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Abstract Weighted automata are non-deterministic automata where the transitions
are equipped with weights. They can model quantitative aspects of systems like
costs or energy consumption. The value of a run can be computed, for example, as
the maximum, average, or discounted sum of transition weights. In multi-weighted
automata, transitions carry several weights and can model, for example, the ratio
between rewards and costs, or the efficiency of use of a primary resource under some
upper bound constraint on a secondary resource. Here, we introduce a general model
for multi-weighted automata as well as a multi-weighted MSO logic. In our main
results, we show that this multi-weighted MSO logic and multi-weighted auto-mata
are expressively equivalent both for finite and infinite words. The translation process
is effective, leading to decidability results for our multi-weighted MSO logic.
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1 Introduction

Recently, multi-priced timed automata [7, 8, 26, 31] have received much attention for
real-time systems. These automata extend priced timed automata by featuring several
price parameters. This permits to compute objectives like the optimal ratio between
rewards and costs [7, 8], or the optimal consumption of several resources where
more than one resource must be restricted [31]. Arising from the model of timed
automata, the multi-weighted setting has also attracted much notice for classical
non-deterministic automata [2, 4, 23, 27].

The goal of the present paper is to develop a multi-weighted monadic second
order (MSO) logic and to show that it is expressively equivalent to multi-weighted
automata.

Büchi’s and Elgot’s fundamental theorems [9, 22] established the expressive
equivalence of finite automata and MSO logic. Weighted MSO logic with weights
taken from an arbitrary semiring was introduced in [13, 14] and it was shown that a
fragment of this weighted logic and semiring-weighted automata on finite and infi-
nite words have the same expressive power [13]. Chatterjee, Doyen, and Henzinger
[11, 12] investigated weighted automata modeling the average and long-time behav-
ior of systems. The behavior of such automata cannot be described directly by
semiring-weighted automata. In [17], valuation monoids were presented to model
the quantitative behaviors of these automata. Their logical characterization was given
in [17]. In this paper, we establish, both for finite and infinite words, the Büchi-
type result for multi-weighted automata; these do not fit into the framework of other
weighted automata like semiring automata [3, 15, 21, 29, 30, 36], or even valuation
monoid automata [17].

The contributions of this paper are the following.

– We develop a general model for multi-weighted automata which incorporates
several multi-weighted settings from the literature [2, 4, 7, 8, 23, 26, 27, 31] as
well as weighted automata over semirings and valuation monoids. In the latter
automata, the behavior is defined by taking the sum of the weights of runs. How-
ever, an interesting different automaton model arises by defining the behavior by
taking the average over the weights of all paths. This model is outside the scope
of weighted automata over semirings and valuation monoids and seems to be
new in the literature. We show that our general model covers this case as well.
As opposed to the model presented in the preliminary version [18], here we do
not put any additional conditions on our algebraic structure and we process the
transition weights in a general way, e.g., by evaluating finite multisets of strings
of weights.

– The ratio measure was considered in [4, 7, 8, 27]. Here we study several algo-
rithmic problems for ratio automata on finite words. We show that the threshold
problem for them is decidable in polynomial time (this result extends the result
of [27]). We also show that the behavior of ratio automata on a given word is
computable in polynomial time (like in the case of, e.g., the tropical semiring or
the semiring of natural numbers).
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– Next, we define a multi-weighted MSO logic by extending the classical MSO
logic with constants which could be tuples of weights. The semantics of formulas
should be single weights (not tuples of weights). Differently fromweightedMSO
logics over semirings or valuation monoids, this makes it impossible to define
the semantics inductively on the structure of an MSO formula. Instead, for finite
words, we introduce an intermediate semantics which maps each word to a finite
multiset containing strings of tuples of weights. The semantics of a formula is
then defined by applying to the multiset semantics an operator which evaluates
a multiset to a single value. We show that our new approach to multi-weighted
MSO logic extends the semiring-weighted MSO logic of [13].

– We characterize multi-weighted automata by a fragment of our multi-weighted
MSO logic. Here, in general, the fragment proposed by [13] for semirings is
more expressive than multi-weighted automata. We put additional restrictions on
the syntax and show the equivalence of this restricted logic and multi-weighted
automata. The proof of this result can be reduced to the case of semirings. How-
ever, we cannot apply directly the result of [13], since we must pay attention to
the weight constants which appear in weighted automata. Therefore, we revisit
the proof of [13] with respect to the suitable constructions.

– We also show that if we add suitable properties to our algebraic weight structure,
the fragment of [13] proposed for semirings also leads to quantitative languages
recognizable by multi-weighted automata. Semirings as well as various weight
measures considered in literature satisfy this property.

– We extend the results obtained to the setting of infinite words. Here, we introduce
a model of multi-weighted Büchi automata as well as multi-weightedMSO logic,
and we establish a Büchi-like equivalence result for them.

All our automata constructions are effective. Thus, decision problems for multi-
weighted logic can be reduced to decision problems of multi-weighted automata.
Some of these problems for multi-weighted automata can be solved whereas for
others the details still have to be explored.

2 Multi-weighted Automata on Finite Words and Decidability Problems

The model of multi-weighted (or multi-priced) automata is an extension of the model
of weighted automata over semirings [3, 15, 21, 29, 30, 36] and valuation monoids
[17] by featuring several price parameters. In the literature, different situations of the
behaviors of multi-weighted automata have been considered (cf. [2, 4, 7, 8, 23, 26,
27, 31]) to model the consumption of several resources. For instance, the model of
multi-priced timed automata introduced in [7] permits to describe the optimal ratio
between accumulated rewards and accumulated costs of transitions. In this section,
we introduce a general model to describe the behaviors of multi-weighted automata
on finite words.

The motivation for a new framework is the following. The existing concepts of
semirings and valuation monoids do not cover the multi-weighted case since the
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weight constants in a multi-weighted automaton are tuples of weights (e.g., the
reward-cost pair) whereas the behavior takes on a single value (e.g., the reward-cost
ratio). Then, the weight of a run in a multi-weighted automaton cannot be defined
by means of a monoidal operation (like in a semiring) or by means of a valuation
function (like in a valuation monoid).

In our framework, we process the transition weights in a general way, i.e., we
take into account all the history of weights and the nondeterminism before we eval-
uate the behavior on a given word. This means that we collect the strings of weights
occurred along runs in a multiset. After that, we use an aggregation function � which
associates to such a multiset a single value. Now we turn to formal definitions.

An alphabet is a non-empty finite set. Let � be a non-empty set (not necessarily
finite). A finite word over� is a finite sequencew = a1...an where n ≥ 0 and ai ∈ �

for all i ∈ {1, ..., n}. If n = 0, then we say that the word w is empty and denote it by
ε. Otherwise, we say that w is non-empty. Let |w| = n, the length of w. We denote
by �∗ the set of all finite words over �. Let �+ = �∗ \ {ε}, the set of all non-empty
words over �. Any set L ⊆ �+ is called a language over �. Note that we eliminate
the empty word ε when considering languages of finite words.

We let N = {0, 1, 2, ...}, the set of nonnegative integers. Let X be a set. A multiset
over X is a mapping μ : X → N. For any multiset μ over X, the support of μ is the
set supp(μ) = {x ∈ X | μ(x) �= 0}. We say that μ is finite if supp(μ) is a finite set.
The set of all finite multisets over X is denoted by N〈X〉. For u ∈ X, let [u] ∈ N〈X〉
denote the finite multiset such that supp([u]) = {u} and [u](u) = 1. Let Y be a set,
f : X → Y a mapping and X′ ⊆ X a finite subset of X. We denote by f [X′] ∈ N〈Y 〉
the multiset such that f [X′](y) = |{x ∈ X′ | f (x) = y}| for all y ∈ Y .

Now we introduce an algebraic structure for multi-weighted automata.

Definition 1 An evaluator is a structure E = (M, K, �) where M, K are non-empty
sets and � : N〈M∗〉 → K is an aggregation function.

Note that in Definition 1 we do not put any conditions on the aggregation function
�.

Definition 2 Let � be an alphabet and E = (M, K, �) an evaluator. A multi-
weighted automaton over � and E is a tupleA = (Q, I, T , F, wt) where Q is a finite
set of states, I ⊆ Q is a set of initial states, T ⊆ Q×� ×Q is a set of transitions,
F ⊆ Q is a set of final states, and wt : T → M is a transition weight function.

Note that the framework of evaluators also permits to handle the situations where
the elements of M are not necessarily tuples of weights and the elements of K are not
necessarily single values. Nevertheless, we will call all models of weighted automata
which fit into our framework multi-weighted, since the multi-weighted setting is the
original motivation of our framework.

Let A be a multi-weighted automaton over � and E. Let CONST(A) = wt(T ) ⊆
M the set of all weight constants of A. An accepting run (or simply run) of A is a

sequence ρ = q0
a1−→ q1

a2−→ ...
an−→ qn such that n > 1, q0 ∈ I , ti := (qi−1, ai, qi) ∈
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T for all 1 ≤ i ≤ n, and qn ∈ F . The finite word label(ρ) := a1...an ∈ �+ is called
the label of ρ. Let RunA denote the set of all accepting runs of A. For any w ∈ �+,
let RunA(w) = {ρ ∈ RunA | label(ρ) = w}.

We define the mapping wt#A : RunA → M∗ as follows. For
each run ρ = t1...tn ∈ RunA with n ≥ 1 and t1, ..., tn ∈ T , we put
wt#A(ρ) = wt(t1)... wt(tn) ∈ M∗. Recall that, for any finite subset X ⊆ RunA, we
have wt#A[X] ∈ N〈M∗〉. Then, the behavior of A is the mapping [[A]] : �+ → K

defined for all w ∈ �+ by [[A]](w) = �(wt#A[RunA(w)]). A mapping L : �+ → K

is called a quantitative language. We say that L is recognizable over E if there exists
a multi-weighted automaton A over � and E such that [[A]] = L.

Since we ignore the empty word, it suffices to define � only on finite multisets
containing only non-empty strings of the same length. However, the use of N〈M∗〉
will simplify our further considerations.

Now we consider several examples how to describe the behavior of weighted and
multi-weighted automata known from the literature using evaluators.

Example 1 The model of double-weighted reward-cost ratio automata
(cf. [4, 7, 8, 27, 28]) can be described by means of the evaluator
E
RATIO = (M,Q ∪ {∞}, �RATIO). Here, M = Q × Q≥0 and �RATIO is defined for

every μ ∈ N〈M∗〉 as �RATIO(μ) = min
{

r1+...+rk
c1+...+ck

∣∣ (r1, c1)...(rk, ck) ∈ supp(μ)
}

where we put
∑

(∅) = 0 and r
0 = ∞ for all r ∈ Q. Then in a multi-weighted

automaton A over � and E
RATIO, transitions have a reward and a cost, and [[A]](w)

is the minimal ratio between the total reward and the total cost of a run for w.

Example 2 Now we consider model of double-priced automata with the opti-
mal conditional reachability objective [31] (cf. also the multi-constraint rout-
ing problem [33]). Here, the first price parameter is called the primary cost
and the second price parameter is called the secondary cost. The goal is to
minimize the accumulated primary cost under some upper bound on the accu-
mulated secondary cost. Since this objective is similar to the objective of the
well known knapsack problem, we will call these automata knapsack automata.
We define the evaluator for knapsack automata as follows. Let η ∈ Q≥0
be a secondary cost bound. Then, consider E

KNAP(η) = (M,Q ∪ {∞}, �KNAP(η))

where M = Q × Q and �KNAP(η) is defined for all μ ∈ N〈M∗〉 by

�KNAP(η)(μ) = min
{∑k

i=1xi | (x1, y1)...(xk, yk) ∈ supp(μ) ∧∑k
i=1yi ≤ η

}
, with

min ∅ = ∞.

Example 3 Here, we consider the model of multi-weighted automata with dis-
counting. In this model, there are two weight parameters: the cost and the dis-
counting factor (which is not fixed and depends on a transition). This situation
was considered in [1] (cf. also the models of weighted automata [11, 12, 16]
and weighted timed automata [24, 25] with the fixed discounting factor). A dis-
counting automaton can be considered as a multi-weighted automaton over the
evaluator EDISC = (M,Q ∪ {∞}, �DISC) with M = Q× (Q ∩ (0, 1]) where �DISC
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is defined by �DISC(μ) = min
{∑k

i=1 ci ·∏i−1
j=1 dj

∣∣ (c1, d1)...(ck, dk) ∈ supp(μ)
}

for all μ ∈ N〈M∗〉. Here, ∑(∅) = ∞ and
∏

(∅) = 1.

Example 4 The following quantitative automaton model seems to be new. In
weighted automata over semirings [15] and valuation monoids [17], the behav-
ior is defined by summing up the weights of accepting runs. However, it could
be interesting to define the behavior by taking the average of the weights of all
runs. This average measure could be useful in cases when we take into account not
only the weights of runs but also how often these weights may occur. This aver-
age setting can be describe by means of the evaluator EAVG = (Q,Q ∪ {∞}, �AVG)

where the aggregation function �AVG is defined for all μ ∈ N〈Q∗〉 by
�AVG(μ) = 1

|μ| ·
∑

(μ(u) · (x1 + ...+ xk) | u := x1...xk ∈ supp(μ)) where we put
r
0 = ∞ for all r ∈ Q. Here, |μ| =∑

(μ(u) | u ∈ supp(μ)) is the size of μ.

Example 5 This example is, to the best of our knowledge, new in this context.
However, a similar concept might have been considered in different settings. Let
M = R

n for some n ≥ 1 and K = R≥0 ∪ {∞}. Consider the evaluator
E
DISP(n) = (M, K, �DISP(n)) where �DISP(n) : N〈M∗〉 → K is defined as follows.

For v1, v2 ∈ M , let (v1 + v2) ∈ M be the componentwise sum of vectors. For a vec-

tor v = (v1, ..., vn) ∈ M , let ||v|| =
√

v21 + ...+ v2n, the length of v. Then, for every
μ ∈ N〈M∗〉, we put

�DISP(n)(μ) = 1

|μ| ·
∑

(μ(u) · ||v1 + ...+ vk|| | u := v1...vk ∈ supp(μ))

where r
0 = ∞ for all r ∈ R. Suppose that A controls the movement of some object

in R
n and each transition carries the coordinates of the displacement vector of this

object. Then, the behavior ofA is the value of the average displacement of the object
after executing w.

Example 6 Semiring-weighted automata (cf. [15] for surveys) also fit into the frame-
work of evaluators. Given a semiring S = (S,+, ·, 0, 1), a weighted automaton
over S can be considered as a multi-weighted automaton over the evaluator ES =
(S, S, �S) where the aggregation function �S is defined as follows. For any multiset

μ ∈ N〈S∗〉, we put �S(μ) =∑(
μ(u) ·∏k

j=1 sj | u := s1...sk ∈ supp(μ)
)

, where,∑
(∅) = 0,

∏
(∅) = 1 and n · s = s + ...+ s (n summands) for n ∈ N, s ∈ S.

Example 7 A valuation monoid is a tuple M = (M,+, val, 0) where (M,+, 0)
is a commutative monoid and val : M+ → M is a valuation function with
val(m1, ..., mn) = 0 whenever mi = 0 for some i ∈ {1, ..., n}. Weighted automata
over valuation monoids were considered in [17]. We can understand each weighted
automaton over M as a multi-weighted automaton over EM = (M, M, �M) where
the aggregation function �M is defined for each finite multiset μ ∈ N〈M∗〉
by �M(μ) =∑

(μ(u) · val(m1, ..., mk) | u := m1...mk ∈ supp(μ)). Here, val(ε) is
defined arbitrarily.
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Remark 1 Note that our model of evaluating multi-weighted automata using aggre-
gation functions is very general. Indeed, given an alphabet � and a non-empty set
K , for every quantitative language L : �+ → K (even not computable) there exists
an evaluator EL such that L is recognizable over EL. For this, fix k0 ∈ K and
let EL = (�, K, �L) where �L : N〈�∗〉 → K is defined for all μ ∈ N〈M∗〉 by
�L(μ) = L(w) if μ = [w] for some w ∈ �+ and �L(μ) = k0 otherwise. Con-
sider the multi-weighted automaton A = ({1}, {1}, {1} × � × {1}, {1},wt) over �

and E
L such that wt((1, a, 1)) = a for all a ∈ �. It is straightforward to see that

wt#A(RunA(w)) = [w] for all w ∈ �+ and hence [[A]] = L. Then L is recognizable
over EL.

The generality of our framework is motivated by the fact that it reflects the over-
all idea of computations in multi-weighted automata and does not appeal to concrete
properties of concrete multi-weighted settings. Moreover, as we will see later in
this paper, the use of our framework in the context of multi-weighted MSO logic
permits to show its close relationship to the setting of semirings. In real word exam-
ples the aggregation function should be concretely given and certainly should be
computable.

As mentioned before, the goal of this paper is to give a logical characteriza-
tion of multi-weighted automata, i.e., we will develop a logical formalism for the
multi-weighted properties and an effective translation into multi-weighted automata.
As a motivation for our new logic, we consider in the rest of this section several
algorithmic problems for multi-weighted automata which can be carried over to the
logic.

Let A = (Q′, I, T , F,wt) be a reward-cost ratio automaton over an alphabet �.
For every transition t ∈ T , assume that wtt = (rt , ct ). For a run ρ = t1...tn ∈ RunA
with t1, ..., tn ∈ T , we let COST(ρ) = ∑n

i=1 cti and REWARD(ρ) = ∑n
i=1 rti . We

start with the following technical lemma.

Lemma 1 Let A = (Q, I, T , F,wt) be a reward-cost ratio automaton over
an alphabet �. Then there exists a reward-cost ratio automaton A′ =
(Q′, I ′, T ′, F ′,wt′) over � such that [[A′]] = [[A]], |Q′| = 2 · |Q| and COST(ρ) > 0
for every run ρ ∈ RunA′ .

Proof The idea of the construction of A′ is to label each state of A with the Boolean
flag whose initial value is 0 and its value is switched to 1 whenever a transition with
the strictly positive cost is taken. Then, A′ accepts only such runs of A whose flags
have been switched to 1. We define A′ formally as follows:

– Q′ = Q× {0, 1}, I ′ = I × {0}, F ′ = F × {1}.
– T ′ consists of all transitions t ′ := ((p, i), a, (q, j)) such that t := (p, a, q) ∈ T ,

i, j ∈ {0, 1} and one of the following conditions holds:
– i = j = 0 and ct = 0;
– i = 0, j = 1 and ct > 0;
– i = j = 1.
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For such a transition t ′, we let wt′(t ′) = wt(t).

Then, it can be easily checked that [[A′]] = [[A]] and COST(ρ) > 0 for every run
ρ ∈ RunA′ .

Using Lemma 1 and a straightforward extension of the proof of Theorem 3 of [27],
we obtain:

Lemma 2 Let ERATIO be the evaluator of Example 1, �� ∈ {<,≤} and θ ∈ Q

a threshold. Then, it is decidable in polynomial time, given an alphabet � and a
reward-cost ratio automaton A over �, whether there exists a word w ∈ �+ such
that [[A]](w) �� θ .

Now we turn to the problem of evaluation of the behavior of reward-cost ratio
automata on an input word. Note that, for instance, for the tropical semiring, the
behavior of a weighted automaton can be evaluated efficiently (in polynomial time)
by matrix multiplications. The distributivity property of the tropical semiring is cru-
cial for this method. In the case of ratio automata, we do not have distributivity and
the method of matrix multiplications is not applicable. Note that, for a given word,
there can be exponentially many runs. Hence, the naive algorithm which computes
the weights of all runs is an exponential time algorithm. Interestingly, we can still
evaluate the behavior of ratio automata in polynomial time.

Lemma 3 Given an alphabet �, a reward-cost ratio automaton A over � and a
word w ∈ �+, the value [[A]](w) can be computed in polynomial time.

Proof Our algorithm will be based on the idea of the minimization of rational func-
tions presented in [32]. By Lemma 1, we may assume that, for the reward-cost ratio
automaton A = (Q, I, T , F,wt), we have: COST(ρ) > 0 for all ρ ∈ RunA(w). In
order to avoid confusion, we denote the behavior of A by [[A]]RATIO.

First, using the product of Boolean matrices, we can check in time O(|Q|2 · |w|)
whether RunA(w) = ∅. In this case, [[A]]RATIO(w) = ∞. Now assume that
RunA(w) �= ∅. Then, for θ = [[A]]RATIO(w) = min

ρ∈RunA(w)

REWARD(ρ)
COST(ρ)

, we have

min
ρ∈RunA(w)

REWARD(ρ)−θ ·COST(ρ)
COST(ρ)

= 0. Let ϕ : Q→ Q be defined for all x ∈ Q by

ϕ(x) = min
ρ∈RunA(w)

(REWARD(ρ)− x · COST(ρ))

Note that the equation ϕ(x) = 0 has the unique solution θ . Then, our task of
computing [[A]]RATIO(w) is equivalent to the task of finding this solution.

First, we mention an interesting property of the mapping ϕ. Let x ∈ Q be such
that ϕ(x) > 0. Then, for any run ρ ∈ RunA(w), we have: REWARD(ρ)

COST(ρ)
> x and hence

θ > x. Now assume that ϕ(x) < 0. Then, there exists a run π ∈ RunA(w) such that
REWARD(π) − x · COST(π) < 0 which implies θ ≤ REWARD(π)

COST(π)
< x. Hence, the

following holds true:

∀x ∈ Q : ((ϕ(x) > 0→ θ > x) ∧ (ϕ(x) < 0→ θ < x)). (1)
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Let x ∈ Q be a parameter. We consider the semiring-weighted automaton
A′(x) = (Q, I, T , F,wt′(x)) over � and the tropical semiring TROP = (Q ∪
{∞},min,+,∞, 0) of rational numbers where wt′(x) : T → Q is defined as fol-
lows. For any t ∈ T with wt(t) = (r, c), we put wt′(x)(t) = r − x · c. We denote the
behavior ofA′(x) by [[A′(x)]]TROP. Clearly, [[A′(x)]]TROP(w) = ϕ(x). Then, our task
is to find x ∈ Q with [[A′(x)]]TROP(w) = 0.

Fix a enumeration (qi)1≤i≤|Q| of Q and consider a matrix representation
(γ, μ(x), ν) of A′(x) defined as follows.

– Let γ = (γ1, ..., γ|Q|) ∈ {0,∞}1×|Q| be the row vector defined for all

i ∈ {1, ..., |Q|} by γi =
{
0, if qi ∈ I,

∞, otherwise.
– Let μ(x) : � → (Q∪{∞})|Q|×|Q| map every letter a ∈ � into the square matrix

μ(x)(a) = (mij )1≤i,j≤|Q| with

mij =
{
wt′(x)(qi, a, qj ), if (qi, a, qj ) ∈ T ,

∞, otherwise

for all i, j ∈ {1, ..., |Q|}.
– Let ν = (ν1, ..., ν|Q|)T ∈ {0,∞}|Q|×1 be the column vector defined for all

i ∈ {1, ..., |Q|} by νi =
{
0, if qi ∈ F,

∞, otherwise.

Let w = a1...a|w|. It is known from the theory of weighted automata (cf., e.g.,
[15]) that

[[A′(x)]]TROP(w) = γ · [μ(x)(a1)] · ... · [μ(x)(a|w|)] · ν (2)

where the product · of matrices is defined with respect to the semiring TROP. Then,
for a fixed x ∈ Q, [[A′(x)]]TROP(w) can be computed using O(|Q|2 · |w|) additions
and O(|Q|2 · |w|) comparisons of rational numbers.

Our goal is to compute ϕ(θ) = [[A′(θ)]]TROP (where θ is unknown and will be
considered as parameter) and to solve the equation ϕ(θ) = 0. The basic idea of our
parametric computation relies on the fact that ϕ : Q → Q is a piecewise linear
function, i.e., in some neighborhood I of θ (i.e., {θ} ⊆ I ⊆ Q) it is of the form
ϕ(x) = a−b ·x for some a, b ∈ Q. Then, since θ is the unique solution of ϕ(x) = 0,
we have b �= 0 and θ = a

b
, and we are done.

Using Eq. 2, we will compute [[A′(x)]]TROP(w) with parameter x whose value
is taken from some neighborhood I of θ . Note that the entries of γ , μ(x)(a1), ...,
μ(x)(a|w|) and ν either can be considered as linear functions of the form a − b · x
with a, b ∈ Q or they are the infinity symbol∞. We denote a linear function of the
form a − b · x where a, b ∈ Q and x is a variable by �a,b(x).

It remains to show how to implement the operations + and min of the tropical
semiring for the linear functions �a,b(x) and∞. First, we show how to implement+.
Let a1, b1, a2, b2 ∈ Q.

– We let �a1,b1(x) + ∞ = ∞ + �a1,b1(x) = ∞, since, for every fixed x ∈ Q,
�a1,b1(x) ∈ Q and, in the semiring TROP, we have r +∞ =∞+ r = ∞ for all
r ∈ Q.
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– We let �a1,b1(x)+�a2,b2(x) = �a1+a2,b1+b2(x). Indeed, for every fixed x ∈ Q, we
have �a1,b1(x)+�a2,b2(x) = (a1−b1 ·x)+(a2−b2 ·x) = (a1+a2)−(b1+b2)·x =
�a1+a2,b1+b2(x).

The most interesting and complicated part of the proof is the implementation of
the minimum operation for linear functions. The main difficulty is that the pointwise
minimum of two linear parametric expressions can be a piecewise linear function.
However, for our purpose it is enough to compute the minimum in some neighbor-
hood of θ . Note that, by Eq. 1, given a point x ∈ Q, the computation of ϕ(x) gives
us the following information about the location of θ .

– If ϕ(x) = 0, then [[A]]RATIO(w) = θ = x and θ is found. So we stop the
computation.

– If ϕ(x) > 0, then θ is located in the interval (x,∞).
– If ϕ(x) < 0, then θ is located in the interval (−∞, x).

Based on this, after computing ϕ(x) we can refine the neighborhood of θ . We
will use this refinement technique for the computation of the minimum of two linear
parametric expressions in some neighborhood of θ .

Note that, for all a, b ∈ Q and each value of the parameter x, we have:
min(∞, �a,b(x)) = min(�a,b(x),∞) = �a,b(x) and min(�a,b(x), �a,b(x)) =
�a,b(x). Suppose now that f = �a1,b1(x) and g = �a2,b2(x) be two distinct linear
functions and that we know that θ is contained in some neighborhood I = (u, v)

with−∞ ≤ u < θ < v ≤ ∞. Then, we refine the neighborhood I ′ of θ and compute
the minimum minI ′(f, g) in the new neighborhood I ′ as follows. We distinguish the
following cases (a) - (d). The ideas of these cases are depicted in Fig. 1 (in the cases
(a) - (c), minI ′(f, g) is denoted by the thick line)

(a) Assume that f and g do not have a crossing point in I. Then, one of the
lines f (x) and g(x) is strictly higher than the other in the neighborhood I and
there is no need to refine I. Then we let I ′ = I, fix a point y ∈ I ′ and let

minI ′(f, g) =
{

f, if a1 − b1 · y < a2 − b2 · y,

g, otherwise.
(b) Assume that f and g have the crossing point x ∈ I and ϕ(x) > 0. Then,

θ is located in the interval I ∩ (x,∞) and we put I ′ = I ∩ (x,∞). Note
that one of the lines f and g is strictly higher than the other in I ′. So, we put
minI ′(f, g) =

{
f, if b2 < b1,

g, otherwise.
(c) Assume that f and g have the crossing point x ∈ I and ϕ(x) < 0. This

case is symmetric to (b). We put I ′ = I ∩ (−∞, x) and minI ′(f, g) ={
f, if b1 < b2,

g, otherwise.
(d) Assume that f and g have the crossing point x ∈ I and ϕ(x) = 0. Then, θ = x.

So we can return x as the value of [[A]]RATIO(w) and stop the computation.

Then, we start with the neighborhood I = Q and compute [[A′(x)]]TROP(w) using
Eq. 2 where whenever we need to take the minimum of two distinct linear functions
f, g, we refine the neighborhood I ′ of θ and take minI ′(f, g). If the case (d) holds
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Fig. 1 Computation of I ′ and minI′ (f (x), g(x))

when computing minI ′(f, g), we return [[A]]RATIO(w) = x. If the case (d) never
happens, we obtain as the result a linear function of the form a − b · x. Then, we
return [[A]]RATIO(w) = a

b
(note that, as discussed before, b �= 0).

Note that [[A′(x)]]TROP can be computed using O(|Q|2 · |w|) additions of linear
functions and O(|Q|2 · |w|) applications of minI ′(f, g) which requires O(|Q|2 · |w|)
additions andO(|Q|2·|w|) comparisons of rational numbers. Then, [[A]]RATIO(w) can
be computed using O(|Q|4 · |w|2) additions and O(|Q|4 · |w|2) comparisons of ratio-
nal numbers. If we assume that the operations with rational numbers are performed
in time O(1) (e.g., the set of transition weights is constant), then [[A]]RATIO(w) can
be computed in time O(|Q|4 · |w|2).

Now consider a more general case. Assume that we represent each rational num-
ber as a pair r = (p, q) where p ∈ Z and q ∈ N \ {0}. We use the binary
encoding of integers and define the size of r by |r| = max(�log |p|�, �log q�). Let
R = maxr∈wt(T )∪{0} |r|. Note that all rational numbers which will occur in the com-
putation are of size O(|Q|4 · |w|2 · |r|) (since the sum and the product of two rational
numbers r1, r2 ∈ Q is of size O(|r1| + |r2|). Since the sum and the product of two
rational numbers r1, r2 ∈ Q can be computed in time O(|r1|·|r2|), then [[A]]RATIO(w)

can be computed in time O(|Q|12 · |w|6 · |r|2). Then, our algorithm has polynomial
time complexity.

3 Multi-weighted MSO Logic on Finite Words

In this section, we wish to develop a multi-weighted MSO logic where the weight
constants are elements of a setM . Again, if weight constants are pairs of a reward and
a cost, we want the semantics of formulas to be able to reflect the minimal reward-
cost ratio setting, so the weights of formulas should be single weights. Then, there
arises a problem to define the semantics function inductively on the structure of a
formula as in [13]. Therefore we proceed as follows. Given a formula, we associate
to each word a multiset in N〈M∗〉. Here, for disjunction and existential quantification
we use the multiset union. For conjunction and universal quantification, we extend
the concatenation of strings in M∗ to the Cauchy product of multisets in N〈M∗〉.
Then, we use an aggregation function � : N〈M∗〉 which associates to each multiset
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of elements a single value (e.g. the maximal reward-cost ratio of pairs contained in a
multiset).

For the rest of this section, we fix an alphabet � and an evaluator E = (M, K, �)

where � : N〈M∗〉 → K is an aggregation function. We fix countable and pairwise
disjoint sets V1 and V2 of first-order resp. second-order variables. The first-order
variables are denoted by lower-case letters, e.g., x, y, z, ... whereas the second-
order variables are denoted by upper-case letters, for instance, X, Y,Z, ... . Let
V = V1 ∪ V2.

The syntax of formulas ofmwMSO(�,E), the multi-weighted MSO logic over �

and E, is given as in [5] by the grammar

β ::= Pa(x) | x ≤ y | X(x) | β ∨ β | ¬β | ∃x.β | ∃X.β

ϕ ::= β | m | ϕ ⊕ ϕ | ϕ ⊗ ϕ |⊕x.ϕ |⊕X.ϕ |⊗x.ϕ
(3)

where a ∈ �, m ∈ M , x, y ∈ V1 and X ∈ V2. The formulas β are called Boolean for-
mulas and the formulas ϕ are called multi-weighted formulas. Let MSO(�) denote
the set of all Boolean formulas.

Let ϕ ∈ mwMSO(�,E) be a formula. We will denote by Free(ϕ) the set of all
free variables of ϕ, i.e., the set of those variables in ϕ not bound by a quantifier. Then,
we say that ϕ is a sentence if Free(ϕ) = ∅. Let CONST(ϕ) ⊆ M denote the set of all
weight constants appearing in ϕ. Notice that if ϕ ∈MSO(�), then CONST(ϕ) = ∅.

A word w = a1...an ∈ �+ is usually represented by the relational structure
(dom(w),≤, (Pa)a∈�) where dom(w) = {1, ..., n} is the domain of w and, for all
letters a ∈ �, Pa = {i ∈ dom(w) | ai = a}. Aw-assignment σ is a function mapping
first-order variables in V1 to elements of dom(w) and second-order variables in V2
to subsets of dom(w). If x ∈ V1 and i ∈ dom(w), then the update σ [x/i] is the w-
assignment with σ [x/i](x) = i and σ [x/i](y) = σ(y) for all y ∈ V \ {x}. Similarly,
for X ∈ V2 and I ⊆ dom(w), we define the update σ [X/I ] to be the w-assignment
with σ [X/I ](X) = I and σ [X/I ](y) = σ(y) for all y ∈ V \ {X}. We denote by �+V
the set of all pairs (w, σ ) where w ∈ �+ and σ is a w-assignment. We notice that
�+V is not (�V )+. Let (w, σ ) ∈ �+V and β ∈ MSO(�) be a Boolean formula. The
definition that (w, σ ) satisfies β, denoted (w, σ ) |= β, is given inductively on the
structure of β as usual.

Let μ1, μ2 ∈ N〈M∗〉 be multisets. The union (μ1 � μ2) ∈ N〈M∗〉 is defined by
(μ1�μ2)(u) = μ1(u)+μ2(u) for all u ∈ M∗. Clearly, the union � is a commutative
operation. The Cauchy product (μ1 · μ2) ∈ N〈M∗〉 is defined for all u ∈ M∗ as

(μ1 · μ2)(u) =
∑

(μ1(u1) · μ2(u2) | u1 ∈ supp(μ1), u2 ∈ supp(μ2), u = u1u2).

We use the Cauchy product for the semantics of multi-weighted formulas in order to
reflect the concatenation of the sequences of weights. The empty multiset μ ∈ N〈M∗〉
is defined as μ(u) = 0 for all u ∈ M∗. We will abuse the notation and denote the
empty multiset by ∅. The following proposition is a folklore result.

Proposition 1 (N〈M∗〉,�, ·, ∅, [ε]) is a semiring.

We will denote the semiring from Proposition 1 also by N〈M∗〉.
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Table 1 The auxiliary semantics of multi-weighted formulas

〈〈m〉〉(w, σ ) = [m]
〈〈β〉〉(w, σ ) =

{
[ε], if(w, σ ) |= β,

∅, otherwise

〈〈ϕ1 ⊕ ϕ2〉〉(w, σ ) = 〈〈ϕ1〉〉(w, σ ) � 〈〈ϕ2〉〉(w, σ )

〈〈ϕ1 ⊗ ϕ2〉〉(w, σ ) = 〈〈ϕ1〉〉(w, σ ) · 〈〈ϕ2〉〉(w, σ )

〈〈⊕x.ϕ〉〉(w, σ ) =⊎
(〈〈ϕ〉〉(w, σ [x/i]) | i ∈ dom(w))

〈〈⊕X.ϕ〉〉(w, σ ) =⊎
(〈〈ϕ〉〉(w, σ [X/I ]) | I ⊆ dom(w))

〈〈⊗x.ϕ〉〉(w, σ ) =∏
(〈〈ϕ〉〉(w, σ [x/i]) | i ∈ dom(w))

Now let ϕ ∈ mwMSO(�,E) be a multi-weighted formula. We define the
semantics of ϕ in two steps as follows:

– First, the auxiliary semantics 〈〈ϕ〉〉 : �+V → N〈M∗〉 is defined for all
(w, σ ) ∈ �+V inductively on the structure of ϕ as shown in Table 1. Here,m ∈ M ,
β ∈MSO(�), x ∈ V1 and X ∈ V2. Note that 〈ϕ〉 does not depend on K and �.

– Second, the proper semantics (or simply semantics) [[ϕ]] : �+V → K is defined
for all (w, σ ) ∈ �+V by [[ϕ]](w, σ ) = �(〈ϕ〉(w, σ )).

Sometimes, in order to emphasize that the semantics of a multi-weighted for-
mula ϕ ∈ mwMSO(�,E) is defined with respect to E, we will write [[ϕ]]E for
[[ϕ]]. Now let ϕ ∈ mwMSO(�,E) be a sentence. Then, for any (w, σ ) ∈ �+V ,
the value [[ϕ]](w, σ ) depends only on w. Then, ignoring the values of variables, we
can consider 〈〈ϕ〉〉 as the mapping 〈〈ϕ〉〉 : �+ → N〈M∗〉 and [[ϕ]] as the mapping
[[ϕ]] : �+ → K . Let � ⊆ mwMSO(�,E) and L : �+ → K a quantitative
language. We say that L is �-definable if there exists a sentence ϕ ∈ � such that
[[ϕ]] = L.

Let β ∈ MSO(�) and ϕ1, ϕ2 ∈ mwMSO(�,E). Like in [6], we can define
the mwMSO(�,E)-formula β ? (ϕ1 : ϕ2) as an abbreviation for the formula
(β ⊗ ϕ1)⊕ ((¬β)⊗ ϕ2).

Example 8 Let A be an object on the plane whose displacement is managed by two
types of commands: ↔ and �. After receiving the command ↔ the object moves
one step to the left or to the right; after receiving � one step up or down. Consider
the evaluator EDISP(n) from Example 5 for n = 2. Let v← = (−1, 0), v→ = (1, 0),
v↓ = (0,−1) and v↑ = (0, 1). Consider the following multi-weighted MSO sentence
over the alphabet � = {↔,�} and the evaluator EDISP(n):

ϕ =⊗
x.(P↔(x) ? (v← ⊕ v→) : (v↓ ⊕ v↑))

Then, for every sequence of commandsw ∈ �+, [[ϕ]](w) is the average displacement
of the object after execution of all commands from w. For instance, let w =↔↔.
Then, 〈ϕ〉(w) = [v←v←] � [v←v→] � [v→v←] � [v→v→] and [[ϕ]](w) = 1. For
w =↔�, we have [[ϕ]](w) = √2.
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Next, we discuss how our new multi-weighted MSO logic is related to the
semiring-weighted logic of Droste and Gastin [13]. Let S = (S,+, ·, 0, 1) be a semi-
ring. The syntax of weighted MSO logic wMSO(�, S) is given by the grammar of
Eq. 3 where we replace m ∈ S by s ∈ S. As opposed to the multi-weighted case,
the semantics [[ϕ]]S : �+V → S of a weighted MSO formula ϕ ∈ wMSO(�, S) was
defined in one step using the weights 0, 1 for the Boolean values, the sum + for ⊕,
and the product · for ⊗. More precisely, the semantics can be defined as shown in
Table 1 where we replace 〈〈...〉〉 by [[...]]S, m ∈ M by s ∈ S, [m] by s, ∅ by 0, [ε] by 1,
and � by +. Given a formula ϕ ∈ wMSO(�, S), the set CONST(ϕ) ⊆ S is defined
as formwMSO-formulas.

As we saw in Example 6, a semiring S can be considered as the evaluator
E
S = (S, S, �S). The following lemma shows that our multi-weighted MSO logic

extends the semiring-weighted logic of [13].

Lemma 4 Let � be an alphabet, S a semiring and ϕ ∈ wMSO(�, S). Then,
ϕ ∈ mwMSO(�,ES) and [[ϕ]]ES = [[ϕ]]S.

Assume that S = (S,+, ·, 0, 1). The proof of Lemma 4 follows from the following
technical lemma.

Lemma 5 The mapping �S : (N〈S∗〉,�, ·, ∅, [ε])→ (S,+, ·, 0, 1) is a semiring
morphism with �S([s]) = s for all s ∈ S.

Proof Clearly, �S(∅) = 0, �S([ε]) = 1 and �S([s]) = s for all s ∈ S. Let
μ1, μ2 ∈ N〈S∗〉. It can be easily shown that �S(μ1 � μ2) = �S(μ1)+�S(μ2). We
show explicitly that �S(μ1 · μ2) = �S(μ1) · �S(μ2). Let g : (S∗, ·, ε) → (S, ·, 1)
be the monoid morphism with g(s) = s for all s ∈ S and μ1, μ2 ∈ N〈S∗〉. Then:

�S(μ1) ·�S(μ2) =
(∑

u∈S∗
μ1(u) · g(u)

)
·
(∑

v∈S∗
μ2(v) · g(v)

)

=
∑

u,v∈S∗
(μ1(u) · μ2(v)) · (g(u)g(v)) =

∑
w∈S∗

(μ1 · μ2)(w) · g(w)

= �S(μ1 · μ2).

The following example illustrates a situation where the use of multi-weighted
MSO logic is more convenient than the use of semiring-weighted MSO logic.

Example 9 Let � be an alphabet and a ∈ �. Consider the quantitative language
L : �+ → Q∪{∞} defined for every w ∈ �+ as L(w) = 2 · |w|a if |w| ≤ 1000 and
L(w) = ∞ otherwise. We can define L by means of the wMSO(�, TROP)-sentence
β ⊗⊗

x.(Pa(x) ? (2 : 0)) where TROP is the tropical semiring or rational numbers
and β ∈MSO(�) describes the property |w| ≤ 1000. Unfortunately, such a formula
β will be very long and the use of semiring-weighted MSO logic is not convenient.
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Here, it is easier to use our multi-weighted MSO logic. Let η = 1000. Consider
the evaluator E

KNAP(η) = (Q×Q,Q ∪ {∞}, �KNAP(η)) as defined in Example 2.
Then, L = [[ϕ]] where ϕ is the sentence ϕ ∈ mwMSO(�,EKNAP(η)) defined as
ϕ =⊗

x.(Pa(x) ? (2, 1) : (0, 1)).

Next, we present a Büchi-like result of Droste and Gastin [13] for semiring-
weighted MSO logic in order to compare it with our results in the sequel. Since
weightedMSO logic is more powerful than weighted automata (cf. [13]), we consider
a restricted version of weighted MSO logic. Let S = (S,+, ·, 0, 1) be a semiring.
The set aBOOL(�, S) of almost Boolean formulas is generated by the grammar

γ ::= β | s | γ ⊕ γ | γ ⊗ γ

where β ∈ MSO(�) and s ∈ S. For a subset X ⊆ S, let cl(X) denote the minimal
subset of S which contains X∪{0, 1} and is closed under+ and ·. For subsets X, Y ⊆
S, we say that X and Y commute elementwise, if x · y = y · x for all x ∈ X and
y ∈ Y . The set wMSOres(�, S) ⊆ wMSO(�, S) of syntactically restricted formulas
is defined by the rules

ϕ ::= γ | ϕ ⊕ ϕ | ϕ ⊗ ϕ (!) |⊕x.ϕ |⊕X.ϕ |⊗x.γ

where γ ∈ aBOOL(�, S), x ∈ V1 and X ∈ V2; moreover, there is an additional
restriction at the place (!): a formula ϕ1 ⊗ ϕ2 belongs to wMSOres(�, S) iff the sets
CONST(ϕ1) and CONST(ϕ2) commute elementwise.

Theorem 1 (Droste, Gastin [13]) Let � be an alphabet, S = (S,+, ·, 0, 1) a semi-
ring, and L ∈ S〈〈�+〉〉 a quantitative language. Then, L ∈ REC(�, S) iff L is
wMSOres(�, S)-definable.

4 Multi-weighted MSO Logic Versus Multi-weighted Automata

In this section we will compare the expressive power of multi-weighted MSO logic
and multi-weighted automata. Even for the case of a semiring, weighted MSO logic
is more expressive than semiring-weighted automata (cf. [13]). As we will see in
the next example, if we consider the restricted fragment wMSOres(�, S) for multi-
weighted logic, it is, in general, more expressive than multi-weighted automata.

Example 10 Here, we will consider examples of multi-weighted sentences which
lead to unrecognizable quantitative languages. Let � be an arbitrary alphabet. Con-
sider the evaluator E = (M,N〈M∗〉, �) where M is an arbitrary non-empty set and
� : N〈M∗〉 → N〈M∗〉 is the identity mapping. Let L : �+ → N〈M∗〉 be any quanti-
tative language recognizable over E. Then, for all w ∈ �+, CONST(L(w)) ⊆ M |w|.
Based on this property, we show the unrecognizability of the semantics of the
following sentences:

– Let ϕ = m where m ∈ M . Then, for all w ∈ �+, [[ϕ]](w) = [m]. Then, for
all w ∈ �+ with |w| > 1, we have: supp([[ϕ]](w)) ∩ M |w| = ∅. Hence, the
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quantitative language [[ϕ]] is not recognizable. In contrast, in semiring-weighted
logic of [13] the semantics of a constant is always recognizable by a semiring-
weighted automaton.

– Let ϕ = TRUE. Then, [[ϕ]](w) = [ε] for all w ∈ �+. Clearly, [[ϕ]] is not recog-
nizable over E. In contrast, in semiring-weighted logic of [13] the semantics of
a Boolean sentence is always recognizable by a semiring-weighted automaton.

– Let ϕ =⊗
x.m where x ∈ V1. Then, [[ϕ]](w) = [m|w|] for all w ∈ �+. Clearly,

[[ϕ]] is recognizable over E. Note that, for all w ∈ �+, [[ϕ ⊗ ϕ]](w) = [m2|w|].
Then, [[ϕ⊗ϕ]] is not recognizable over E. Here, the situation is similar to the case
of semirings, since, as it was shown in [14], the use of ⊗ for noncommutative
semirings may not preserve recognizability.

– Let ϕ = ⊗
x.

⊗
y.m where x, y ∈ V1 and m ∈ M . Then, [[ϕ]](w) = [m|w|2]

for all w ∈ �+. Again, [[ϕ]] is not recognizable over E. Note that in the case
of semirings the nested use of the weighted first-order universal quantifier often
leads to unrecognizability [13].

Hence Theorem 1 cannot be easily extended to the multi-weighted setting. Our
next task is to find a restricted fragment of mwMSO(�,E) which is expressively
equivalent to multi-weighted automata. First, we analyze Example 10. Here, besides
the standard restrictions on ⊗ and

⊗
x, we must pay attention to the length of the

strings in the multisets of the auxiliary semantics: it must be equal to the length of an
input word.

For multi-weighted MSO logic, instead of the almost Boolean fragment
aBOOL(�,E), we consider the fragment aBOOLres(�,E) of restricted almost
boolean formulas which is defined by the grammar:

γ ::= m | γ ⊕ γ | β ⊗ γ.

Note that, for each (w, σ ) ∈ �+V , supp(〈〈γ 〉〉(w, σ )) ⊆ M .
Then, we define the strongly restricted multi-weighted MSO logic

mwMSOs.res(�,E) ⊆ mwMSO(�,E) over � and E to be the set of all formulas
generated by the grammar

ϕ ::= ⊗
x.γ | ϕ ⊕ ϕ | β ⊗ ϕ |⊕x.ϕ |⊕X.ϕ

where x ∈ V1, X ∈ V2, β ∈ MSO(�) and γ ∈ aBOOLres(�,E). Note
that the multi-weighted sentences from Examples 8 and 9 are strongly restricted.
We call this fragment strongly restricted to avoid confusion with the definition of
restricted semiring-weighted MSO logic. For a semiring S, let aBOOLres(�, S) =
aBOOLres(�,ES) and wMSOs.res(�, S) = wMSOs.res(�,ES)

Now we state our main result about multi-weighted logic on finite words. We
want to point out that here we do not put any restrictions on an evaluator E and
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that this result does not extend Theorem 1 to the multi-weighted case (because of
the generality of our model, cf. Example 10). In Section 6, we consider evaluators
with additional properties and show that multi-weighted automata over them can be
characterized by the same logical fragment as in Theorem 1.

Theorem 2 Let � be an alphabet, E = (M, K, �) an evaluator and L : �+ → K

a quantitative language. Then, the following are equivalent.

(a) L is recognizable over E.
(b) L ismwMSOs.res(�,E)-definable.

The proof of this theorem will be given in the rest of this section. We start with the
following remark.

Remark 2 Note that the semantics [[ϕ]] of a multi-weighted formula
ϕ ∈ mwMSO(�,E) is defined as the composition � ◦ 〈〈ϕ〉〉 where 〈〈ϕ〉〉 is the
auxiliary semantics of ϕ. Now let A be a multi-weighted automaton over �

and E. The behavior [[A]] of A can be decomposed as [[A]] = � ◦ 〈〈A〉〉 where
〈〈A〉〉 : �+ → N〈M∗〉 is defined for all w ∈ �+ by 〈〈A〉〉(w) = wt#A[RunA(w)]. We
call 〈〈A〉〉 the auxiliary behavior of A.

Since we define the behavior of multi-weighted automata and the semantics
of multi-weighted MSO logic by means of the equal aggregation function �, by
Remark 1 it suffices to show the equivalence of multi-weighted automata and logic
with respect to the auxiliary behavior and the auxiliary semantics, respectively.

Recall that the codomain of the auxiliary behavior of multi-weighted automata and
the codomain of the auxiliary semantics of multi-weighted MSO logic are N〈M∗〉
whereas the weight constants are taken from M .

Our further considerations will reduce the proof of Theorem 2 to the case of the
semiring N〈M∗〉. Here we will use the idea that a weight constant m ∈ M can be
identified with the multiset [m] ∈ N〈M∗〉. Let Mon(M) = {[m] | m ∈ M} ⊆ N〈M∗〉,
the set of monomials.

Lemma 6 Let L : �+ → N〈M∗〉 be a mapping. Then:

(a) L = 〈〈A〉〉 for some multi-weighted automaton A over � and E iff L =
[[A′]]N〈M∗〉 for some semiring-weighted automatonA′ over � and N〈M∗〉 such
that CONST(A′) ⊆ Mon(M).

(b) L = 〈〈ϕ〉〉 for some multi-weighted sentence ϕ ∈ mwMSOs.res(�,E) iff L =
[[ϕ′]]N〈M∗〉 for some weighted sentence ϕ′ ∈ WMSOs.res(�,N〈M∗〉) over the
semiring N〈M∗〉 with CONST(ϕ′) ⊆ Mon(M).

Proof The proof follows from the fact that if we identify elements m ∈ M

with the monomials [m] ∈ Mon(M), then the auxiliary behavior of a multi-
weighted automaton can be computed in the same way as the behavior of a
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semiring-weighted automaton with respect to the semiring N〈M∗〉 and, simi-
larly, the auxiliary semantics of a multi-weighted formula can be computed as
the semantics of a semiring-weighted formula over the semiring N〈M∗〉.

To finish the proof of our Theorem 2, we show that the right hand side statements
of the equivalences (a) and (b) of Lemma 6 are equivalent as well. To prove this, we
cannot directly use the proof of [13] for Theorem 1 for the case S = N〈M∗〉, since the
translation from logic into automata presented in [13] employs some computations in
the semiring S but the set Mon(M) is not closed under the union � and the Cauchy
product ·.

We say that a sentence ϕ ∈ wMSOs.res(�, S) admits a constant-preserving trans-
lation if there exists a semiring-weighted automaton A over � and S such that
[[A]]S = [[ϕ]]S and CONST(A) ⊆ CONST(ϕ). Similarly, we say that a semiring-
weighted automatonA over� and S admits a constant-preserving translation if there
exists a sentence ϕ ∈ wMSOs.res(�, S) such that [[ϕ]]S = [[A]]S and CONST(ϕ) ⊆
CONST(A). Next we show that both wMSOs.res-sentences and semiring-weighted
automata admit constant-preserving translations. This result could be also of inde-
pendent interest, e.g., for the case when the operations in a semiring S are not
computable. In this situation a constant-preserving translation would be preferable.

Theorem 3 Let � be an alphabet and S a semiring.

(a) Every sentence ϕ ∈ wMSOs.res(�, S) admits a constant-preserving transla-
tion.

(b) Every semiring-weighted automaton A over � and S admits a constant-
preserving translation.

We will present a proof of this theorem in the next section. Then Theorem 2
follows immediately from Theorem 3 for S = N〈M∗〉 and Lemma 6.

5 Constant-preserving Translations

In this section, we present a proof of Theorem 3. Let S = (S,+, ·, 0, 1) be a semiring.
We start with part (a). For a set X ⊆ S, let cl+(X) ⊆ S be the minimal set

containing X ∪ {0} which is closed under +.

Lemma 7 Let ϕ ∈ wMSOs.res(�, S) be a sentence. Then there exists a weighted
automaton A over � and S such that [[A]] = [[ϕ]] and CONST(A) ⊆
cl+(CONST(ϕ)).

Proof We proceed by induction on ϕ. As in the proof presented in [13], we can
restrict ourselves to a finite set V ⊇ Free(ϕ) of variables and encode values of
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variables as a word over the extended alphabet � × {0, 1}V . Next, we will omit the
details of the proof which are analogous to the proof of [13].

– Let ϕ = ⊗
x.γ where x ∈ V1 and γ ∈ aBOOLres(�, S). It can be eas-

ily shown by induction on the structure of a restricted almost Boolean formula
γ ∈ aBOOLres(�, S) that [[γ ]](�+V ) ⊆ cl+(CONST(γ )) is a finite set. Then,
we construct a weighted automaton A for ϕ as in [13], Lemma 4.4. Note that
CONST(A) ⊆ [[γ ]](�+V ) ⊆ cl+(CONST(γ )).

– Let ϕ = ϕ1 ⊕ ϕ2. In this case, we apply the standard disjoint union construction
which preserves the set of weight constants of automata for ϕ1 and ϕ2.

– Let ϕ = β ⊗ ϕ′ where β ∈ MSO(�). We proceed here like in the proof of [17],
i.e., we take a product of a deterministic complete unweighted automaton for β

and a weighted automaton for ϕ′. This construction preserves the set of weight
constants of the weighted automaton for ϕ′.

– Let ϕ = ⊕
X .ϕ′ with X ∈ V1 ∪ V2. Here, we apply the construction for the

projection of [20], Lemma 1, which preserves the constants.

Now we transform the weighted automaton A from the previous lemma into a
weighted automaton A′ with [[A′]] = [[A]] and CONST(A′) ⊆ CONST(ϕ).

Lemma 8 Let X ⊆ S be a finite set andA a weighted automaton over � and S such
that CONST(A) ⊆ cl+(X). Then, there exists a weighted automaton A′ over � and
S such that [[A′]] = [[A]] and CONST(A′) ⊆ X.

Proof Let A = (Q, I, T , F,wt). We may assume that T �= ∅. For each t ∈ T , let
wt(t) = st,1+...+st,nt where nt ≥ 0 and st,1, ..., st,nt ∈ X. Let n = max{nt | t ∈ T }.
The key idea of our construction is to split each transition t of A into nt transi-
tions with the weights st,1, ..., st,nt . We construct the weighted automaton A′ =
(Q′, I ′, T ′, F ′,wt′) over � and S as follows:

– Q′ = (Q× {1, ..., n}), I ′ = I × {1}, F ′ = F × {1, ..., n};
– T ′ consists of all transitions t ′ := ((p, i), a, (q, j)) where t := (p, a, q) ∈ T ,

i ∈ {1, ..., n} and j ∈ {1, ..., nt }. We define the weight of t ′ as wt′(t ′) = st,j .

Clearly, CONST(A′) ⊆ X. Using the distributivity property of the semiring S, it can
be easily shown that [[A′]] = [[A]].

Clearly, Lemmas 7 and 8 imply Theorem 3(a). Next, we show part (b) of Theorem 3.

Lemma 9 Let A be a weighted automaton over � and S. Then, there exists a
sentence ϕ ∈ wMSOs.res(�, S) such that [[ϕ]] = [[A]] and CONST(ϕ) = CONST(A).

Proof The proof of this lemma is a slight modification of the proof of Theorem 5.5
of [13]. Let A = (Q, I, T , F,wt). As in [13], Theorem 5.5, we assign with every
transition t ∈ T a second-order variable Xt which will keep track of positions where
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this transition is taken. Let V = {Xt }t∈T . A run ofA can be described using a formula
β ∈MSO(�) with Free(β) = V which demands that the values of V-variables form
a partition of the domain of an input word, the transitions of a run are matching, the
labels of transitions of a run are compatible with an input word, a run starts in I and
ends in F . Then, the wMSOs.res(�, S)-sentence ϕ is defined as

ϕ =⊕
V.

(
β ⊗⊗

x.
⊕

t∈T (Xt (x)⊗ wt(t))
)
. (4)

where
⊕

V abbreviates
⊕

X1...
⊕

Xn for an enumeration V = {X1, ..., Xn}. Clearly,
CONST(ϕ) = wt(T ) = CONST(A). Moreover, [[ϕ]] = [[A]].

Then, Theorem 3 follows immediately from Lemmas 7, 8 and 9.

6 Evaluators with Additional Properties

As we already mentioned in Section 4, the concept of multi-weighted MSO logic
extends the semiring-weighted MSO logic. However, our Büchi result for the multi-
weighted setting (cf. Theorem 2) does not agree with Theorem 1 for semirings, since
the logical fragment of Theorem 2 is more restricted than the logical fragment of
Theorem 1. This restriction can be explained, e.g., by Example 10.

In order to complete the picture of the robustness of multi-weighted logic, we
put additional conditions on the evaluator under which the logical fragment of The-
orem 1 (considered in the multi-weighted setting) is equivalent to multi-weighted
automata. First, we provide an informal discription. As in the case of semiring-
weighted automata, using a monoidal operation on M , we will define the weights of
runs (which are also in M). After that, we collect the weights of runs in a multiset
and evaluate this multiset using an aggregation function.

Let X, Y be sets, f : X → Y a mapping, and μ ∈ N〈X〉 a finite mul-
tiset. Let E = (M, K, �) be an evaluator and M = (M,$, 1) a monoid. Let
fM : (M∗, ·, ε)→ (M,$, 1) be the monoid morphism with fM(m) = m for all
m ∈ M . Let FM : N〈M∗〉 → N〈M〉 be defined for all μ ∈ N〈M∗〉 and m ∈ M

by FM(μ)(m) =∑
(μ(x) | x ∈ supp(μ), fM(x) = m). Informally, the mapping FM

replaces each sequence m1...mk ∈ M∗ in a multiset by a single element (m1 $
... $ mk) ∈ M , keeping multiplicities. We will abuse the notation and understand a
multiset μ ∈ N〈M〉 as a multiset in N〈M∗〉 with supp(μ) ⊆ M .

Definition 3 Let E = (M, K, �) be an evaluator and M = (M,$, 1) a monoid. We
say that E is an M-evaluator if � ◦ FM = �.

Definition 3 means that the values of � of N〈M〉 completely determine its values
on N〈M∗〉, and the diagram depicted in Fig. 2 commutes.

Example 11 (a) Let S = (S,+, ·, 0, 1) be a semiring and M = (S, ·, 1). Then,
E
S = (S, S, �S) is an M-evaluator.
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(b) Consider the evaluator E
RATIO = (M, K, �RATIO) from Example 1 where

M = Q×Q≥0 and K = Q ∪ {∞}. Let M = (M,+, (0, 0)) where + is the
componentwise addition. Then, ERATIO is an M-evaluator.

(c) Let η ∈ Q≥0 be a secondary cost bound. Consider the evaluator
E
KNAP(η) = (M, K, �KNAP(η)) from Example 2 where M = Q × Q and

K = Q ∪ {∞}. Consider the monoid M = (M,+, (0, 0)) where + is the
componentwise addition. Then, EKNAP(η) is an M-evaluator.

(d) Let EDISC = (M, K, �DISC) be the evaluator where M = Q× (Q ∩ (0, 1]),
K = Q ∪ {∞} and �DISC is defined as in Example 3. Consider the monoid
M = (M, $, (0, 1)) where $ is defined for all (x1, d1), (x2, d2) ∈ M by
(x1, d1) $ (x2, d2) = (x1 + d1 · x2, d1 · d2). Then, EDISC is an M-evaluator.

(e) Now we consider the evaluator from Example 10. This example was a wit-
ness why the restricted fragment of [13] (considered in the multi-weighted
setting) is more expressive than multi-weighted automata over arbitrary eval-
uators. Let E = (M,N〈M∗〉, �) where M is a non-empty set and � is the
identity mapping. Let M = (M,$, 1) be any monoid. We show that E is not
an M-evaluator. Indeed, let m ∈ M and μ = [mm] ∈ N〈M∗〉. Note that
m $m ∈ M and hence mm �= m $m. Then, FM(μ) = [m $m] �= μ and hence
�(FM(μ)) = FM(μ) �= μ = �(μ). Thus, there exists no monoid M such that
E is an M-evaluator.

We say that subsets M ′, M ′′ of M $-commute elementwise if
m′ $m′′ = m′′ $m′ for all m′ ∈ M ′ and m′′ ∈ M ′′.

Let the set aBOOL(�,E) be defined as in the case of semirings. The fragment
mwMSOres

M
(�,E) ⊆ mwMSO(�,E) is also defined as for semirings by the rules:

ϕ ::= γ | ϕ ⊕ ϕ | ϕ ⊗ ϕ (!) |⊕x.ϕ |⊕X.ϕ |⊗x.γ

where γ ∈ aBOOL(�,E), x ∈ V1 and X ∈ V2; moreover, there is an additional
restriction at the place (!): a formula ϕ1 ⊗ ϕ2 belongs to mwMSOres

M
(�,E) iff the

sets CONST(ϕ1) and CONST(ϕ2) $-commute elementwise. Note that if M is a com-
mutative monoid, then the use of ϕ1⊗ϕ2 is allowed without any restrictions. Clearly,
mwMSOs.res(�,E) ⊆ mwMSOres

M
(�,E).

Fig. 2 The diagram for M-evaluators
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Remark 3 Consider a semiring S = (S,+, ·, 0, 1), the corresponding evaluator ES

and the monoidM = (S, ·, 1). Then, mwMSOres
M

(�,ES) = wMSOres(�, S).

The main result of this section is the following theorem.

Theorem 4 Let � be an alphabet, E = (M, K, �) an evaluator, M = (M,$, 1) a
monoid such that E is an M-evaluator, and L : �+ → K a quantitative language.
Then, the following are equivalent.

(a) L is recognizable over E.
(b) L ismwMSOres

M
(�,E)-definable.

If we apply this theorem to the evaluator E = E
S (where S = (S,+, ·, 0, 1) is

a semiring) and to the monoid M = (S, ·, 1), then we obtain Theorem 1. Hence,
Theorem 4 generalizes Theorem 1.

The rest of this section will be devoted to the proof of Theorem 4. Like in the
proof of Theorem 2, we reduce the proof to the case of semirings. In contrast to the
proof of Theorem 2, here we do not need to revisit the constructions for semiring-
weighted formulas; we can apply the result of [13] as a ”black box”. Whereas in the
proof of Theorem 2 we used the semiring (N〈M∗〉,�, ·, ∅, [ε]), here we will consider
a different semiring. The domain of this semiring will be the set N〈M〉. We will
consider the following operations. For all μ1, μ2 ∈ N〈M〉, the union r1�r2 is defined
as before. We extend $ to finite multisets as follows. Let μ1, μ2 ∈ N〈M〉. Then, we
define (μ1 $ μ2) ∈ N〈M〉 for all m ∈ M by

(μ1 $ μ2)(m)=
∑

(μ1(m1)· μ2(m2) |m1∈ supp(μ1), m2∈ supp(μ2),m=m1$m2)

It is well known that (N〈M〉,�,$, ∅, [1]) is a semiring (cf., e.g., [35], Subsect.
2.1). We will denote this semiring simply by N〈M〉.

Lemma 10 FM : (N〈M∗〉, ·, $, ∅, [ε]) → (N〈M〉,�,$, ∅, [1]) is a semiring
morphism with FM([m]) = [m] for all m ∈ M .

Lemma 11 Let ϕ ∈ mwMSOres
M

(�,E) be a formula. Then, there exists a formula
ϕ′ ∈ wMSOres(�,N〈M〉) such that [[ϕ′]]N〈M〉 = FM ◦ 〈〈ϕ〉〉 and Free(ϕ′) = Free(ϕ).

Proof Let ϕ′ ∈ wMSO(�,N〈M〉) be the formula obtained from ϕ by replacing
each constant m ∈ M occurring in ϕ by the multiset [m] ∈ N〈M〉. Clearly, ϕ′ sat-
isfies the restrictions on the use of ⊗ in wMSOres(�,N〈M〉)-formulas and hence
ϕ′ ∈ wMSOres(�,N〈M〉). The equality [[ϕ′]]N〈M〉 = FM ◦ 〈〈ϕ〉〉 can be easily shown
inductively using Lemma 10.

Lemma 12 Let A be a semiring-weighted automaton over � and N〈M〉.
Then, there exists a multi-weighted automaton A′ over � and E such that
FM ◦ 〈〈A′〉〉 = [[A]]N〈M〉.
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Proof The proof is based on a similar construction as in the proof of Lemma 8. Here,
for every transition t of A, we represent its weight as wt(t) = [mt,1] + ... + [mt,nt ]
where nt ≥ 0 and mt1 , ..., mt,nt ∈ M . Then, as in Lemma 8, we split t into nt

transitions with the weights mt,1, ..., mt,nt .

Proof (of Theorem 4) (a)⇒ (b). Let A be a multi-weighted automaton over � and
E. Then, by Theorem 2, there exists a sentence ϕ ∈ mwMSOs.res(�,E) (and hence
ϕ ∈ mwMSOres(�,E)) with [[ϕ]] = [[A]].

(b)⇒ (a). Let ϕ ∈ mwMSOres
M

(�,E) be a sentence. By Lemma 11, there exists
a sentence ϕ′ ∈ wMSOres(�,N〈M〉) such that [[ϕ′]]N〈M〉 = FM ◦ 〈〈ϕ〉〉. By Theo-
rem 1, there exists a semiring-weighted automaton A′ over � and N〈M〉 such that
[[A′]]N〈M〉 = [[ϕ′]]N〈M〉. By Lemma 12, there exists a multi-weighted automaton A
over � and E such that FM ◦ 〈〈A〉〉 = [[A′]]N〈M〉. Then, we have:

[[ϕ]]E = � ◦ 〈〈ϕ〉〉 ∗= � ◦ FM ◦ 〈〈ϕ〉〉 = � ◦ [[ϕ′]]N〈M〉 = � ◦ [[A′]]N〈M〉
= � ◦ FM ◦ 〈〈A〉〉 ∗= � ◦ 〈〈A〉〉 = [[A]]E

where at ∗ we used that E is an M-evaluator.

7 Multi-weighted Automata and MSO Logic on Infinite Words

In this section, we will define and investigate multi-weighted automata and MSO
logic on infinite words.

7.1 Multi-weighted Büchi Automata

In this subsection, we present a general framework for multi-weighted automata on
infinite words. As opposed to the case of finite words, instead of finite multisets over
M∗, we must consider multisets of infinite strings with possibly infinite supports and
infinite multiplicities of elements.

Let � be a set (possibly infinite). An ω-word over � is an infinite sequence (γi)i∈N
where γi ∈ � for all i ∈ N. Let �ω denote the set of all ω-words over �. Any set
L ⊆ �ω is called an ω-language over �.

For a set X, let |X| ∈ N be the size of X if X is finite and |X| = ∞ otherwise. Let
N = N ∪ {∞}. Note that (N,+, ·, 0, 1) is a semiring if we put 0 · ∞ = ∞ · 0 = 0.
We will denote this semiring simply by N. Note that the operations + and · can be
naturally extended to arbitrary families of elements in N.

For a set X, an ω-multiset over X is a mapping μ : X → N. Let N〈〈X〉〉 denote
the set of all ω-multisets over X. For any μ ∈ N〈〈X〉〉, the support of μ is the set
supp(μ) = {x ∈ X | μ(x) �= 0}. Note that, comparing to the notation N〈X〉 for
the class of finite multisets with the notation N〈〈X〉〉 for the class of ω-multisets, the
double angle brackets emphasize that the support of an ω-multiset is not necessarily
finite anymore. Let Y be a set, f : X → Y a mapping and X′ ⊆ X a subset of
X (not necessarily finite). We denote by f [X′] ∈ N〈〈Y 〉〉 the ω-multiset such that
f [X′](y) = |{x ∈ X′ | f (x) = y}| for all y ∈ Y .
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Definition 4 An ω-evaluator is a structure E = (M, K, �ω) where M and K are
non-empty sets and �ω : N〈〈Mω〉〉 → K is an ω-aggregation function.

Definition 5 Let � be an alphabet and E = (M, K, �ω) an ω-evaluator. A multi-
weighted Büchi automaton over � and E is a tuple A = (Q, I, T , F,wt) where Q is
a finite set of states, I, F are sets of initial resp. accepting sets, T ⊆ Q×� ×Q is a
transition relation, and wt : T → M is a transition weight function.

In other words, a multi-weighted Büchi automaton A is defined just like a multi-
weighted automaton. Infinite runs ρ = (ti)i∈N of A are defined as infinite sequences
of matching transitions, say ti = (qi, ai, qi+1) for each i ∈ N, such that q0 ∈ I and
{q ∈ F | q = qi for infinitely many i ∈ N} �= ∅. Let label (ρ) := (ai)i∈N ∈ �ω, the
label of ρ. As in the case of finite words, we denote by RunA the set of all runs of
A and, for each w ∈ �ω, we denote by RunA(w) the set of all runs ρ of A with
label (ρ) = w. Similarly to multi-weighted automata on finite words, we define
wt#A : RunA → Mω for every run ρ = (ti)i∈N ∈ RunA as wt#A(ρ) = (wt(ti))i∈N.
Recall that, for any subset X ⊆ RunA, wt#A[X] ∈ N〈〈Mω〉〉. Then, the behavior
of A is the mapping [[A]] : �ω → K defined for all w ∈ �ω by [[A]](w) =
�ω(wt#A[RunA(w)]). A mapping L : �ω → K is called a quantitative ω-language.
We say thatL is recognizable overE if there exists a multi-weighted Büchi automaton
A over � and E such that [[A]] = L.

Example 12 (a) Here, we consider the reward-cost ratio setting of Example 1 for
infinite words (cf. [7, 8]). Let M = Q × Q≥0 and K = R ∪ {−∞,∞}. For
a sequence u = (mi)i∈N ∈ Mω with mi = (ri, ci), the supremum ratio (cf.
[7]) is RATIOω(u) = lim sup

nto∞
r1+...+rn
c1+...+cn

with r
0 = ∞. Consider the ω-evaluator

E
ω-RATIO = (M, K, �ω-RATIO) where �ω-RATIO is defined for every ω-multiset

μ ∈ N〈Mω〉 as �ω-RATIO(μ) = sup{RATIOω(u) | u ∈ supp(μ)}.
(b) Alternatively to finding the supremum of the set of supremum ratios of runs in

(a), it could be also interesting to check, whether there are finitely many runs
whose supremum ratio is above some threshold θ ∈ R. For this purpose, we
can consider the ω-evaluator Eω-RATIO>θ = (M, K, �ω-RATIO>θ ) where M =
Q×Q≥0, K = N and �ω-RATIO>θ is defined for every ω-multiset μ ∈ N〈Mω〉
by

�ω-RATIO>θ (μ) =
∑(

μ(u) | u ∈ supp(μ) and RATIOω(u) > θ
)

where
∑

is the usual sum operation where n+∞ =∞+n = ∞ and every infi-
nite sum is evaluated to∞ if it contains infinitely many non-zero summands.
We note that in this example multiplicities of elements if an ω-multiset matter,
since we use the natural sum operation.

(c) Here, we present an ω-evaluator for the model of multi-weighted automata
which correspond to one-player energy games considered in [23]. Let n ≥ 1
be the number of energy storages and E1

max, ..., E
n
max ∈ N their maximal

capacities. We start with the empty storages and, along a run, the energy
level of each storage can be increased (if we regain energy) or decreased (if
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we consume energy). Our goal is to keep the energy level of each storage
j between 0 and E

j
max. Consider the sequence u = (ui)i∈N where, for all

i ∈ N, ui = (u1i , ..., u
n
i ) ∈ Z

n is a vector of the energy level changes for
each storage. We transform this sequence to the sequence ũ = (ũi)i∈N of the
absolute energy levels ũi = (ũ1i , ..., ũ

n
i ) ∈ Z

n defined inductively on i ≥ 1

as follows. For j ∈ {1, ..., n}, let ũ
j

1 = min{uj
i , E

j
max}. Then, for i > 1 and

j ∈ {1, ..., n}, we let ũ
j
i = min{ũj

i−1 + u
j
i , E

j
max}. Note that, for all i ∈ N

and j ∈ {1, ..., n}, ũ
j
i ∈ (−∞, E

j
max). We say that u is correct if ũ

j
i ≥ 0

for all i ∈ N and j ∈ {1, ..., n}. Then, for this situation we consider the ω-
evaluator Eω-ENERGY = (M, K, �ω-ENERGY) where M = Z

n, K = {0, 1} and
�ω-ENERGY : N〈Mω〉 → K is defined for every ω-multiset μ ∈ N〈Mω〉 as

�ω-ENERGY(μ) =
{
1, if ∃u ∈ supp(μ) : u is correct,
0, otherwise.

(d) In this example, we consider an ω-valuation monoid V = (D,+, valω, 0) of
Droste and Meinecke (cf. for details [17], Definition 5.1) where D = (D,+, 0)
is a complete monoid (i.e., it has infinitary sum operations satisfying several
natural axioms) and valω : Dω → D is an ω-valuation function with some
additional properties. We say that D is∞-idempotent if, for all d ∈ D and all
infinite index sets I, J , we have d∞ := ∑

i∈I d = ∑
j∈J d. The idempotent

complete monoids (R ∪ {−∞,∞}, sup,−∞) and (R∪ {−∞,∞}, inf,∞) are
examples of∞-idempotent monoids. The non-idempotent monoid (N,+, 0) is
another example of an ∞-idempotent monoid. If D is ∞-idempotent, then V

can be considered as the ω-evaluator EV = (D, D, �V) where �V : N〈Dω〉 →
D is defined for every ω-multiset μ ∈ N〈Dω〉 by

�V(μ) =
∑

u∈supp(μ)

μ(u) · valω(u)

where for all n ∈ N and d ∈ D, n·d = d+...+d (n summands) and∞·d = d∞.
The case of ω-valuation monoids which are not∞-idempotent could be han-

dled by extending our ω-evaluators to the ω-multisets where, instead of the
multiplicity ∞ for infinite sets, we use infinite cardinal numbers. However,
due to lack of motivation and technical complicating of the paper, we do not
consider this extension.

7.2 Multi-weighted MSO Logic on Infinite Words

Now we will introduce a multi-weighted MSO logic on infinite words. We want to
follow a similar approach as for finite words, i.e., we define the semantics using the
framework of ω-evaluators. Recall that, for finite words, an aggregation function was
defined as � : N〈M∗〉 → K whereas for infinite words an ω-aggregation function
is a mapping �ω : N〈〈Mω〉〉 → K . In order to avoid the difficulties with the defini-
tion of the concatenation of ω-strings, we will not introduce a general definition of
logic and restrict ourselves to a restricted fragment which will be defined exactly as
mwMSOs.res(�,E) for finite words.
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For ω-multisets μ1, μ2 ∈ N〈〈X〉〉, the union is defined for all x ∈ X by
(μ1 � μ2)(x) = μ1(x) + μ2(x). Let I be an arbitrary index set (possibly
infinite) and (μi)i∈I a family of ω-multisets μi ∈ N〈〈X〉〉. Then, the union
μ := (

⊎
i∈Iμi) ∈ N〈〈X〉〉 is defined for all x ∈ X by μ(x) =∑

i∈I μi(x).
For (ki)i∈N ∈ N

ω
, the product k := (∏

i∈N ki

) ∈ N is defined as follows:

– if ki = 0 for some i ∈ N, then we let k = 0;
– if ki > 0 for all i ∈ N and kj = ∞ for some j ∈ N, then we let k = ∞;
– if ki ∈ N \ {0} for all i ∈ N and there are infinitely many i ∈ N with ki > 1, then

we let k = ∞;
– if ki ∈ N \ {0} for all i ∈ N and there exists j ∈ N such that ki = 1 for all i > j ,

then we let k =∏j

i=1 kj .

Let (ri)i∈N be a family of finite multisets ri ∈ N〈X〉 (as defined in Section 3). Then,
we define the ω-multiset μ := (∏

i∈N ri
) ∈ N〈〈Xω〉〉 for each u = (xi)i∈N ∈ Xω as

μ(u) =∏
i∈N ri(xi).

Let � be an alphabet. As in Section 3, we consider countable and pairwise dis-
joint sets V1 and V2 of first-order resp. second order variables. The set MSOω(�)

of Boolean ω-formulas is defined exactly as MSO(�) for finite words. Given an ω-
word w ∈ �ω, a w-ω-assignment σ is defined as in the case of finite words with
the only difference that dom(w) = N. A first-order update σ [x/i] with x ∈ V1 and
i ∈ N and a second-order update σ [X/I ] with X ∈ V2 and I ⊆ N are defined in
the usual manner. Let �ω

V denote the set of all pairs (w, σ ) where w ∈ �ω and σ is
a w-ω-assignment. Again, we stress that �ω

V is not (�V )ω. Given (w, σ ) ∈ �ω
V and

β ∈ MSOω(�), the definition that (w, σ ) satisfies β, written (w, σ ) |= β, is given
inductively on the structure of β as usual.

Let E = (M, K, �ω) an ω-evaluator. The set aBOOLω(�,E) of almost Boolean
ω-formulas is given by the grammar

γ ::= m | γ ⊕ γ | β ⊗ γ

where β ∈MSOω(�) and m ∈ M .
The setmwMSOω(�,E) of multi-weighted ω-formulas over � and E is given by

the grammar

ϕ ::= ⊗
x.γ | ϕ ⊕ ϕ | β ⊗ ϕ |⊕x.ϕ |⊕X.ϕ

where β ∈ MSOω(�), γ ∈ aBOOLω(�,E), x ∈ V1 and X ∈ V2. Note that
aBOOLω ∩ mwMSOω(�,E) = ∅ and that mwMSOω(�,E) is defined exactly as
mwMSOs.res(�,E).

We define the auxiliary semantics 〈〈...〉〉 separately for almost Boolean and multi-
weighted ω-formulas.

– Let γ ∈ aBOOLω(�,E). Then, the auxiliary semantics of γ is the map-
ping 〈γ 〉 : �ω

V → N〈M〉 defined for every (w, σ ) ∈ �ω
V inductively on

the structure of γ as shown in Table 2. Here, m ∈ M , β ∈ MSOω(�), and
ϕ, ϕ1, ϕ2 ∈ aBOOLω(�,E).
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Table 2 The auxiliary semantics of almost Boolean ω-formulas

〈〈m〉〉(w, σ ) = [m]
〈〈ϕ1 ⊕ ϕ2〉〉(w, σ ) = 〈〈ϕ1〉〉(w, σ ) � 〈〈ϕ2〉〉(w, σ )

〈〈β ⊗ ϕ〉〉(w, σ ) =
{
〈〈ϕ〉〉(w, σ ), if (w, σ ) |= β,

∅, otherwise

– Let ϕ ∈ mwMSOω(�,E). Then, the auxiliary semantics of ϕ is the mapping
〈ϕ〉 : �ω

V → N〈Mω〉 defined for every (w, σ ) ∈ �ω
V inductively on the struc-

ture of ϕ as shown in Table 3. Here, β ∈ MSOω(�), γ ∈ aBOOLω(�,E),
ϕ, ϕ1, ϕ2 ∈ mwMSOω(�,E), x ∈ V1 and X ∈ V2.

Now, given a formula ϕ ∈ mwMSOω(�,E), we define the proper semantics
(or simply semantics) [[ϕ]] : �ω

V → K for all (w, σ ) ∈ �ω
V as [[ϕ]](w, σ ) =

�ω(〈〈ϕ〉〉(w, σ )).
Given a formula ϕ, the set Free(ϕ) of free variables of ϕ is defined as usual. We say

that a formula ϕ ∈ mwMSOω(�,E) is a sentence if Free(ϕ) = ∅. Clearly, if ϕ is a
sentence, then the semantics [[ϕ]](w, σ ) does not depend on σ . Then, we can consider
the semantics [[ϕ]] as the mapping [[ϕ]] : �ω → K . Let L be a quantitative ω-
language. We say that L is definable if there exists a sentence ϕ ∈ mwMSOω(�,E)

such that [[ϕ]] = L.

Example 13 Assume that a bus can operate two routes A and B which start and end
at the same place. For R ∈ {A, B}, the route R lasts tR ∈ Q>0 timed units and
profits pR ∈ Q>0 money units on the average per trip. We may be interested in
making an infinite schedule for this bus which is represented as an infinite sequence
from {A, B}ω. This schedule must be fair in the sence that both routes A and B must
occur infinitely often in this timetable (even if the route A or B is unprofitable).
The optimality of the schedule is also preferred (we wish to profit per time unit as
much as possible). We consider the ω-evaluator Eω-RATIO from Example 12a and a
singleton alphabet � = {τ } which is irrelevant here. Now we construct a sentence
ϕ ∈ mwMSOω(�,Eω-RATIO) to define the optimal income of the bus per time unit
(supremum ratio between rewards and time):

ϕ=⊕
X.

((∞∃x.X(x) ∧ ∞∃x.¬(X(x))

)
⊗⊗

x.((X(x)⊗ rA)⊕ ((¬X(x))⊗ rB))

)

Table 3 The auxiliary semantics of multi-weighted ω-formulas

〈〈⊗x.γ 〉〉(w, σ ) =∏
i∈dom(w)〈〈γ 〉〉(w, σ [x/i])

〈〈ϕ1 ⊕ ϕ2〉〉(w, σ ) = 〈〈ϕ1〉〉(w, σ ) � 〈〈ϕ2〉〉(w, σ )

〈〈β ⊗ ϕ〉〉(w, σ ) =
{
〈〈ϕ〉〉(w, σ ), if (w, σ ) |= β,

∅, otherwise
〈〈⊕x.ϕ〉〉(w, σ ) =⊎

i∈dom(w)〈〈ϕ〉〉(w, σ [x/i])
〈〈⊕x.ϕ〉〉(w, σ ) =⊎

i∈dom(w)〈〈ϕ〉〉(w, σ [x/i])
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where
∞∃x.ψ is an abbreviation of the MSOω(�)-formula ∀y.∃x.((y ≤ x) ∧ ψ),

rA = (pA, tA) and rB = (pB, tB). Here, the second order variable X corresponds to
the set of positions in an infinite schedule which can be assigned to the routeA. Then,

[[ϕ]](τω) = sup

{
lim sup
n→∞

pA · |I ∩ n| + pB · |I c ∩ n|
tA · |I ∩ n| + tB · |I c ∩ n| | I ⊆ Nwith I, I cinfinite

}

(5)
where n = {1, ..., n} and I c = N \ I .

Remark 4 In the case of finite words, we could also choose mwMSOs.res(�,E)

as the basic definition of multi-weighted MSO logic. The motivation for the intro-
duction of the unrestricted fragment mwMSO(�,E) was to show that our multiset
approach to the semantics is a natural extension of the semiring-based semantics of
Droste and Gastin [13]. Moreover, in Example 10 we justified our restrictions in the
general case of evaluators.

7.3 The Expressive Equivalence Result for Infinite Words

Here we prove our main result for infinite words which is a counterpart of Theorem 2
for finite words.

Theorem 5 Let � be an alphabet, E = (M, K, �ω) an ω-evaluator, and
L : �ω → K a quantitative ω-language. Then, L is recognizable over E iff L is
definable over E.

The proof of this theorem will be given below. Whereas for the proof of Theorem
2 we used the semiring N〈M∗〉 of finite multisets, here we deal with the monoid
(N〈〈Mω〉〉,�,∅) of ω-multisets.

First, we show that definability implies recognizability. As in the case of finite
words, given a multi-weighted automaton A, we define the auxiliary behavior
〈A〉 : �+ → N〈Mω〉 as 〈A〉(w) = wt#A[RunA(w)]. Then, [[A]] = �ω ◦ 〈A〉.

Lemma 13 Let ϕ ∈ mwMSOω(�,E) be a sentence. Then, there exists a multi-
weighted automaton A over � and E such that 〈A〉 = 〈ϕ〉.

Proof Our construction follows the ideas from the proofs of Lemmas 7 and 8 for
finite words. We only have to pay attention to the fact that Büchi automata are not
determinizable. However, this is not an obstruction, since we can consider unam-
biguous Büchi automata (i.e., for every word there is at most one run) instead of
deterministic Büchi automata. As it was shown in [10], every Büchi automaton can
be transformed into an unambiguous one accepting the same language.

As in Lemma 7, we proceed by induction on the structure of ϕ. We briefly run
through the significant details of the constructions:

– Let ϕ = ⊗
x.γ where x ∈ V1 and γ ∈ aBOOLω(�,E). Following the idea of

[13], Theorem 5.5, (where we replace deterministic automata by unambiguous
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automata) we can construct a multi-weighted Büchi automaton whose weights
are finite multisets in N〈M〉. Then, applying the construction of Lemma 8, we
split the transitions labelled by multisets into several transitions labelled by the
elements of these multisets.

– Let ϕ = β ⊗ ϕ′ where β ∈ MSOω(�). Here, we take an unambiguous Büchi
automaton for β and apply the standard product construction for Büchi automata
(where the weights of transitions are equal to the weights of the corresponding
transitions of the multi-weighted Büchi automaton for ϕ′).

– Let ϕ = ϕ1 ⊕ ϕ2. Here, we use the standard disjoint union construction.
– Let ϕ =⊕

V.ϕ′ where X ∈ V1 ∪V2. Here, we apply the construction of [20] for
the projection.

As an immediate corollary, we obtain:

Corollary 1 Let ϕ ∈ mwMSOω(�,E) be a sentence. Then, there exists a multi-
weighted automaton A over � and E such that [[A]] = [[ϕ]].

Now we turn to the converse direction of the proof of Lemma 5.

Lemma 14 Let A be a multi-weighted Büchi automaton over � and E. Then, there
exists an ω-sentence ϕ ∈ mwMSOω(�,E) such that [[ϕ]] = [[A]].

Proof We proceed like in the proof of Lemma 9. Let A = (Q, I, T , F,wt) and V be
defined as in the proof of Lemma 9. Analogously, we can define a run of A using
an MSOω(�)-formula β with Free(β) = V (in contrast to the case of finite words,
we replace the condition that a run ends in a final state by the Büchi acceptance
condition). We define ϕ as in Eq. 4. Then, 〈〈ϕ〉〉 = 〈〈A〉〉 and hence [[ϕ]] = �ω◦〈〈ϕ〉〉 =
�ω ◦ 〈〈A〉〉 = [[A]].

Proof (of Theorem 5) Immediate from Corollary 1 and Lemma 14.

8 Conclusion

We introduced a general model of multi-weighted automata. On one hand, this model
covers a new class of multi-weighted settings. On the other hand, it also extends
the models of weighted automata over semirings and valuation monoids. We have
extended the use of weighted MSO logic to this new class of multi-weighted settings.
Since our translations from formulas to automata are effective, we can reduce the
decidability problems for multi-weighted logics to the corresponding problems for
multi-weighted automata. Decidability results of, e.g., [7, 23, 27, 31] lead to decid-
ability results for multi-weighted nondeterministic automata. However, for infinite
words, the literature did not consider the Büchi acceptance condition for multi-
weighted automata. Therefore, our future work will investigate decision problems
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for multi-weighted Büchi automata. Also, weighted MSO logics for weighted timed
automata were investigated in [19, 34]. In our further work, we wish to combine the
ideas of [19, 34] and the current work to obtain a Büchi theorem for multi-weighted
timed automata.
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