ii) c is linear and nondeleting in
X1, and (iii) for all w ∈ pos(c) we have c(w) = σ only if w ≺ posx1

(c). For such a
special tree, the subtree σ2(t1, t2) is the “anchor” of t . Furthermore, the “left spine”
of a tree t ∈ T� is the set pos(t) ∩ {1}∗ of positions. For every i ∈ {1, 2} and position
v on the left spine, if t (v) = σi , then the subtree t |v2 is a “σi-rib” of t .

The domain of τ(M1) consists of all trees t ∈ T� such that (i) the sequence
of labels of (the positions on) the left spine of t (from root to leaf) is in
σ1{σ1, γ1}∗σ2γ

∗α, (ii) each σ1-rib of t is special, and (iii) the unique σ2-rib of t is
in T{γ,α}. Such a tree t is only related to u in the transformation τ(M1), where u is
obtained from t by (i) removing all γ1-symbols on the left spine and (ii) replacing
each σ1-rib by its anchor. Consequently, τ(M1) is actually a partial function.

Since every pair (t, u) ∈ τ(M) is ultimately created by (at least) one successful
derivation, leading to a dependency 〈t, L, u〉, we can inspect the links in L, which
associate subtrees of t with subtrees of u. Roughly speaking, the links establish which
parts of the output tree u were generated due to a particular part of the input tree
t . Variants of this correspondence are called contribution in [9] and origin in [20].

140 Theory Comput Syst (2017) 60:129–171

Occasionally, we are not interested in the links. In those cases we also write q ⇒∗
M

(t, u) provided that 〈q, {(ε, ε)}, q〉 ⇒∗
M 〈t, L, u〉 for some L ⊆ N∗ × N∗. The next,

basic lemma expresses the fact that the replacements in the derivations of an l-xtR are
context-free.

Lemma 9 (context-freeness) For every state q ∈ Q, input tree t ∈ T� and output
tree u ∈ T�, we have q ⇒∗

M (t, u) if and only if there exists a rule (�, q, r) ∈ R with
pos(�) ⊆ pos(t) and pos(r) ⊆ pos(u) such that

– t (v) = �(v) for all v ∈ pos�(�) and u(w) = r(w) for all w ∈ pos�(r),

– �(v) ⇒∗
M (t |v, u|w) for every (v, w) ∈ linksε,ε(�

q−→ r), and
– t |v ∈ c(�(v)) for all v ∈ pos(�) with �(v) ∈ states(�) \ states(r).

This lemma can be used in proofs by induction on the length of a derivation
because the derivations �(v) ⇒∗

M (t |v, u|w) are shorter than the derivation q ⇒∗
M

(t, u).

Notation 10 To allow concise statements, we introduce the following shorthands,
which mirror those already defined for tree homomorphisms:

We use these abbreviations in conjunction with l-xt R to restrict to transducers with
the indicated properties. For example, snl-xt stands for “strict and nondeleting linear
extended top-down tree transducer” (without look-ahead). We use the same abbrevi-
ations with the stem (i.e., the material behind the hyphen) in capital letters for the
corresponding classes of computed tree transformations. For instance, snl-XT stands
for the class of all tree transformations computable by snl-xt, and QR denotes the
class of all tree transformations computable by qr. We already remarked that every
nondeleting l-xtR is an l-xt, so we have nl-XTR = nl-XT and similarly for the non-
extended case and for all defined subclasses. To write such statements concisely, we
also use sets of restrictions containing ‘ ’, ‘s’, ‘n’, and ‘d’ in front of the (poten-
tially already restricted) stems. For instance, for every , we denote
by the class of all tree transformations computed by l-xtR that obey all
restrictions in . In particular, ∅l-XTR = l-XTR. In this manner we can simply state

for all .

We observe that for every ; i.e., every linear tree homo-
morphism is a linear top-down tree transformation (with the same properties: ‘s’, ‘n’,
‘d’). In fact, if ϕ : T� → T� is a linear tree homomorphism, then an equivalent l-t
Mϕ has the set Q = Xm ∪ {�} of states, where m is the maximal rank of an element
of �, the initial state �, and all rules (σ (x1, . . . , xk), q, ϕ(σ)) with σ ∈ �k , k ∈ N,
and q ∈ Q. It should be clear that τ(Mϕ) = ϕ.

Next, we recall some results that relate l-xtR to bimorphisms. In [2] the class
B(snl, snl) is denoted by BI, and in [21] the class B(snl, nl) is denoted by
B(LCE, LC).

Theory Comput Syst (2017) 60:129–171 141

Proposition 11 ([2] and [21, Theorems 17 and 4])

Thus, every tree transformation in l-XTR is the composition of an inverse tree
homomorphism, the identity on a regular tree language, and a tree homomorphism.
We will need a similar, but simpler result that tells us how to emulate an l-xtR by the
composition of an inverse homomorphism and an l-tR.

Proposition 12 ([13, Lemma 4.1 and Corollary 4.1]) For every

Proof We prove both inclusions starting with (⊇). Let ϕ be a nondeleting and lin-
ear tree homomorphism from � to �, and let M = (Q, �, �, Q0, R, c) be an
l-tR. We construct the l-xtR M ′ = (Q, �, �, Q0, R

′, c′) such that for each rule
(γ (q1, . . . , qk), q, r) in R (with k ∈ N, γ ∈ �k , and q1, . . . , qk ∈ Q) the rule
(ϕ(γ)[q1, . . . , qk], q, r) is in R′. No further rules are in R′. Note that since ϕ is
nondeleting, we have states (ϕ(γ)[q1, . . . , qk]) = {q1, . . . , qk} and thus Qla is the
same for M ′ and M . For every q ∈ Qla we set c′(q) = ϕ(c(q)), which is regu-
lar because, as is well known, the class of regular tree languages is closed under
linear tree homomorphisms. Using Lemma 9, it is straightforward to show that
q ⇒∗

M ′ (t, u) if and only if there exists s ∈ T� with t = ϕ(s) and q ⇒∗
M (s, u). Thus

τ(M ′) = {(ϕ(s), u) | (s, u) ∈ τ(M)} = ϕ−1 ; τ(M).
For the remaining inclusion (⊆), let M = (Q, �, �, Q0, R, c) be an l-xtR.

We turn R into a ranked alphabet such that rk(�
q−→ r) = ∣

∣posQ(�)
∣
∣ for every

(�
q−→ r) ∈ R. Using this ranked alphabet R we now construct the l-tR M ′ =

(Q, R ∪�, �, Q0, R
′, c) and the nondeleting and linear tree homomorphism ϕ from

R ∪ � to � as follows. For every k ∈ N and rule ρ = (�, q, r) in Rk with posQ(�) =
{v1, . . . , vk} the rule ρ (�(v1), . . . , �(vk))

q−→ r is in R′ and ϕ(ρ) = �[vi ← xi |
1 ≤ i ≤ k]. No further rules are in R′. Additionally, ϕ(σ) = σ(x1, . . . , xk) for
every k ∈ N and σ ∈ �k , which yields that ϕ(t) = t for every t ∈ T� . This
latter part is needed for the look-ahead c. Clearly, if we apply the construction in
the above proof of the first inclusion to ϕ and M ′, then we reobtain M . Hence
ϕ−1 ; τ(M ′) = τ(M).

We use this proposition to establish our first composition result, which extends the
classical composition result of [7] for linear top-down tree transducers with regular
look-ahead. The only difference is that our first transducer has extended left-hand
sides (i.e., it is an l-xt R instead of just an l-t R).

Lemma 13 (composition on the right) For every

142 Theory Comput Syst (2017) 60:129–171

Proof Immediate from Proposition 12 and the composition closure result (l-TR)2 ⊆
l-TR for linear top-down tree transducers with regular look-ahead; it is straight-
forward to check that the proof of this result in [7, Theorem 2.11] preserves the
properties ‘s’ and ‘n’.

We conclude this section by discussing two results on regular look-ahead. First,
we recall that when deletion is allowed, regular look-ahead adds expressive power.

Proposition 14 ([17, Lemma 4.3])

Proof The counter-example presented in the proof of [17, Lemma 4.3], which shows
l-TR �⊆ l-XT, is in sl-TR.

Second, we recall from [7, Theorem 2.6] that an l-tR (with look-ahead) can be
decomposed into two l-t (without look-ahead), of which the first is a finite-state rela-
beling. This result can easily be generalized to extended top-down tree transducers
and their compositions.

Lemma 15 (look-ahead decomposition)

for every n ≥ 1 and .

Proof The second inclusion is immediate because . We
prove the first inclusion by induction on n. For n = 1 an obvious generalization of
the construction in the proof of [7, Theorem 2.6], which preserves ‘s’ and ‘n’, can be
used. For n ≥ 1, we have

where the case n = 1 is used in the first step, Lemma 13 in the second step, and the
induction hypothesis in the last step.

Lemma 15 implies that

for every n ≥ 1 and , so the classes and have the
same composition closure. However, this closure is potentially achieved at different
powers.

Theory Comput Syst (2017) 60:129–171 143

4 Four Classes that are Closed at a Finite Power

In this section, we show that the four classes , , , and
are closed under composition at a finite power. We first recall a central result of [3],
which shows that none of them is closed under composition.

Proposition 16 ([3, Section 3.4])

We note that [3] states the even stronger result that the class B(snl, snl)2

is not contained in the class of all bimorphisms, which implies the above
result by Proposition 11. In [3] the class B(snl, snl) is denoted by B(s, c). The proof
of Theorem 31 in Section 5 implies Proposition 16 for instead of l-XTR,
which is all we need; for the implication see non-inclusion (ii) in the proof of
Theorem 47.

Next we recall another central result of [3]: the (very restricted) class
is not closed under composition (by the previous proposition), but is closed under
composition at power 2.

Proposition 17 ([3, Theorem 6.2]) for every
n ≥ 3.

As we will show now, the (strict) classes and are also closed
under composition already at the second power. We start with a lemma that decom-
poses an into two transducers of which one is an , for which we have the
composition closure result of Proposition 17. For the benefit of Section 6, we make
ε-freeness optional in the next two lemmas.

Lemma 18 (decomposition on the right) sdl-H for every
.

Proof This is proved for strict tree homomorphisms in [5, Section I-2-1-3-5]. The
proof can be generalized to as follows. Let M = (Q, �, �, Q0, R) be an sl-xt.
Clearly, we may assume a separation of the states into deleted and non-deleted states.
More precisely, we assume m ≥ max{rk(σ) | σ ∈ �} such that Q = Q1∪{1, . . . , m}
with Q1 ∩ N = ∅ and for every rule (�, q, r) ∈ R the following three conditions
hold: (i) q ∈ Q1 and states(r) ⊆ Q1, (ii) � is linear in Q, and (iii) states(�) \
states(r) ⊆ {1, . . . , m}. Let �′ be the ranked alphabet {δn | δ ∈ �, 0 ≤ n ≤ m} with
rk(δn) = rk(δ) + n. In addition, let � = {σ | σ ∈ �} be the ranked alphabet with
rk(σ) = rk(σ). We suppose that �, �′, and � are pairwise disjoint. As intermediate
alphabet we take � = � ∪ �′ ∪ �, and let α ∈ �0 be an arbitrary nullary output
symbol. Now we first construct the strict delabeling tree homomorphism ϕ from �

to � such that (i) ϕ(δn) = ϕ(δ) = δ(x1, . . . , xk) for every δ ∈ �k and 0 ≤ n ≤ m

and (ii) ϕ(σ) = α for every σ ∈ �. Thus, ϕ turns every δn into δ and deletes its last
n arguments.

144 Theory Comput Syst (2017) 60:129–171

For every rule (�, q, r) ∈ R there exist k ∈ N, δ ∈ �, and r1, . . . , rk ∈ T�(Q)

such that r = δ(r1, . . . , rk) because M is strict. We construct the nondeleting sl-xt
M ′ = (Q, �, �, Q0, R

′) such that R′ contains the rule

(�, q, δn(r1, . . . , rk, i1, . . . , in))

for every rule (�, q, δ(r1, . . . , rk)) ∈ R, where states(�)\states(r) = {i1, . . . , in} with
i1 < · · · < in. This is a proper rule because � is linear in Q. Moreover, R′ contains
the rules (σ (1, . . . , k), i, σ (1, . . . , k)) for all k ∈ N, σ ∈ �k , and i ∈ {1, . . . , m}. The
set R′ contains no further rules. Thus, M ′ simulates M but attaches the subtrees that
are deleted by M to the root of the right-hand side of each rule. It is straightforward
to show that τ(M ′) ; ϕ = τ(M). Clearly, if M is ε-free, then so is M ′.

The next lemma is our second composition result, which is more restricted than
the first, which is Lemma 13, but sufficiently powerful in combination with Lemma
18.

Lemma 19 (composition on the left) sdl-H; for every .

Proof Let ϕ : T� → T� be a strict delabeling linear tree homomorphism, and let
M = (Q, �, �, Q0, R) be a strict l-xt. Moreover, let Q′ = Q ∪ {�} for a new
state � /∈ Q. We extend ϕ to a tree transformation ϕ′ : T�(Q′) → T�(Q′) such that
ϕ′(q ′) = q ′ for every q ′ ∈ Q′ and

ϕ′ (σ (t1, . . . , tk)) = ϕ(σ)
[
ϕ′(t1), . . . , ϕ′(tk)

]

for every k ∈ N, σ ∈ �k , and t1, . . . , tk ∈ T�(Q′). We construct the l-xt M ′ =
(Q′, �, �, Q0, R

′) such that for each rule (�, q, r) ∈ R we have all rules (�′, q, r)

in R′ for which (i) �′ ∈ T�(Q′) is linear in Q, (ii) ϕ′(�′) = �, and (iii)
∣
∣pos�(�′)

∣
∣ =∣

∣pos�(�)
∣
∣. No further rules are in R′.

Let us quickly consider a small example. Suppose that R contains the rule

γ
(
α, γ ′(q)

) q−→ δ(q) and we have (i) ϕ(σ) = γ (x3, x2), (ii) ϕ(σ ′) = γ ′(x1),
and (iii) ϕ(α) = α with {α(0), (σ ′)(2), σ (3)} ⊆ �. Then R′ contains the rule

σ
(
�, σ ′(q, �), α

) q−→ δ(q).
It should be clear that τ(M ′) = ϕ ; τ(M). Finally, we observe that M ′ is strict

because it has the same right-hand sides of rules as M , and it is ε-free if M is ε-free
because ϕ is strict.

The previous two lemmas are now used to prove that and are
closed under composition at power 2.

Theorem 20 ; for every n ≥ 1.

Proof The second inclusion is trivial because . For the first inclu-
sion, we first prove that ;sdl-H. The idea of this inclusion
is that the first splits off a tree homomorphism of type ‘sdl’ on the right
(using Lemma 18), which is then absorbed on the left by the second (using

Theory Comput Syst (2017) 60:129–171 145

Lemma 19). This auxiliary statement is proved by induction. For n = 1, we have to
prove ;sdl-H, which is the statement of Lemma 18. For n ≥ 1 we
obtain that

where we used Lemma 18 in the second step, Lemma 19 in the third step, and the
induction hypothesis in the last step. From Lemma 15 and the above inclusion we
now conclude that

Since , this implies that

where the second inclusion is due to Proposition 17. Since sdl-H ⊆ sl-T we can apply
Lemma 13 to obtain that

Applying Lemmas 15 and 13 once more, we obtain

Since we have proved the statement.

Up to now, we have shown that the (strict) classes and are closed
under composition at the second power. In the rest of this section, we will show that
the classes and are closed under composition at the third and fourth
power, respectively. We start with a normal form for , in which every rule that
violates the strictness condition is simulated by a chain of rules for a (non-extended)
l-tR.

Lemma 21 (non-strict normal form) For every there
exists an equivalent such that � ∈ �(Q′) for every rule
(�, q, r) ∈ R′ with r ∈ Q′.

Proof Let M = (Q, �, �, Q0, R, c) and M ′ = (Q′, �, �, Q0, R
′, c′). Every

(non-strict) rule ρ = (�, q, r) in R with r ∈ Q can be simulated by a finite
set R′

ρ of l-tR rules as follows. We consider new states of the form 〈ρ, v〉 where
v ∈ pos(�) \ {ε, posr (�)}. Moreover, we let 〈ρ, ε〉 = q and 〈ρ, posr (�)〉 = r . For
every position v ∈ pos(�) such that v ≺ posr (�), we have the following rule in R′

ρ :

�(v) (〈ρ, v1〉, . . . , 〈ρ, vk〉) 〈ρ,v〉−→ 〈ρ, vi〉 ,

where k = rk(�(v)) and i ∈ N is the unique integer such that vi
 posr (�). The
look-ahead for every new state 〈ρ, vj〉 with j �= i is defined by

c′(〈ρ, vj〉) = (�|vj)
[
q ′ ← c(q ′) | q ′ ∈ states(�|vj)

]
.

146 Theory Comput Syst (2017) 60:129–171

We note that states(�|vj) ⊆ Qla. The tree language c′(〈ρ, vj〉) is regular by the folk-
lore result stating that OI-substitution preserves regularity, which we mentioned at
the end of Section 2. Recall that in OI-substitution, different occurrences of the same
state q ′ can be replaced by different trees of c(q ′). The rules in R′

ρ simulate the rule ρ

by consuming the left-hand side � position by position, following the path from the
root to the unique occurrence of r . Thus, we define the set Q′ of states of M ′ to con-
sist of Q together with all the mentioned new states. The set R′ of rules consists of
all strict rules in R together with the rules in R′

ρ for all non-strict rules ρ in R. The
look-ahead c′ equals c on the states in Qla, and is defined as above for the new states.
Then τ(M ′) = τ(M) and M ′ satisfies the requirements.

Example 22 We illustrate the construction on the example rule

ρ = σ (σ(p, p), σ (α, r))
q−→ r ,

for which p, q, r ∈ Q and the relevant look-ahead is c(p) = T . Corresponding to
this rule, M ′ has the following two rules in R′

ρ :

σ (〈ρ, 1〉, 〈ρ, 2〉) q−→ 〈ρ, 2〉 and σ (〈ρ, 21〉, r) 〈ρ,2〉−→ r

because q = 〈ρ, ε〉 and r = 〈ρ, 22〉. Moreover, we have

c′(〈ρ, 1〉) = {σ(t1, t2) | t1, t2 ∈ T }
and c′(〈ρ, 21〉) = {α} for the look-ahead c′ of M ′.

The next lemma is similar to Lemma 18, in that it demonstrates how to decompose
an into a delabeling l-tR and an , for which we now have the composi-
tion closure result of Theorem 20. The proof is, however, more complicated than the
one of Lemma 18. Since the delabeling property is not essential in the following, we
actually state a weaker variant.

Lemma 23 (decomposition on the left)

Proof Let M = (Q, �, �, Q0, R, c) be an ε-free l-xtR such that � ∈ �(Q) for
every rule (�, q, r) ∈ R with r ∈ Q. We can assume this normal form without loss
of generality by Lemma 21. Additionally, we may assume that |Q| ≥ m, where
m = max{rk(σ) | σ ∈ �}. We will construct an l-tR M1 and a strict such
that τ(M1); τ(M2) = τ(M). Intuitively speaking, the transducer M1 processes the
input by nondeterministically executing a number of non-strict rules of M . Whenever
it executes two consecutive non-strict rules, M1 simulates the state behavior of M .
Moreover, M1 marks the positions in the (processed) input where it has applied a
sequence of consecutive non-strict rules by indicating the corresponding state transi-
tion of M . The transducer M2 then uses these markings to execute the missing strict
rules of M .

As intermediate ranked alphabet we use � = � ∪ (� ×Q×Q), where each triple
〈σ, q ′, q〉 ∈ � × Q × Q has the same rank as σ . We fix m pairwise different states

Theory Comput Syst (2017) 60:129–171 147

p1, . . . , pm ∈ Q. We construct the l-tR M1 = (Q1, �, �, {p1}, R1, c1) with states
Q1 = Q ∪ (Q × Q) and the set R1 of rules consists of:

(i) the rule σ(p1, . . . , pk)
p−→ σ(p1, . . . , pk) for every k ∈ N, σ ∈ �k , and

p ∈ Q,
(ii) the two rules

for every non-strict rule σ(q1, . . . , qk)
q−→ qi in R with 1 ≤ i ≤ k and every

p, q ′ ∈ Q, and
(iii) the rule

for every k ∈ N, σ ∈ �k , and q ′, q ∈ Q.

We note that Qla
1 ⊆ Qla. The look-ahead mapping c1 : Qla

1 → Reg(�) is given by
c1(q) = c(q) for every q ∈ Qla

1 . Actually, M1 is delabeling.
Next, we construct the

M2 = (Q2, �, �, Q0, R
′ ∪ R2, c2)

with the set Q2 = Q of states, the set R′ = {(�, q, r) ∈ R | r /∈ Q} of strict rules
of M , and the set

R2 = {〈σ, q ′, q〉(�1, . . . , �k)
q ′

−→ r | q ′ ∈ Q, (σ(�1, . . . , �k)
q−→ r) ∈ R′} .

Again, Qla
2 ⊆ Qla, where Qla

2 contains the look-ahead states of M2, so we just set the
look-ahead mapping c2 : Qla

2 → Reg(�) to c2(q) = c(q) for every q ∈ Qla
2 .

Intuitively, it should be clear that τ(M1) ; τ(M2) = τ(M). Whenever M2 arrives
in state q ′ at an input position with label 〈σ, q ′, q〉, it knows that M1 has applied a
sequence of non-strict rules of M that led from state q ′ to state q, and thus M2 can
continue acting as if it is already in state q. Formally, it can be proved that, for every
state q ∈ Q, input tree t ∈ T� , and output tree u ∈ T�, we have q ⇒∗

M (t, u) if and
only if there exists s ∈ T� such that p1 ⇒∗

M1
(t, s) and q ⇒∗

M2
(s, u). The proof is by

induction on the length of the derivations using Lemma 9. It uses several elementary
properties of the derivations of M1 and M2 such as (for all p, q, q ′, q ′′ ∈ Q):

– if p1 ⇒∗
M1

(t, s), then p ⇒∗
M1

(t, s),

– if p1 ⇒∗
M1

(t, σ (s1, . . . , sk)), then 〈q ′, q〉 ⇒∗
M1

(
t, 〈σ, q ′, q〉(s1, . . . , sk)

)
,

– p1 ⇒∗
M1

(
t, 〈σ, q ′, q〉(s1, . . . , sk)

)
if and only if

〈q ′′, q ′〉 ⇒∗
M1

(
t, 〈σ, q ′′, q〉(s1, . . . , sk)

)
, and

– q ⇒∗
M2

(σ (s1, . . . , sk), u) if and only if q ′ ⇒∗
M2

(〈σ, q ′, q〉(s1, . . . , sk), u
)
.

148 Theory Comput Syst (2017) 60:129–171

Lemmas 23 and 13 now enable us to prove that the class is closed
under composition at power 3. The proof is similar to, but easier than, the one of
Theorem 20.

Theorem 24 for every n ≥ 1.

Proof Again, the second inclusion is trivial because l-TR and are subclasses
of . Similar to the proof of Theorem 20, the idea of the first inclusion is that
the last splits off an l-tR on the left (using Lemma 23), which is then absorbed
on the right by the penultimate (using Lemma 13). Formally we prove by
induction on n that

which suffices by Theorem 20. For n = 1 we obtain ,
which is stated in Lemma 23. In the induction step for n ≥ 1, we obtain

where we use Lemma 23 in the second step, Lemma 13 in the third step, and the
induction hypothesis in the last step.

It is immediate from Theorem 24 and Lemma 15 that the class is closed
under composition at power 4. Thus, in contrast to Theorem 20, look-ahead influ-
ences the power of closedness in the non-strict case, as will be proved in the next
section.

Corollary 25 for every n ≥ 1.

A summary of our results concerning the powers at which the considered classes
are closed under composition is provided in Table 2. In the next section, we will
demonstrate that these powers are indeed the least ones with this property.

5 Least Power of Closedness

In this section, we will determine the least power at which the composition closure
is achieved for the classes , , , and , which are all com-
puted by certain ε-free l-xtR. For the strict classes the least power is 2, as stated in
the next theorem. In the remainder of this section we consider the non-strict classes.

Table 2 Summary of the results
of Section 4 Class Closed at power Stated in

2 Theorem 20

3 Theorem 24

4 Corollary 25

Theory Comput Syst (2017) 60:129–171 149

Theorem 26

for every n ≥ 3.

Proof The first inclusion is trivial and its strictness follows from Proposition 14. The
second inclusion is also trivial and its strictness follows from Proposition 16, which
shows that the class is not closed under composition. The three equalities
are proved in Theorem 20.

In the following, we will use the computed dependencies in D(M), for which we
recall some important properties from [11]. Let L ⊆ N∗ × N∗ be a set of links [e.g.,
the set L of links in a dependency 〈t, L, u〉 ∈ D(M)]. The elements of dom(L)

are also called link origins of L. For the next definition, proposition and lemma, let
M = (Q, �, �, Q0, R, c) be the considered ε-free l-xtR.

Definition 27 ([11, Definitions 4 and 5]) A set L ⊆ N∗ × N∗ of links is

– strictly input hierarchical if for all links (v1, w1), (v2, w2) ∈ L

– v1 ≺ v2 implies w1
 w2 and
– v1 = v2 implies w1
 w2 or w2
 w1,

– input link-distance bounded by b ∈ N if for all link origins v1, v2 ∈ dom(L)

with v1 ≺ v2 and |v2| − |v1| > b there exists a link origin v ∈ dom(L) such that
v1 ≺ v ≺ v2 and |v| − |v1| ≤ b.

The set D(M) of dependencies has those properties if for each dependency
〈t, L, u〉 ∈ D(M) the set L of links has them. We also say that D(M) is input link-
distance bounded if there exists an integer b ∈ N such that it is input link-distance
bounded by b.

We assume that the corresponding properties are defined for the output side, using
L−1 instead of L. For example, L is strictly output hierarchical if L−1 is strictly
input hierarchical. The set D(M) computed by the ε-free l-xtR M always has these
properties as shown in [11].

Proposition 28 ([11, Corollary 1 and Theorem 2]) The set D(M) of dependencies
is strictly input and output hierarchical, and it is input and output link-distance
bounded.

These properties should be intuitively clear. They are discussed in more detail
in [11]. Roughly speaking, the set L of links of a sentential form of M is strictly
input and output hierarchical because links cannot cross each other. In addition, if
b is the maximal height of the left-hand (resp. right-hand) side of a rule of M , then
L is obviously input (resp. output) link-distance bounded by b. Next, we observe

150 Theory Comput Syst (2017) 60:129–171

some simple consequences of Proposition 28, which we will use later. Whenever we
mention ‘(in)comparable’ in the following, we refer to the partial prefix order
.

Lemma 29 Let 〈t, L, u〉 ∈ D(M) be a dependency, and let D(M) be input link-
distance bounded by b.

(i) For all links (v, w), (v′, w′) ∈ L, v and v′ are incomparable if and only if w

and w′ are incomparable.
(ii) For all positions v1, v2 ∈ pos(t) and link origins v0, v3 ∈ dom(L) with v0

v1 ≺ v2
 v3 and |v2| − |v1| > b, there exists a link origin v ∈ dom(L) such
that v1 ≺ v ≺ v2 and |v| − |v1| ≤ b.

Proof We start with the if-direction in the first item. Without loss of generality, sup-
pose that v
 v′. Then by the definition of strictly input hierarchical, we know that
w and w′ are comparable. The other direction is similarly true by the definition of
strictly output hierarchical. We prove the second item by induction on |v3| − |v0|
as follows. Since v0
 v1 ≺ v2
 v3 and |v3| − |v0| ≥ |v2| − |v1| > b, there
exists a link origin v ∈ dom(L) such that v0 ≺ v ≺ v3 and |v| − |v0| ≤ b. Con-
sequently, v ≺ v2. Now we distinguish two cases: (a) If v1 ≺ v, then v1 ≺ v ≺ v2
and |v| − |v1| ≤ |v| − |v0| ≤ b proving the second item. (b) Otherwise, we have
v0 ≺ v
 v1 ≺ v2
 v3 with v, v3 ∈ dom(L) and |v2| − |v1| > b. Since
|v3| − |v| < |v3| − |v0|, we can apply the induction hypothesis to v
 v1 ≺ v2
 v3
to prove the statement.

In the proofs of Theorems 31 and 33 we will see applications of these properties
and the following linking theorem, which we also recall from [11].

Proposition 30 ([11, Theorem 4]) Let � and � be ranked alphabets with �0 �= ∅
and �1 �= ∅. Let k, n ≥ 1, and let m1, . . . , mk be such that

{(
c′[t1, . . . , tn] , c′′[t1, . . . , tn]

) | t1, . . . , tn ∈ T�

} ⊆ τ(M1); · · · ; τ(Mk) ,

where c′, c′′ ∈ T�(Xn) are linear and nondeleting in Xn. There exist trees
t1, . . . , tn ∈ T� , dependencies

〈u0, L1, u1〉 ∈ D(M1) , 〈u1, L2, u2〉 ∈ D(M2) , . . . , 〈uk−1, Lk, uk〉 ∈ D(Mk)

with u0 = c′[t1, . . . , tn] and uk = c′′[t1, . . . , tn], and a family (vij , wij) ∈ Lj of
links for 1 ≤ i ≤ n and 1 ≤ j ≤ k, such that for all 1 ≤ i ≤ n:

(i) posxi
(c′′)
 wik ,

(ii) vi(j+1)
 wij for all 1 ≤ j ≤ k − 1, and
(iii) posxi

(c′)
 vi1.

Intuitively, the items mean that (i) position wik is in the subtree ti of the output
tree uk = c′′[t1, . . . , tn], (ii) position wij has prefix vi(j+1) in the intermediate
tree uj , and (iii) position vi1 is in the subtree ti of the input tree u0 = c′[t1, . . . , tn].

Theory Comput Syst (2017) 60:129–171 151

To show that an integer k > 1 is the least power at which the closure under
composition is achieved for a class C, we present a tree transformation τ ∈ Ck

that is not in Ck−1. Roughly speaking, this is achieved by deducing certain links
given the tree transformation with the help of Proposition 30. These links are neces-
sary in the dependency for the determined input-output tree pairs. Thus, we obtain
a partial specification of several dependencies in the sense that we know some of
its links, but not necessarily all of them. Then we consider whether these partial
specifications can be implemented by a composition of . It can be seen from
Proposition 30 that we will often not be able to identify both positions of a link
exactly, but rather determine that one of its positions has a certain other prominent
position as prefix. In such cases, we graphically display the link using a spline with
an inverted arrow head that points to the subtree rooted at that prominent position
(instead of to the actual position). For example, the splines in Fig. 3 indicate that
a position of t on the left (resp. u on the right) is linked to position 2 on the right
(resp. on the left).

We now prove that 3 is the least power at which the class is closed under
composition.

Theorem 31

Proof The inclusion follows from Lemma 15. To prove the strictness, let M ′
1 =

(Q′, �, �, {�}, R′) be the that is obtained from the of Example
2 by removing the state q la and all rules for the input symbol σ ; i.e., the rules

σ(q, q la)
q−→ q and σ(q la, q)

q−→ q. Thus, τ(M ′
1) is the restriction of τ(M1) to

input trees that do not contain any occurrence of σ . In addition, we use the two
bimorphisms B2, B3 ∈ B(snl, snl) of [5, Section II-2-2-3-1], where strictness is
denoted by ‘e’ and nondeletion by ‘c’. These bimorphisms are similar to the two
bimorphisms that are used in [3, Section 3.4] to prove Proposition 16. By Proposi-
tion 11, , hence B2 and B3 can also be defined by
and M3, respectively. For convenience, we present M2 and M3 explicitly before we
show that τ = τ(M ′

1) ; τ(M2) ; τ(M3) cannot be computed by a composition of
two .

Let M2 = (Q2, �, �, {�}, R2) be the with Q2 = {�, id, id′}, the ranked
alphabet � = {σ (2), γ (1), α(0)}, and the set R2 consisting of the rules

σ1(�, σ2(id, id′)) �−→ σ(σ(�, id), id′) γ (id)
id,id′−→ γ (id)

σ2(id, id′) �−→ σ(id, id′) α
id,id′−→ α .

Fig. 3 Links with inverted
arrows

152 Theory Comput Syst (2017) 60:129–171

Moreover, let M3 = (Q3, �, �, {�}, R3) be the with Q3 = {�, p, id, id′} and
the set R3 consisting of the rules

Note that both τ(M2) and τ(M3) are partial functions.
We present a proof by contradiction, so we assume that τ = τ(N1); τ(N2) for

some and N2. By Proposition 28 there exist a1, a2, b1, b2 ≥ 1 such
that D(N1) and D(N2) are strictly input and output hierarchical, input link-distance
bounded by a1 and a2, respectively, and output link-distance bounded by b1 and b2,
respectively. Let n = 2 · max(a1, a2, b1, b2) + 2. We select the trees

c = γ n
2 (x1) ,

c′ = σ1 (σ1 (· · · σ1(σ2(xn, xn−1), c[σ2(xn−2, xn−3)]) · · · , c[σ2(x4, x3)]) ,

c[σ2(x2, x1)]) , and

c′′ = σ1 (σ1 (· · · σ1(xn, σ2(xn−1, xn−2)) · · · , σ2(x3, x2)) , x1) ,

of which c′ and c′′ are linear and nondeleting in Xn (see Fig. 4). To be completely
formal, c′ and c′′ are defined inductively as follows: First, c′ = c′

1 with c′
n−1 =

σ2(xn, xn−1) and c′
i−1 = σ1(c

′
i+1, c[σ2(xi, xi−1)]) for every even integer 2≤ i ≤ n−2.

Second, we let c′′ = σ1(c
′′
2 , x1) with c′′

n = xn and c′′
i−2 = σ1(c

′′
i , σ2(xi−1, xi−2)) for

every even 4 ≤ i ≤ n.
It is straightforward to check that

(
c′[t1, . . . , tn], c′′[t1, . . . , tn]

) ∈ τ

for all t1, . . . , tn ∈ T� with � = {γ (1), α(0)}. Note that, according to Example
8, every σ1-rib c[σ2(ti , ti−1)] = γ n

2 (σ2(ti , ti−1)) is transformed into σ2(ti , ti−1)

by τ(M ′
1). Consequently, we can apply Proposition 30 to obtain that there

exist trees t1, . . . , tn ∈ T� , dependencies 〈c′[t1, . . . , tn], L1, u1〉 ∈ D(N1) and
〈u1, L2, c

′′[t1, . . . , tn]〉 ∈ D(N2), and links (vi1, wi1) ∈ L1 and (vi2, wi2) ∈ L2 for
1 ≤ i ≤ n such that

– posxi
(c′′)
 wi2,

– vi2
 wi1, and
– posxi

(c′)
 vi1.

The splines with the inverted arrow heads indicate some of those links in Fig. 4.
Now, let us consider the obtained (partial) dependencies, which are depicted in

Fig. 4. We clearly have (ε, ε), (vn2, wn2) ∈ L2 and

1
n
2 = posxn

(c′′)
 wn2 .

Thus |wn2| ≥ n
2 > b2. Since D(N2) is output link-distance bounded by b2, there

exists a link (v′, w′) ∈ L2 with ε ≺ w′ ≺ wn2 and
∣
∣w′∣∣ ≤ b2. Consequently,

the position w′ has label σ1 in u2 = c′′[t1, . . . , tn] as indicated in Fig. 4. Formally,
w′ = 1m for some 1 ≤ m ≤ b2 ≤ n

2 − 1. Let i = 2m, which yields 2 ≤ i ≤ n − 2.
Then w′ ≺ w(i+1)2 and w′ ≺ wi2 because w′ ≺ posxi+1

(c′′)
 w(i+1)2 and

Theory Comput Syst (2017) 60:129–171 153

Fig. 4 Illustration of the relevant part of the specification used in the proof of Theorem 31

w′ ≺ posxi
(c′′)
 wi2. Since D(N2) is strictly output hierarchical, we can conclude

that v′
 v(i+1)2
 w(i+1)1 and v′
 vi2
 wi1. Additionally, w′ and posxi−1
(c′′)

are incomparable and posxi−1
(c′′)
 w(i−1)2, so also the positions w′ and w(i−1)2

are incomparable (see Lemma 32(i) for a proof of this and similarly straightforward
arguments). Consequently, Lemma 29(i) shows that v′ and v(i−1)2 are also incompa-
rable. Using v(i−1)2
 w(i−1)1, we obtain that v′ and w(i−1)1 are incomparable, and
in particular that v′ �
 w(i−1)1.

Next, we inspect the input tree u0 = c′[t1, . . . , tn] and the links (ε, ε), (vi1, wi1),
and (v(i−1)1, w(i−1)1) in L1. We already know that posxi

(c′)
 vi1 and posxi−1
(c′)

v(i−1)1. Let

V = {v ∈ 1∗2N∗ | v ≺ posxi
(c′), c′(v) �= σ2}

be the set of positions of c′ (and hence of u0) that are in an occurrence of the tree c

and are prefixes of posxi
(c′). Since |V | = n > a1, it follows from Lemma 29(ii) that

there exists a link (v′′, w′′) ∈ L1 such that v′′ ∈ V , which also yields v′′ ≺ vi1 and
v′′ ≺ v(i−1)1. Since D(N1) is strictly input hierarchical, we obtain that w′′
 wi1
and w′′
 w(i−1)1. Since v′′ and v(i+1)1 are incomparable, Lemma 29(i) implies that
w′′ and w(i+1)1 are incomparable, and in particular that w′′ �
 w(i+1)1.

Summing up, we have

v′
 w(i+1)1 v′
 wi1 v′ �
 w(i−1)1 (1)

154 Theory Comput Syst (2017) 60:129–171

w′′ �
 w(i+1)1 w′′
 wi1 w′′
 w(i−1)1 . (2)

Since v′
 wi1 and w′′
 wi1, we must have v′
 w′′ or w′′
 v′. In the former
case, we obtain v′
 w′′
 w(i−1)1 contradicting the last statement of (1). Similarly,
in the second case, we obtain w′′
 v′
 w(i+1)1 contradicting the first statement of
(2). Since both cases are contradictory, the assumption that we can compute τ with
two is wrong.

Fortunately, we can reuse the ideas used in the proof of Theorem 31 to conclude
that 4 is the least power at which the class is closed under composition. The
slightly more elaborate proof first establishes that a deleting rule, which is a rule

�
q−→ r such that states(r) � states(�), must be used at a certain position and then

employs the classical cut-and-paste technique to establish that this deletion (without
look-ahead) enables undesired translations.

We will use some well-known elementary properties of the prefix order, which we
state in the next lemma.

Lemma 32 Let v, v1, v2, v
′
1, v

′
2 ∈ N∗ be positions with v1
 v′

1 and v2
 v′
2.

(i) If v1 and v2 are incomparable, then so are v′
1 and v′

2.
(ii) If v1 and v2 are incomparable, v
 v′

1, and v
 v′
2, then v
 v1 and v
 v2.

(iii) If v1 and v′
2 are incomparable and v′

1 and v2 are incomparable, then v1 and v2
are incomparable.

Proof If v1 and v2 are incomparable, then lcp(v1, v2) is a proper prefix of both v1
and v2. Hence lcp(v′

1, v
′
2) = lcp(v1, v2), which implies the first two items. For the

third item we note that if v1
 v2 then v1
 v′
2, and symmetrically, if v2
 v1 then

v2
 v′
1.

Theorem 33

Proof Since the inclusion is trivial, it remains to prove its strictness. Let M1 be
the of Example 2, and let M2 and M3 be the bimorphisms defined
as in the proof of Theorem 31. We will show that the tree trans-
formation τ = τ(M1); τ(M2); τ(M3) cannot be computed by a composition of three

.
We again present a proof by contradiction, hence we assume that

τ = τ(N1); τ(N2); τ(N3)

for some , N2, and N3. By Proposition 28 there exist
integers a1, a2, a3, b1, b2, b3 ≥ 1 such that D(N1), D(N2), and D(N3) are strictly
input and output hierarchical, input link-distance bounded by a1, a2, and a3, respec-
tively, and output link-distance bounded by b1, b2, and b3, respectively. As before, let

Theory Comput Syst (2017) 60:129–171 155

n = 2 · max(a1, a2, a3, b1, b2, b3) + 2. Moreover, let m ∈ N be such that m > ht(�)
for all rules (�, p, r) ∈ R1. This time, we select the trees

s = γ m
2 (α) ,

c = σ (s, σ (s, · · · σ(s, x1) · · ·)) with n2 occurrences of σ ,

c′ = σ1 (σ1 (· · · σ1(σ2(xn, xn−1), c[σ2(xn−2, xn−3)]) · · · , c[σ2(x4, x3)]) ,

c[σ2(x2, x1)]) , and

c′′ = σ1 (σ1 (· · · σ1(xn, σ2(xn−1, xn−2)) · · · , σ2(x3, x2)) , x1) .

We note that c′ and c′′ are the same as in the proof of Theorem 31 (see Fig. 4),
except that we selected a more complicated tree c; thus, c′ and c′′ are again lin-
ear and nondeleting in Xn, and can be defined formally as in that proof. Clearly
(c′[t1, . . . , tn], c′′[t1, . . . , tn]) ∈ τ for all t1, . . . , tn ∈ T� with � = {γ (1), α(0)}.
This time, every σ1-rib c[σ2(ti , ti−1)] is of the form

σ
(
γ m

2 (α), σ
(
γ m

2 (α), · · · σ(γ m
2 (α), σ2(ti , ti−1)) · · ·)) .

It is transformed into σ2(ti , ti−1) by τ(M1) as before (see Example 8). So we
can apply Proposition 30 once again to obtain that there exist t1, . . . , tn ∈ T� ,
dependencies

〈c′[t1, . . . , tn], L1, u1〉 ∈ D(N1) , 〈u1, L2, u2〉 ∈ D(N2) and

〈u2, L3, c
′′[t1, . . . , tn]〉 ∈ D(N3) ,

and links (vi1, wi1) ∈ L1, (vi2, wi2) ∈ L2, and (vi3, wi3) ∈ L3 for 1 ≤ i ≤ n such
that

– posxi
(c′′)
 wi3,

– vi3
 wi2 and vi2
 wi1, and
– posxi

(c′)
 vi1.

We first observe that for every j ∈ {1, 2, 3}, the positions v1j , . . . , vnj are
pairwise incomparable (as also shown in the proof of Proposition 30 in [11, The-
orem 4]). In fact, since posx1

(c′′), . . . , posxn
(c′′) are pairwise incomparable, so are

w13, . . . , wn3 by the first item above and Lemma 32(i). Hence the corresponding link
origins v13, . . . , vn3 are pairwise incomparable by Lemma 29(i). This implies that
w12, . . . , wn2 are pairwise incomparable by the second item above, and hence so are
the corresponding link origins v12, . . . , vn2 using again Lemma 29(i). This argument
can be repeated once more to show the observation.

We now start the analysis of the given dependencies in the same way as in the proof
of Theorem 31 by considering the output tree u3 = c′′[t1, . . . , tn]. Entirely similar to
that proof, we obtain a position v′ ∈ pos(u2) such that v′
 w(i+1)2, v′
 wi2, and
v′ �
 w(i−1)2.

Next we move to the input tree u0 = c′[t1, . . . , tn], where the analysis will
be slightly different. As before, we consider the links (ε, ε), (vi1, wi1), and
(v(i−1)1, w(i−1)1) in L1, for which we already know that posxi

(c′)
 vi1 and
posxi−1

(c′)
 v(i−1)1. Let

V = {v ∈ 1∗2N∗ | v ≺ posxi
(c′), c′(v) �= σ2} .

156 Theory Comput Syst (2017) 60:129–171

Clearly, |V | = n2 > n · a1. Thus, since D(N1) is input link-distance bounded by a1,
the set V ′ = {v ∈ V | ∃w ∈ N∗ : (v, w) ∈ L1} of link origins in V contains at
least n elements by Lemma 29(ii). Let W ′ = {w | ∃v ∈ V ′ : (v, w) ∈ L1} be the set
of corresponding link targets. Since the elements of V ′ are pairwise comparable, the
elements of W ′ are also pairwise comparable by Lemma 29(i). For every w ∈ W ′,
we have w
 wi1 and w
 w(i−1)1 because v ≺ vi1 and v ≺ v(i−1)1 for every
v ∈ V ′ and D(N1) is strictly input hierarchical. Additionally, for every w ∈ W ′, the
positions w and w(i+1)1 are incomparable because v and v(i+1)1 are incomparable for
every v ∈ V ′. Since vi2 and v(i−1)2 are incomparable by the above observation, and
vi2
 wi1 and v(i−1)2
 w(i−1)1, we obtain from Lemma 32(ii) that w
 vi2 and w

v(i−1)2 for every w ∈ W ′. Moreover, for every w ∈ W ′, since v(i+1)2
 w(i+1)1,
w
 vi2, v(i+1)2 and vi2 are incomparable, and w and w(i+1)1 are incomparable,
Lemma 32(iii) shows that w and v(i+1)2 are incomparable.

Now we distinguish two cases. First, let us assume that
∣
∣W ′∣∣ ≥ n. In this case,

we can continue to derive a contradiction in much the same way as in the proof of
Theorem 31. Since the positions in W ′ are pairwise comparable, there are positions
wmin, wmax ∈ W ′ of minimal and maximal length, respectively, with wmin ≺ wmax.
Clearly, |wmax|− |wmin| ≥ n−1 > a2. Since (ε, ε), (vi2, wi2) ∈ L2 and wmin
 vi2,
there must be a link (v′′, w′′) ∈ L2 such that wmin ≺ v′′ ≺ wmax by Lemma 29(ii).
This implies that v′′ ≺ vi2, v′′ ≺ v(i−1)2, and v′′ and v(i+1)2 are incomparable. Since
D(N2) is strictly input hierarchical, we obtain that w′′
 wi2, w′′
 w(i−1)2, and
from Lemma 29(i) we obtain that w′′ and w(i+1)2 are incomparable, which takes us
to the situation

v′
 w(i+1)2 v′
 wi2 v′ �
 w(i−1)2
w′′ �
 w(i+1)2 w′′
 wi2 w′′
 w(i−1)2 ,

which is the analogue of (1) and (2) [in the proof of Theorem 31] and thus
contradictory for the same reasons.

In the remaining case, we have
∣
∣W ′∣∣ < n. Together with

∣
∣V ′∣∣ ≥ n, we obtain

by the pigeonhole principle that several input positions of V ′ are linked in L1 to the
same output position w of W ′. We choose (v, w) ∈ L1 such that v ∈ V ′ and |v| is
minimal. Consequently, a rule (�, p, r) ∈ R1 with a state r ∈ P as right-hand side
must have been applied at position v of u0 = c′[t1, . . . , tn].

Since v ∈ V , the subtree t |v is of the form

σ(s, σ (s, · · · σ(s, σ2(ti , ti−1))· · ·)) ,

where s = γ m
2 (α). Hence, since N1 is ε-free, the root of the left-hand side � has

label σ . Moreover, �|1 = γ k
2 (p′) for some 0 ≤ k < m and p′ ∈ P . By the choice

of v, the state r occurs in �|2 and so the state p′ is deleted [i.e., p′ /∈ states(r)]
in this rule. Therefore, the subtree u0|v.1k+1 = γ m−k

2 (α) has been created using the
second item of Definition 6. Since N1 is an , its look-ahead mapping is trivial,
and thus any tree can be created instead of u0|v.1k+1 ; e.g., the tree σ2(α, α). This
shows that also 〈u′

0, L1, u1〉 ∈ D(N1), where u′
0 = u0[v.1k+1 ← σ2(α, α)], and so

(u′
0, c

′′[t1, . . . , tn]) ∈ τ(N1); τ(N2); τ(N3). However, since u′
0|v is of the form

σ(γ k
2 (σ2(α, α)), σ (s, · · · σ(s, σ2(ti , ti−1)) · · ·)) ,

Theory Comput Syst (2017) 60:129–171 157

the σ1-rib u′
0|1h2 of u′

0 with 1h2
 v (i.e., h = i
2 − 1) has two occurrences of σ2.

Hence u′
0 is not in the domain of τ(M1) [see Example 8]. This implies that u′

0 is not
in the domain of τ = τ(M1); τ(M2); τ(M3), but

(u′
0, c

′′[t1, . . . , tn]) ∈ τ(N1) ; τ(N2); τ(N3) = τ ,

which is a contradiction.
Since both cases are contradictory, τ cannot be computed by a composition of

three .

Thus, we have shown that the least power, at which the composition closure is
achieved for the classes and , is 3 and 4, respectively. This is stated in
the next theorem.

Theorem 34 For every n ≥ 4,

Proof We have for all n ≥ 1 by Lemma 15. The equali-
ties follow from Theorem 24. The fourth and fifth inclusions are strict by Theorems
31 and 33, respectively. The strictness of the second and third inclusion follows from
that of the fourth and fifth, respectively. The strictness of the first inclusion is a
consequence of Proposition 14; it also follows from that of the third.

In Table 3 we summarize the main results of this and the previous section, which
allow us to present the least power at which the closure of the considered composition
hierarchies is achieved. For the sake of completeness, we also present the correspond-
ing results for the classes and B(l,l) that were obtained in [3, 5]. Recall that
B(l,l) is the class of all tree transformations computable by bimorphisms, in which
both tree homomorphisms are linear.

6 Infinite Composition Hierarchies

To complete the picture, we will need one further result showing the infiniteness of
the composition hierarchy for a large number of classes. In order to obtain a result

Table 3 Summary of the results
of Section 5 Class Least power of Stated in

closedness

B(l, l) 4 [5, Section II-2-2-3-3]

2 [3, Theorem 6.2]

2 Theorem 26

3 Theorems 31 and 34

4 Theorems 33 and 34

158 Theory Comput Syst (2017) 60:129–171

that is as general as possible, we use bimorphisms [3] instead of l-xtR in this section;
cf. Proposition 11. We conclude several results for various tree transducer classes
from the result for bimorphisms.

To handle bimorphisms properly, we need to define links for tree homomorphisms.
As observed after Notation 10, every linear tree homomorphism ϕ : T� → T� can
be viewed as a linear top-down tree transducer Mϕ . In particular, for every t ∈ T�

there is a (unique) set Lϕ(t) ⊆ pos(t)×pos(ϕ(t)) of links such that 〈t, Lϕ(t), ϕ(t)〉 ∈
D(Mϕ). We now generalize this notion to arbitrary tree homomorphisms.

Definition 35 Let ϕ : T� → T� be a tree homomorphism and t ∈ T� . The set
of t-links of ϕ, denoted by Lϕ(t), is the smallest subset of pos(t) × pos(ϕ(t)) such
that

– (ε, ε) ∈ Lϕ(t) and
– (vi, ww′) ∈ Lϕ(t) for all links (v, w) ∈ Lϕ(t), integers 1 ≤ i ≤ rk (t (v)), and

positions w′ ∈ posxi
(ϕ(t (v))).

Intuitively, (v, w) ∈ Lϕ(t) means that ϕ translates the subtree of t rooted at v

into the subtree of ϕ(t) rooted at w. Note that for a given position v there can be
several such positions w (which are, of course, pairwise incomparable), since ϕ is not
necessarily linear, or there may be no such w, since ϕ is not necessarily nondeleting.
We will need the following elementary properties of Lϕ(t).

Lemma 36 Let ϕ : T� → T� be a tree homomorphism, and let t ∈ T� , u = ϕ(t),
and L = Lϕ(t).

(i) If (v, w) ∈ L, then ϕ(t |v) = u|w.
(ii) If (v, w) ∈ L, then Lϕ(t |v) = {(v′, w′) | (vv′, ww′) ∈ L}.

(iii) If ϕ is nondeleting, then for all (v1, w1) ∈ L and all v1
 v ∈ pos(t) there
exists a position w1
 w such that (v, w) ∈ L.

(iv) For all links (v1, w1), (v2, w2) ∈ L with v1
 v2 and w1
 w2, and all
v1
 v
 v2 there exists a unique positionw1
 w
 w2 such that (v, w) ∈ L.

(v) For all (v1, w1) ∈ L and all w1
 w ∈ pos(u) there exist unique positions
v,w′, w′′ ∈ N∗ such that v1
 v, w1
 w′, w = w′w′′, (v, w′) ∈ L, and
w′′ ∈ pos� (ϕ(t (v))).

Proof The proofs of statements (i) and (ii) are straightforward, and hence left to the
reader. It is also straightforward to prove the following three statements, which are
the special case of statements (iii)–(v), in which we have (v1, w1) = (ε, ε). We also
leave their proofs to the reader.

(iii)′ If ϕ is nondeleting, then dom(L) = pos(t).
(iv)′ For all (v2, w2) ∈ L and all v
 v2 there exists a unique position w
 w2

such that (v, w) ∈ L.
(v)′ For every w ∈ pos(u) there exist unique positions v,w′, w′′ ∈ N∗ such that

w = w′w′′, (v, w′) ∈ L, and w′′ ∈ pos� (ϕ(t (v))).

Theory Comput Syst (2017) 60:129–171 159

Each non-primed statement can now easily be obtained from the corresponding
primed statement with the help of (i) and (ii). We start with statement (iii). Let
(v1, w1) ∈ L and v1
 v ∈ pos(t). Since v1
 v, let v̂ be such that v1v̂ = v. Obvi-
ously v̂ ∈ pos(t |v1), and consequently, by statement (iii)′, there exists ŵ such that
(̂v, ŵ) ∈ Lϕ(t |v1). Together with (v1, w1) ∈ L and statement (ii) we conclude that
(v1v̂, w1ŵ) ∈ L. Thus, (v, w) ∈ L where w1
 w = w1ŵ.

For statement (iv), let (v1, w1), (v2, w2) ∈ L with v1
 v2 and w1
 w2, and
let v1
 v
 v2. Since w1
 w2, let ŵ2 be such that w1ŵ2 = w2. Similarly, since
v1
 v
 v2, let v̂
 v̂2 such that v1v̂ = v and v1v̂2 = v2. Since (v1, w1) ∈ L, state-
ment (ii) implies that (̂v2, ŵ2) ∈ Lϕ(t |v1). Thus, since also v̂
 v̂2, statement (iv)′
implies that there exists ŵ
 ŵ2 such that (̂v, ŵ) ∈ Lϕ(t |v1). Using statement (ii)
again, we have (v1v̂, w1ŵ) ∈ L. Hence the requirements are fulfilled by w = w1ŵ;
note that w1
 w1ŵ
 w1ŵ2 = w2. The uniqueness of w follows immediately from
the uniqueness condition in statement (iv)′.

Finally, for statement (v), let (v1, w1) ∈ L and w1
 w ∈ pos(u). By statement (i)
we have ϕ(t |v1) = u|w1 . Since w1
 w, let ŵ be such that w1ŵ = w. Obviously,
ŵ ∈ pos(u|w1). By statement (v)′ applied to ŵ, there exist v̂, ŵ′, ŵ′′ such that ŵ =
ŵ′ŵ′′, (̂v, ŵ′) ∈ Lϕ(t |v1), and ŵ′′ ∈ pos�

(
ϕ(t |v1 (̂v))

)
. Since (v1, w1) ∈ L we can

use statement (ii) applied to (̂v, ŵ′) ∈ Lϕ(t |v1) to conclude that (v1v̂, w1ŵ
′) ∈ L.

Hence the requirements are fulfilled by v = v1v̂, w′ = w1ŵ
′, and w′′ = ŵ′′. The

uniqueness of v, w′, and w′′ follows immediately from the uniqueness condition in
statement (v)′.

The unique position v ∈ pos(t) corresponding to the position w ∈ pos(u) in
Lemma 36(v) is informally called the position in t that creates the symbol u(w)

at w. Since item (v) holds in particular for (v1, w1) = (ε, ε), that position does not
depend on the link (v1, w1) ∈ L. Similarly, the unique position w in item (iv) does
not depend on the link (v1, w1).

We now turn to the proof of the infiniteness of the composition hierarchies. The
main auxiliary notion used in that proof is the assignment of levels to positions in a
tree. Let t ∈ T� . Since the branching positions of t (i.e., those that are labeled by
symbols of rank at least 2) will play an essential role, we define the set of branching
positions of t , the set of branching positions of t together with two different successor
indices, and the set of branching positions along a given path, as follows:

brt = {v ∈ pos(t) | t (v) /∈ �0 ∪ �1}
brit = {〈v, i, j〉 | v ∈ brt , 1 ≤ i, j ≤ rk(t (v)), i �= j}

and for every v1, v2 ∈ pos(t) with v1
 v2 we let

brt (v1, v2) = {v ∈ brt | v1
 v
 v2} .

Let � ≥ 2 be arbitrary (called distance in the sequel). We inductively define the sets
PI�n(t) ⊆ pos(t)×N×N of special positions of level n and distance � with successor

160 Theory Comput Syst (2017) 60:129–171

indices and the sets P�
n(t) ⊆ pos(t) for the same special positions without successor

indices for every n ∈ N as follows:

PI�0(t) = brit

P�
0(t) = brt = {v | ∃i, j : 〈v, i, j〉 ∈ PI�0(t)}

PI�n+1(t) = {〈v, i, j〉 ∈ brit |∃v1 ∈ P�
n(t) :vi
 v1, |brt (vi, v1) ∩ P�

n(t)| ≥ �n+1

∃v2 ∈ P�
n(t) :vj
 v2, |brt (vj, v2) ∩ P�

n(t)| ≥ �n+1}
P�

n+1(t) = {v | ∃i, j : 〈v, i, j〉 ∈ PI�n+1(t)}
Intuitively, each branching position is a special position of level 0 (for any distance �)
and a branching position v is a special position of level n+ 1 if there are two paths in
different direct subtrees below v that both have at least �n+1 special positions of level
n along the path. Clearly, PI�n+1(t) ⊆ PI�n(t) and P�

n+1(t) ⊆ P�
n(t) for all n ∈ N. Note

that in the definition of PI�n+1(t), the condition that v1, v2 ∈ P�
n(t) is superfluous, but

technically convenient.

Example 37 Let t be the tree depicted in Fig. 5. Then

P2
0(t) = {ε, 1, 11, 112, 1121, 11211, 12, 121, 2, 21, 211, 2111} = brt

P2
1(t) = {ε, 1}

P2
2(t) = ∅ .

Lemma 38 Let t ∈ T� and �, n ∈ N with � ≥ 2. Moreover, let v, v′ ∈ N∗ and
i, j ∈ N.

(i) 〈v′, i, j 〉 ∈ PI�n(t |v) if and only if 〈vv′, i, j 〉 ∈ PI�n(t), and
v′ ∈ P�

n(t |v) if and only if vv′ ∈ P�
n(t).

(ii) If v, viv′ ∈ P�
n(t), then there exists m ∈ N such that 〈v, i,m〉 ∈ PI�n(t).

Proof We prove the items individually. We start with (i), which is obvious because
whether or not 〈v, i, j〉 is in PI�n(t) only depends on the positions of which v is a
prefix. Statement (ii) is also trivial for n = 0, hence we only prove it for n + 1.
Let v, viv′ ∈ P�

n+1(t). Since v ∈ P�
n+1(t) there exist integers i1, i2 such that

Fig. 5 Tree used in Example 37

Theory Comput Syst (2017) 60:129–171 161

〈v, i1, i2〉 ∈ PI�n+1(t). If i ∈ {i1, i2}, then the statement is obviously true. In the
remaining case, let i /∈ {i1, i2}. There exists a position v2 ∈ P�

n(t) such that vi2
 v2
and

∣
∣brt (vi2, v2) ∩ P�

n(t)
∣
∣ ≥ �n+1. Since viv′ ∈ P�

n(t), there exist i′ ∈ N and
v1 ∈ P�

n(t) such that viv′i′
 v1 and
∣
∣brt (viv′i′, v1) ∩ P�

n(t)
∣
∣ ≥ �n+1. Hence vi
 v1

and
∣
∣brt (vi, v1) ∩ P�

n(t)
∣
∣ ≥ �n+1, which shows that 〈v, i, i2〉 ∈ PI�n+1(t).

We now prove that a nondeleting tree homomorphism preserves the maximal level
of the special positions of a tree.

Lemma 39 Let ϕ : T� → T� be a nondeleting tree homomorphism, and let t =
γ (t1, . . . , tk) for some k ∈ N, γ ∈ �k , and t1, . . . , tk ∈ T� . Moreover, let �, n, i, j ∈
N be such that � ≥ 2 and 〈ε, i, j〉 ∈ PI�n(t). Then for every z1 ∈ posxi

(ϕ(γ)) and
z2 ∈ posxj

(ϕ(γ)) there exists 〈w, i′, j ′〉 ∈ PI�n(ϕ(t)) such that w ∈ pos(ϕ(γ)) and
wi′
 z1 and wj ′
 z2.

Proof Let u = ϕ(t) = ϕ(γ)[ϕ(t1), . . . , ϕ(tk)] and L = Lϕ(t). We prove the state-
ment by induction on n. In the induction base, we have n = 0 and 〈ε, i, j〉 ∈ PI�0(t) =
brit . Consider z1 ∈ posxi

(ϕ(γ)) and z2 ∈ posxj
(ϕ(γ)), which are occurrences of

the variables xi �= xj in ϕ(γ). Let w = lcp(z1, z2) be their longest common prefix.
Since xi �= xj , we have w ≺ z1 and w ≺ z2, so let i′, j ′ ∈ N be the unique (and nec-
essarily distinct) integers such that wi′
 z1 and wj ′
 z2. Clearly, w ∈ pos(ϕ(γ))

and 〈w, i′, j ′〉 ∈ briu = PI�0(u). This completes the induction base.
In the induction step, let 〈ε, i, j〉 ∈ PI�n+1(t), and suppose that v1 ∈ P�

n(t) and
v2 ∈ P�

n(t) are the required special positions of level n such that i
 v1 and j
 v2
and

∣
∣
∣brt (i, v1) ∩ P�

n(t)

∣
∣
∣ ≥ �n+1 and

∣
∣
∣brt (j, v2) ∩ P�

n(t)

∣
∣
∣ ≥ �n+1 .

Now, we follow a similar approach as in the induction base. Figure 6 illustrates the
used positions and their relations. Consider positions z1 ∈ posxi

(ϕ(γ)) and z2 ∈
posxj

(ϕ(γ)). As before, we let

w = lcp(z1, z2) ∈ pos(ϕ(γ))

be their longest common prefix, and let wi′
 z1 and wj ′
 z2. Clearly, i′ �= j ′ and
so 〈w, i′, j ′〉 ∈ briu. It remains to show that 〈w, i′, j ′〉 ∈ PI�n+1(u).

By Definition 35, we have (ε, ε) ∈ L and (i, z1) ∈ L. Since ϕ is non-
deleting and (i, z1) ∈ L and i
 v1, it follows from Lemma 36(iii) that there
exists w′

1 such that z1
 w′
1 and (v1, w

′
1) ∈ L. Thus, Lemma 36(i) shows that

u|w′
1

= ϕ(t |v1). By assumption we have v1 ∈ P�
n(t), which yields ε ∈ P�

n(t |v1)

by Lemma 38(i); i.e., 〈ε, i′′, j ′′〉 ∈ PI�n(t |v1) for some i′′, j ′′. Since ϕ is nondelet-
ing, the sets posxi′′ (ϕ(t (v1))) and posxj ′′ (ϕ(t (v1))) are nonempty. Consequently, the

induction hypothesis implies the existence of w′′
1 ∈ P�

n(ϕ(t |v1)) = P�
n(u|w′

1
). Hence

w′
1w

′′
1 ∈ P�

n(u) by Lemma 38(i). Let w1 = w′
1w

′′
1 , and let w2 be determined in an

analogous way. We claim that w1 and w2 are the special positions of level n that are

162 Theory Comput Syst (2017) 60:129–171

Fig. 6 Illustration of the trees and positions discussed in the proof of Lemma 39 (left) and Lemma 40
(right)

required to show that 〈w, i′, j ′〉 ∈ PI�n+1(u). We will only verify the condition
∣
∣
∣bru(wi′, w1) ∩ P�

n(u)

∣
∣
∣ ≥ �n+1 (3)

because the proof for w2 works analogously. Due to wi′
 z1, we obtain that w1 ∈
bru(wi′, w1) ∩ P�

n(u) .
Let v̄1 ∈ brt (i, v1) ∩ P�

n(t) be any position of level n along the path from i to v1
such that v̄1 ≺ v1. Hence there exists a unique integer i1 ∈ N such that v̄1i1
 v1.
Since (i, z1), (v1, w

′
1) ∈ L together with i
 v̄1i1
 v1 we can use Lemma 36(iv)

to conclude that there exists z1
 ŵ′
1
 w′

1 such that (v̄1i1, ŵ
′
1) ∈ L. Applied once

more to i
 v̄1
 v̄1i1 and the links (i, z1), (v̄1i1, ŵ
′
1) ∈ L, there exists z1
 w̄′

1

ŵ′

1 with (v̄1, w̄
′
1) ∈ L. Let z ∈ N∗ be such that w̄′

1z = ŵ′
1. By Definition 35 we have

z ∈ posxi1
(ϕ(t (v̄1))). Since v̄1, v1 ∈ P�

n(t), we conclude from Lemma 38(ii) that

there exists j1 ∈ N such that 〈v̄1, i1, j1〉 ∈ PI�n(t). Hence 〈ε, i1, j1〉 ∈ PI�n(t |v̄1) by
Lemma 38(i) and u|w̄′

1
= ϕ(t |v̄1) by Lemma 36(i). Now we can apply the induction

hypothesis to obtain that there exists 〈w̄′′
1 , i′1, j ′

1〉 ∈ PI�n(ϕ(t |v̄1)) such that w̄′′
1 i′1
 z.

Hence 〈w̄′′
1 , i′1, j ′

1〉 ∈ PI�n(u|w̄′
1
) and so 〈w̄′

1w̄
′′
1 , i′1, j ′

1〉 ∈ PI�n(u) by Lemma 38(i).

Consequently, w̄1 ∈ P�
n(u), where w̄1 = w̄′

1w̄
′′
1 . In addition, wi′
 w̄1 ≺ w1

because

wi′
 z1
 w̄′
1
 w̄1 and w̄1 ≺ w̄′

1w̄
′′
1 i′1
 w̄′

1z = ŵ′
1
 w′

1
 w1 .

In other words, we have shown that w̄1 ∈ bru(wi′, w1) ∩ P�
n(u). Moreover, since

w̄′′
1 i′1
 z, we have that w̄′′

1 ∈ pos� (ϕ(t (v̄1))). Since also (v̄1, w̄
′
1) ∈ L, we can say

that v̄1 is the position in t that creates the symbol u(w̄1) = u(w̄′
1w̄

′′
1) at w̄1. Hence,

the uniqueness condition in Lemma 36(v) guarantees that for each selection of v̄1
we obtain a different position w̄1 ∈ bru(wi′, w1) ∩ P�

n(u). This verifies (3) because

Theory Comput Syst (2017) 60:129–171 163

w1 ∈ bru(wi′, w1) ∩ P�
n(u) and there are at least �n+1 − 1 possible selections of v̄1

(and each position w̄1 differs from w1 because w̄1 ≺ w1 as shown above).

The next lemma shows that an inverse linear tree homomorphism reduces the max-
imal level of the special positions of a tree by at most 1 (for a sufficiently large
distance �).

Lemma 40 Let ψ : T� → T� be a linear tree homomorphism. Moreover, let t ∈ T�

and �, n ∈ N be such that � > ht(ψ(γ ′)) for all symbols γ ′ ∈ �. If there exists
w ∈ P�

n+1(ψ(t)) with w ∈ pos� (ψ(t (ε))), then ε ∈ P�
n(t).

Proof The proof is similar to the one of Lemma 39. Let t = γ (t1, . . . , tk) with k ∈ N,
γ ∈ �k , and t1, . . . , tk ∈ T� , and let u = ψ(t) = ϕ(γ)[ϕ(t1), . . . , ϕ(tk)]. Moreover,
let 〈w, i′, j ′〉 ∈ PI�n+1(u) with w ∈ pos�(ψ(γ)). By the definition of PI�n+1(u), there
exist positions w1 ∈ P�

n(u) and w2 ∈ P�
n(u) such that wi′
 w1 and wj ′
 w2 and

∣
∣
∣bru(wi′, w1) ∩ P�

n(u)

∣
∣
∣ ≥ �n+1 and

∣
∣
∣bru(wj ′, w2) ∩ P�

n(u)

∣
∣
∣ ≥ �n+1 .

The paths in u from w to w1 and from w to w2 contain strictly more than �n+1 posi-
tions, so they are longer than any path in ψ(γ). Together with w ∈ pos�(ψ(γ)) we
conclude that there must exist 1 ≤ i, j ≤ k and positions z1 ∈ posxi

(ψ(γ)) and
z2 ∈ posxj

(ψ(γ)) such that wi′
 z1
 w1 and wj ′
 z2
 w2. Since ψ is linear
and i′ �= j ′, we have i �= j , which yields 〈ε, i, j〉 ∈ brit . It remains to prove that
〈ε, i, j〉 ∈ PI�n(t), which we prove by induction on n. In the induction base we have
n = 0 and thus 〈ε, i, j〉 ∈ brit = PI�0(t).

We proceed with the induction step. Again, Fig. 6 illustrates the used positions
and their relations. Clearly, we have (i, z1) ∈ L. Let v1 be the position of ti that
creates the symbol u(w1) at w1. More precisely, by Lemma 36(v), there exist unique
positions v1, w

′
1, w

′′
1 such that i
 v1, z1
 w′

1, w1 = w′
1w

′′
1 , (v1, w

′
1) ∈ L, and

w′′
1 ∈ pos� (ψ(t (v1))). Similarly, let v2 ∈ pos(t) be the position that creates the

symbol u(w2) at w2. We claim that the property required to prove that 〈ε, i, j〉 ∈
PI�n(t), and hence ε ∈ P�

n(t), holds for brt (i, v1) and brt (j, v2), i.e.,
∣
∣
∣brt (i, v1) ∩ P�

n−1(t)

∣
∣
∣ ≥ �n and

∣
∣
∣brt (j, v2) ∩ P�

n−1(t)

∣
∣
∣ ≥ �n .

We only prove this property for v1 because the proof for v2 is analogous.
Since w1 = w′

1w
′′
1 ∈ P�

n(u), it follows from Lemma 38(i) that w′′
1 ∈ P�

n(u|w′
1
).

Moreover, (v1, w
′
1) ∈ L and Lemma 36(i) yield that u|w′

1
= ψ(t |v1) and thus

P�
n(u|w′

1
) = P�

n(ψ(t |v1)). Together with w′′
1 ∈ pos� (ψ(t (v1))), we can conclude that

ε ∈ P�
n−1(t |v1) from the induction hypothesis, and hence v1 ∈ P�

n−1(t) by Lemma
38(i).

Next, we consider any position w̄1 ∈ bru(z1, w1) ∩ P�
n(u). We follow the same

approach as in the beginning of the induction step. Let v̄1 be the position of ti that
creates the symbol u(w̄1) at w̄1. More precisely, we apply Lemma 36(v) to w̄1 to
obtain that there exist positions v̄1, w̄

′
1, w̄

′′
1 such that i
 v̄1, z1
 w̄′

1, w̄1 = w̄′
1w̄

′′
1 ,

164 Theory Comput Syst (2017) 60:129–171

(v̄1, w̄
′
1) ∈ L, and w̄′′

1 ∈ pos� (ψ(t (v̄1))). By the same reasoning as in the previous
paragraph, we obtain that v̄1 ∈ P�

n−1(t). Also, since w̄1
 w1, we clearly have that
w̄′

1
 w′
1 because w′

1 (resp. w̄′
1) is the first position on the path from w1 (resp. w̄1)

to ε that occurs in a link of L. Now note that L is strictly output hierarchical by Propo-
sition 28 because 〈t, L, u〉 ∈ D(Mψ), where Mψ is the l-t defined after Notation 10.
Hence v̄1
 v1 because either w̄′

1 ≺ w′
1, which directly yields v̄1
 v1, or w̄′

1 = w′
1,

which yields v̄1 = v1 because of the uniqueness of v̄1. Thus we have shown that

v̄1 ∈ brt (i, v1) ∩ P�
n−1(t) .

If two different selections of w̄1 correspond to the same position v̄1, then (since
(v̄1, w̄

′
1), (v1, w

′
1) ∈ L with v̄1
 v1 and w̄′

1
 w′
1) they also correspond to the

same w̄′
1 by the uniqueness condition in Lemma 36(iv), and hence, since w̄′′

1 ∈
pos� (ψ(t (v̄1))), their distance is at most ht (ψ(t (v̄1))) ≤ �−1. In summary, a single
position v̄1 can create the symbols of at most � positions of bru(z1, w1). Since there
are at most � − 2 positions between w and z1 we have

∣
∣
∣bru(z1, w1) ∩ P�

n(u)

∣
∣
∣ ≥

∣
∣
∣bru(wi′, w1) ∩ P�

n(u)

∣
∣
∣ − � + 2 ≥ �n+1 − � + 2 .

Consequently,
∣
∣brt (i, v1) ∩ P�

n−1(t)
∣
∣ ≥ �n as required since

∣
∣
∣brt (i, v1) ∩ P�

n−1(t)

∣
∣
∣ ≤ �n − 1

would imply
∣
∣bru(z1, w1) ∩ P�

n(u)
∣
∣ ≤ �(�n − 1) < �n+1 − � + 2. This completes the

induction step and the proof.

Next, we combine the previous two lemmas into the main result of this section
that will be used to prove the infinity of several composition hierarchies. We show
that a bimorphism in B(l, n) can reduce the maximal level of the special positions by
at most 1 (for a sufficiently large distance �).

Theorem 41 Let B = (ψ, T , ϕ) be a bimorphism such that ψ : T� → T� is linear
and ϕ : T� → T� is nondeleting. Moreover, let (s, u) ∈ τ(B), and let � ∈ N be
such that � > ht(ψ(γ)) for every γ ∈ �. For every n ∈ N, if P�

n+1(s) �= ∅, then
P�

n(u) �= ∅.

Proof Since (s, u) ∈ τ(B), there exists t ∈ T such that ψ(t) = s and ϕ(t) =
u. By assumption, we have that P�

n+1(ψ(t)) �= ∅, so let w ∈ P�
n+1(ψ(t)). By

Lemma 36(v) there exist v, w′, w′′ such that w = w′w′′, (v, w′) ∈ Lψ(t), and
w′′ ∈ pos� (ψ(t (v))). Moreover, ψ(t)|w′ = ψ(t |v) by Lemma 36(i). Since w′w′′ ∈
P�

n+1(ψ(t)), Lemma 38(i) implies that

w′′ ∈ P�
n+1(ψ(t)|w′) = P�

n+1(ψ(t |v)) .

Hence, by Lemma 40, ε ∈ P�
n(t |v). Since ϕ is nondeleting, posxi

(ϕ(t (v))) is
nonempty for every 1 ≤ i ≤ rk(t (v)). Consequently, Lemma 39 implies that

Theory Comput Syst (2017) 60:129–171 165

P�
n(ϕ(t |v)) �= ∅. By Lemma 36(iii) there exists w̄ such that (v, w̄) ∈ Lϕ(t), and

moreover, ϕ(t |v) = u|w̄ by Lemma 36(i). Hence P�
n(u|w̄) = P�

n(ϕ(t |v)) �= ∅, which
proves that P�

n(u) �= ∅ by Lemma 38(i), as desired.

Now we can simply chain Theorem 41 to show that an n-fold composition of tree
transformations in B(l, n) can decrease the maximal level by at most n (for a suitable
distance �).

Corollary 42 (of Theorem 41) Let n ≥ 1, and for every 1 ≤ i ≤ n let Bi =
(ψi, Ti, ϕi) be a bimorphism such that ψi is linear and ϕi is nondeleting. Moreover,
let ϕi : T�i

→ T�i
and ψi+1 : T�i+1 → T�i

for every 1 ≤ i < n. Finally, let
� ∈ N be such that � > ht(ψi(γ)) for every 1 ≤ i ≤ n and γ ∈ �i , and let
(t, u) ∈ τ(B1); · · · ; τ(Bn). If P�

n+1(t) �= ∅, then P�
1(u) �= ∅.

It remains to demonstrate a tree transformation that can be computed by
and that reduces the maximal level of special positions from n + 1 to 0.

Clearly, this tree transformation cannot be computed by an n-fold composition of tree
transformations from B(l, n) because the output tree should contain a special position
of level 1 by Corollary 42. We make sure that the assumptions of Corollary 42 are
satisfied.

Example 43 Let

– M = (Q, �, �, {�}, R) be the with
– Q = {�, q} and � = {σ (2), α(0)}, and
– the set R consisting of the following rules

σ(�, α)
�,q−→ � σ(�, q)

�,q−→ σ(�, q) α
�−→ α .

It is easy to see that τ(M) is a total function. Intuitively, for an input tree t , it removes
all positions v and v2 of t such that t (v) = σ and t (v2) = α. Figure 7 shows the
repeated application of τ(M), where one application is indicated by �→. Assuming
that each dashed line contains at least three more positions, it is easy to check that,
for distance � = 2, the root of the first tree has level 2 (because positions 1, 11,
111, 1111, 2, 21, 211, and 2111 all have level 1). The penultimate tree, which is
obtained from the first tree by the application of τ(M)2, only has special positions
of level 0.

We use the of Example 43, and show that n transformations from
B(l, n) cannot compute the tree transformation τ(M)n+1.

Lemma 44 for every n ≥ 1.

Proof Let � = {σ (2), α(0)}. The powers of a tree c ∈ T�({x1}) are defined by c1 = c

and ck+1 = c[ck] for every k ≥ 1. Let T−1 = {α}. For every n ∈ N, we define the
tree languages Cn ⊆ T�({x1}) and Tn ⊆ T� inductively by Cn = {σ(x1, t)

k | t ∈
Tn−1, k ≥ 1} and Tn = {c[α] | c ∈ Cn}.

166 Theory Comput Syst (2017) 60:129–171

Fig. 7 Illustration of the repeated application of the tree transformation τ(M) of Example 43

Let M be the of Example 43. We have already remarked that τ(M) :
T� → T� is a total function. It is easy to see that τ(M)(tn) ∈ Tn−1 for every
n ∈ N and tn ∈ Tn. Consequently, τ(M)n+1(tn+1) ∈ T0 for every tn+1 ∈ Tn+1
(see Fig. 7 that shows trees in T2, T1, T0, and T−1). Obviously, P�

1(u) = ∅ for
every u ∈ T0 and � ≥ 2. Thus, with the help of Corollary 42, we can com-
plete the proof by showing that for every � ≥ 2 there exists t ∈ Tn+1 such that
P�

n+1(t) �= ∅.
Let � ≥ 2 be fixed. We now prove that for every n ∈ N there exists t ∈ Tn such

that P�
n(t) �= ∅ by induction on n. In fact, we prove the stronger statement that there

exists t ∈ Tn and v ∈ P�
n(t) such that

∣
∣brt (ε, v) ∩ P�

n(t)
∣
∣ ≥ �n+1. For n = 0, we

select the tree t = c�[α] ∈ T0, where c = σ(x1, α), and the position v = 1�−1. Since
P�

0(t) = brt (ε, v), this selection of t and v fulfills the requirements. In the induction
step, there exist a tree t ∈ Tn and v ∈ P�

n(t) such that
∣
∣brt (ε, v) ∩ P�

n(t)
∣
∣ ≥ �n+1. We

consider the tree t ′ = c(�n+2+1)[α] with c = σ(x1, t) and the position v′ = 1�n+2−1.
Obviously, t ′ ∈ Tn+1 and v′′ ∈ P�

n+1(t
′) for every v′′
 v′ because 〈v′′, 1, 2〉 ∈

PI�n+1(t
′) via the positions v1 = v′′12v and v2 = v′′2v using Lemma 38(i). This

completes our induction and proof.

Now we are able to prove that the composition hierarchy of and several
other classes is infinite.

Theory Comput Syst (2017) 60:129–171 167

Theorem 45 For every n ≥ 1 and

Proof Since all inclusions are trivial, we only need to prove their strictness. By
Proposition 11 we have , hence and

. Together with Lemma 44 these two statements imply the
strictness of the two inclusions on the left. To prove the strictness of the other
two inclusions, we prove that snl-XTn+1 �⊆ (l-XTR)n. Using simple symmetry, we
observe that , which together with the symmetric version of
Lemma 44 yields snl-XTn+1 �⊆ B(n, l)n. Furthermore, l-XTR = B(nl, l) by Proposi-
tion 11, which yields

(
l-XTR)n ⊆ B(n, l)n. Together with snl-XTn+1 �⊆ B(n, l)n we

obtain snl-XTn+1 �⊆ (l-XTR)n as desired.

For the classes and with we can make more precise
statements, which are similar to those in Theorems 26 and 34.

Theorem 46 For every n ≥ 2,

sl-XT � sl-XTR � sl-XTn = (sl-XTR)n � sl-XTn+1

l-XT � l-XTR � l-XTn ⊆ (l-XTR)n � l-XTn+1

Proof The inclusions from left to right are trivial or follow from Lemma 15. The first
strict inclusion on each line follows from Proposition 15. The other strict inclusions
follow from snl-XTm+1 �⊆ (l-XTR)m, which was shown in the proof of Theorem 45
for every m ≥ 1.

It remains to prove that (sl-XTR)n ⊆ sl-XTn. Clearly, it suffices to prove
this for n = 2. We first observe that QR ; snl-XT ⊆ snl-XT. In fact, since

(as mentioned in the proof of Theorem 45) and, obviously,
QR−1 = QR, we obtain that

where the inclusion follows from Lemma 13. Thus,

(sl-XTR)2 ⊆ QR; sl-XT2 ⊆ QR; snl-XT; sdl-H; sl-XT

⊆ QR; snl-XT; sl-XT ⊆ snl-XT; sl-XT ,

where the first step is by Lemma 15, the second step by Lemma 18, the third step by
Lemma 19 and the last step by the above observation.

The authors do not know whether, but guess that l-XTn � (l-XTR)n for all n ≥ 2.
Table 4 summarizes the main results of this section. For the sake of completeness, we
mention some additional results from the literature, where T stands for the class of all
tree transformations computable by top-down tree transducers [6], and stands

168 Theory Comput Syst (2017) 60:129–171

Table 4 Summary of the results
of Section 6, where Class with infinite composition Stated in

hierarchy

Theorem 45

T [8, Theorem 3.14]

and

(Tn | n ≥ 1) is infinite

B(n, n) [1] and [5, Section II-2-2-3-4]

for the class of tree transformations computable by ε-free extended top-down tree
transducers [17]. The result mentioned in Table 4 can be concluded
from [17, Theorem 4.8].

7 Hasse Diagram for the ε-Free Classes

Finally, let us compare the six classes of Theorem 34 with the three classes of
Theorem 26 and the two classes of Proposition 17. Additionally, we consider the
composition hierarchy for the class for which we established the infiniteness
in Theorem 45. Thus, we compare all ε-free classes considered in this paper.

Theorem 47 Figure 8 is the HASSE diagram of the displayed classes of tree
transformations for all n ≥ 4.

Proof The equalities are proved in Theorems 20 and 34, and all the inclusions are
trivial or hold by either Lemma 15 or Corollary 25. The strictness of the vertical
inclusions is proven in Proposition 17 and Theorems 26, 34, and 45. For the remain-
ing strictness and incomparability results (with respect to ⊆) we have to prove the
following six results.

(i) : This is a consequence of Proposition 14.
(ii) : This follows from Proposition 16. It is also a con-

sequence of the proof of Theorem 31 as follows. Consider the
and the and M3 in that proof. If then

contradicting the proof of Theorem 31.
(iii) and M3 be as in the proof of Theorem 31.

Note that and τ(M2), Now suppose that
. Then τ(M ′

1); τ(M2); τ(M3) is in

where the first equality is due to Theorem 20. However, this contradicts the
proof of Theorem 31.

Theory Comput Syst (2017) 60:129–171 169

Fig. 8 HASSE diagram of the discussed classes of tree transformations for all n ≥ 4

(iv) : The translation τ = {(t, α) | t ∈ T�} with
� = {σ (2), α(0)} can obviously be computed by an with the rules

σ(q, q ′) q0−→ α and α
q0−→ α, but for all k ≥ 1 by Corollary 42

because there exists a tree t ∈ T� such that P�
k+1(t) �= ∅ as demonstrated in

the proof of Lemma 44.
(v) : This follows from the proof of Theorem 31 because

the , M2, and M3 in that proof are nondeleting.
(vi) : This result follows from the proof of Theorem 33, so

let M1, M2, and M3 be the of that proof. We note that τ(M2),
. It is easy to show that , which can

be achieved by the decomposition τ(M1) = τ(N1); τ(N2), where N1 is

obtained from M1 by replacing the two rules involving q la by σ(q, q la)
q−→

σ(q, q la) and σ(q la, q)
q−→ σ(q la, q) and adding the two rules γ2(q

la)
q la

−→
q la and α

q la

−→ α. Then N1 is nondeleting. Similarly, we obtain N2 from M1

by replacing the two rules involving q la by σ(q, α)
q−→ q and σ(α, q)

q−→ q

(and removing the two rules γ1(p)
p−→ p and γ2(q)

q−→ q because the

170 Theory Comput Syst (2017) 60:129–171

symbols γ1 and γ2 have already been removed by N1). Note that also N2
is nondeleting. The decomposition yields that τ(M1); τ(M2); τ(M3) is in

. However, as demonstrated in the proof of Theorem 33, we have that
τ(M1); τ(M2); τ(M3) is not in .

The authors did not attempt to present a HASSE diagram that contains all the
classes (including the non-ε-free classes) discussed in this paper, but consider this a
worthwhile effort.

8 Conclusion

Linear extended top-down tree transducers (with or without regular look-ahead) are
formal models of syntax-based statistical machine translation. They have several
good properties [19]. In particular, most of them can be presented as bimorphisms in
the sense of [3], which yields that a result of [3] implies that ε-free, strict, and non-
deleting l-xt are not closed under composition and that their composition hierarchy
collapses at power 2. We extended their investigation to the composition hierarchy
of the classes obtained by dropping some of the restrictions ε-freeness, strictness,
and nondeletion. We showed in Theorem 34 that the composition hierarchy of ε-free
l-xtR collapses at power 3 and that of ε-free l-xt collapses at power 4. In fact, the
powers 3 and 4 are the least powers with that property. To complete the picture, we
showed in Theorem 45 that the composition hierarchies of l-xt, l-xtR, and ε-free and
nondeleting l-xt are infinite. Finally, we presented the HASSE-diagram of the powers
of the considered ε-free classes in Theorem 47. In the future, the authors would like
to investigate the composition hierarchy of weighted linear extended top-down tree
transducers.

References

1. Arnold, A., Dauchet, M.: Transductions inversibles de forêts. Thèse 3ème cycle M. Dauchet,
Université de Lille (1975)

2. Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP, pp. 74–86. Edinburgh University
Press (1976)

3. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoret. Comput. Sci. 20(1), 33–93
(1982)

5. Dauchet, M.: Transductions de forêts — bimorphismes de magmoı̈des. Première thèse, Université de
Lille (1977)

6. Engelfriet, J.: Bottom-up and top-down tree transformations — a comparison. Math. Systems Theory
9(3), 198–231 (1975)

7. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory 10(1), 289–
303 (1977)

8. Engelfriet, J.: Three hierarchies of transducers. Math. Systems Theory 15(2), 95–125 (1982)
9. Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase are MSO definable. SIAM J.

Comput. 32(4), 950–1006 (2003)

4. Chiang, D.: An introduction to synchronous grammars. In: ACL. ACL. Part of a tutorial given with
K. Knight (2006)

Theory Comput Syst (2017) 60:129–171 171

10. Engelfriet, J., Schmidt, E.M.: IO and OI I. J. Comput. System Sci. 15(3), 328–353 (1977)
11. Fülöp, Z., Maletti, A.: Linking theorems for tree transducers. Submitted manuscript; available at:

http://www.inf.u-szeged.hu/fulop/publ/linking.pdf (2014)
12. Fülöp, Z., Maletti, A., Vogler, H.: Preservation of recognizability for synchronous tree substitution

grammars. In: ATANLP. ACL, pp. 1–9 (2010)
13. Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Fundam. Inform. 111(2), 163–

202 (2011)
14. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics—Formal Models Based on Tree Transducers.

EATCS Monographs on Theoret. Comput. Sci. Springer (1998)
15. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984) 2nd edition availble at.

arXiv:1509.06233
16. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal

Languages. chap. 1, vol. 3, pp. 1–68. Springer (1997)
17. Graehl, J., Hopkins, M., Knight, K., Maletti, A.: The power of extended top-down tree transducers.

SIAM J. Comput. 39(2), 410–430 (2009)
18. Graehl, J., Knight, K., May, J.: Training tree transducers. Comput. Linguist. 34(3), 391–427 (2008)
19. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing.

In: CICLing, LNCS, vol. 3406, pp. 1–24, Springer (2005)
20. Lemay, A., Maneth, S., Niehren, J.: A learning algorithm for top-down XML transformations. In:

PODS. ACM, pp. 285–296 (2010)
21. Maletti, A.: Compositions of extended top-down tree transducers. Inf. Comput. 206(9–10), 1187–

1196 (2008)
22. May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted tree transducers. In:

ACL, pp. 1058–1066 (2010)
23. Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3), 257–287 (1970)
24. Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci. 4(4), 339–367 (1970)

http://www.inf.u-szeged.hu/ fulop/publ/linking.pdf
http://arxiv.org/abs/1509.06233

	Composition Closure of Linear Extended Top-down Tree Transducers
	Abstract
	Introduction
	Preliminaries
	Linear Extended Top-down Tree Transducers
	Four Classes that are Closed at a Finite Power
	Least Power of Closedness
	Infinite Composition Hierarchies
	Hasse Diagram for the -Free Classes
	Conclusion
	References

